1 //===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation  ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AArch64TargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AArch64ISelLowering.h"
15 #include "AArch64CallingConvention.h"
16 #include "AArch64MachineFunctionInfo.h"
17 #include "AArch64PerfectShuffle.h"
18 #include "AArch64Subtarget.h"
19 #include "AArch64TargetMachine.h"
20 #include "AArch64TargetObjectFile.h"
21 #include "MCTargetDesc/AArch64AddressingModes.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/CallingConvLower.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/GetElementPtrTypeIterator.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetOptions.h"
36 using namespace llvm;
37 
38 #define DEBUG_TYPE "aarch64-lower"
39 
40 STATISTIC(NumTailCalls, "Number of tail calls");
41 STATISTIC(NumShiftInserts, "Number of vector shift inserts");
42 
43 static cl::opt<bool>
44 EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden,
45                            cl::desc("Allow AArch64 SLI/SRI formation"),
46                            cl::init(false));
47 
48 // FIXME: The necessary dtprel relocations don't seem to be supported
49 // well in the GNU bfd and gold linkers at the moment. Therefore, by
50 // default, for now, fall back to GeneralDynamic code generation.
51 cl::opt<bool> EnableAArch64ELFLocalDynamicTLSGeneration(
52     "aarch64-elf-ldtls-generation", cl::Hidden,
53     cl::desc("Allow AArch64 Local Dynamic TLS code generation"),
54     cl::init(false));
55 
56 /// Value type used for condition codes.
57 static const MVT MVT_CC = MVT::i32;
58 
AArch64TargetLowering(const TargetMachine & TM,const AArch64Subtarget & STI)59 AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM,
60                                              const AArch64Subtarget &STI)
61     : TargetLowering(TM), Subtarget(&STI) {
62 
63   // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
64   // we have to make something up. Arbitrarily, choose ZeroOrOne.
65   setBooleanContents(ZeroOrOneBooleanContent);
66   // When comparing vectors the result sets the different elements in the
67   // vector to all-one or all-zero.
68   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
69 
70   // Set up the register classes.
71   addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
72   addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);
73 
74   if (Subtarget->hasFPARMv8()) {
75     addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
76     addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
77     addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
78     addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
79   }
80 
81   if (Subtarget->hasNEON()) {
82     addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
83     addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
84     // Someone set us up the NEON.
85     addDRTypeForNEON(MVT::v2f32);
86     addDRTypeForNEON(MVT::v8i8);
87     addDRTypeForNEON(MVT::v4i16);
88     addDRTypeForNEON(MVT::v2i32);
89     addDRTypeForNEON(MVT::v1i64);
90     addDRTypeForNEON(MVT::v1f64);
91     addDRTypeForNEON(MVT::v4f16);
92 
93     addQRTypeForNEON(MVT::v4f32);
94     addQRTypeForNEON(MVT::v2f64);
95     addQRTypeForNEON(MVT::v16i8);
96     addQRTypeForNEON(MVT::v8i16);
97     addQRTypeForNEON(MVT::v4i32);
98     addQRTypeForNEON(MVT::v2i64);
99     addQRTypeForNEON(MVT::v8f16);
100   }
101 
102   // Compute derived properties from the register classes
103   computeRegisterProperties(Subtarget->getRegisterInfo());
104 
105   // Provide all sorts of operation actions
106   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
107   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
108   setOperationAction(ISD::SETCC, MVT::i32, Custom);
109   setOperationAction(ISD::SETCC, MVT::i64, Custom);
110   setOperationAction(ISD::SETCC, MVT::f32, Custom);
111   setOperationAction(ISD::SETCC, MVT::f64, Custom);
112   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
113   setOperationAction(ISD::BR_CC, MVT::i32, Custom);
114   setOperationAction(ISD::BR_CC, MVT::i64, Custom);
115   setOperationAction(ISD::BR_CC, MVT::f32, Custom);
116   setOperationAction(ISD::BR_CC, MVT::f64, Custom);
117   setOperationAction(ISD::SELECT, MVT::i32, Custom);
118   setOperationAction(ISD::SELECT, MVT::i64, Custom);
119   setOperationAction(ISD::SELECT, MVT::f32, Custom);
120   setOperationAction(ISD::SELECT, MVT::f64, Custom);
121   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
122   setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
123   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
124   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
125   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
126   setOperationAction(ISD::JumpTable, MVT::i64, Custom);
127 
128   setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
129   setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
130   setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
131 
132   setOperationAction(ISD::FREM, MVT::f32, Expand);
133   setOperationAction(ISD::FREM, MVT::f64, Expand);
134   setOperationAction(ISD::FREM, MVT::f80, Expand);
135 
136   // Custom lowering hooks are needed for XOR
137   // to fold it into CSINC/CSINV.
138   setOperationAction(ISD::XOR, MVT::i32, Custom);
139   setOperationAction(ISD::XOR, MVT::i64, Custom);
140 
141   // Virtually no operation on f128 is legal, but LLVM can't expand them when
142   // there's a valid register class, so we need custom operations in most cases.
143   setOperationAction(ISD::FABS, MVT::f128, Expand);
144   setOperationAction(ISD::FADD, MVT::f128, Custom);
145   setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
146   setOperationAction(ISD::FCOS, MVT::f128, Expand);
147   setOperationAction(ISD::FDIV, MVT::f128, Custom);
148   setOperationAction(ISD::FMA, MVT::f128, Expand);
149   setOperationAction(ISD::FMUL, MVT::f128, Custom);
150   setOperationAction(ISD::FNEG, MVT::f128, Expand);
151   setOperationAction(ISD::FPOW, MVT::f128, Expand);
152   setOperationAction(ISD::FREM, MVT::f128, Expand);
153   setOperationAction(ISD::FRINT, MVT::f128, Expand);
154   setOperationAction(ISD::FSIN, MVT::f128, Expand);
155   setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
156   setOperationAction(ISD::FSQRT, MVT::f128, Expand);
157   setOperationAction(ISD::FSUB, MVT::f128, Custom);
158   setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
159   setOperationAction(ISD::SETCC, MVT::f128, Custom);
160   setOperationAction(ISD::BR_CC, MVT::f128, Custom);
161   setOperationAction(ISD::SELECT, MVT::f128, Custom);
162   setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
163   setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
164 
165   // Lowering for many of the conversions is actually specified by the non-f128
166   // type. The LowerXXX function will be trivial when f128 isn't involved.
167   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
168   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
169   setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
170   setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
171   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
172   setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
173   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
174   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
175   setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
176   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
177   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
178   setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
179   setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
180   setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
181 
182   // Variable arguments.
183   setOperationAction(ISD::VASTART, MVT::Other, Custom);
184   setOperationAction(ISD::VAARG, MVT::Other, Custom);
185   setOperationAction(ISD::VACOPY, MVT::Other, Custom);
186   setOperationAction(ISD::VAEND, MVT::Other, Expand);
187 
188   // Variable-sized objects.
189   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
190   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
191   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
192 
193   // Constant pool entries
194   setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
195 
196   // BlockAddress
197   setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
198 
199   // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
200   setOperationAction(ISD::ADDC, MVT::i32, Custom);
201   setOperationAction(ISD::ADDE, MVT::i32, Custom);
202   setOperationAction(ISD::SUBC, MVT::i32, Custom);
203   setOperationAction(ISD::SUBE, MVT::i32, Custom);
204   setOperationAction(ISD::ADDC, MVT::i64, Custom);
205   setOperationAction(ISD::ADDE, MVT::i64, Custom);
206   setOperationAction(ISD::SUBC, MVT::i64, Custom);
207   setOperationAction(ISD::SUBE, MVT::i64, Custom);
208 
209   // AArch64 lacks both left-rotate and popcount instructions.
210   setOperationAction(ISD::ROTL, MVT::i32, Expand);
211   setOperationAction(ISD::ROTL, MVT::i64, Expand);
212   for (MVT VT : MVT::vector_valuetypes()) {
213     setOperationAction(ISD::ROTL, VT, Expand);
214     setOperationAction(ISD::ROTR, VT, Expand);
215   }
216 
217   // AArch64 doesn't have {U|S}MUL_LOHI.
218   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
219   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
220 
221 
222   setOperationAction(ISD::CTPOP, MVT::i32, Custom);
223   setOperationAction(ISD::CTPOP, MVT::i64, Custom);
224 
225   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
226   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
227   for (MVT VT : MVT::vector_valuetypes()) {
228     setOperationAction(ISD::SDIVREM, VT, Expand);
229     setOperationAction(ISD::UDIVREM, VT, Expand);
230   }
231   setOperationAction(ISD::SREM, MVT::i32, Expand);
232   setOperationAction(ISD::SREM, MVT::i64, Expand);
233   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
234   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
235   setOperationAction(ISD::UREM, MVT::i32, Expand);
236   setOperationAction(ISD::UREM, MVT::i64, Expand);
237 
238   // Custom lower Add/Sub/Mul with overflow.
239   setOperationAction(ISD::SADDO, MVT::i32, Custom);
240   setOperationAction(ISD::SADDO, MVT::i64, Custom);
241   setOperationAction(ISD::UADDO, MVT::i32, Custom);
242   setOperationAction(ISD::UADDO, MVT::i64, Custom);
243   setOperationAction(ISD::SSUBO, MVT::i32, Custom);
244   setOperationAction(ISD::SSUBO, MVT::i64, Custom);
245   setOperationAction(ISD::USUBO, MVT::i32, Custom);
246   setOperationAction(ISD::USUBO, MVT::i64, Custom);
247   setOperationAction(ISD::SMULO, MVT::i32, Custom);
248   setOperationAction(ISD::SMULO, MVT::i64, Custom);
249   setOperationAction(ISD::UMULO, MVT::i32, Custom);
250   setOperationAction(ISD::UMULO, MVT::i64, Custom);
251 
252   setOperationAction(ISD::FSIN, MVT::f32, Expand);
253   setOperationAction(ISD::FSIN, MVT::f64, Expand);
254   setOperationAction(ISD::FCOS, MVT::f32, Expand);
255   setOperationAction(ISD::FCOS, MVT::f64, Expand);
256   setOperationAction(ISD::FPOW, MVT::f32, Expand);
257   setOperationAction(ISD::FPOW, MVT::f64, Expand);
258   setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
259   setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
260 
261   // f16 is a storage-only type, always promote it to f32.
262   setOperationAction(ISD::SETCC,       MVT::f16,  Promote);
263   setOperationAction(ISD::BR_CC,       MVT::f16,  Promote);
264   setOperationAction(ISD::SELECT_CC,   MVT::f16,  Promote);
265   setOperationAction(ISD::SELECT,      MVT::f16,  Promote);
266   setOperationAction(ISD::FADD,        MVT::f16,  Promote);
267   setOperationAction(ISD::FSUB,        MVT::f16,  Promote);
268   setOperationAction(ISD::FMUL,        MVT::f16,  Promote);
269   setOperationAction(ISD::FDIV,        MVT::f16,  Promote);
270   setOperationAction(ISD::FREM,        MVT::f16,  Promote);
271   setOperationAction(ISD::FMA,         MVT::f16,  Promote);
272   setOperationAction(ISD::FNEG,        MVT::f16,  Promote);
273   setOperationAction(ISD::FABS,        MVT::f16,  Promote);
274   setOperationAction(ISD::FCEIL,       MVT::f16,  Promote);
275   setOperationAction(ISD::FCOPYSIGN,   MVT::f16,  Promote);
276   setOperationAction(ISD::FCOS,        MVT::f16,  Promote);
277   setOperationAction(ISD::FFLOOR,      MVT::f16,  Promote);
278   setOperationAction(ISD::FNEARBYINT,  MVT::f16,  Promote);
279   setOperationAction(ISD::FPOW,        MVT::f16,  Promote);
280   setOperationAction(ISD::FPOWI,       MVT::f16,  Promote);
281   setOperationAction(ISD::FRINT,       MVT::f16,  Promote);
282   setOperationAction(ISD::FSIN,        MVT::f16,  Promote);
283   setOperationAction(ISD::FSINCOS,     MVT::f16,  Promote);
284   setOperationAction(ISD::FSQRT,       MVT::f16,  Promote);
285   setOperationAction(ISD::FEXP,        MVT::f16,  Promote);
286   setOperationAction(ISD::FEXP2,       MVT::f16,  Promote);
287   setOperationAction(ISD::FLOG,        MVT::f16,  Promote);
288   setOperationAction(ISD::FLOG2,       MVT::f16,  Promote);
289   setOperationAction(ISD::FLOG10,      MVT::f16,  Promote);
290   setOperationAction(ISD::FROUND,      MVT::f16,  Promote);
291   setOperationAction(ISD::FTRUNC,      MVT::f16,  Promote);
292   setOperationAction(ISD::FMINNUM,     MVT::f16,  Promote);
293   setOperationAction(ISD::FMAXNUM,     MVT::f16,  Promote);
294   setOperationAction(ISD::FMINNAN,     MVT::f16,  Promote);
295   setOperationAction(ISD::FMAXNAN,     MVT::f16,  Promote);
296 
297   // v4f16 is also a storage-only type, so promote it to v4f32 when that is
298   // known to be safe.
299   setOperationAction(ISD::FADD, MVT::v4f16, Promote);
300   setOperationAction(ISD::FSUB, MVT::v4f16, Promote);
301   setOperationAction(ISD::FMUL, MVT::v4f16, Promote);
302   setOperationAction(ISD::FDIV, MVT::v4f16, Promote);
303   setOperationAction(ISD::FP_EXTEND, MVT::v4f16, Promote);
304   setOperationAction(ISD::FP_ROUND, MVT::v4f16, Promote);
305   AddPromotedToType(ISD::FADD, MVT::v4f16, MVT::v4f32);
306   AddPromotedToType(ISD::FSUB, MVT::v4f16, MVT::v4f32);
307   AddPromotedToType(ISD::FMUL, MVT::v4f16, MVT::v4f32);
308   AddPromotedToType(ISD::FDIV, MVT::v4f16, MVT::v4f32);
309   AddPromotedToType(ISD::FP_EXTEND, MVT::v4f16, MVT::v4f32);
310   AddPromotedToType(ISD::FP_ROUND, MVT::v4f16, MVT::v4f32);
311 
312   // Expand all other v4f16 operations.
313   // FIXME: We could generate better code by promoting some operations to
314   // a pair of v4f32s
315   setOperationAction(ISD::FABS, MVT::v4f16, Expand);
316   setOperationAction(ISD::FCEIL, MVT::v4f16, Expand);
317   setOperationAction(ISD::FCOPYSIGN, MVT::v4f16, Expand);
318   setOperationAction(ISD::FCOS, MVT::v4f16, Expand);
319   setOperationAction(ISD::FFLOOR, MVT::v4f16, Expand);
320   setOperationAction(ISD::FMA, MVT::v4f16, Expand);
321   setOperationAction(ISD::FNEARBYINT, MVT::v4f16, Expand);
322   setOperationAction(ISD::FNEG, MVT::v4f16, Expand);
323   setOperationAction(ISD::FPOW, MVT::v4f16, Expand);
324   setOperationAction(ISD::FPOWI, MVT::v4f16, Expand);
325   setOperationAction(ISD::FREM, MVT::v4f16, Expand);
326   setOperationAction(ISD::FROUND, MVT::v4f16, Expand);
327   setOperationAction(ISD::FRINT, MVT::v4f16, Expand);
328   setOperationAction(ISD::FSIN, MVT::v4f16, Expand);
329   setOperationAction(ISD::FSINCOS, MVT::v4f16, Expand);
330   setOperationAction(ISD::FSQRT, MVT::v4f16, Expand);
331   setOperationAction(ISD::FTRUNC, MVT::v4f16, Expand);
332   setOperationAction(ISD::SETCC, MVT::v4f16, Expand);
333   setOperationAction(ISD::BR_CC, MVT::v4f16, Expand);
334   setOperationAction(ISD::SELECT, MVT::v4f16, Expand);
335   setOperationAction(ISD::SELECT_CC, MVT::v4f16, Expand);
336   setOperationAction(ISD::FEXP, MVT::v4f16, Expand);
337   setOperationAction(ISD::FEXP2, MVT::v4f16, Expand);
338   setOperationAction(ISD::FLOG, MVT::v4f16, Expand);
339   setOperationAction(ISD::FLOG2, MVT::v4f16, Expand);
340   setOperationAction(ISD::FLOG10, MVT::v4f16, Expand);
341 
342 
343   // v8f16 is also a storage-only type, so expand it.
344   setOperationAction(ISD::FABS, MVT::v8f16, Expand);
345   setOperationAction(ISD::FADD, MVT::v8f16, Expand);
346   setOperationAction(ISD::FCEIL, MVT::v8f16, Expand);
347   setOperationAction(ISD::FCOPYSIGN, MVT::v8f16, Expand);
348   setOperationAction(ISD::FCOS, MVT::v8f16, Expand);
349   setOperationAction(ISD::FDIV, MVT::v8f16, Expand);
350   setOperationAction(ISD::FFLOOR, MVT::v8f16, Expand);
351   setOperationAction(ISD::FMA, MVT::v8f16, Expand);
352   setOperationAction(ISD::FMUL, MVT::v8f16, Expand);
353   setOperationAction(ISD::FNEARBYINT, MVT::v8f16, Expand);
354   setOperationAction(ISD::FNEG, MVT::v8f16, Expand);
355   setOperationAction(ISD::FPOW, MVT::v8f16, Expand);
356   setOperationAction(ISD::FPOWI, MVT::v8f16, Expand);
357   setOperationAction(ISD::FREM, MVT::v8f16, Expand);
358   setOperationAction(ISD::FROUND, MVT::v8f16, Expand);
359   setOperationAction(ISD::FRINT, MVT::v8f16, Expand);
360   setOperationAction(ISD::FSIN, MVT::v8f16, Expand);
361   setOperationAction(ISD::FSINCOS, MVT::v8f16, Expand);
362   setOperationAction(ISD::FSQRT, MVT::v8f16, Expand);
363   setOperationAction(ISD::FSUB, MVT::v8f16, Expand);
364   setOperationAction(ISD::FTRUNC, MVT::v8f16, Expand);
365   setOperationAction(ISD::SETCC, MVT::v8f16, Expand);
366   setOperationAction(ISD::BR_CC, MVT::v8f16, Expand);
367   setOperationAction(ISD::SELECT, MVT::v8f16, Expand);
368   setOperationAction(ISD::SELECT_CC, MVT::v8f16, Expand);
369   setOperationAction(ISD::FP_EXTEND, MVT::v8f16, Expand);
370   setOperationAction(ISD::FEXP, MVT::v8f16, Expand);
371   setOperationAction(ISD::FEXP2, MVT::v8f16, Expand);
372   setOperationAction(ISD::FLOG, MVT::v8f16, Expand);
373   setOperationAction(ISD::FLOG2, MVT::v8f16, Expand);
374   setOperationAction(ISD::FLOG10, MVT::v8f16, Expand);
375 
376   // AArch64 has implementations of a lot of rounding-like FP operations.
377   for (MVT Ty : {MVT::f32, MVT::f64}) {
378     setOperationAction(ISD::FFLOOR, Ty, Legal);
379     setOperationAction(ISD::FNEARBYINT, Ty, Legal);
380     setOperationAction(ISD::FCEIL, Ty, Legal);
381     setOperationAction(ISD::FRINT, Ty, Legal);
382     setOperationAction(ISD::FTRUNC, Ty, Legal);
383     setOperationAction(ISD::FROUND, Ty, Legal);
384     setOperationAction(ISD::FMINNUM, Ty, Legal);
385     setOperationAction(ISD::FMAXNUM, Ty, Legal);
386     setOperationAction(ISD::FMINNAN, Ty, Legal);
387     setOperationAction(ISD::FMAXNAN, Ty, Legal);
388   }
389 
390   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
391 
392   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
393 
394   // Lower READCYCLECOUNTER using an mrs from PMCCNTR_EL0.
395   // This requires the Performance Monitors extension.
396   if (Subtarget->hasPerfMon())
397     setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
398 
399   if (Subtarget->isTargetMachO()) {
400     // For iOS, we don't want to the normal expansion of a libcall to
401     // sincos. We want to issue a libcall to __sincos_stret to avoid memory
402     // traffic.
403     setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
404     setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
405   } else {
406     setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
407     setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
408   }
409 
410   // Make floating-point constants legal for the large code model, so they don't
411   // become loads from the constant pool.
412   if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) {
413     setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
414     setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
415   }
416 
417   // AArch64 does not have floating-point extending loads, i1 sign-extending
418   // load, floating-point truncating stores, or v2i32->v2i16 truncating store.
419   for (MVT VT : MVT::fp_valuetypes()) {
420     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
421     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
422     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
423     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
424   }
425   for (MVT VT : MVT::integer_valuetypes())
426     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand);
427 
428   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
429   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
430   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
431   setTruncStoreAction(MVT::f128, MVT::f80, Expand);
432   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
433   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
434   setTruncStoreAction(MVT::f128, MVT::f16, Expand);
435 
436   setOperationAction(ISD::BITCAST, MVT::i16, Custom);
437   setOperationAction(ISD::BITCAST, MVT::f16, Custom);
438 
439   // Indexed loads and stores are supported.
440   for (unsigned im = (unsigned)ISD::PRE_INC;
441        im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
442     setIndexedLoadAction(im, MVT::i8, Legal);
443     setIndexedLoadAction(im, MVT::i16, Legal);
444     setIndexedLoadAction(im, MVT::i32, Legal);
445     setIndexedLoadAction(im, MVT::i64, Legal);
446     setIndexedLoadAction(im, MVT::f64, Legal);
447     setIndexedLoadAction(im, MVT::f32, Legal);
448     setIndexedLoadAction(im, MVT::f16, Legal);
449     setIndexedStoreAction(im, MVT::i8, Legal);
450     setIndexedStoreAction(im, MVT::i16, Legal);
451     setIndexedStoreAction(im, MVT::i32, Legal);
452     setIndexedStoreAction(im, MVT::i64, Legal);
453     setIndexedStoreAction(im, MVT::f64, Legal);
454     setIndexedStoreAction(im, MVT::f32, Legal);
455     setIndexedStoreAction(im, MVT::f16, Legal);
456   }
457 
458   // Trap.
459   setOperationAction(ISD::TRAP, MVT::Other, Legal);
460 
461   // We combine OR nodes for bitfield operations.
462   setTargetDAGCombine(ISD::OR);
463 
464   // Vector add and sub nodes may conceal a high-half opportunity.
465   // Also, try to fold ADD into CSINC/CSINV..
466   setTargetDAGCombine(ISD::ADD);
467   setTargetDAGCombine(ISD::SUB);
468   setTargetDAGCombine(ISD::SRL);
469   setTargetDAGCombine(ISD::XOR);
470   setTargetDAGCombine(ISD::SINT_TO_FP);
471   setTargetDAGCombine(ISD::UINT_TO_FP);
472 
473   setTargetDAGCombine(ISD::FP_TO_SINT);
474   setTargetDAGCombine(ISD::FP_TO_UINT);
475   setTargetDAGCombine(ISD::FDIV);
476 
477   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
478 
479   setTargetDAGCombine(ISD::ANY_EXTEND);
480   setTargetDAGCombine(ISD::ZERO_EXTEND);
481   setTargetDAGCombine(ISD::SIGN_EXTEND);
482   setTargetDAGCombine(ISD::BITCAST);
483   setTargetDAGCombine(ISD::CONCAT_VECTORS);
484   setTargetDAGCombine(ISD::STORE);
485   if (Subtarget->supportsAddressTopByteIgnored())
486     setTargetDAGCombine(ISD::LOAD);
487 
488   setTargetDAGCombine(ISD::MUL);
489 
490   setTargetDAGCombine(ISD::SELECT);
491   setTargetDAGCombine(ISD::VSELECT);
492 
493   setTargetDAGCombine(ISD::INTRINSIC_VOID);
494   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
495   setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
496   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
497 
498   MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 8;
499   MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 4;
500   MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 4;
501 
502   setStackPointerRegisterToSaveRestore(AArch64::SP);
503 
504   setSchedulingPreference(Sched::Hybrid);
505 
506   // Enable TBZ/TBNZ
507   MaskAndBranchFoldingIsLegal = true;
508   EnableExtLdPromotion = true;
509 
510   // Set required alignment.
511   setMinFunctionAlignment(2);
512   // Set preferred alignments.
513   setPrefFunctionAlignment(STI.getPrefFunctionAlignment());
514   setPrefLoopAlignment(STI.getPrefLoopAlignment());
515 
516   setHasExtractBitsInsn(true);
517 
518   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
519 
520   if (Subtarget->hasNEON()) {
521     // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
522     // silliness like this:
523     setOperationAction(ISD::FABS, MVT::v1f64, Expand);
524     setOperationAction(ISD::FADD, MVT::v1f64, Expand);
525     setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
526     setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
527     setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
528     setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
529     setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
530     setOperationAction(ISD::FMA, MVT::v1f64, Expand);
531     setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
532     setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
533     setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
534     setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
535     setOperationAction(ISD::FREM, MVT::v1f64, Expand);
536     setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
537     setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
538     setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
539     setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
540     setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
541     setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
542     setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
543     setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
544     setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
545     setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
546     setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
547     setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);
548 
549     setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
550     setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
551     setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
552     setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
553     setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);
554 
555     setOperationAction(ISD::MUL, MVT::v1i64, Expand);
556 
557     // AArch64 doesn't have a direct vector ->f32 conversion instructions for
558     // elements smaller than i32, so promote the input to i32 first.
559     setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Promote);
560     setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Promote);
561     setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Promote);
562     setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Promote);
563     // i8 and i16 vector elements also need promotion to i32 for v8i8 or v8i16
564     // -> v8f16 conversions.
565     setOperationAction(ISD::SINT_TO_FP, MVT::v8i8, Promote);
566     setOperationAction(ISD::UINT_TO_FP, MVT::v8i8, Promote);
567     setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Promote);
568     setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Promote);
569     // Similarly, there is no direct i32 -> f64 vector conversion instruction.
570     setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
571     setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
572     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
573     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
574     // Or, direct i32 -> f16 vector conversion.  Set it so custom, so the
575     // conversion happens in two steps: v4i32 -> v4f32 -> v4f16
576     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Custom);
577     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom);
578 
579     setOperationAction(ISD::CTLZ,       MVT::v1i64, Expand);
580     setOperationAction(ISD::CTLZ,       MVT::v2i64, Expand);
581 
582     setOperationAction(ISD::CTTZ,       MVT::v2i8,  Expand);
583     setOperationAction(ISD::CTTZ,       MVT::v4i16, Expand);
584     setOperationAction(ISD::CTTZ,       MVT::v2i32, Expand);
585     setOperationAction(ISD::CTTZ,       MVT::v1i64, Expand);
586     setOperationAction(ISD::CTTZ,       MVT::v16i8, Expand);
587     setOperationAction(ISD::CTTZ,       MVT::v8i16, Expand);
588     setOperationAction(ISD::CTTZ,       MVT::v4i32, Expand);
589     setOperationAction(ISD::CTTZ,       MVT::v2i64, Expand);
590 
591     // AArch64 doesn't have MUL.2d:
592     setOperationAction(ISD::MUL, MVT::v2i64, Expand);
593     // Custom handling for some quad-vector types to detect MULL.
594     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
595     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
596     setOperationAction(ISD::MUL, MVT::v2i64, Custom);
597 
598     setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
599     setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
600     // Likewise, narrowing and extending vector loads/stores aren't handled
601     // directly.
602     for (MVT VT : MVT::vector_valuetypes()) {
603       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
604 
605       setOperationAction(ISD::MULHS, VT, Expand);
606       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
607       setOperationAction(ISD::MULHU, VT, Expand);
608       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
609 
610       setOperationAction(ISD::BSWAP, VT, Expand);
611 
612       for (MVT InnerVT : MVT::vector_valuetypes()) {
613         setTruncStoreAction(VT, InnerVT, Expand);
614         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
615         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
616         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
617       }
618     }
619 
620     // AArch64 has implementations of a lot of rounding-like FP operations.
621     for (MVT Ty : {MVT::v2f32, MVT::v4f32, MVT::v2f64}) {
622       setOperationAction(ISD::FFLOOR, Ty, Legal);
623       setOperationAction(ISD::FNEARBYINT, Ty, Legal);
624       setOperationAction(ISD::FCEIL, Ty, Legal);
625       setOperationAction(ISD::FRINT, Ty, Legal);
626       setOperationAction(ISD::FTRUNC, Ty, Legal);
627       setOperationAction(ISD::FROUND, Ty, Legal);
628     }
629   }
630 
631   PredictableSelectIsExpensive = Subtarget->predictableSelectIsExpensive();
632 }
633 
addTypeForNEON(MVT VT,MVT PromotedBitwiseVT)634 void AArch64TargetLowering::addTypeForNEON(MVT VT, MVT PromotedBitwiseVT) {
635   if (VT == MVT::v2f32 || VT == MVT::v4f16) {
636     setOperationAction(ISD::LOAD, VT, Promote);
637     AddPromotedToType(ISD::LOAD, VT, MVT::v2i32);
638 
639     setOperationAction(ISD::STORE, VT, Promote);
640     AddPromotedToType(ISD::STORE, VT, MVT::v2i32);
641   } else if (VT == MVT::v2f64 || VT == MVT::v4f32 || VT == MVT::v8f16) {
642     setOperationAction(ISD::LOAD, VT, Promote);
643     AddPromotedToType(ISD::LOAD, VT, MVT::v2i64);
644 
645     setOperationAction(ISD::STORE, VT, Promote);
646     AddPromotedToType(ISD::STORE, VT, MVT::v2i64);
647   }
648 
649   // Mark vector float intrinsics as expand.
650   if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
651     setOperationAction(ISD::FSIN, VT, Expand);
652     setOperationAction(ISD::FCOS, VT, Expand);
653     setOperationAction(ISD::FPOWI, VT, Expand);
654     setOperationAction(ISD::FPOW, VT, Expand);
655     setOperationAction(ISD::FLOG, VT, Expand);
656     setOperationAction(ISD::FLOG2, VT, Expand);
657     setOperationAction(ISD::FLOG10, VT, Expand);
658     setOperationAction(ISD::FEXP, VT, Expand);
659     setOperationAction(ISD::FEXP2, VT, Expand);
660 
661     // But we do support custom-lowering for FCOPYSIGN.
662     setOperationAction(ISD::FCOPYSIGN, VT, Custom);
663   }
664 
665   setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
666   setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
667   setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
668   setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
669   setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
670   setOperationAction(ISD::SRA, VT, Custom);
671   setOperationAction(ISD::SRL, VT, Custom);
672   setOperationAction(ISD::SHL, VT, Custom);
673   setOperationAction(ISD::AND, VT, Custom);
674   setOperationAction(ISD::OR, VT, Custom);
675   setOperationAction(ISD::SETCC, VT, Custom);
676   setOperationAction(ISD::CONCAT_VECTORS, VT, Legal);
677 
678   setOperationAction(ISD::SELECT, VT, Expand);
679   setOperationAction(ISD::SELECT_CC, VT, Expand);
680   setOperationAction(ISD::VSELECT, VT, Expand);
681   for (MVT InnerVT : MVT::all_valuetypes())
682     setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);
683 
684   // CNT supports only B element sizes.
685   if (VT != MVT::v8i8 && VT != MVT::v16i8)
686     setOperationAction(ISD::CTPOP, VT, Expand);
687 
688   setOperationAction(ISD::UDIV, VT, Expand);
689   setOperationAction(ISD::SDIV, VT, Expand);
690   setOperationAction(ISD::UREM, VT, Expand);
691   setOperationAction(ISD::SREM, VT, Expand);
692   setOperationAction(ISD::FREM, VT, Expand);
693 
694   setOperationAction(ISD::FP_TO_SINT, VT, Custom);
695   setOperationAction(ISD::FP_TO_UINT, VT, Custom);
696 
697   // [SU][MIN|MAX] are available for all NEON types apart from i64.
698   if (!VT.isFloatingPoint() && VT != MVT::v2i64 && VT != MVT::v1i64)
699     for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
700       setOperationAction(Opcode, VT, Legal);
701 
702   // F[MIN|MAX][NUM|NAN] are available for all FP NEON types (not f16 though!).
703   if (VT.isFloatingPoint() && VT.getVectorElementType() != MVT::f16)
704     for (unsigned Opcode : {ISD::FMINNAN, ISD::FMAXNAN,
705                             ISD::FMINNUM, ISD::FMAXNUM})
706       setOperationAction(Opcode, VT, Legal);
707 
708   if (Subtarget->isLittleEndian()) {
709     for (unsigned im = (unsigned)ISD::PRE_INC;
710          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
711       setIndexedLoadAction(im, VT, Legal);
712       setIndexedStoreAction(im, VT, Legal);
713     }
714   }
715 }
716 
addDRTypeForNEON(MVT VT)717 void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
718   addRegisterClass(VT, &AArch64::FPR64RegClass);
719   addTypeForNEON(VT, MVT::v2i32);
720 }
721 
addQRTypeForNEON(MVT VT)722 void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
723   addRegisterClass(VT, &AArch64::FPR128RegClass);
724   addTypeForNEON(VT, MVT::v4i32);
725 }
726 
getSetCCResultType(const DataLayout &,LLVMContext &,EVT VT) const727 EVT AArch64TargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
728                                               EVT VT) const {
729   if (!VT.isVector())
730     return MVT::i32;
731   return VT.changeVectorElementTypeToInteger();
732 }
733 
734 /// computeKnownBitsForTargetNode - Determine which of the bits specified in
735 /// Mask are known to be either zero or one and return them in the
736 /// KnownZero/KnownOne bitsets.
computeKnownBitsForTargetNode(const SDValue Op,APInt & KnownZero,APInt & KnownOne,const SelectionDAG & DAG,unsigned Depth) const737 void AArch64TargetLowering::computeKnownBitsForTargetNode(
738     const SDValue Op, APInt &KnownZero, APInt &KnownOne,
739     const SelectionDAG &DAG, unsigned Depth) const {
740   switch (Op.getOpcode()) {
741   default:
742     break;
743   case AArch64ISD::CSEL: {
744     APInt KnownZero2, KnownOne2;
745     DAG.computeKnownBits(Op->getOperand(0), KnownZero, KnownOne, Depth + 1);
746     DAG.computeKnownBits(Op->getOperand(1), KnownZero2, KnownOne2, Depth + 1);
747     KnownZero &= KnownZero2;
748     KnownOne &= KnownOne2;
749     break;
750   }
751   case ISD::INTRINSIC_W_CHAIN: {
752     ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
753     Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
754     switch (IntID) {
755     default: return;
756     case Intrinsic::aarch64_ldaxr:
757     case Intrinsic::aarch64_ldxr: {
758       unsigned BitWidth = KnownOne.getBitWidth();
759       EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
760       unsigned MemBits = VT.getScalarType().getSizeInBits();
761       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
762       return;
763     }
764     }
765     break;
766   }
767   case ISD::INTRINSIC_WO_CHAIN:
768   case ISD::INTRINSIC_VOID: {
769     unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
770     switch (IntNo) {
771     default:
772       break;
773     case Intrinsic::aarch64_neon_umaxv:
774     case Intrinsic::aarch64_neon_uminv: {
775       // Figure out the datatype of the vector operand. The UMINV instruction
776       // will zero extend the result, so we can mark as known zero all the
777       // bits larger than the element datatype. 32-bit or larget doesn't need
778       // this as those are legal types and will be handled by isel directly.
779       MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
780       unsigned BitWidth = KnownZero.getBitWidth();
781       if (VT == MVT::v8i8 || VT == MVT::v16i8) {
782         assert(BitWidth >= 8 && "Unexpected width!");
783         APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
784         KnownZero |= Mask;
785       } else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
786         assert(BitWidth >= 16 && "Unexpected width!");
787         APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
788         KnownZero |= Mask;
789       }
790       break;
791     } break;
792     }
793   }
794   }
795 }
796 
getScalarShiftAmountTy(const DataLayout & DL,EVT) const797 MVT AArch64TargetLowering::getScalarShiftAmountTy(const DataLayout &DL,
798                                                   EVT) const {
799   return MVT::i64;
800 }
801 
allowsMisalignedMemoryAccesses(EVT VT,unsigned AddrSpace,unsigned Align,bool * Fast) const802 bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
803                                                            unsigned AddrSpace,
804                                                            unsigned Align,
805                                                            bool *Fast) const {
806   if (Subtarget->requiresStrictAlign())
807     return false;
808 
809   if (Fast) {
810     // Some CPUs are fine with unaligned stores except for 128-bit ones.
811     *Fast = !Subtarget->isMisaligned128StoreSlow() || VT.getStoreSize() != 16 ||
812             // See comments in performSTORECombine() for more details about
813             // these conditions.
814 
815             // Code that uses clang vector extensions can mark that it
816             // wants unaligned accesses to be treated as fast by
817             // underspecifying alignment to be 1 or 2.
818             Align <= 2 ||
819 
820             // Disregard v2i64. Memcpy lowering produces those and splitting
821             // them regresses performance on micro-benchmarks and olden/bh.
822             VT == MVT::v2i64;
823   }
824   return true;
825 }
826 
827 FastISel *
createFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo) const828 AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
829                                       const TargetLibraryInfo *libInfo) const {
830   return AArch64::createFastISel(funcInfo, libInfo);
831 }
832 
getTargetNodeName(unsigned Opcode) const833 const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
834   switch ((AArch64ISD::NodeType)Opcode) {
835   case AArch64ISD::FIRST_NUMBER:      break;
836   case AArch64ISD::CALL:              return "AArch64ISD::CALL";
837   case AArch64ISD::ADRP:              return "AArch64ISD::ADRP";
838   case AArch64ISD::ADDlow:            return "AArch64ISD::ADDlow";
839   case AArch64ISD::LOADgot:           return "AArch64ISD::LOADgot";
840   case AArch64ISD::RET_FLAG:          return "AArch64ISD::RET_FLAG";
841   case AArch64ISD::BRCOND:            return "AArch64ISD::BRCOND";
842   case AArch64ISD::CSEL:              return "AArch64ISD::CSEL";
843   case AArch64ISD::FCSEL:             return "AArch64ISD::FCSEL";
844   case AArch64ISD::CSINV:             return "AArch64ISD::CSINV";
845   case AArch64ISD::CSNEG:             return "AArch64ISD::CSNEG";
846   case AArch64ISD::CSINC:             return "AArch64ISD::CSINC";
847   case AArch64ISD::THREAD_POINTER:    return "AArch64ISD::THREAD_POINTER";
848   case AArch64ISD::TLSDESC_CALLSEQ:   return "AArch64ISD::TLSDESC_CALLSEQ";
849   case AArch64ISD::ADC:               return "AArch64ISD::ADC";
850   case AArch64ISD::SBC:               return "AArch64ISD::SBC";
851   case AArch64ISD::ADDS:              return "AArch64ISD::ADDS";
852   case AArch64ISD::SUBS:              return "AArch64ISD::SUBS";
853   case AArch64ISD::ADCS:              return "AArch64ISD::ADCS";
854   case AArch64ISD::SBCS:              return "AArch64ISD::SBCS";
855   case AArch64ISD::ANDS:              return "AArch64ISD::ANDS";
856   case AArch64ISD::CCMP:              return "AArch64ISD::CCMP";
857   case AArch64ISD::CCMN:              return "AArch64ISD::CCMN";
858   case AArch64ISD::FCCMP:             return "AArch64ISD::FCCMP";
859   case AArch64ISD::FCMP:              return "AArch64ISD::FCMP";
860   case AArch64ISD::DUP:               return "AArch64ISD::DUP";
861   case AArch64ISD::DUPLANE8:          return "AArch64ISD::DUPLANE8";
862   case AArch64ISD::DUPLANE16:         return "AArch64ISD::DUPLANE16";
863   case AArch64ISD::DUPLANE32:         return "AArch64ISD::DUPLANE32";
864   case AArch64ISD::DUPLANE64:         return "AArch64ISD::DUPLANE64";
865   case AArch64ISD::MOVI:              return "AArch64ISD::MOVI";
866   case AArch64ISD::MOVIshift:         return "AArch64ISD::MOVIshift";
867   case AArch64ISD::MOVIedit:          return "AArch64ISD::MOVIedit";
868   case AArch64ISD::MOVImsl:           return "AArch64ISD::MOVImsl";
869   case AArch64ISD::FMOV:              return "AArch64ISD::FMOV";
870   case AArch64ISD::MVNIshift:         return "AArch64ISD::MVNIshift";
871   case AArch64ISD::MVNImsl:           return "AArch64ISD::MVNImsl";
872   case AArch64ISD::BICi:              return "AArch64ISD::BICi";
873   case AArch64ISD::ORRi:              return "AArch64ISD::ORRi";
874   case AArch64ISD::BSL:               return "AArch64ISD::BSL";
875   case AArch64ISD::NEG:               return "AArch64ISD::NEG";
876   case AArch64ISD::EXTR:              return "AArch64ISD::EXTR";
877   case AArch64ISD::ZIP1:              return "AArch64ISD::ZIP1";
878   case AArch64ISD::ZIP2:              return "AArch64ISD::ZIP2";
879   case AArch64ISD::UZP1:              return "AArch64ISD::UZP1";
880   case AArch64ISD::UZP2:              return "AArch64ISD::UZP2";
881   case AArch64ISD::TRN1:              return "AArch64ISD::TRN1";
882   case AArch64ISD::TRN2:              return "AArch64ISD::TRN2";
883   case AArch64ISD::REV16:             return "AArch64ISD::REV16";
884   case AArch64ISD::REV32:             return "AArch64ISD::REV32";
885   case AArch64ISD::REV64:             return "AArch64ISD::REV64";
886   case AArch64ISD::EXT:               return "AArch64ISD::EXT";
887   case AArch64ISD::VSHL:              return "AArch64ISD::VSHL";
888   case AArch64ISD::VLSHR:             return "AArch64ISD::VLSHR";
889   case AArch64ISD::VASHR:             return "AArch64ISD::VASHR";
890   case AArch64ISD::CMEQ:              return "AArch64ISD::CMEQ";
891   case AArch64ISD::CMGE:              return "AArch64ISD::CMGE";
892   case AArch64ISD::CMGT:              return "AArch64ISD::CMGT";
893   case AArch64ISD::CMHI:              return "AArch64ISD::CMHI";
894   case AArch64ISD::CMHS:              return "AArch64ISD::CMHS";
895   case AArch64ISD::FCMEQ:             return "AArch64ISD::FCMEQ";
896   case AArch64ISD::FCMGE:             return "AArch64ISD::FCMGE";
897   case AArch64ISD::FCMGT:             return "AArch64ISD::FCMGT";
898   case AArch64ISD::CMEQz:             return "AArch64ISD::CMEQz";
899   case AArch64ISD::CMGEz:             return "AArch64ISD::CMGEz";
900   case AArch64ISD::CMGTz:             return "AArch64ISD::CMGTz";
901   case AArch64ISD::CMLEz:             return "AArch64ISD::CMLEz";
902   case AArch64ISD::CMLTz:             return "AArch64ISD::CMLTz";
903   case AArch64ISD::FCMEQz:            return "AArch64ISD::FCMEQz";
904   case AArch64ISD::FCMGEz:            return "AArch64ISD::FCMGEz";
905   case AArch64ISD::FCMGTz:            return "AArch64ISD::FCMGTz";
906   case AArch64ISD::FCMLEz:            return "AArch64ISD::FCMLEz";
907   case AArch64ISD::FCMLTz:            return "AArch64ISD::FCMLTz";
908   case AArch64ISD::SADDV:             return "AArch64ISD::SADDV";
909   case AArch64ISD::UADDV:             return "AArch64ISD::UADDV";
910   case AArch64ISD::SMINV:             return "AArch64ISD::SMINV";
911   case AArch64ISD::UMINV:             return "AArch64ISD::UMINV";
912   case AArch64ISD::SMAXV:             return "AArch64ISD::SMAXV";
913   case AArch64ISD::UMAXV:             return "AArch64ISD::UMAXV";
914   case AArch64ISD::NOT:               return "AArch64ISD::NOT";
915   case AArch64ISD::BIT:               return "AArch64ISD::BIT";
916   case AArch64ISD::CBZ:               return "AArch64ISD::CBZ";
917   case AArch64ISD::CBNZ:              return "AArch64ISD::CBNZ";
918   case AArch64ISD::TBZ:               return "AArch64ISD::TBZ";
919   case AArch64ISD::TBNZ:              return "AArch64ISD::TBNZ";
920   case AArch64ISD::TC_RETURN:         return "AArch64ISD::TC_RETURN";
921   case AArch64ISD::PREFETCH:          return "AArch64ISD::PREFETCH";
922   case AArch64ISD::SITOF:             return "AArch64ISD::SITOF";
923   case AArch64ISD::UITOF:             return "AArch64ISD::UITOF";
924   case AArch64ISD::NVCAST:            return "AArch64ISD::NVCAST";
925   case AArch64ISD::SQSHL_I:           return "AArch64ISD::SQSHL_I";
926   case AArch64ISD::UQSHL_I:           return "AArch64ISD::UQSHL_I";
927   case AArch64ISD::SRSHR_I:           return "AArch64ISD::SRSHR_I";
928   case AArch64ISD::URSHR_I:           return "AArch64ISD::URSHR_I";
929   case AArch64ISD::SQSHLU_I:          return "AArch64ISD::SQSHLU_I";
930   case AArch64ISD::WrapperLarge:      return "AArch64ISD::WrapperLarge";
931   case AArch64ISD::LD2post:           return "AArch64ISD::LD2post";
932   case AArch64ISD::LD3post:           return "AArch64ISD::LD3post";
933   case AArch64ISD::LD4post:           return "AArch64ISD::LD4post";
934   case AArch64ISD::ST2post:           return "AArch64ISD::ST2post";
935   case AArch64ISD::ST3post:           return "AArch64ISD::ST3post";
936   case AArch64ISD::ST4post:           return "AArch64ISD::ST4post";
937   case AArch64ISD::LD1x2post:         return "AArch64ISD::LD1x2post";
938   case AArch64ISD::LD1x3post:         return "AArch64ISD::LD1x3post";
939   case AArch64ISD::LD1x4post:         return "AArch64ISD::LD1x4post";
940   case AArch64ISD::ST1x2post:         return "AArch64ISD::ST1x2post";
941   case AArch64ISD::ST1x3post:         return "AArch64ISD::ST1x3post";
942   case AArch64ISD::ST1x4post:         return "AArch64ISD::ST1x4post";
943   case AArch64ISD::LD1DUPpost:        return "AArch64ISD::LD1DUPpost";
944   case AArch64ISD::LD2DUPpost:        return "AArch64ISD::LD2DUPpost";
945   case AArch64ISD::LD3DUPpost:        return "AArch64ISD::LD3DUPpost";
946   case AArch64ISD::LD4DUPpost:        return "AArch64ISD::LD4DUPpost";
947   case AArch64ISD::LD1LANEpost:       return "AArch64ISD::LD1LANEpost";
948   case AArch64ISD::LD2LANEpost:       return "AArch64ISD::LD2LANEpost";
949   case AArch64ISD::LD3LANEpost:       return "AArch64ISD::LD3LANEpost";
950   case AArch64ISD::LD4LANEpost:       return "AArch64ISD::LD4LANEpost";
951   case AArch64ISD::ST2LANEpost:       return "AArch64ISD::ST2LANEpost";
952   case AArch64ISD::ST3LANEpost:       return "AArch64ISD::ST3LANEpost";
953   case AArch64ISD::ST4LANEpost:       return "AArch64ISD::ST4LANEpost";
954   case AArch64ISD::SMULL:             return "AArch64ISD::SMULL";
955   case AArch64ISD::UMULL:             return "AArch64ISD::UMULL";
956   case AArch64ISD::FRSQRTE:           return "AArch64ISD::FRSQRTE";
957   case AArch64ISD::FRECPE:            return "AArch64ISD::FRECPE";
958   }
959   return nullptr;
960 }
961 
962 MachineBasicBlock *
EmitF128CSEL(MachineInstr & MI,MachineBasicBlock * MBB) const963 AArch64TargetLowering::EmitF128CSEL(MachineInstr &MI,
964                                     MachineBasicBlock *MBB) const {
965   // We materialise the F128CSEL pseudo-instruction as some control flow and a
966   // phi node:
967 
968   // OrigBB:
969   //     [... previous instrs leading to comparison ...]
970   //     b.ne TrueBB
971   //     b EndBB
972   // TrueBB:
973   //     ; Fallthrough
974   // EndBB:
975   //     Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
976 
977   MachineFunction *MF = MBB->getParent();
978   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
979   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
980   DebugLoc DL = MI.getDebugLoc();
981   MachineFunction::iterator It = ++MBB->getIterator();
982 
983   unsigned DestReg = MI.getOperand(0).getReg();
984   unsigned IfTrueReg = MI.getOperand(1).getReg();
985   unsigned IfFalseReg = MI.getOperand(2).getReg();
986   unsigned CondCode = MI.getOperand(3).getImm();
987   bool NZCVKilled = MI.getOperand(4).isKill();
988 
989   MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
990   MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
991   MF->insert(It, TrueBB);
992   MF->insert(It, EndBB);
993 
994   // Transfer rest of current basic-block to EndBB
995   EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
996                 MBB->end());
997   EndBB->transferSuccessorsAndUpdatePHIs(MBB);
998 
999   BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
1000   BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
1001   MBB->addSuccessor(TrueBB);
1002   MBB->addSuccessor(EndBB);
1003 
1004   // TrueBB falls through to the end.
1005   TrueBB->addSuccessor(EndBB);
1006 
1007   if (!NZCVKilled) {
1008     TrueBB->addLiveIn(AArch64::NZCV);
1009     EndBB->addLiveIn(AArch64::NZCV);
1010   }
1011 
1012   BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
1013       .addReg(IfTrueReg)
1014       .addMBB(TrueBB)
1015       .addReg(IfFalseReg)
1016       .addMBB(MBB);
1017 
1018   MI.eraseFromParent();
1019   return EndBB;
1020 }
1021 
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const1022 MachineBasicBlock *AArch64TargetLowering::EmitInstrWithCustomInserter(
1023     MachineInstr &MI, MachineBasicBlock *BB) const {
1024   switch (MI.getOpcode()) {
1025   default:
1026 #ifndef NDEBUG
1027     MI.dump();
1028 #endif
1029     llvm_unreachable("Unexpected instruction for custom inserter!");
1030 
1031   case AArch64::F128CSEL:
1032     return EmitF128CSEL(MI, BB);
1033 
1034   case TargetOpcode::STACKMAP:
1035   case TargetOpcode::PATCHPOINT:
1036     return emitPatchPoint(MI, BB);
1037   }
1038 }
1039 
1040 //===----------------------------------------------------------------------===//
1041 // AArch64 Lowering private implementation.
1042 //===----------------------------------------------------------------------===//
1043 
1044 //===----------------------------------------------------------------------===//
1045 // Lowering Code
1046 //===----------------------------------------------------------------------===//
1047 
1048 /// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
1049 /// CC
changeIntCCToAArch64CC(ISD::CondCode CC)1050 static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
1051   switch (CC) {
1052   default:
1053     llvm_unreachable("Unknown condition code!");
1054   case ISD::SETNE:
1055     return AArch64CC::NE;
1056   case ISD::SETEQ:
1057     return AArch64CC::EQ;
1058   case ISD::SETGT:
1059     return AArch64CC::GT;
1060   case ISD::SETGE:
1061     return AArch64CC::GE;
1062   case ISD::SETLT:
1063     return AArch64CC::LT;
1064   case ISD::SETLE:
1065     return AArch64CC::LE;
1066   case ISD::SETUGT:
1067     return AArch64CC::HI;
1068   case ISD::SETUGE:
1069     return AArch64CC::HS;
1070   case ISD::SETULT:
1071     return AArch64CC::LO;
1072   case ISD::SETULE:
1073     return AArch64CC::LS;
1074   }
1075 }
1076 
1077 /// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
changeFPCCToAArch64CC(ISD::CondCode CC,AArch64CC::CondCode & CondCode,AArch64CC::CondCode & CondCode2)1078 static void changeFPCCToAArch64CC(ISD::CondCode CC,
1079                                   AArch64CC::CondCode &CondCode,
1080                                   AArch64CC::CondCode &CondCode2) {
1081   CondCode2 = AArch64CC::AL;
1082   switch (CC) {
1083   default:
1084     llvm_unreachable("Unknown FP condition!");
1085   case ISD::SETEQ:
1086   case ISD::SETOEQ:
1087     CondCode = AArch64CC::EQ;
1088     break;
1089   case ISD::SETGT:
1090   case ISD::SETOGT:
1091     CondCode = AArch64CC::GT;
1092     break;
1093   case ISD::SETGE:
1094   case ISD::SETOGE:
1095     CondCode = AArch64CC::GE;
1096     break;
1097   case ISD::SETOLT:
1098     CondCode = AArch64CC::MI;
1099     break;
1100   case ISD::SETOLE:
1101     CondCode = AArch64CC::LS;
1102     break;
1103   case ISD::SETONE:
1104     CondCode = AArch64CC::MI;
1105     CondCode2 = AArch64CC::GT;
1106     break;
1107   case ISD::SETO:
1108     CondCode = AArch64CC::VC;
1109     break;
1110   case ISD::SETUO:
1111     CondCode = AArch64CC::VS;
1112     break;
1113   case ISD::SETUEQ:
1114     CondCode = AArch64CC::EQ;
1115     CondCode2 = AArch64CC::VS;
1116     break;
1117   case ISD::SETUGT:
1118     CondCode = AArch64CC::HI;
1119     break;
1120   case ISD::SETUGE:
1121     CondCode = AArch64CC::PL;
1122     break;
1123   case ISD::SETLT:
1124   case ISD::SETULT:
1125     CondCode = AArch64CC::LT;
1126     break;
1127   case ISD::SETLE:
1128   case ISD::SETULE:
1129     CondCode = AArch64CC::LE;
1130     break;
1131   case ISD::SETNE:
1132   case ISD::SETUNE:
1133     CondCode = AArch64CC::NE;
1134     break;
1135   }
1136 }
1137 
1138 /// Convert a DAG fp condition code to an AArch64 CC.
1139 /// This differs from changeFPCCToAArch64CC in that it returns cond codes that
1140 /// should be AND'ed instead of OR'ed.
changeFPCCToANDAArch64CC(ISD::CondCode CC,AArch64CC::CondCode & CondCode,AArch64CC::CondCode & CondCode2)1141 static void changeFPCCToANDAArch64CC(ISD::CondCode CC,
1142                                      AArch64CC::CondCode &CondCode,
1143                                      AArch64CC::CondCode &CondCode2) {
1144   CondCode2 = AArch64CC::AL;
1145   switch (CC) {
1146   default:
1147     changeFPCCToAArch64CC(CC, CondCode, CondCode2);
1148     assert(CondCode2 == AArch64CC::AL);
1149     break;
1150   case ISD::SETONE:
1151     // (a one b)
1152     // == ((a olt b) || (a ogt b))
1153     // == ((a ord b) && (a une b))
1154     CondCode = AArch64CC::VC;
1155     CondCode2 = AArch64CC::NE;
1156     break;
1157   case ISD::SETUEQ:
1158     // (a ueq b)
1159     // == ((a uno b) || (a oeq b))
1160     // == ((a ule b) && (a uge b))
1161     CondCode = AArch64CC::PL;
1162     CondCode2 = AArch64CC::LE;
1163     break;
1164   }
1165 }
1166 
1167 /// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
1168 /// CC usable with the vector instructions. Fewer operations are available
1169 /// without a real NZCV register, so we have to use less efficient combinations
1170 /// to get the same effect.
changeVectorFPCCToAArch64CC(ISD::CondCode CC,AArch64CC::CondCode & CondCode,AArch64CC::CondCode & CondCode2,bool & Invert)1171 static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
1172                                         AArch64CC::CondCode &CondCode,
1173                                         AArch64CC::CondCode &CondCode2,
1174                                         bool &Invert) {
1175   Invert = false;
1176   switch (CC) {
1177   default:
1178     // Mostly the scalar mappings work fine.
1179     changeFPCCToAArch64CC(CC, CondCode, CondCode2);
1180     break;
1181   case ISD::SETUO:
1182     Invert = true; // Fallthrough
1183   case ISD::SETO:
1184     CondCode = AArch64CC::MI;
1185     CondCode2 = AArch64CC::GE;
1186     break;
1187   case ISD::SETUEQ:
1188   case ISD::SETULT:
1189   case ISD::SETULE:
1190   case ISD::SETUGT:
1191   case ISD::SETUGE:
1192     // All of the compare-mask comparisons are ordered, but we can switch
1193     // between the two by a double inversion. E.g. ULE == !OGT.
1194     Invert = true;
1195     changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2);
1196     break;
1197   }
1198 }
1199 
isLegalArithImmed(uint64_t C)1200 static bool isLegalArithImmed(uint64_t C) {
1201   // Matches AArch64DAGToDAGISel::SelectArithImmed().
1202   return (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
1203 }
1204 
emitComparison(SDValue LHS,SDValue RHS,ISD::CondCode CC,const SDLoc & dl,SelectionDAG & DAG)1205 static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1206                               const SDLoc &dl, SelectionDAG &DAG) {
1207   EVT VT = LHS.getValueType();
1208 
1209   if (VT.isFloatingPoint()) {
1210     assert(VT != MVT::f128);
1211     if (VT == MVT::f16) {
1212       LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
1213       RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
1214       VT = MVT::f32;
1215     }
1216     return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
1217   }
1218 
1219   // The CMP instruction is just an alias for SUBS, and representing it as
1220   // SUBS means that it's possible to get CSE with subtract operations.
1221   // A later phase can perform the optimization of setting the destination
1222   // register to WZR/XZR if it ends up being unused.
1223   unsigned Opcode = AArch64ISD::SUBS;
1224 
1225   if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
1226       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1227     // We'd like to combine a (CMP op1, (sub 0, op2) into a CMN instruction on
1228     // the grounds that "op1 - (-op2) == op1 + op2". However, the C and V flags
1229     // can be set differently by this operation. It comes down to whether
1230     // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
1231     // everything is fine. If not then the optimization is wrong. Thus general
1232     // comparisons are only valid if op2 != 0.
1233 
1234     // So, finally, the only LLVM-native comparisons that don't mention C and V
1235     // are SETEQ and SETNE. They're the only ones we can safely use CMN for in
1236     // the absence of information about op2.
1237     Opcode = AArch64ISD::ADDS;
1238     RHS = RHS.getOperand(1);
1239   } else if (LHS.getOpcode() == ISD::AND && isNullConstant(RHS) &&
1240              !isUnsignedIntSetCC(CC)) {
1241     // Similarly, (CMP (and X, Y), 0) can be implemented with a TST
1242     // (a.k.a. ANDS) except that the flags are only guaranteed to work for one
1243     // of the signed comparisons.
1244     Opcode = AArch64ISD::ANDS;
1245     RHS = LHS.getOperand(1);
1246     LHS = LHS.getOperand(0);
1247   }
1248 
1249   return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT_CC), LHS, RHS)
1250       .getValue(1);
1251 }
1252 
1253 /// \defgroup AArch64CCMP CMP;CCMP matching
1254 ///
1255 /// These functions deal with the formation of CMP;CCMP;... sequences.
1256 /// The CCMP/CCMN/FCCMP/FCCMPE instructions allow the conditional execution of
1257 /// a comparison. They set the NZCV flags to a predefined value if their
1258 /// predicate is false. This allows to express arbitrary conjunctions, for
1259 /// example "cmp 0 (and (setCA (cmp A)) (setCB (cmp B))))"
1260 /// expressed as:
1261 ///   cmp A
1262 ///   ccmp B, inv(CB), CA
1263 ///   check for CB flags
1264 ///
1265 /// In general we can create code for arbitrary "... (and (and A B) C)"
1266 /// sequences. We can also implement some "or" expressions, because "(or A B)"
1267 /// is equivalent to "not (and (not A) (not B))" and we can implement some
1268 /// negation operations:
1269 /// We can negate the results of a single comparison by inverting the flags
1270 /// used when the predicate fails and inverting the flags tested in the next
1271 /// instruction; We can also negate the results of the whole previous
1272 /// conditional compare sequence by inverting the flags tested in the next
1273 /// instruction. However there is no way to negate the result of a partial
1274 /// sequence.
1275 ///
1276 /// Therefore on encountering an "or" expression we can negate the subtree on
1277 /// one side and have to be able to push the negate to the leafs of the subtree
1278 /// on the other side (see also the comments in code). As complete example:
1279 /// "or (or (setCA (cmp A)) (setCB (cmp B)))
1280 ///     (and (setCC (cmp C)) (setCD (cmp D)))"
1281 /// is transformed to
1282 /// "not (and (not (and (setCC (cmp C)) (setCC (cmp D))))
1283 ///           (and (not (setCA (cmp A)) (not (setCB (cmp B))))))"
1284 /// and implemented as:
1285 ///   cmp C
1286 ///   ccmp D, inv(CD), CC
1287 ///   ccmp A, CA, inv(CD)
1288 ///   ccmp B, CB, inv(CA)
1289 ///   check for CB flags
1290 /// A counterexample is "or (and A B) (and C D)" which cannot be implemented
1291 /// by conditional compare sequences.
1292 /// @{
1293 
1294 /// Create a conditional comparison; Use CCMP, CCMN or FCCMP as appropriate.
emitConditionalComparison(SDValue LHS,SDValue RHS,ISD::CondCode CC,SDValue CCOp,AArch64CC::CondCode Predicate,AArch64CC::CondCode OutCC,const SDLoc & DL,SelectionDAG & DAG)1295 static SDValue emitConditionalComparison(SDValue LHS, SDValue RHS,
1296                                          ISD::CondCode CC, SDValue CCOp,
1297                                          AArch64CC::CondCode Predicate,
1298                                          AArch64CC::CondCode OutCC,
1299                                          const SDLoc &DL, SelectionDAG &DAG) {
1300   unsigned Opcode = 0;
1301   if (LHS.getValueType().isFloatingPoint()) {
1302     assert(LHS.getValueType() != MVT::f128);
1303     if (LHS.getValueType() == MVT::f16) {
1304       LHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, LHS);
1305       RHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, RHS);
1306     }
1307     Opcode = AArch64ISD::FCCMP;
1308   } else if (RHS.getOpcode() == ISD::SUB) {
1309     SDValue SubOp0 = RHS.getOperand(0);
1310     if (isNullConstant(SubOp0) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1311       // See emitComparison() on why we can only do this for SETEQ and SETNE.
1312       Opcode = AArch64ISD::CCMN;
1313       RHS = RHS.getOperand(1);
1314     }
1315   }
1316   if (Opcode == 0)
1317     Opcode = AArch64ISD::CCMP;
1318 
1319   SDValue Condition = DAG.getConstant(Predicate, DL, MVT_CC);
1320   AArch64CC::CondCode InvOutCC = AArch64CC::getInvertedCondCode(OutCC);
1321   unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvOutCC);
1322   SDValue NZCVOp = DAG.getConstant(NZCV, DL, MVT::i32);
1323   return DAG.getNode(Opcode, DL, MVT_CC, LHS, RHS, NZCVOp, Condition, CCOp);
1324 }
1325 
1326 /// Returns true if @p Val is a tree of AND/OR/SETCC operations.
1327 /// CanPushNegate is set to true if we can push a negate operation through
1328 /// the tree in a was that we are left with AND operations and negate operations
1329 /// at the leafs only. i.e. "not (or (or x y) z)" can be changed to
1330 /// "and (and (not x) (not y)) (not z)"; "not (or (and x y) z)" cannot be
1331 /// brought into such a form.
isConjunctionDisjunctionTree(const SDValue Val,bool & CanNegate,unsigned Depth=0)1332 static bool isConjunctionDisjunctionTree(const SDValue Val, bool &CanNegate,
1333                                          unsigned Depth = 0) {
1334   if (!Val.hasOneUse())
1335     return false;
1336   unsigned Opcode = Val->getOpcode();
1337   if (Opcode == ISD::SETCC) {
1338     if (Val->getOperand(0).getValueType() == MVT::f128)
1339       return false;
1340     CanNegate = true;
1341     return true;
1342   }
1343   // Protect against exponential runtime and stack overflow.
1344   if (Depth > 6)
1345     return false;
1346   if (Opcode == ISD::AND || Opcode == ISD::OR) {
1347     SDValue O0 = Val->getOperand(0);
1348     SDValue O1 = Val->getOperand(1);
1349     bool CanNegateL;
1350     if (!isConjunctionDisjunctionTree(O0, CanNegateL, Depth+1))
1351       return false;
1352     bool CanNegateR;
1353     if (!isConjunctionDisjunctionTree(O1, CanNegateR, Depth+1))
1354       return false;
1355 
1356     if (Opcode == ISD::OR) {
1357       // For an OR expression we need to be able to negate at least one side or
1358       // we cannot do the transformation at all.
1359       if (!CanNegateL && !CanNegateR)
1360         return false;
1361       // We can however change a (not (or x y)) to (and (not x) (not y)) if we
1362       // can negate the x and y subtrees.
1363       CanNegate = CanNegateL && CanNegateR;
1364     } else {
1365       // If the operands are OR expressions then we finally need to negate their
1366       // outputs, we can only do that for the operand with emitted last by
1367       // negating OutCC, not for both operands.
1368       bool NeedsNegOutL = O0->getOpcode() == ISD::OR;
1369       bool NeedsNegOutR = O1->getOpcode() == ISD::OR;
1370       if (NeedsNegOutL && NeedsNegOutR)
1371         return false;
1372       // We cannot negate an AND operation (it would become an OR),
1373       CanNegate = false;
1374     }
1375     return true;
1376   }
1377   return false;
1378 }
1379 
1380 /// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain
1381 /// of CCMP/CFCMP ops. See @ref AArch64CCMP.
1382 /// Tries to transform the given i1 producing node @p Val to a series compare
1383 /// and conditional compare operations. @returns an NZCV flags producing node
1384 /// and sets @p OutCC to the flags that should be tested or returns SDValue() if
1385 /// transformation was not possible.
1386 /// On recursive invocations @p PushNegate may be set to true to have negation
1387 /// effects pushed to the tree leafs; @p Predicate is an NZCV flag predicate
1388 /// for the comparisons in the current subtree; @p Depth limits the search
1389 /// depth to avoid stack overflow.
emitConjunctionDisjunctionTreeRec(SelectionDAG & DAG,SDValue Val,AArch64CC::CondCode & OutCC,bool Negate,SDValue CCOp,AArch64CC::CondCode Predicate)1390 static SDValue emitConjunctionDisjunctionTreeRec(SelectionDAG &DAG, SDValue Val,
1391     AArch64CC::CondCode &OutCC, bool Negate, SDValue CCOp,
1392     AArch64CC::CondCode Predicate) {
1393   // We're at a tree leaf, produce a conditional comparison operation.
1394   unsigned Opcode = Val->getOpcode();
1395   if (Opcode == ISD::SETCC) {
1396     SDValue LHS = Val->getOperand(0);
1397     SDValue RHS = Val->getOperand(1);
1398     ISD::CondCode CC = cast<CondCodeSDNode>(Val->getOperand(2))->get();
1399     bool isInteger = LHS.getValueType().isInteger();
1400     if (Negate)
1401       CC = getSetCCInverse(CC, isInteger);
1402     SDLoc DL(Val);
1403     // Determine OutCC and handle FP special case.
1404     if (isInteger) {
1405       OutCC = changeIntCCToAArch64CC(CC);
1406     } else {
1407       assert(LHS.getValueType().isFloatingPoint());
1408       AArch64CC::CondCode ExtraCC;
1409       changeFPCCToANDAArch64CC(CC, OutCC, ExtraCC);
1410       // Some floating point conditions can't be tested with a single condition
1411       // code. Construct an additional comparison in this case.
1412       if (ExtraCC != AArch64CC::AL) {
1413         SDValue ExtraCmp;
1414         if (!CCOp.getNode())
1415           ExtraCmp = emitComparison(LHS, RHS, CC, DL, DAG);
1416         else
1417           ExtraCmp = emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate,
1418                                                ExtraCC, DL, DAG);
1419         CCOp = ExtraCmp;
1420         Predicate = ExtraCC;
1421       }
1422     }
1423 
1424     // Produce a normal comparison if we are first in the chain
1425     if (!CCOp)
1426       return emitComparison(LHS, RHS, CC, DL, DAG);
1427     // Otherwise produce a ccmp.
1428     return emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate, OutCC, DL,
1429                                      DAG);
1430   }
1431   assert((Opcode == ISD::AND || (Opcode == ISD::OR && Val->hasOneUse())) &&
1432          "Valid conjunction/disjunction tree");
1433 
1434   // Check if both sides can be transformed.
1435   SDValue LHS = Val->getOperand(0);
1436   SDValue RHS = Val->getOperand(1);
1437 
1438   // In case of an OR we need to negate our operands and the result.
1439   // (A v B) <=> not(not(A) ^ not(B))
1440   bool NegateOpsAndResult = Opcode == ISD::OR;
1441   // We can negate the results of all previous operations by inverting the
1442   // predicate flags giving us a free negation for one side. The other side
1443   // must be negatable by itself.
1444   if (NegateOpsAndResult) {
1445     // See which side we can negate.
1446     bool CanNegateL;
1447     bool isValidL = isConjunctionDisjunctionTree(LHS, CanNegateL);
1448     assert(isValidL && "Valid conjunction/disjunction tree");
1449     (void)isValidL;
1450 
1451 #ifndef NDEBUG
1452     bool CanNegateR;
1453     bool isValidR = isConjunctionDisjunctionTree(RHS, CanNegateR);
1454     assert(isValidR && "Valid conjunction/disjunction tree");
1455     assert((CanNegateL || CanNegateR) && "Valid conjunction/disjunction tree");
1456 #endif
1457 
1458     // Order the side which we cannot negate to RHS so we can emit it first.
1459     if (!CanNegateL)
1460       std::swap(LHS, RHS);
1461   } else {
1462     bool NeedsNegOutL = LHS->getOpcode() == ISD::OR;
1463     assert((!NeedsNegOutL || RHS->getOpcode() != ISD::OR) &&
1464            "Valid conjunction/disjunction tree");
1465     // Order the side where we need to negate the output flags to RHS so it
1466     // gets emitted first.
1467     if (NeedsNegOutL)
1468       std::swap(LHS, RHS);
1469   }
1470 
1471   // Emit RHS. If we want to negate the tree we only need to push a negate
1472   // through if we are already in a PushNegate case, otherwise we can negate
1473   // the "flags to test" afterwards.
1474   AArch64CC::CondCode RHSCC;
1475   SDValue CmpR = emitConjunctionDisjunctionTreeRec(DAG, RHS, RHSCC, Negate,
1476                                                    CCOp, Predicate);
1477   if (NegateOpsAndResult && !Negate)
1478     RHSCC = AArch64CC::getInvertedCondCode(RHSCC);
1479   // Emit LHS. We may need to negate it.
1480   SDValue CmpL = emitConjunctionDisjunctionTreeRec(DAG, LHS, OutCC,
1481                                                    NegateOpsAndResult, CmpR,
1482                                                    RHSCC);
1483   // If we transformed an OR to and AND then we have to negate the result
1484   // (or absorb the Negate parameter).
1485   if (NegateOpsAndResult && !Negate)
1486     OutCC = AArch64CC::getInvertedCondCode(OutCC);
1487   return CmpL;
1488 }
1489 
1490 /// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain
1491 /// of CCMP/CFCMP ops. See @ref AArch64CCMP.
1492 /// \see emitConjunctionDisjunctionTreeRec().
emitConjunctionDisjunctionTree(SelectionDAG & DAG,SDValue Val,AArch64CC::CondCode & OutCC)1493 static SDValue emitConjunctionDisjunctionTree(SelectionDAG &DAG, SDValue Val,
1494                                               AArch64CC::CondCode &OutCC) {
1495   bool CanNegate;
1496   if (!isConjunctionDisjunctionTree(Val, CanNegate))
1497     return SDValue();
1498 
1499   return emitConjunctionDisjunctionTreeRec(DAG, Val, OutCC, false, SDValue(),
1500                                            AArch64CC::AL);
1501 }
1502 
1503 /// @}
1504 
getAArch64Cmp(SDValue LHS,SDValue RHS,ISD::CondCode CC,SDValue & AArch64cc,SelectionDAG & DAG,const SDLoc & dl)1505 static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1506                              SDValue &AArch64cc, SelectionDAG &DAG,
1507                              const SDLoc &dl) {
1508   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1509     EVT VT = RHS.getValueType();
1510     uint64_t C = RHSC->getZExtValue();
1511     if (!isLegalArithImmed(C)) {
1512       // Constant does not fit, try adjusting it by one?
1513       switch (CC) {
1514       default:
1515         break;
1516       case ISD::SETLT:
1517       case ISD::SETGE:
1518         if ((VT == MVT::i32 && C != 0x80000000 &&
1519              isLegalArithImmed((uint32_t)(C - 1))) ||
1520             (VT == MVT::i64 && C != 0x80000000ULL &&
1521              isLegalArithImmed(C - 1ULL))) {
1522           CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1523           C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1524           RHS = DAG.getConstant(C, dl, VT);
1525         }
1526         break;
1527       case ISD::SETULT:
1528       case ISD::SETUGE:
1529         if ((VT == MVT::i32 && C != 0 &&
1530              isLegalArithImmed((uint32_t)(C - 1))) ||
1531             (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
1532           CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1533           C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1534           RHS = DAG.getConstant(C, dl, VT);
1535         }
1536         break;
1537       case ISD::SETLE:
1538       case ISD::SETGT:
1539         if ((VT == MVT::i32 && C != INT32_MAX &&
1540              isLegalArithImmed((uint32_t)(C + 1))) ||
1541             (VT == MVT::i64 && C != INT64_MAX &&
1542              isLegalArithImmed(C + 1ULL))) {
1543           CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1544           C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1545           RHS = DAG.getConstant(C, dl, VT);
1546         }
1547         break;
1548       case ISD::SETULE:
1549       case ISD::SETUGT:
1550         if ((VT == MVT::i32 && C != UINT32_MAX &&
1551              isLegalArithImmed((uint32_t)(C + 1))) ||
1552             (VT == MVT::i64 && C != UINT64_MAX &&
1553              isLegalArithImmed(C + 1ULL))) {
1554           CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1555           C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1556           RHS = DAG.getConstant(C, dl, VT);
1557         }
1558         break;
1559       }
1560     }
1561   }
1562   SDValue Cmp;
1563   AArch64CC::CondCode AArch64CC;
1564   if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) {
1565     const ConstantSDNode *RHSC = cast<ConstantSDNode>(RHS);
1566 
1567     // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
1568     // For the i8 operand, the largest immediate is 255, so this can be easily
1569     // encoded in the compare instruction. For the i16 operand, however, the
1570     // largest immediate cannot be encoded in the compare.
1571     // Therefore, use a sign extending load and cmn to avoid materializing the
1572     // -1 constant. For example,
1573     // movz w1, #65535
1574     // ldrh w0, [x0, #0]
1575     // cmp w0, w1
1576     // >
1577     // ldrsh w0, [x0, #0]
1578     // cmn w0, #1
1579     // Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
1580     // if and only if (sext LHS) == (sext RHS). The checks are in place to
1581     // ensure both the LHS and RHS are truly zero extended and to make sure the
1582     // transformation is profitable.
1583     if ((RHSC->getZExtValue() >> 16 == 0) && isa<LoadSDNode>(LHS) &&
1584         cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD &&
1585         cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 &&
1586         LHS.getNode()->hasNUsesOfValue(1, 0)) {
1587       int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue();
1588       if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) {
1589         SDValue SExt =
1590             DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS,
1591                         DAG.getValueType(MVT::i16));
1592         Cmp = emitComparison(SExt, DAG.getConstant(ValueofRHS, dl,
1593                                                    RHS.getValueType()),
1594                              CC, dl, DAG);
1595         AArch64CC = changeIntCCToAArch64CC(CC);
1596       }
1597     }
1598 
1599     if (!Cmp && (RHSC->isNullValue() || RHSC->isOne())) {
1600       if ((Cmp = emitConjunctionDisjunctionTree(DAG, LHS, AArch64CC))) {
1601         if ((CC == ISD::SETNE) ^ RHSC->isNullValue())
1602           AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC);
1603       }
1604     }
1605   }
1606 
1607   if (!Cmp) {
1608     Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
1609     AArch64CC = changeIntCCToAArch64CC(CC);
1610   }
1611   AArch64cc = DAG.getConstant(AArch64CC, dl, MVT_CC);
1612   return Cmp;
1613 }
1614 
1615 static std::pair<SDValue, SDValue>
getAArch64XALUOOp(AArch64CC::CondCode & CC,SDValue Op,SelectionDAG & DAG)1616 getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
1617   assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
1618          "Unsupported value type");
1619   SDValue Value, Overflow;
1620   SDLoc DL(Op);
1621   SDValue LHS = Op.getOperand(0);
1622   SDValue RHS = Op.getOperand(1);
1623   unsigned Opc = 0;
1624   switch (Op.getOpcode()) {
1625   default:
1626     llvm_unreachable("Unknown overflow instruction!");
1627   case ISD::SADDO:
1628     Opc = AArch64ISD::ADDS;
1629     CC = AArch64CC::VS;
1630     break;
1631   case ISD::UADDO:
1632     Opc = AArch64ISD::ADDS;
1633     CC = AArch64CC::HS;
1634     break;
1635   case ISD::SSUBO:
1636     Opc = AArch64ISD::SUBS;
1637     CC = AArch64CC::VS;
1638     break;
1639   case ISD::USUBO:
1640     Opc = AArch64ISD::SUBS;
1641     CC = AArch64CC::LO;
1642     break;
1643   // Multiply needs a little bit extra work.
1644   case ISD::SMULO:
1645   case ISD::UMULO: {
1646     CC = AArch64CC::NE;
1647     bool IsSigned = Op.getOpcode() == ISD::SMULO;
1648     if (Op.getValueType() == MVT::i32) {
1649       unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1650       // For a 32 bit multiply with overflow check we want the instruction
1651       // selector to generate a widening multiply (SMADDL/UMADDL). For that we
1652       // need to generate the following pattern:
1653       // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
1654       LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
1655       RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
1656       SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1657       SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul,
1658                                 DAG.getConstant(0, DL, MVT::i64));
1659       // On AArch64 the upper 32 bits are always zero extended for a 32 bit
1660       // operation. We need to clear out the upper 32 bits, because we used a
1661       // widening multiply that wrote all 64 bits. In the end this should be a
1662       // noop.
1663       Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add);
1664       if (IsSigned) {
1665         // The signed overflow check requires more than just a simple check for
1666         // any bit set in the upper 32 bits of the result. These bits could be
1667         // just the sign bits of a negative number. To perform the overflow
1668         // check we have to arithmetic shift right the 32nd bit of the result by
1669         // 31 bits. Then we compare the result to the upper 32 bits.
1670         SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
1671                                         DAG.getConstant(32, DL, MVT::i64));
1672         UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
1673         SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
1674                                         DAG.getConstant(31, DL, MVT::i64));
1675         // It is important that LowerBits is last, otherwise the arithmetic
1676         // shift will not be folded into the compare (SUBS).
1677         SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
1678         Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1679                        .getValue(1);
1680       } else {
1681         // The overflow check for unsigned multiply is easy. We only need to
1682         // check if any of the upper 32 bits are set. This can be done with a
1683         // CMP (shifted register). For that we need to generate the following
1684         // pattern:
1685         // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
1686         SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
1687                                         DAG.getConstant(32, DL, MVT::i64));
1688         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1689         Overflow =
1690             DAG.getNode(AArch64ISD::SUBS, DL, VTs,
1691                         DAG.getConstant(0, DL, MVT::i64),
1692                         UpperBits).getValue(1);
1693       }
1694       break;
1695     }
1696     assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
1697     // For the 64 bit multiply
1698     Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1699     if (IsSigned) {
1700       SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
1701       SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
1702                                       DAG.getConstant(63, DL, MVT::i64));
1703       // It is important that LowerBits is last, otherwise the arithmetic
1704       // shift will not be folded into the compare (SUBS).
1705       SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1706       Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1707                      .getValue(1);
1708     } else {
1709       SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
1710       SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1711       Overflow =
1712           DAG.getNode(AArch64ISD::SUBS, DL, VTs,
1713                       DAG.getConstant(0, DL, MVT::i64),
1714                       UpperBits).getValue(1);
1715     }
1716     break;
1717   }
1718   } // switch (...)
1719 
1720   if (Opc) {
1721     SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
1722 
1723     // Emit the AArch64 operation with overflow check.
1724     Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
1725     Overflow = Value.getValue(1);
1726   }
1727   return std::make_pair(Value, Overflow);
1728 }
1729 
LowerF128Call(SDValue Op,SelectionDAG & DAG,RTLIB::Libcall Call) const1730 SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
1731                                              RTLIB::Libcall Call) const {
1732   SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
1733   return makeLibCall(DAG, Call, MVT::f128, Ops, false, SDLoc(Op)).first;
1734 }
1735 
LowerXOR(SDValue Op,SelectionDAG & DAG)1736 static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) {
1737   SDValue Sel = Op.getOperand(0);
1738   SDValue Other = Op.getOperand(1);
1739 
1740   // If neither operand is a SELECT_CC, give up.
1741   if (Sel.getOpcode() != ISD::SELECT_CC)
1742     std::swap(Sel, Other);
1743   if (Sel.getOpcode() != ISD::SELECT_CC)
1744     return Op;
1745 
1746   // The folding we want to perform is:
1747   // (xor x, (select_cc a, b, cc, 0, -1) )
1748   //   -->
1749   // (csel x, (xor x, -1), cc ...)
1750   //
1751   // The latter will get matched to a CSINV instruction.
1752 
1753   ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
1754   SDValue LHS = Sel.getOperand(0);
1755   SDValue RHS = Sel.getOperand(1);
1756   SDValue TVal = Sel.getOperand(2);
1757   SDValue FVal = Sel.getOperand(3);
1758   SDLoc dl(Sel);
1759 
1760   // FIXME: This could be generalized to non-integer comparisons.
1761   if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
1762     return Op;
1763 
1764   ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
1765   ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
1766 
1767   // The values aren't constants, this isn't the pattern we're looking for.
1768   if (!CFVal || !CTVal)
1769     return Op;
1770 
1771   // We can commute the SELECT_CC by inverting the condition.  This
1772   // might be needed to make this fit into a CSINV pattern.
1773   if (CTVal->isAllOnesValue() && CFVal->isNullValue()) {
1774     std::swap(TVal, FVal);
1775     std::swap(CTVal, CFVal);
1776     CC = ISD::getSetCCInverse(CC, true);
1777   }
1778 
1779   // If the constants line up, perform the transform!
1780   if (CTVal->isNullValue() && CFVal->isAllOnesValue()) {
1781     SDValue CCVal;
1782     SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
1783 
1784     FVal = Other;
1785     TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
1786                        DAG.getConstant(-1ULL, dl, Other.getValueType()));
1787 
1788     return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
1789                        CCVal, Cmp);
1790   }
1791 
1792   return Op;
1793 }
1794 
LowerADDC_ADDE_SUBC_SUBE(SDValue Op,SelectionDAG & DAG)1795 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
1796   EVT VT = Op.getValueType();
1797 
1798   // Let legalize expand this if it isn't a legal type yet.
1799   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
1800     return SDValue();
1801 
1802   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
1803 
1804   unsigned Opc;
1805   bool ExtraOp = false;
1806   switch (Op.getOpcode()) {
1807   default:
1808     llvm_unreachable("Invalid code");
1809   case ISD::ADDC:
1810     Opc = AArch64ISD::ADDS;
1811     break;
1812   case ISD::SUBC:
1813     Opc = AArch64ISD::SUBS;
1814     break;
1815   case ISD::ADDE:
1816     Opc = AArch64ISD::ADCS;
1817     ExtraOp = true;
1818     break;
1819   case ISD::SUBE:
1820     Opc = AArch64ISD::SBCS;
1821     ExtraOp = true;
1822     break;
1823   }
1824 
1825   if (!ExtraOp)
1826     return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
1827   return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
1828                      Op.getOperand(2));
1829 }
1830 
LowerXALUO(SDValue Op,SelectionDAG & DAG)1831 static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
1832   // Let legalize expand this if it isn't a legal type yet.
1833   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
1834     return SDValue();
1835 
1836   SDLoc dl(Op);
1837   AArch64CC::CondCode CC;
1838   // The actual operation that sets the overflow or carry flag.
1839   SDValue Value, Overflow;
1840   std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);
1841 
1842   // We use 0 and 1 as false and true values.
1843   SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
1844   SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
1845 
1846   // We use an inverted condition, because the conditional select is inverted
1847   // too. This will allow it to be selected to a single instruction:
1848   // CSINC Wd, WZR, WZR, invert(cond).
1849   SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32);
1850   Overflow = DAG.getNode(AArch64ISD::CSEL, dl, MVT::i32, FVal, TVal,
1851                          CCVal, Overflow);
1852 
1853   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
1854   return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
1855 }
1856 
1857 // Prefetch operands are:
1858 // 1: Address to prefetch
1859 // 2: bool isWrite
1860 // 3: int locality (0 = no locality ... 3 = extreme locality)
1861 // 4: bool isDataCache
LowerPREFETCH(SDValue Op,SelectionDAG & DAG)1862 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
1863   SDLoc DL(Op);
1864   unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
1865   unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
1866   unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
1867 
1868   bool IsStream = !Locality;
1869   // When the locality number is set
1870   if (Locality) {
1871     // The front-end should have filtered out the out-of-range values
1872     assert(Locality <= 3 && "Prefetch locality out-of-range");
1873     // The locality degree is the opposite of the cache speed.
1874     // Put the number the other way around.
1875     // The encoding starts at 0 for level 1
1876     Locality = 3 - Locality;
1877   }
1878 
1879   // built the mask value encoding the expected behavior.
1880   unsigned PrfOp = (IsWrite << 4) |     // Load/Store bit
1881                    (!IsData << 3) |     // IsDataCache bit
1882                    (Locality << 1) |    // Cache level bits
1883                    (unsigned)IsStream;  // Stream bit
1884   return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
1885                      DAG.getConstant(PrfOp, DL, MVT::i32), Op.getOperand(1));
1886 }
1887 
LowerFP_EXTEND(SDValue Op,SelectionDAG & DAG) const1888 SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
1889                                               SelectionDAG &DAG) const {
1890   assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
1891 
1892   RTLIB::Libcall LC;
1893   LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
1894 
1895   return LowerF128Call(Op, DAG, LC);
1896 }
1897 
LowerFP_ROUND(SDValue Op,SelectionDAG & DAG) const1898 SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
1899                                              SelectionDAG &DAG) const {
1900   if (Op.getOperand(0).getValueType() != MVT::f128) {
1901     // It's legal except when f128 is involved
1902     return Op;
1903   }
1904 
1905   RTLIB::Libcall LC;
1906   LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
1907 
1908   // FP_ROUND node has a second operand indicating whether it is known to be
1909   // precise. That doesn't take part in the LibCall so we can't directly use
1910   // LowerF128Call.
1911   SDValue SrcVal = Op.getOperand(0);
1912   return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
1913                      SDLoc(Op)).first;
1914 }
1915 
LowerVectorFP_TO_INT(SDValue Op,SelectionDAG & DAG)1916 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
1917   // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1918   // Any additional optimization in this function should be recorded
1919   // in the cost tables.
1920   EVT InVT = Op.getOperand(0).getValueType();
1921   EVT VT = Op.getValueType();
1922   unsigned NumElts = InVT.getVectorNumElements();
1923 
1924   // f16 vectors are promoted to f32 before a conversion.
1925   if (InVT.getVectorElementType() == MVT::f16) {
1926     MVT NewVT = MVT::getVectorVT(MVT::f32, NumElts);
1927     SDLoc dl(Op);
1928     return DAG.getNode(
1929         Op.getOpcode(), dl, Op.getValueType(),
1930         DAG.getNode(ISD::FP_EXTEND, dl, NewVT, Op.getOperand(0)));
1931   }
1932 
1933   if (VT.getSizeInBits() < InVT.getSizeInBits()) {
1934     SDLoc dl(Op);
1935     SDValue Cv =
1936         DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
1937                     Op.getOperand(0));
1938     return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
1939   }
1940 
1941   if (VT.getSizeInBits() > InVT.getSizeInBits()) {
1942     SDLoc dl(Op);
1943     MVT ExtVT =
1944         MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()),
1945                          VT.getVectorNumElements());
1946     SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0));
1947     return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
1948   }
1949 
1950   // Type changing conversions are illegal.
1951   return Op;
1952 }
1953 
LowerFP_TO_INT(SDValue Op,SelectionDAG & DAG) const1954 SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
1955                                               SelectionDAG &DAG) const {
1956   if (Op.getOperand(0).getValueType().isVector())
1957     return LowerVectorFP_TO_INT(Op, DAG);
1958 
1959   // f16 conversions are promoted to f32.
1960   if (Op.getOperand(0).getValueType() == MVT::f16) {
1961     SDLoc dl(Op);
1962     return DAG.getNode(
1963         Op.getOpcode(), dl, Op.getValueType(),
1964         DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Op.getOperand(0)));
1965   }
1966 
1967   if (Op.getOperand(0).getValueType() != MVT::f128) {
1968     // It's legal except when f128 is involved
1969     return Op;
1970   }
1971 
1972   RTLIB::Libcall LC;
1973   if (Op.getOpcode() == ISD::FP_TO_SINT)
1974     LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
1975   else
1976     LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
1977 
1978   SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
1979   return makeLibCall(DAG, LC, Op.getValueType(), Ops, false, SDLoc(Op)).first;
1980 }
1981 
LowerVectorINT_TO_FP(SDValue Op,SelectionDAG & DAG)1982 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
1983   // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1984   // Any additional optimization in this function should be recorded
1985   // in the cost tables.
1986   EVT VT = Op.getValueType();
1987   SDLoc dl(Op);
1988   SDValue In = Op.getOperand(0);
1989   EVT InVT = In.getValueType();
1990 
1991   if (VT.getSizeInBits() < InVT.getSizeInBits()) {
1992     MVT CastVT =
1993         MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()),
1994                          InVT.getVectorNumElements());
1995     In = DAG.getNode(Op.getOpcode(), dl, CastVT, In);
1996     return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0, dl));
1997   }
1998 
1999   if (VT.getSizeInBits() > InVT.getSizeInBits()) {
2000     unsigned CastOpc =
2001         Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2002     EVT CastVT = VT.changeVectorElementTypeToInteger();
2003     In = DAG.getNode(CastOpc, dl, CastVT, In);
2004     return DAG.getNode(Op.getOpcode(), dl, VT, In);
2005   }
2006 
2007   return Op;
2008 }
2009 
LowerINT_TO_FP(SDValue Op,SelectionDAG & DAG) const2010 SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
2011                                             SelectionDAG &DAG) const {
2012   if (Op.getValueType().isVector())
2013     return LowerVectorINT_TO_FP(Op, DAG);
2014 
2015   // f16 conversions are promoted to f32.
2016   if (Op.getValueType() == MVT::f16) {
2017     SDLoc dl(Op);
2018     return DAG.getNode(
2019         ISD::FP_ROUND, dl, MVT::f16,
2020         DAG.getNode(Op.getOpcode(), dl, MVT::f32, Op.getOperand(0)),
2021         DAG.getIntPtrConstant(0, dl));
2022   }
2023 
2024   // i128 conversions are libcalls.
2025   if (Op.getOperand(0).getValueType() == MVT::i128)
2026     return SDValue();
2027 
2028   // Other conversions are legal, unless it's to the completely software-based
2029   // fp128.
2030   if (Op.getValueType() != MVT::f128)
2031     return Op;
2032 
2033   RTLIB::Libcall LC;
2034   if (Op.getOpcode() == ISD::SINT_TO_FP)
2035     LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2036   else
2037     LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2038 
2039   return LowerF128Call(Op, DAG, LC);
2040 }
2041 
LowerFSINCOS(SDValue Op,SelectionDAG & DAG) const2042 SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
2043                                             SelectionDAG &DAG) const {
2044   // For iOS, we want to call an alternative entry point: __sincos_stret,
2045   // which returns the values in two S / D registers.
2046   SDLoc dl(Op);
2047   SDValue Arg = Op.getOperand(0);
2048   EVT ArgVT = Arg.getValueType();
2049   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2050 
2051   ArgListTy Args;
2052   ArgListEntry Entry;
2053 
2054   Entry.Node = Arg;
2055   Entry.Ty = ArgTy;
2056   Entry.isSExt = false;
2057   Entry.isZExt = false;
2058   Args.push_back(Entry);
2059 
2060   const char *LibcallName =
2061       (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret";
2062   SDValue Callee =
2063       DAG.getExternalSymbol(LibcallName, getPointerTy(DAG.getDataLayout()));
2064 
2065   StructType *RetTy = StructType::get(ArgTy, ArgTy, nullptr);
2066   TargetLowering::CallLoweringInfo CLI(DAG);
2067   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
2068     .setCallee(CallingConv::Fast, RetTy, Callee, std::move(Args));
2069 
2070   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2071   return CallResult.first;
2072 }
2073 
LowerBITCAST(SDValue Op,SelectionDAG & DAG)2074 static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) {
2075   if (Op.getValueType() != MVT::f16)
2076     return SDValue();
2077 
2078   assert(Op.getOperand(0).getValueType() == MVT::i16);
2079   SDLoc DL(Op);
2080 
2081   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0));
2082   Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op);
2083   return SDValue(
2084       DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::f16, Op,
2085                          DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
2086       0);
2087 }
2088 
getExtensionTo64Bits(const EVT & OrigVT)2089 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
2090   if (OrigVT.getSizeInBits() >= 64)
2091     return OrigVT;
2092 
2093   assert(OrigVT.isSimple() && "Expecting a simple value type");
2094 
2095   MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
2096   switch (OrigSimpleTy) {
2097   default: llvm_unreachable("Unexpected Vector Type");
2098   case MVT::v2i8:
2099   case MVT::v2i16:
2100      return MVT::v2i32;
2101   case MVT::v4i8:
2102     return  MVT::v4i16;
2103   }
2104 }
2105 
addRequiredExtensionForVectorMULL(SDValue N,SelectionDAG & DAG,const EVT & OrigTy,const EVT & ExtTy,unsigned ExtOpcode)2106 static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG,
2107                                                  const EVT &OrigTy,
2108                                                  const EVT &ExtTy,
2109                                                  unsigned ExtOpcode) {
2110   // The vector originally had a size of OrigTy. It was then extended to ExtTy.
2111   // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
2112   // 64-bits we need to insert a new extension so that it will be 64-bits.
2113   assert(ExtTy.is128BitVector() && "Unexpected extension size");
2114   if (OrigTy.getSizeInBits() >= 64)
2115     return N;
2116 
2117   // Must extend size to at least 64 bits to be used as an operand for VMULL.
2118   EVT NewVT = getExtensionTo64Bits(OrigTy);
2119 
2120   return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
2121 }
2122 
isExtendedBUILD_VECTOR(SDNode * N,SelectionDAG & DAG,bool isSigned)2123 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
2124                                    bool isSigned) {
2125   EVT VT = N->getValueType(0);
2126 
2127   if (N->getOpcode() != ISD::BUILD_VECTOR)
2128     return false;
2129 
2130   for (const SDValue &Elt : N->op_values()) {
2131     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
2132       unsigned EltSize = VT.getVectorElementType().getSizeInBits();
2133       unsigned HalfSize = EltSize / 2;
2134       if (isSigned) {
2135         if (!isIntN(HalfSize, C->getSExtValue()))
2136           return false;
2137       } else {
2138         if (!isUIntN(HalfSize, C->getZExtValue()))
2139           return false;
2140       }
2141       continue;
2142     }
2143     return false;
2144   }
2145 
2146   return true;
2147 }
2148 
skipExtensionForVectorMULL(SDNode * N,SelectionDAG & DAG)2149 static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) {
2150   if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
2151     return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG,
2152                                              N->getOperand(0)->getValueType(0),
2153                                              N->getValueType(0),
2154                                              N->getOpcode());
2155 
2156   assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
2157   EVT VT = N->getValueType(0);
2158   SDLoc dl(N);
2159   unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
2160   unsigned NumElts = VT.getVectorNumElements();
2161   MVT TruncVT = MVT::getIntegerVT(EltSize);
2162   SmallVector<SDValue, 8> Ops;
2163   for (unsigned i = 0; i != NumElts; ++i) {
2164     ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
2165     const APInt &CInt = C->getAPIntValue();
2166     // Element types smaller than 32 bits are not legal, so use i32 elements.
2167     // The values are implicitly truncated so sext vs. zext doesn't matter.
2168     Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
2169   }
2170   return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
2171 }
2172 
isSignExtended(SDNode * N,SelectionDAG & DAG)2173 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
2174   if (N->getOpcode() == ISD::SIGN_EXTEND)
2175     return true;
2176   if (isExtendedBUILD_VECTOR(N, DAG, true))
2177     return true;
2178   return false;
2179 }
2180 
isZeroExtended(SDNode * N,SelectionDAG & DAG)2181 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
2182   if (N->getOpcode() == ISD::ZERO_EXTEND)
2183     return true;
2184   if (isExtendedBUILD_VECTOR(N, DAG, false))
2185     return true;
2186   return false;
2187 }
2188 
isAddSubSExt(SDNode * N,SelectionDAG & DAG)2189 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
2190   unsigned Opcode = N->getOpcode();
2191   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
2192     SDNode *N0 = N->getOperand(0).getNode();
2193     SDNode *N1 = N->getOperand(1).getNode();
2194     return N0->hasOneUse() && N1->hasOneUse() &&
2195       isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
2196   }
2197   return false;
2198 }
2199 
isAddSubZExt(SDNode * N,SelectionDAG & DAG)2200 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
2201   unsigned Opcode = N->getOpcode();
2202   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
2203     SDNode *N0 = N->getOperand(0).getNode();
2204     SDNode *N1 = N->getOperand(1).getNode();
2205     return N0->hasOneUse() && N1->hasOneUse() &&
2206       isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
2207   }
2208   return false;
2209 }
2210 
LowerMUL(SDValue Op,SelectionDAG & DAG)2211 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
2212   // Multiplications are only custom-lowered for 128-bit vectors so that
2213   // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
2214   EVT VT = Op.getValueType();
2215   assert(VT.is128BitVector() && VT.isInteger() &&
2216          "unexpected type for custom-lowering ISD::MUL");
2217   SDNode *N0 = Op.getOperand(0).getNode();
2218   SDNode *N1 = Op.getOperand(1).getNode();
2219   unsigned NewOpc = 0;
2220   bool isMLA = false;
2221   bool isN0SExt = isSignExtended(N0, DAG);
2222   bool isN1SExt = isSignExtended(N1, DAG);
2223   if (isN0SExt && isN1SExt)
2224     NewOpc = AArch64ISD::SMULL;
2225   else {
2226     bool isN0ZExt = isZeroExtended(N0, DAG);
2227     bool isN1ZExt = isZeroExtended(N1, DAG);
2228     if (isN0ZExt && isN1ZExt)
2229       NewOpc = AArch64ISD::UMULL;
2230     else if (isN1SExt || isN1ZExt) {
2231       // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
2232       // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
2233       if (isN1SExt && isAddSubSExt(N0, DAG)) {
2234         NewOpc = AArch64ISD::SMULL;
2235         isMLA = true;
2236       } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
2237         NewOpc =  AArch64ISD::UMULL;
2238         isMLA = true;
2239       } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
2240         std::swap(N0, N1);
2241         NewOpc =  AArch64ISD::UMULL;
2242         isMLA = true;
2243       }
2244     }
2245 
2246     if (!NewOpc) {
2247       if (VT == MVT::v2i64)
2248         // Fall through to expand this.  It is not legal.
2249         return SDValue();
2250       else
2251         // Other vector multiplications are legal.
2252         return Op;
2253     }
2254   }
2255 
2256   // Legalize to a S/UMULL instruction
2257   SDLoc DL(Op);
2258   SDValue Op0;
2259   SDValue Op1 = skipExtensionForVectorMULL(N1, DAG);
2260   if (!isMLA) {
2261     Op0 = skipExtensionForVectorMULL(N0, DAG);
2262     assert(Op0.getValueType().is64BitVector() &&
2263            Op1.getValueType().is64BitVector() &&
2264            "unexpected types for extended operands to VMULL");
2265     return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
2266   }
2267   // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during
2268   // isel lowering to take advantage of no-stall back to back s/umul + s/umla.
2269   // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57
2270   SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG);
2271   SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG);
2272   EVT Op1VT = Op1.getValueType();
2273   return DAG.getNode(N0->getOpcode(), DL, VT,
2274                      DAG.getNode(NewOpc, DL, VT,
2275                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
2276                      DAG.getNode(NewOpc, DL, VT,
2277                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
2278 }
2279 
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const2280 SDValue AArch64TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
2281                                                      SelectionDAG &DAG) const {
2282   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2283   SDLoc dl(Op);
2284   switch (IntNo) {
2285   default: return SDValue();    // Don't custom lower most intrinsics.
2286   case Intrinsic::thread_pointer: {
2287     EVT PtrVT = getPointerTy(DAG.getDataLayout());
2288     return DAG.getNode(AArch64ISD::THREAD_POINTER, dl, PtrVT);
2289   }
2290   case Intrinsic::aarch64_neon_smax:
2291     return DAG.getNode(ISD::SMAX, dl, Op.getValueType(),
2292                        Op.getOperand(1), Op.getOperand(2));
2293   case Intrinsic::aarch64_neon_umax:
2294     return DAG.getNode(ISD::UMAX, dl, Op.getValueType(),
2295                        Op.getOperand(1), Op.getOperand(2));
2296   case Intrinsic::aarch64_neon_smin:
2297     return DAG.getNode(ISD::SMIN, dl, Op.getValueType(),
2298                        Op.getOperand(1), Op.getOperand(2));
2299   case Intrinsic::aarch64_neon_umin:
2300     return DAG.getNode(ISD::UMIN, dl, Op.getValueType(),
2301                        Op.getOperand(1), Op.getOperand(2));
2302   }
2303 }
2304 
LowerOperation(SDValue Op,SelectionDAG & DAG) const2305 SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
2306                                               SelectionDAG &DAG) const {
2307   switch (Op.getOpcode()) {
2308   default:
2309     llvm_unreachable("unimplemented operand");
2310     return SDValue();
2311   case ISD::BITCAST:
2312     return LowerBITCAST(Op, DAG);
2313   case ISD::GlobalAddress:
2314     return LowerGlobalAddress(Op, DAG);
2315   case ISD::GlobalTLSAddress:
2316     return LowerGlobalTLSAddress(Op, DAG);
2317   case ISD::SETCC:
2318     return LowerSETCC(Op, DAG);
2319   case ISD::BR_CC:
2320     return LowerBR_CC(Op, DAG);
2321   case ISD::SELECT:
2322     return LowerSELECT(Op, DAG);
2323   case ISD::SELECT_CC:
2324     return LowerSELECT_CC(Op, DAG);
2325   case ISD::JumpTable:
2326     return LowerJumpTable(Op, DAG);
2327   case ISD::ConstantPool:
2328     return LowerConstantPool(Op, DAG);
2329   case ISD::BlockAddress:
2330     return LowerBlockAddress(Op, DAG);
2331   case ISD::VASTART:
2332     return LowerVASTART(Op, DAG);
2333   case ISD::VACOPY:
2334     return LowerVACOPY(Op, DAG);
2335   case ISD::VAARG:
2336     return LowerVAARG(Op, DAG);
2337   case ISD::ADDC:
2338   case ISD::ADDE:
2339   case ISD::SUBC:
2340   case ISD::SUBE:
2341     return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
2342   case ISD::SADDO:
2343   case ISD::UADDO:
2344   case ISD::SSUBO:
2345   case ISD::USUBO:
2346   case ISD::SMULO:
2347   case ISD::UMULO:
2348     return LowerXALUO(Op, DAG);
2349   case ISD::FADD:
2350     return LowerF128Call(Op, DAG, RTLIB::ADD_F128);
2351   case ISD::FSUB:
2352     return LowerF128Call(Op, DAG, RTLIB::SUB_F128);
2353   case ISD::FMUL:
2354     return LowerF128Call(Op, DAG, RTLIB::MUL_F128);
2355   case ISD::FDIV:
2356     return LowerF128Call(Op, DAG, RTLIB::DIV_F128);
2357   case ISD::FP_ROUND:
2358     return LowerFP_ROUND(Op, DAG);
2359   case ISD::FP_EXTEND:
2360     return LowerFP_EXTEND(Op, DAG);
2361   case ISD::FRAMEADDR:
2362     return LowerFRAMEADDR(Op, DAG);
2363   case ISD::RETURNADDR:
2364     return LowerRETURNADDR(Op, DAG);
2365   case ISD::INSERT_VECTOR_ELT:
2366     return LowerINSERT_VECTOR_ELT(Op, DAG);
2367   case ISD::EXTRACT_VECTOR_ELT:
2368     return LowerEXTRACT_VECTOR_ELT(Op, DAG);
2369   case ISD::BUILD_VECTOR:
2370     return LowerBUILD_VECTOR(Op, DAG);
2371   case ISD::VECTOR_SHUFFLE:
2372     return LowerVECTOR_SHUFFLE(Op, DAG);
2373   case ISD::EXTRACT_SUBVECTOR:
2374     return LowerEXTRACT_SUBVECTOR(Op, DAG);
2375   case ISD::SRA:
2376   case ISD::SRL:
2377   case ISD::SHL:
2378     return LowerVectorSRA_SRL_SHL(Op, DAG);
2379   case ISD::SHL_PARTS:
2380     return LowerShiftLeftParts(Op, DAG);
2381   case ISD::SRL_PARTS:
2382   case ISD::SRA_PARTS:
2383     return LowerShiftRightParts(Op, DAG);
2384   case ISD::CTPOP:
2385     return LowerCTPOP(Op, DAG);
2386   case ISD::FCOPYSIGN:
2387     return LowerFCOPYSIGN(Op, DAG);
2388   case ISD::AND:
2389     return LowerVectorAND(Op, DAG);
2390   case ISD::OR:
2391     return LowerVectorOR(Op, DAG);
2392   case ISD::XOR:
2393     return LowerXOR(Op, DAG);
2394   case ISD::PREFETCH:
2395     return LowerPREFETCH(Op, DAG);
2396   case ISD::SINT_TO_FP:
2397   case ISD::UINT_TO_FP:
2398     return LowerINT_TO_FP(Op, DAG);
2399   case ISD::FP_TO_SINT:
2400   case ISD::FP_TO_UINT:
2401     return LowerFP_TO_INT(Op, DAG);
2402   case ISD::FSINCOS:
2403     return LowerFSINCOS(Op, DAG);
2404   case ISD::MUL:
2405     return LowerMUL(Op, DAG);
2406   case ISD::INTRINSIC_WO_CHAIN:
2407     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2408   }
2409 }
2410 
2411 //===----------------------------------------------------------------------===//
2412 //                      Calling Convention Implementation
2413 //===----------------------------------------------------------------------===//
2414 
2415 #include "AArch64GenCallingConv.inc"
2416 
2417 /// Selects the correct CCAssignFn for a given CallingConvention value.
CCAssignFnForCall(CallingConv::ID CC,bool IsVarArg) const2418 CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
2419                                                      bool IsVarArg) const {
2420   switch (CC) {
2421   default:
2422     llvm_unreachable("Unsupported calling convention.");
2423   case CallingConv::WebKit_JS:
2424     return CC_AArch64_WebKit_JS;
2425   case CallingConv::GHC:
2426     return CC_AArch64_GHC;
2427   case CallingConv::C:
2428   case CallingConv::Fast:
2429   case CallingConv::PreserveMost:
2430   case CallingConv::CXX_FAST_TLS:
2431     if (!Subtarget->isTargetDarwin())
2432       return CC_AArch64_AAPCS;
2433     return IsVarArg ? CC_AArch64_DarwinPCS_VarArg : CC_AArch64_DarwinPCS;
2434   }
2435 }
2436 
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const2437 SDValue AArch64TargetLowering::LowerFormalArguments(
2438     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2439     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2440     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2441   MachineFunction &MF = DAG.getMachineFunction();
2442   MachineFrameInfo *MFI = MF.getFrameInfo();
2443 
2444   // Assign locations to all of the incoming arguments.
2445   SmallVector<CCValAssign, 16> ArgLocs;
2446   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2447                  *DAG.getContext());
2448 
2449   // At this point, Ins[].VT may already be promoted to i32. To correctly
2450   // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2451   // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2452   // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
2453   // we use a special version of AnalyzeFormalArguments to pass in ValVT and
2454   // LocVT.
2455   unsigned NumArgs = Ins.size();
2456   Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
2457   unsigned CurArgIdx = 0;
2458   for (unsigned i = 0; i != NumArgs; ++i) {
2459     MVT ValVT = Ins[i].VT;
2460     if (Ins[i].isOrigArg()) {
2461       std::advance(CurOrigArg, Ins[i].getOrigArgIndex() - CurArgIdx);
2462       CurArgIdx = Ins[i].getOrigArgIndex();
2463 
2464       // Get type of the original argument.
2465       EVT ActualVT = getValueType(DAG.getDataLayout(), CurOrigArg->getType(),
2466                                   /*AllowUnknown*/ true);
2467       MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
2468       // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
2469       if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
2470         ValVT = MVT::i8;
2471       else if (ActualMVT == MVT::i16)
2472         ValVT = MVT::i16;
2473     }
2474     CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
2475     bool Res =
2476         AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
2477     assert(!Res && "Call operand has unhandled type");
2478     (void)Res;
2479   }
2480   assert(ArgLocs.size() == Ins.size());
2481   SmallVector<SDValue, 16> ArgValues;
2482   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2483     CCValAssign &VA = ArgLocs[i];
2484 
2485     if (Ins[i].Flags.isByVal()) {
2486       // Byval is used for HFAs in the PCS, but the system should work in a
2487       // non-compliant manner for larger structs.
2488       EVT PtrVT = getPointerTy(DAG.getDataLayout());
2489       int Size = Ins[i].Flags.getByValSize();
2490       unsigned NumRegs = (Size + 7) / 8;
2491 
2492       // FIXME: This works on big-endian for composite byvals, which are the common
2493       // case. It should also work for fundamental types too.
2494       unsigned FrameIdx =
2495         MFI->CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
2496       SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrVT);
2497       InVals.push_back(FrameIdxN);
2498 
2499       continue;
2500     }
2501 
2502     if (VA.isRegLoc()) {
2503       // Arguments stored in registers.
2504       EVT RegVT = VA.getLocVT();
2505 
2506       SDValue ArgValue;
2507       const TargetRegisterClass *RC;
2508 
2509       if (RegVT == MVT::i32)
2510         RC = &AArch64::GPR32RegClass;
2511       else if (RegVT == MVT::i64)
2512         RC = &AArch64::GPR64RegClass;
2513       else if (RegVT == MVT::f16)
2514         RC = &AArch64::FPR16RegClass;
2515       else if (RegVT == MVT::f32)
2516         RC = &AArch64::FPR32RegClass;
2517       else if (RegVT == MVT::f64 || RegVT.is64BitVector())
2518         RC = &AArch64::FPR64RegClass;
2519       else if (RegVT == MVT::f128 || RegVT.is128BitVector())
2520         RC = &AArch64::FPR128RegClass;
2521       else
2522         llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2523 
2524       // Transform the arguments in physical registers into virtual ones.
2525       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2526       ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
2527 
2528       // If this is an 8, 16 or 32-bit value, it is really passed promoted
2529       // to 64 bits.  Insert an assert[sz]ext to capture this, then
2530       // truncate to the right size.
2531       switch (VA.getLocInfo()) {
2532       default:
2533         llvm_unreachable("Unknown loc info!");
2534       case CCValAssign::Full:
2535         break;
2536       case CCValAssign::BCvt:
2537         ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
2538         break;
2539       case CCValAssign::AExt:
2540       case CCValAssign::SExt:
2541       case CCValAssign::ZExt:
2542         // SelectionDAGBuilder will insert appropriate AssertZExt & AssertSExt
2543         // nodes after our lowering.
2544         assert(RegVT == Ins[i].VT && "incorrect register location selected");
2545         break;
2546       }
2547 
2548       InVals.push_back(ArgValue);
2549 
2550     } else { // VA.isRegLoc()
2551       assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
2552       unsigned ArgOffset = VA.getLocMemOffset();
2553       unsigned ArgSize = VA.getValVT().getSizeInBits() / 8;
2554 
2555       uint32_t BEAlign = 0;
2556       if (!Subtarget->isLittleEndian() && ArgSize < 8 &&
2557           !Ins[i].Flags.isInConsecutiveRegs())
2558         BEAlign = 8 - ArgSize;
2559 
2560       int FI = MFI->CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);
2561 
2562       // Create load nodes to retrieve arguments from the stack.
2563       SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
2564       SDValue ArgValue;
2565 
2566       // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
2567       ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
2568       MVT MemVT = VA.getValVT();
2569 
2570       switch (VA.getLocInfo()) {
2571       default:
2572         break;
2573       case CCValAssign::BCvt:
2574         MemVT = VA.getLocVT();
2575         break;
2576       case CCValAssign::SExt:
2577         ExtType = ISD::SEXTLOAD;
2578         break;
2579       case CCValAssign::ZExt:
2580         ExtType = ISD::ZEXTLOAD;
2581         break;
2582       case CCValAssign::AExt:
2583         ExtType = ISD::EXTLOAD;
2584         break;
2585       }
2586 
2587       ArgValue = DAG.getExtLoad(
2588           ExtType, DL, VA.getLocVT(), Chain, FIN,
2589           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
2590           MemVT, false, false, false, 0);
2591 
2592       InVals.push_back(ArgValue);
2593     }
2594   }
2595 
2596   // varargs
2597   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2598   if (isVarArg) {
2599     if (!Subtarget->isTargetDarwin()) {
2600       // The AAPCS variadic function ABI is identical to the non-variadic
2601       // one. As a result there may be more arguments in registers and we should
2602       // save them for future reference.
2603       saveVarArgRegisters(CCInfo, DAG, DL, Chain);
2604     }
2605 
2606     // This will point to the next argument passed via stack.
2607     unsigned StackOffset = CCInfo.getNextStackOffset();
2608     // We currently pass all varargs at 8-byte alignment.
2609     StackOffset = ((StackOffset + 7) & ~7);
2610     FuncInfo->setVarArgsStackIndex(MFI->CreateFixedObject(4, StackOffset, true));
2611   }
2612 
2613   unsigned StackArgSize = CCInfo.getNextStackOffset();
2614   bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2615   if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
2616     // This is a non-standard ABI so by fiat I say we're allowed to make full
2617     // use of the stack area to be popped, which must be aligned to 16 bytes in
2618     // any case:
2619     StackArgSize = alignTo(StackArgSize, 16);
2620 
2621     // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
2622     // a multiple of 16.
2623     FuncInfo->setArgumentStackToRestore(StackArgSize);
2624 
2625     // This realignment carries over to the available bytes below. Our own
2626     // callers will guarantee the space is free by giving an aligned value to
2627     // CALLSEQ_START.
2628   }
2629   // Even if we're not expected to free up the space, it's useful to know how
2630   // much is there while considering tail calls (because we can reuse it).
2631   FuncInfo->setBytesInStackArgArea(StackArgSize);
2632 
2633   return Chain;
2634 }
2635 
saveVarArgRegisters(CCState & CCInfo,SelectionDAG & DAG,const SDLoc & DL,SDValue & Chain) const2636 void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
2637                                                 SelectionDAG &DAG,
2638                                                 const SDLoc &DL,
2639                                                 SDValue &Chain) const {
2640   MachineFunction &MF = DAG.getMachineFunction();
2641   MachineFrameInfo *MFI = MF.getFrameInfo();
2642   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2643   auto PtrVT = getPointerTy(DAG.getDataLayout());
2644 
2645   SmallVector<SDValue, 8> MemOps;
2646 
2647   static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2,
2648                                           AArch64::X3, AArch64::X4, AArch64::X5,
2649                                           AArch64::X6, AArch64::X7 };
2650   static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
2651   unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs);
2652 
2653   unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
2654   int GPRIdx = 0;
2655   if (GPRSaveSize != 0) {
2656     GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
2657 
2658     SDValue FIN = DAG.getFrameIndex(GPRIdx, PtrVT);
2659 
2660     for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
2661       unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
2662       SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
2663       SDValue Store = DAG.getStore(
2664           Val.getValue(1), DL, Val, FIN,
2665           MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 8), false,
2666           false, 0);
2667       MemOps.push_back(Store);
2668       FIN =
2669           DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getConstant(8, DL, PtrVT));
2670     }
2671   }
2672   FuncInfo->setVarArgsGPRIndex(GPRIdx);
2673   FuncInfo->setVarArgsGPRSize(GPRSaveSize);
2674 
2675   if (Subtarget->hasFPARMv8()) {
2676     static const MCPhysReg FPRArgRegs[] = {
2677         AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
2678         AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7};
2679     static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
2680     unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs);
2681 
2682     unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
2683     int FPRIdx = 0;
2684     if (FPRSaveSize != 0) {
2685       FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
2686 
2687       SDValue FIN = DAG.getFrameIndex(FPRIdx, PtrVT);
2688 
2689       for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
2690         unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
2691         SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
2692 
2693         SDValue Store = DAG.getStore(
2694             Val.getValue(1), DL, Val, FIN,
2695             MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 16),
2696             false, false, 0);
2697         MemOps.push_back(Store);
2698         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
2699                           DAG.getConstant(16, DL, PtrVT));
2700       }
2701     }
2702     FuncInfo->setVarArgsFPRIndex(FPRIdx);
2703     FuncInfo->setVarArgsFPRSize(FPRSaveSize);
2704   }
2705 
2706   if (!MemOps.empty()) {
2707     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
2708   }
2709 }
2710 
2711 /// LowerCallResult - Lower the result values of a call into the
2712 /// appropriate copies out of appropriate physical registers.
LowerCallResult(SDValue Chain,SDValue InFlag,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals,bool isThisReturn,SDValue ThisVal) const2713 SDValue AArch64TargetLowering::LowerCallResult(
2714     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
2715     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2716     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
2717     SDValue ThisVal) const {
2718   CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2719                           ? RetCC_AArch64_WebKit_JS
2720                           : RetCC_AArch64_AAPCS;
2721   // Assign locations to each value returned by this call.
2722   SmallVector<CCValAssign, 16> RVLocs;
2723   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2724                  *DAG.getContext());
2725   CCInfo.AnalyzeCallResult(Ins, RetCC);
2726 
2727   // Copy all of the result registers out of their specified physreg.
2728   for (unsigned i = 0; i != RVLocs.size(); ++i) {
2729     CCValAssign VA = RVLocs[i];
2730 
2731     // Pass 'this' value directly from the argument to return value, to avoid
2732     // reg unit interference
2733     if (i == 0 && isThisReturn) {
2734       assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
2735              "unexpected return calling convention register assignment");
2736       InVals.push_back(ThisVal);
2737       continue;
2738     }
2739 
2740     SDValue Val =
2741         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2742     Chain = Val.getValue(1);
2743     InFlag = Val.getValue(2);
2744 
2745     switch (VA.getLocInfo()) {
2746     default:
2747       llvm_unreachable("Unknown loc info!");
2748     case CCValAssign::Full:
2749       break;
2750     case CCValAssign::BCvt:
2751       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2752       break;
2753     }
2754 
2755     InVals.push_back(Val);
2756   }
2757 
2758   return Chain;
2759 }
2760 
isEligibleForTailCallOptimization(SDValue Callee,CallingConv::ID CalleeCC,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,SelectionDAG & DAG) const2761 bool AArch64TargetLowering::isEligibleForTailCallOptimization(
2762     SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
2763     const SmallVectorImpl<ISD::OutputArg> &Outs,
2764     const SmallVectorImpl<SDValue> &OutVals,
2765     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2766   // For CallingConv::C this function knows whether the ABI needs
2767   // changing. That's not true for other conventions so they will have to opt in
2768   // manually.
2769   if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
2770     return false;
2771 
2772   MachineFunction &MF = DAG.getMachineFunction();
2773   const Function *CallerF = MF.getFunction();
2774   CallingConv::ID CallerCC = CallerF->getCallingConv();
2775   bool CCMatch = CallerCC == CalleeCC;
2776 
2777   // Byval parameters hand the function a pointer directly into the stack area
2778   // we want to reuse during a tail call. Working around this *is* possible (see
2779   // X86) but less efficient and uglier in LowerCall.
2780   for (Function::const_arg_iterator i = CallerF->arg_begin(),
2781                                     e = CallerF->arg_end();
2782        i != e; ++i)
2783     if (i->hasByValAttr())
2784       return false;
2785 
2786   if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2787     return IsTailCallConvention(CalleeCC) && CCMatch;
2788   }
2789 
2790   // Externally-defined functions with weak linkage should not be
2791   // tail-called on AArch64 when the OS does not support dynamic
2792   // pre-emption of symbols, as the AAELF spec requires normal calls
2793   // to undefined weak functions to be replaced with a NOP or jump to the
2794   // next instruction. The behaviour of branch instructions in this
2795   // situation (as used for tail calls) is implementation-defined, so we
2796   // cannot rely on the linker replacing the tail call with a return.
2797   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2798     const GlobalValue *GV = G->getGlobal();
2799     const Triple &TT = getTargetMachine().getTargetTriple();
2800     if (GV->hasExternalWeakLinkage() &&
2801         (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
2802       return false;
2803   }
2804 
2805   // Now we search for cases where we can use a tail call without changing the
2806   // ABI. Sibcall is used in some places (particularly gcc) to refer to this
2807   // concept.
2808 
2809   // I want anyone implementing a new calling convention to think long and hard
2810   // about this assert.
2811   assert((!isVarArg || CalleeCC == CallingConv::C) &&
2812          "Unexpected variadic calling convention");
2813 
2814   LLVMContext &C = *DAG.getContext();
2815   if (isVarArg && !Outs.empty()) {
2816     // At least two cases here: if caller is fastcc then we can't have any
2817     // memory arguments (we'd be expected to clean up the stack afterwards). If
2818     // caller is C then we could potentially use its argument area.
2819 
2820     // FIXME: for now we take the most conservative of these in both cases:
2821     // disallow all variadic memory operands.
2822     SmallVector<CCValAssign, 16> ArgLocs;
2823     CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
2824 
2825     CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true));
2826     for (const CCValAssign &ArgLoc : ArgLocs)
2827       if (!ArgLoc.isRegLoc())
2828         return false;
2829   }
2830 
2831   // Check that the call results are passed in the same way.
2832   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
2833                                   CCAssignFnForCall(CalleeCC, isVarArg),
2834                                   CCAssignFnForCall(CallerCC, isVarArg)))
2835     return false;
2836   // The callee has to preserve all registers the caller needs to preserve.
2837   const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
2838   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2839   if (!CCMatch) {
2840     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2841     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2842       return false;
2843   }
2844 
2845   // Nothing more to check if the callee is taking no arguments
2846   if (Outs.empty())
2847     return true;
2848 
2849   SmallVector<CCValAssign, 16> ArgLocs;
2850   CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
2851 
2852   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
2853 
2854   const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2855 
2856   // If the stack arguments for this call do not fit into our own save area then
2857   // the call cannot be made tail.
2858   if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
2859     return false;
2860 
2861   const MachineRegisterInfo &MRI = MF.getRegInfo();
2862   if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
2863     return false;
2864 
2865   return true;
2866 }
2867 
addTokenForArgument(SDValue Chain,SelectionDAG & DAG,MachineFrameInfo * MFI,int ClobberedFI) const2868 SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
2869                                                    SelectionDAG &DAG,
2870                                                    MachineFrameInfo *MFI,
2871                                                    int ClobberedFI) const {
2872   SmallVector<SDValue, 8> ArgChains;
2873   int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
2874   int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;
2875 
2876   // Include the original chain at the beginning of the list. When this is
2877   // used by target LowerCall hooks, this helps legalize find the
2878   // CALLSEQ_BEGIN node.
2879   ArgChains.push_back(Chain);
2880 
2881   // Add a chain value for each stack argument corresponding
2882   for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
2883                             UE = DAG.getEntryNode().getNode()->use_end();
2884        U != UE; ++U)
2885     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
2886       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
2887         if (FI->getIndex() < 0) {
2888           int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
2889           int64_t InLastByte = InFirstByte;
2890           InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;
2891 
2892           if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
2893               (FirstByte <= InFirstByte && InFirstByte <= LastByte))
2894             ArgChains.push_back(SDValue(L, 1));
2895         }
2896 
2897   // Build a tokenfactor for all the chains.
2898   return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
2899 }
2900 
DoesCalleeRestoreStack(CallingConv::ID CallCC,bool TailCallOpt) const2901 bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
2902                                                    bool TailCallOpt) const {
2903   return CallCC == CallingConv::Fast && TailCallOpt;
2904 }
2905 
IsTailCallConvention(CallingConv::ID CallCC) const2906 bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
2907   return CallCC == CallingConv::Fast ||
2908          CallCC == CallingConv::PreserveMost;
2909 }
2910 
2911 /// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
2912 /// and add input and output parameter nodes.
2913 SDValue
LowerCall(CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const2914 AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
2915                                  SmallVectorImpl<SDValue> &InVals) const {
2916   SelectionDAG &DAG = CLI.DAG;
2917   SDLoc &DL = CLI.DL;
2918   SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2919   SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2920   SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2921   SDValue Chain = CLI.Chain;
2922   SDValue Callee = CLI.Callee;
2923   bool &IsTailCall = CLI.IsTailCall;
2924   CallingConv::ID CallConv = CLI.CallConv;
2925   bool IsVarArg = CLI.IsVarArg;
2926 
2927   MachineFunction &MF = DAG.getMachineFunction();
2928   bool IsThisReturn = false;
2929 
2930   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2931   bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2932   bool IsSibCall = false;
2933 
2934   if (IsTailCall) {
2935     // Check if it's really possible to do a tail call.
2936     IsTailCall = isEligibleForTailCallOptimization(
2937         Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
2938     if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall())
2939       report_fatal_error("failed to perform tail call elimination on a call "
2940                          "site marked musttail");
2941 
2942     // A sibling call is one where we're under the usual C ABI and not planning
2943     // to change that but can still do a tail call:
2944     if (!TailCallOpt && IsTailCall)
2945       IsSibCall = true;
2946 
2947     if (IsTailCall)
2948       ++NumTailCalls;
2949   }
2950 
2951   // Analyze operands of the call, assigning locations to each operand.
2952   SmallVector<CCValAssign, 16> ArgLocs;
2953   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
2954                  *DAG.getContext());
2955 
2956   if (IsVarArg) {
2957     // Handle fixed and variable vector arguments differently.
2958     // Variable vector arguments always go into memory.
2959     unsigned NumArgs = Outs.size();
2960 
2961     for (unsigned i = 0; i != NumArgs; ++i) {
2962       MVT ArgVT = Outs[i].VT;
2963       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2964       CCAssignFn *AssignFn = CCAssignFnForCall(CallConv,
2965                                                /*IsVarArg=*/ !Outs[i].IsFixed);
2966       bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2967       assert(!Res && "Call operand has unhandled type");
2968       (void)Res;
2969     }
2970   } else {
2971     // At this point, Outs[].VT may already be promoted to i32. To correctly
2972     // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2973     // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2974     // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
2975     // we use a special version of AnalyzeCallOperands to pass in ValVT and
2976     // LocVT.
2977     unsigned NumArgs = Outs.size();
2978     for (unsigned i = 0; i != NumArgs; ++i) {
2979       MVT ValVT = Outs[i].VT;
2980       // Get type of the original argument.
2981       EVT ActualVT = getValueType(DAG.getDataLayout(),
2982                                   CLI.getArgs()[Outs[i].OrigArgIndex].Ty,
2983                                   /*AllowUnknown*/ true);
2984       MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT;
2985       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2986       // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
2987       if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
2988         ValVT = MVT::i8;
2989       else if (ActualMVT == MVT::i16)
2990         ValVT = MVT::i16;
2991 
2992       CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
2993       bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo);
2994       assert(!Res && "Call operand has unhandled type");
2995       (void)Res;
2996     }
2997   }
2998 
2999   // Get a count of how many bytes are to be pushed on the stack.
3000   unsigned NumBytes = CCInfo.getNextStackOffset();
3001 
3002   if (IsSibCall) {
3003     // Since we're not changing the ABI to make this a tail call, the memory
3004     // operands are already available in the caller's incoming argument space.
3005     NumBytes = 0;
3006   }
3007 
3008   // FPDiff is the byte offset of the call's argument area from the callee's.
3009   // Stores to callee stack arguments will be placed in FixedStackSlots offset
3010   // by this amount for a tail call. In a sibling call it must be 0 because the
3011   // caller will deallocate the entire stack and the callee still expects its
3012   // arguments to begin at SP+0. Completely unused for non-tail calls.
3013   int FPDiff = 0;
3014 
3015   if (IsTailCall && !IsSibCall) {
3016     unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
3017 
3018     // Since callee will pop argument stack as a tail call, we must keep the
3019     // popped size 16-byte aligned.
3020     NumBytes = alignTo(NumBytes, 16);
3021 
3022     // FPDiff will be negative if this tail call requires more space than we
3023     // would automatically have in our incoming argument space. Positive if we
3024     // can actually shrink the stack.
3025     FPDiff = NumReusableBytes - NumBytes;
3026 
3027     // The stack pointer must be 16-byte aligned at all times it's used for a
3028     // memory operation, which in practice means at *all* times and in
3029     // particular across call boundaries. Therefore our own arguments started at
3030     // a 16-byte aligned SP and the delta applied for the tail call should
3031     // satisfy the same constraint.
3032     assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
3033   }
3034 
3035   // Adjust the stack pointer for the new arguments...
3036   // These operations are automatically eliminated by the prolog/epilog pass
3037   if (!IsSibCall)
3038     Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, DL,
3039                                                               true),
3040                                  DL);
3041 
3042   SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP,
3043                                         getPointerTy(DAG.getDataLayout()));
3044 
3045   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3046   SmallVector<SDValue, 8> MemOpChains;
3047   auto PtrVT = getPointerTy(DAG.getDataLayout());
3048 
3049   // Walk the register/memloc assignments, inserting copies/loads.
3050   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
3051        ++i, ++realArgIdx) {
3052     CCValAssign &VA = ArgLocs[i];
3053     SDValue Arg = OutVals[realArgIdx];
3054     ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
3055 
3056     // Promote the value if needed.
3057     switch (VA.getLocInfo()) {
3058     default:
3059       llvm_unreachable("Unknown loc info!");
3060     case CCValAssign::Full:
3061       break;
3062     case CCValAssign::SExt:
3063       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
3064       break;
3065     case CCValAssign::ZExt:
3066       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3067       break;
3068     case CCValAssign::AExt:
3069       if (Outs[realArgIdx].ArgVT == MVT::i1) {
3070         // AAPCS requires i1 to be zero-extended to 8-bits by the caller.
3071         Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
3072         Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg);
3073       }
3074       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
3075       break;
3076     case CCValAssign::BCvt:
3077       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3078       break;
3079     case CCValAssign::FPExt:
3080       Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
3081       break;
3082     }
3083 
3084     if (VA.isRegLoc()) {
3085       if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i64) {
3086         assert(VA.getLocVT() == MVT::i64 &&
3087                "unexpected calling convention register assignment");
3088         assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
3089                "unexpected use of 'returned'");
3090         IsThisReturn = true;
3091       }
3092       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3093     } else {
3094       assert(VA.isMemLoc());
3095 
3096       SDValue DstAddr;
3097       MachinePointerInfo DstInfo;
3098 
3099       // FIXME: This works on big-endian for composite byvals, which are the
3100       // common case. It should also work for fundamental types too.
3101       uint32_t BEAlign = 0;
3102       unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
3103                                         : VA.getValVT().getSizeInBits();
3104       OpSize = (OpSize + 7) / 8;
3105       if (!Subtarget->isLittleEndian() && !Flags.isByVal() &&
3106           !Flags.isInConsecutiveRegs()) {
3107         if (OpSize < 8)
3108           BEAlign = 8 - OpSize;
3109       }
3110       unsigned LocMemOffset = VA.getLocMemOffset();
3111       int32_t Offset = LocMemOffset + BEAlign;
3112       SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
3113       PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
3114 
3115       if (IsTailCall) {
3116         Offset = Offset + FPDiff;
3117         int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
3118 
3119         DstAddr = DAG.getFrameIndex(FI, PtrVT);
3120         DstInfo =
3121             MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
3122 
3123         // Make sure any stack arguments overlapping with where we're storing
3124         // are loaded before this eventual operation. Otherwise they'll be
3125         // clobbered.
3126         Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
3127       } else {
3128         SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
3129 
3130         DstAddr = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
3131         DstInfo = MachinePointerInfo::getStack(DAG.getMachineFunction(),
3132                                                LocMemOffset);
3133       }
3134 
3135       if (Outs[i].Flags.isByVal()) {
3136         SDValue SizeNode =
3137             DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i64);
3138         SDValue Cpy = DAG.getMemcpy(
3139             Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
3140             /*isVol = */ false, /*AlwaysInline = */ false,
3141             /*isTailCall = */ false,
3142             DstInfo, MachinePointerInfo());
3143 
3144         MemOpChains.push_back(Cpy);
3145       } else {
3146         // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
3147         // promoted to a legal register type i32, we should truncate Arg back to
3148         // i1/i8/i16.
3149         if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 ||
3150             VA.getValVT() == MVT::i16)
3151           Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
3152 
3153         SDValue Store =
3154             DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, false, false, 0);
3155         MemOpChains.push_back(Store);
3156       }
3157     }
3158   }
3159 
3160   if (!MemOpChains.empty())
3161     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3162 
3163   // Build a sequence of copy-to-reg nodes chained together with token chain
3164   // and flag operands which copy the outgoing args into the appropriate regs.
3165   SDValue InFlag;
3166   for (auto &RegToPass : RegsToPass) {
3167     Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
3168                              RegToPass.second, InFlag);
3169     InFlag = Chain.getValue(1);
3170   }
3171 
3172   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
3173   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
3174   // node so that legalize doesn't hack it.
3175   if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3176       Subtarget->isTargetMachO()) {
3177     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3178       const GlobalValue *GV = G->getGlobal();
3179       bool InternalLinkage = GV->hasInternalLinkage();
3180       if (InternalLinkage)
3181         Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0);
3182       else {
3183         Callee =
3184             DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_GOT);
3185         Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
3186       }
3187     } else if (ExternalSymbolSDNode *S =
3188                    dyn_cast<ExternalSymbolSDNode>(Callee)) {
3189       const char *Sym = S->getSymbol();
3190       Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, AArch64II::MO_GOT);
3191       Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
3192     }
3193   } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3194     const GlobalValue *GV = G->getGlobal();
3195     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0);
3196   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3197     const char *Sym = S->getSymbol();
3198     Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, 0);
3199   }
3200 
3201   // We don't usually want to end the call-sequence here because we would tidy
3202   // the frame up *after* the call, however in the ABI-changing tail-call case
3203   // we've carefully laid out the parameters so that when sp is reset they'll be
3204   // in the correct location.
3205   if (IsTailCall && !IsSibCall) {
3206     Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
3207                                DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
3208     InFlag = Chain.getValue(1);
3209   }
3210 
3211   std::vector<SDValue> Ops;
3212   Ops.push_back(Chain);
3213   Ops.push_back(Callee);
3214 
3215   if (IsTailCall) {
3216     // Each tail call may have to adjust the stack by a different amount, so
3217     // this information must travel along with the operation for eventual
3218     // consumption by emitEpilogue.
3219     Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
3220   }
3221 
3222   // Add argument registers to the end of the list so that they are known live
3223   // into the call.
3224   for (auto &RegToPass : RegsToPass)
3225     Ops.push_back(DAG.getRegister(RegToPass.first,
3226                                   RegToPass.second.getValueType()));
3227 
3228   // Add a register mask operand representing the call-preserved registers.
3229   const uint32_t *Mask;
3230   const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
3231   if (IsThisReturn) {
3232     // For 'this' returns, use the X0-preserving mask if applicable
3233     Mask = TRI->getThisReturnPreservedMask(MF, CallConv);
3234     if (!Mask) {
3235       IsThisReturn = false;
3236       Mask = TRI->getCallPreservedMask(MF, CallConv);
3237     }
3238   } else
3239     Mask = TRI->getCallPreservedMask(MF, CallConv);
3240 
3241   assert(Mask && "Missing call preserved mask for calling convention");
3242   Ops.push_back(DAG.getRegisterMask(Mask));
3243 
3244   if (InFlag.getNode())
3245     Ops.push_back(InFlag);
3246 
3247   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3248 
3249   // If we're doing a tall call, use a TC_RETURN here rather than an
3250   // actual call instruction.
3251   if (IsTailCall) {
3252     MF.getFrameInfo()->setHasTailCall();
3253     return DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops);
3254   }
3255 
3256   // Returns a chain and a flag for retval copy to use.
3257   Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops);
3258   InFlag = Chain.getValue(1);
3259 
3260   uint64_t CalleePopBytes =
3261       DoesCalleeRestoreStack(CallConv, TailCallOpt) ? alignTo(NumBytes, 16) : 0;
3262 
3263   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
3264                              DAG.getIntPtrConstant(CalleePopBytes, DL, true),
3265                              InFlag, DL);
3266   if (!Ins.empty())
3267     InFlag = Chain.getValue(1);
3268 
3269   // Handle result values, copying them out of physregs into vregs that we
3270   // return.
3271   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
3272                          InVals, IsThisReturn,
3273                          IsThisReturn ? OutVals[0] : SDValue());
3274 }
3275 
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const3276 bool AArch64TargetLowering::CanLowerReturn(
3277     CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
3278     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
3279   CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
3280                           ? RetCC_AArch64_WebKit_JS
3281                           : RetCC_AArch64_AAPCS;
3282   SmallVector<CCValAssign, 16> RVLocs;
3283   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
3284   return CCInfo.CheckReturn(Outs, RetCC);
3285 }
3286 
3287 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & DL,SelectionDAG & DAG) const3288 AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
3289                                    bool isVarArg,
3290                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3291                                    const SmallVectorImpl<SDValue> &OutVals,
3292                                    const SDLoc &DL, SelectionDAG &DAG) const {
3293   CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
3294                           ? RetCC_AArch64_WebKit_JS
3295                           : RetCC_AArch64_AAPCS;
3296   SmallVector<CCValAssign, 16> RVLocs;
3297   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
3298                  *DAG.getContext());
3299   CCInfo.AnalyzeReturn(Outs, RetCC);
3300 
3301   // Copy the result values into the output registers.
3302   SDValue Flag;
3303   SmallVector<SDValue, 4> RetOps(1, Chain);
3304   for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
3305        ++i, ++realRVLocIdx) {
3306     CCValAssign &VA = RVLocs[i];
3307     assert(VA.isRegLoc() && "Can only return in registers!");
3308     SDValue Arg = OutVals[realRVLocIdx];
3309 
3310     switch (VA.getLocInfo()) {
3311     default:
3312       llvm_unreachable("Unknown loc info!");
3313     case CCValAssign::Full:
3314       if (Outs[i].ArgVT == MVT::i1) {
3315         // AAPCS requires i1 to be zero-extended to i8 by the producer of the
3316         // value. This is strictly redundant on Darwin (which uses "zeroext
3317         // i1"), but will be optimised out before ISel.
3318         Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
3319         Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3320       }
3321       break;
3322     case CCValAssign::BCvt:
3323       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3324       break;
3325     }
3326 
3327     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
3328     Flag = Chain.getValue(1);
3329     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3330   }
3331   const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
3332   const MCPhysReg *I =
3333       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
3334   if (I) {
3335     for (; *I; ++I) {
3336       if (AArch64::GPR64RegClass.contains(*I))
3337         RetOps.push_back(DAG.getRegister(*I, MVT::i64));
3338       else if (AArch64::FPR64RegClass.contains(*I))
3339         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
3340       else
3341         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
3342     }
3343   }
3344 
3345   RetOps[0] = Chain; // Update chain.
3346 
3347   // Add the flag if we have it.
3348   if (Flag.getNode())
3349     RetOps.push_back(Flag);
3350 
3351   return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps);
3352 }
3353 
3354 //===----------------------------------------------------------------------===//
3355 //  Other Lowering Code
3356 //===----------------------------------------------------------------------===//
3357 
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const3358 SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
3359                                                   SelectionDAG &DAG) const {
3360   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3361   SDLoc DL(Op);
3362   const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
3363   const GlobalValue *GV = GN->getGlobal();
3364   unsigned char OpFlags =
3365       Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
3366 
3367   assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
3368          "unexpected offset in global node");
3369 
3370   // This also catched the large code model case for Darwin.
3371   if ((OpFlags & AArch64II::MO_GOT) != 0) {
3372     SDValue GotAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
3373     // FIXME: Once remat is capable of dealing with instructions with register
3374     // operands, expand this into two nodes instead of using a wrapper node.
3375     return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
3376   }
3377 
3378   if (getTargetMachine().getCodeModel() == CodeModel::Large) {
3379     const unsigned char MO_NC = AArch64II::MO_NC;
3380     return DAG.getNode(
3381         AArch64ISD::WrapperLarge, DL, PtrVT,
3382         DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G3),
3383         DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
3384         DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
3385         DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
3386   } else {
3387     // Use ADRP/ADD or ADRP/LDR for everything else: the small model on ELF and
3388     // the only correct model on Darwin.
3389     SDValue Hi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3390                                             OpFlags | AArch64II::MO_PAGE);
3391     unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
3392     SDValue Lo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, LoFlags);
3393 
3394     SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3395     return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3396   }
3397 }
3398 
3399 /// \brief Convert a TLS address reference into the correct sequence of loads
3400 /// and calls to compute the variable's address (for Darwin, currently) and
3401 /// return an SDValue containing the final node.
3402 
3403 /// Darwin only has one TLS scheme which must be capable of dealing with the
3404 /// fully general situation, in the worst case. This means:
3405 ///     + "extern __thread" declaration.
3406 ///     + Defined in a possibly unknown dynamic library.
3407 ///
3408 /// The general system is that each __thread variable has a [3 x i64] descriptor
3409 /// which contains information used by the runtime to calculate the address. The
3410 /// only part of this the compiler needs to know about is the first xword, which
3411 /// contains a function pointer that must be called with the address of the
3412 /// entire descriptor in "x0".
3413 ///
3414 /// Since this descriptor may be in a different unit, in general even the
3415 /// descriptor must be accessed via an indirect load. The "ideal" code sequence
3416 /// is:
3417 ///     adrp x0, _var@TLVPPAGE
3418 ///     ldr x0, [x0, _var@TLVPPAGEOFF]   ; x0 now contains address of descriptor
3419 ///     ldr x1, [x0]                     ; x1 contains 1st entry of descriptor,
3420 ///                                      ; the function pointer
3421 ///     blr x1                           ; Uses descriptor address in x0
3422 ///     ; Address of _var is now in x0.
3423 ///
3424 /// If the address of _var's descriptor *is* known to the linker, then it can
3425 /// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
3426 /// a slight efficiency gain.
3427 SDValue
LowerDarwinGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const3428 AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
3429                                                    SelectionDAG &DAG) const {
3430   assert(Subtarget->isTargetDarwin() && "TLS only supported on Darwin");
3431 
3432   SDLoc DL(Op);
3433   MVT PtrVT = getPointerTy(DAG.getDataLayout());
3434   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3435 
3436   SDValue TLVPAddr =
3437       DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3438   SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);
3439 
3440   // The first entry in the descriptor is a function pointer that we must call
3441   // to obtain the address of the variable.
3442   SDValue Chain = DAG.getEntryNode();
3443   SDValue FuncTLVGet =
3444       DAG.getLoad(MVT::i64, DL, Chain, DescAddr,
3445                   MachinePointerInfo::getGOT(DAG.getMachineFunction()), false,
3446                   true, true, 8);
3447   Chain = FuncTLVGet.getValue(1);
3448 
3449   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3450   MFI->setAdjustsStack(true);
3451 
3452   // TLS calls preserve all registers except those that absolutely must be
3453   // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
3454   // silly).
3455   const uint32_t *Mask =
3456       Subtarget->getRegisterInfo()->getTLSCallPreservedMask();
3457 
3458   // Finally, we can make the call. This is just a degenerate version of a
3459   // normal AArch64 call node: x0 takes the address of the descriptor, and
3460   // returns the address of the variable in this thread.
3461   Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
3462   Chain =
3463       DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
3464                   Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64),
3465                   DAG.getRegisterMask(Mask), Chain.getValue(1));
3466   return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
3467 }
3468 
3469 /// When accessing thread-local variables under either the general-dynamic or
3470 /// local-dynamic system, we make a "TLS-descriptor" call. The variable will
3471 /// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
3472 /// is a function pointer to carry out the resolution.
3473 ///
3474 /// The sequence is:
3475 ///    adrp  x0, :tlsdesc:var
3476 ///    ldr   x1, [x0, #:tlsdesc_lo12:var]
3477 ///    add   x0, x0, #:tlsdesc_lo12:var
3478 ///    .tlsdesccall var
3479 ///    blr   x1
3480 ///    (TPIDR_EL0 offset now in x0)
3481 ///
3482 ///  The above sequence must be produced unscheduled, to enable the linker to
3483 ///  optimize/relax this sequence.
3484 ///  Therefore, a pseudo-instruction (TLSDESC_CALLSEQ) is used to represent the
3485 ///  above sequence, and expanded really late in the compilation flow, to ensure
3486 ///  the sequence is produced as per above.
LowerELFTLSDescCallSeq(SDValue SymAddr,const SDLoc & DL,SelectionDAG & DAG) const3487 SDValue AArch64TargetLowering::LowerELFTLSDescCallSeq(SDValue SymAddr,
3488                                                       const SDLoc &DL,
3489                                                       SelectionDAG &DAG) const {
3490   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3491 
3492   SDValue Chain = DAG.getEntryNode();
3493   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3494 
3495   Chain =
3496       DAG.getNode(AArch64ISD::TLSDESC_CALLSEQ, DL, NodeTys, {Chain, SymAddr});
3497   SDValue Glue = Chain.getValue(1);
3498 
3499   return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
3500 }
3501 
3502 SDValue
LowerELFGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const3503 AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
3504                                                 SelectionDAG &DAG) const {
3505   assert(Subtarget->isTargetELF() && "This function expects an ELF target");
3506   assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
3507          "ELF TLS only supported in small memory model");
3508   // Different choices can be made for the maximum size of the TLS area for a
3509   // module. For the small address model, the default TLS size is 16MiB and the
3510   // maximum TLS size is 4GiB.
3511   // FIXME: add -mtls-size command line option and make it control the 16MiB
3512   // vs. 4GiB code sequence generation.
3513   const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3514 
3515   TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
3516 
3517   if (DAG.getTarget().Options.EmulatedTLS)
3518     return LowerToTLSEmulatedModel(GA, DAG);
3519 
3520   if (!EnableAArch64ELFLocalDynamicTLSGeneration) {
3521     if (Model == TLSModel::LocalDynamic)
3522       Model = TLSModel::GeneralDynamic;
3523   }
3524 
3525   SDValue TPOff;
3526   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3527   SDLoc DL(Op);
3528   const GlobalValue *GV = GA->getGlobal();
3529 
3530   SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
3531 
3532   if (Model == TLSModel::LocalExec) {
3533     SDValue HiVar = DAG.getTargetGlobalAddress(
3534         GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
3535     SDValue LoVar = DAG.getTargetGlobalAddress(
3536         GV, DL, PtrVT, 0,
3537         AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3538 
3539     SDValue TPWithOff_lo =
3540         SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase,
3541                                    HiVar,
3542                                    DAG.getTargetConstant(0, DL, MVT::i32)),
3543                 0);
3544     SDValue TPWithOff =
3545         SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPWithOff_lo,
3546                                    LoVar,
3547                                    DAG.getTargetConstant(0, DL, MVT::i32)),
3548                 0);
3549     return TPWithOff;
3550   } else if (Model == TLSModel::InitialExec) {
3551     TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3552     TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
3553   } else if (Model == TLSModel::LocalDynamic) {
3554     // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
3555     // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
3556     // the beginning of the module's TLS region, followed by a DTPREL offset
3557     // calculation.
3558 
3559     // These accesses will need deduplicating if there's more than one.
3560     AArch64FunctionInfo *MFI =
3561         DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
3562     MFI->incNumLocalDynamicTLSAccesses();
3563 
3564     // The call needs a relocation too for linker relaxation. It doesn't make
3565     // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
3566     // the address.
3567     SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
3568                                                   AArch64II::MO_TLS);
3569 
3570     // Now we can calculate the offset from TPIDR_EL0 to this module's
3571     // thread-local area.
3572     TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
3573 
3574     // Now use :dtprel_whatever: operations to calculate this variable's offset
3575     // in its thread-storage area.
3576     SDValue HiVar = DAG.getTargetGlobalAddress(
3577         GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
3578     SDValue LoVar = DAG.getTargetGlobalAddress(
3579         GV, DL, MVT::i64, 0,
3580         AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3581 
3582     TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, HiVar,
3583                                        DAG.getTargetConstant(0, DL, MVT::i32)),
3584                     0);
3585     TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, LoVar,
3586                                        DAG.getTargetConstant(0, DL, MVT::i32)),
3587                     0);
3588   } else if (Model == TLSModel::GeneralDynamic) {
3589     // The call needs a relocation too for linker relaxation. It doesn't make
3590     // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
3591     // the address.
3592     SDValue SymAddr =
3593         DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3594 
3595     // Finally we can make a call to calculate the offset from tpidr_el0.
3596     TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
3597   } else
3598     llvm_unreachable("Unsupported ELF TLS access model");
3599 
3600   return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
3601 }
3602 
LowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const3603 SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
3604                                                      SelectionDAG &DAG) const {
3605   if (Subtarget->isTargetDarwin())
3606     return LowerDarwinGlobalTLSAddress(Op, DAG);
3607   else if (Subtarget->isTargetELF())
3608     return LowerELFGlobalTLSAddress(Op, DAG);
3609 
3610   llvm_unreachable("Unexpected platform trying to use TLS");
3611 }
LowerBR_CC(SDValue Op,SelectionDAG & DAG) const3612 SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3613   SDValue Chain = Op.getOperand(0);
3614   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3615   SDValue LHS = Op.getOperand(2);
3616   SDValue RHS = Op.getOperand(3);
3617   SDValue Dest = Op.getOperand(4);
3618   SDLoc dl(Op);
3619 
3620   // Handle f128 first, since lowering it will result in comparing the return
3621   // value of a libcall against zero, which is just what the rest of LowerBR_CC
3622   // is expecting to deal with.
3623   if (LHS.getValueType() == MVT::f128) {
3624     softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3625 
3626     // If softenSetCCOperands returned a scalar, we need to compare the result
3627     // against zero to select between true and false values.
3628     if (!RHS.getNode()) {
3629       RHS = DAG.getConstant(0, dl, LHS.getValueType());
3630       CC = ISD::SETNE;
3631     }
3632   }
3633 
3634   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
3635   // instruction.
3636   unsigned Opc = LHS.getOpcode();
3637   if (LHS.getResNo() == 1 && isOneConstant(RHS) &&
3638       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3639        Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
3640     assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
3641            "Unexpected condition code.");
3642     // Only lower legal XALUO ops.
3643     if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
3644       return SDValue();
3645 
3646     // The actual operation with overflow check.
3647     AArch64CC::CondCode OFCC;
3648     SDValue Value, Overflow;
3649     std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);
3650 
3651     if (CC == ISD::SETNE)
3652       OFCC = getInvertedCondCode(OFCC);
3653     SDValue CCVal = DAG.getConstant(OFCC, dl, MVT::i32);
3654 
3655     return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
3656                        Overflow);
3657   }
3658 
3659   if (LHS.getValueType().isInteger()) {
3660     assert((LHS.getValueType() == RHS.getValueType()) &&
3661            (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3662 
3663     // If the RHS of the comparison is zero, we can potentially fold this
3664     // to a specialized branch.
3665     const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
3666     if (RHSC && RHSC->getZExtValue() == 0) {
3667       if (CC == ISD::SETEQ) {
3668         // See if we can use a TBZ to fold in an AND as well.
3669         // TBZ has a smaller branch displacement than CBZ.  If the offset is
3670         // out of bounds, a late MI-layer pass rewrites branches.
3671         // 403.gcc is an example that hits this case.
3672         if (LHS.getOpcode() == ISD::AND &&
3673             isa<ConstantSDNode>(LHS.getOperand(1)) &&
3674             isPowerOf2_64(LHS.getConstantOperandVal(1))) {
3675           SDValue Test = LHS.getOperand(0);
3676           uint64_t Mask = LHS.getConstantOperandVal(1);
3677           return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
3678                              DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
3679                              Dest);
3680         }
3681 
3682         return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
3683       } else if (CC == ISD::SETNE) {
3684         // See if we can use a TBZ to fold in an AND as well.
3685         // TBZ has a smaller branch displacement than CBZ.  If the offset is
3686         // out of bounds, a late MI-layer pass rewrites branches.
3687         // 403.gcc is an example that hits this case.
3688         if (LHS.getOpcode() == ISD::AND &&
3689             isa<ConstantSDNode>(LHS.getOperand(1)) &&
3690             isPowerOf2_64(LHS.getConstantOperandVal(1))) {
3691           SDValue Test = LHS.getOperand(0);
3692           uint64_t Mask = LHS.getConstantOperandVal(1);
3693           return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
3694                              DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
3695                              Dest);
3696         }
3697 
3698         return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
3699       } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) {
3700         // Don't combine AND since emitComparison converts the AND to an ANDS
3701         // (a.k.a. TST) and the test in the test bit and branch instruction
3702         // becomes redundant.  This would also increase register pressure.
3703         uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
3704         return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS,
3705                            DAG.getConstant(Mask, dl, MVT::i64), Dest);
3706       }
3707     }
3708     if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT &&
3709         LHS.getOpcode() != ISD::AND) {
3710       // Don't combine AND since emitComparison converts the AND to an ANDS
3711       // (a.k.a. TST) and the test in the test bit and branch instruction
3712       // becomes redundant.  This would also increase register pressure.
3713       uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
3714       return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS,
3715                          DAG.getConstant(Mask, dl, MVT::i64), Dest);
3716     }
3717 
3718     SDValue CCVal;
3719     SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
3720     return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
3721                        Cmp);
3722   }
3723 
3724   assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3725 
3726   // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
3727   // clean.  Some of them require two branches to implement.
3728   SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3729   AArch64CC::CondCode CC1, CC2;
3730   changeFPCCToAArch64CC(CC, CC1, CC2);
3731   SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
3732   SDValue BR1 =
3733       DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
3734   if (CC2 != AArch64CC::AL) {
3735     SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
3736     return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
3737                        Cmp);
3738   }
3739 
3740   return BR1;
3741 }
3742 
LowerFCOPYSIGN(SDValue Op,SelectionDAG & DAG) const3743 SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
3744                                               SelectionDAG &DAG) const {
3745   EVT VT = Op.getValueType();
3746   SDLoc DL(Op);
3747 
3748   SDValue In1 = Op.getOperand(0);
3749   SDValue In2 = Op.getOperand(1);
3750   EVT SrcVT = In2.getValueType();
3751 
3752   if (SrcVT.bitsLT(VT))
3753     In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
3754   else if (SrcVT.bitsGT(VT))
3755     In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0, DL));
3756 
3757   EVT VecVT;
3758   EVT EltVT;
3759   uint64_t EltMask;
3760   SDValue VecVal1, VecVal2;
3761   if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) {
3762     EltVT = MVT::i32;
3763     VecVT = (VT == MVT::v2f32 ? MVT::v2i32 : MVT::v4i32);
3764     EltMask = 0x80000000ULL;
3765 
3766     if (!VT.isVector()) {
3767       VecVal1 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
3768                                           DAG.getUNDEF(VecVT), In1);
3769       VecVal2 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
3770                                           DAG.getUNDEF(VecVT), In2);
3771     } else {
3772       VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3773       VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3774     }
3775   } else if (VT == MVT::f64 || VT == MVT::v2f64) {
3776     EltVT = MVT::i64;
3777     VecVT = MVT::v2i64;
3778 
3779     // We want to materialize a mask with the high bit set, but the AdvSIMD
3780     // immediate moves cannot materialize that in a single instruction for
3781     // 64-bit elements. Instead, materialize zero and then negate it.
3782     EltMask = 0;
3783 
3784     if (!VT.isVector()) {
3785       VecVal1 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3786                                           DAG.getUNDEF(VecVT), In1);
3787       VecVal2 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3788                                           DAG.getUNDEF(VecVT), In2);
3789     } else {
3790       VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3791       VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3792     }
3793   } else {
3794     llvm_unreachable("Invalid type for copysign!");
3795   }
3796 
3797   SDValue BuildVec = DAG.getConstant(EltMask, DL, VecVT);
3798 
3799   // If we couldn't materialize the mask above, then the mask vector will be
3800   // the zero vector, and we need to negate it here.
3801   if (VT == MVT::f64 || VT == MVT::v2f64) {
3802     BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec);
3803     BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec);
3804     BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec);
3805   }
3806 
3807   SDValue Sel =
3808       DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec);
3809 
3810   if (VT == MVT::f32)
3811     return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel);
3812   else if (VT == MVT::f64)
3813     return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel);
3814   else
3815     return DAG.getNode(ISD::BITCAST, DL, VT, Sel);
3816 }
3817 
LowerCTPOP(SDValue Op,SelectionDAG & DAG) const3818 SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
3819   if (DAG.getMachineFunction().getFunction()->hasFnAttribute(
3820           Attribute::NoImplicitFloat))
3821     return SDValue();
3822 
3823   if (!Subtarget->hasNEON())
3824     return SDValue();
3825 
3826   // While there is no integer popcount instruction, it can
3827   // be more efficiently lowered to the following sequence that uses
3828   // AdvSIMD registers/instructions as long as the copies to/from
3829   // the AdvSIMD registers are cheap.
3830   //  FMOV    D0, X0        // copy 64-bit int to vector, high bits zero'd
3831   //  CNT     V0.8B, V0.8B  // 8xbyte pop-counts
3832   //  ADDV    B0, V0.8B     // sum 8xbyte pop-counts
3833   //  UMOV    X0, V0.B[0]   // copy byte result back to integer reg
3834   SDValue Val = Op.getOperand(0);
3835   SDLoc DL(Op);
3836   EVT VT = Op.getValueType();
3837 
3838   if (VT == MVT::i32)
3839     Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val);
3840   Val = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);
3841 
3842   SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, Val);
3843   SDValue UaddLV = DAG.getNode(
3844       ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
3845       DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, DL, MVT::i32), CtPop);
3846 
3847   if (VT == MVT::i64)
3848     UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
3849   return UaddLV;
3850 }
3851 
LowerSETCC(SDValue Op,SelectionDAG & DAG) const3852 SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3853 
3854   if (Op.getValueType().isVector())
3855     return LowerVSETCC(Op, DAG);
3856 
3857   SDValue LHS = Op.getOperand(0);
3858   SDValue RHS = Op.getOperand(1);
3859   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3860   SDLoc dl(Op);
3861 
3862   // We chose ZeroOrOneBooleanContents, so use zero and one.
3863   EVT VT = Op.getValueType();
3864   SDValue TVal = DAG.getConstant(1, dl, VT);
3865   SDValue FVal = DAG.getConstant(0, dl, VT);
3866 
3867   // Handle f128 first, since one possible outcome is a normal integer
3868   // comparison which gets picked up by the next if statement.
3869   if (LHS.getValueType() == MVT::f128) {
3870     softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3871 
3872     // If softenSetCCOperands returned a scalar, use it.
3873     if (!RHS.getNode()) {
3874       assert(LHS.getValueType() == Op.getValueType() &&
3875              "Unexpected setcc expansion!");
3876       return LHS;
3877     }
3878   }
3879 
3880   if (LHS.getValueType().isInteger()) {
3881     SDValue CCVal;
3882     SDValue Cmp =
3883         getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl);
3884 
3885     // Note that we inverted the condition above, so we reverse the order of
3886     // the true and false operands here.  This will allow the setcc to be
3887     // matched to a single CSINC instruction.
3888     return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
3889   }
3890 
3891   // Now we know we're dealing with FP values.
3892   assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3893 
3894   // If that fails, we'll need to perform an FCMP + CSEL sequence.  Go ahead
3895   // and do the comparison.
3896   SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3897 
3898   AArch64CC::CondCode CC1, CC2;
3899   changeFPCCToAArch64CC(CC, CC1, CC2);
3900   if (CC2 == AArch64CC::AL) {
3901     changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2);
3902     SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
3903 
3904     // Note that we inverted the condition above, so we reverse the order of
3905     // the true and false operands here.  This will allow the setcc to be
3906     // matched to a single CSINC instruction.
3907     return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
3908   } else {
3909     // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
3910     // totally clean.  Some of them require two CSELs to implement.  As is in
3911     // this case, we emit the first CSEL and then emit a second using the output
3912     // of the first as the RHS.  We're effectively OR'ing the two CC's together.
3913 
3914     // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
3915     SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
3916     SDValue CS1 =
3917         DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
3918 
3919     SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
3920     return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
3921   }
3922 }
3923 
LowerSELECT_CC(ISD::CondCode CC,SDValue LHS,SDValue RHS,SDValue TVal,SDValue FVal,const SDLoc & dl,SelectionDAG & DAG) const3924 SDValue AArch64TargetLowering::LowerSELECT_CC(ISD::CondCode CC, SDValue LHS,
3925                                               SDValue RHS, SDValue TVal,
3926                                               SDValue FVal, const SDLoc &dl,
3927                                               SelectionDAG &DAG) const {
3928   // Handle f128 first, because it will result in a comparison of some RTLIB
3929   // call result against zero.
3930   if (LHS.getValueType() == MVT::f128) {
3931     softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3932 
3933     // If softenSetCCOperands returned a scalar, we need to compare the result
3934     // against zero to select between true and false values.
3935     if (!RHS.getNode()) {
3936       RHS = DAG.getConstant(0, dl, LHS.getValueType());
3937       CC = ISD::SETNE;
3938     }
3939   }
3940 
3941   // Also handle f16, for which we need to do a f32 comparison.
3942   if (LHS.getValueType() == MVT::f16) {
3943     LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
3944     RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
3945   }
3946 
3947   // Next, handle integers.
3948   if (LHS.getValueType().isInteger()) {
3949     assert((LHS.getValueType() == RHS.getValueType()) &&
3950            (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3951 
3952     unsigned Opcode = AArch64ISD::CSEL;
3953 
3954     // If both the TVal and the FVal are constants, see if we can swap them in
3955     // order to for a CSINV or CSINC out of them.
3956     ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
3957     ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
3958 
3959     if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) {
3960       std::swap(TVal, FVal);
3961       std::swap(CTVal, CFVal);
3962       CC = ISD::getSetCCInverse(CC, true);
3963     } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) {
3964       std::swap(TVal, FVal);
3965       std::swap(CTVal, CFVal);
3966       CC = ISD::getSetCCInverse(CC, true);
3967     } else if (TVal.getOpcode() == ISD::XOR) {
3968       // If TVal is a NOT we want to swap TVal and FVal so that we can match
3969       // with a CSINV rather than a CSEL.
3970       if (isAllOnesConstant(TVal.getOperand(1))) {
3971         std::swap(TVal, FVal);
3972         std::swap(CTVal, CFVal);
3973         CC = ISD::getSetCCInverse(CC, true);
3974       }
3975     } else if (TVal.getOpcode() == ISD::SUB) {
3976       // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
3977       // that we can match with a CSNEG rather than a CSEL.
3978       if (isNullConstant(TVal.getOperand(0))) {
3979         std::swap(TVal, FVal);
3980         std::swap(CTVal, CFVal);
3981         CC = ISD::getSetCCInverse(CC, true);
3982       }
3983     } else if (CTVal && CFVal) {
3984       const int64_t TrueVal = CTVal->getSExtValue();
3985       const int64_t FalseVal = CFVal->getSExtValue();
3986       bool Swap = false;
3987 
3988       // If both TVal and FVal are constants, see if FVal is the
3989       // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
3990       // instead of a CSEL in that case.
3991       if (TrueVal == ~FalseVal) {
3992         Opcode = AArch64ISD::CSINV;
3993       } else if (TrueVal == -FalseVal) {
3994         Opcode = AArch64ISD::CSNEG;
3995       } else if (TVal.getValueType() == MVT::i32) {
3996         // If our operands are only 32-bit wide, make sure we use 32-bit
3997         // arithmetic for the check whether we can use CSINC. This ensures that
3998         // the addition in the check will wrap around properly in case there is
3999         // an overflow (which would not be the case if we do the check with
4000         // 64-bit arithmetic).
4001         const uint32_t TrueVal32 = CTVal->getZExtValue();
4002         const uint32_t FalseVal32 = CFVal->getZExtValue();
4003 
4004         if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
4005           Opcode = AArch64ISD::CSINC;
4006 
4007           if (TrueVal32 > FalseVal32) {
4008             Swap = true;
4009           }
4010         }
4011         // 64-bit check whether we can use CSINC.
4012       } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
4013         Opcode = AArch64ISD::CSINC;
4014 
4015         if (TrueVal > FalseVal) {
4016           Swap = true;
4017         }
4018       }
4019 
4020       // Swap TVal and FVal if necessary.
4021       if (Swap) {
4022         std::swap(TVal, FVal);
4023         std::swap(CTVal, CFVal);
4024         CC = ISD::getSetCCInverse(CC, true);
4025       }
4026 
4027       if (Opcode != AArch64ISD::CSEL) {
4028         // Drop FVal since we can get its value by simply inverting/negating
4029         // TVal.
4030         FVal = TVal;
4031       }
4032     }
4033 
4034     SDValue CCVal;
4035     SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
4036 
4037     EVT VT = TVal.getValueType();
4038     return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
4039   }
4040 
4041   // Now we know we're dealing with FP values.
4042   assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
4043   assert(LHS.getValueType() == RHS.getValueType());
4044   EVT VT = TVal.getValueType();
4045   SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
4046 
4047   // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
4048   // clean.  Some of them require two CSELs to implement.
4049   AArch64CC::CondCode CC1, CC2;
4050   changeFPCCToAArch64CC(CC, CC1, CC2);
4051   SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
4052   SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
4053 
4054   // If we need a second CSEL, emit it, using the output of the first as the
4055   // RHS.  We're effectively OR'ing the two CC's together.
4056   if (CC2 != AArch64CC::AL) {
4057     SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
4058     return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
4059   }
4060 
4061   // Otherwise, return the output of the first CSEL.
4062   return CS1;
4063 }
4064 
LowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const4065 SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
4066                                               SelectionDAG &DAG) const {
4067   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4068   SDValue LHS = Op.getOperand(0);
4069   SDValue RHS = Op.getOperand(1);
4070   SDValue TVal = Op.getOperand(2);
4071   SDValue FVal = Op.getOperand(3);
4072   SDLoc DL(Op);
4073   return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
4074 }
4075 
LowerSELECT(SDValue Op,SelectionDAG & DAG) const4076 SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
4077                                            SelectionDAG &DAG) const {
4078   SDValue CCVal = Op->getOperand(0);
4079   SDValue TVal = Op->getOperand(1);
4080   SDValue FVal = Op->getOperand(2);
4081   SDLoc DL(Op);
4082 
4083   unsigned Opc = CCVal.getOpcode();
4084   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
4085   // instruction.
4086   if (CCVal.getResNo() == 1 &&
4087       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
4088        Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
4089     // Only lower legal XALUO ops.
4090     if (!DAG.getTargetLoweringInfo().isTypeLegal(CCVal->getValueType(0)))
4091       return SDValue();
4092 
4093     AArch64CC::CondCode OFCC;
4094     SDValue Value, Overflow;
4095     std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CCVal.getValue(0), DAG);
4096     SDValue CCVal = DAG.getConstant(OFCC, DL, MVT::i32);
4097 
4098     return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
4099                        CCVal, Overflow);
4100   }
4101 
4102   // Lower it the same way as we would lower a SELECT_CC node.
4103   ISD::CondCode CC;
4104   SDValue LHS, RHS;
4105   if (CCVal.getOpcode() == ISD::SETCC) {
4106     LHS = CCVal.getOperand(0);
4107     RHS = CCVal.getOperand(1);
4108     CC = cast<CondCodeSDNode>(CCVal->getOperand(2))->get();
4109   } else {
4110     LHS = CCVal;
4111     RHS = DAG.getConstant(0, DL, CCVal.getValueType());
4112     CC = ISD::SETNE;
4113   }
4114   return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
4115 }
4116 
LowerJumpTable(SDValue Op,SelectionDAG & DAG) const4117 SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
4118                                               SelectionDAG &DAG) const {
4119   // Jump table entries as PC relative offsets. No additional tweaking
4120   // is necessary here. Just get the address of the jump table.
4121   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4122   EVT PtrVT = getPointerTy(DAG.getDataLayout());
4123   SDLoc DL(Op);
4124 
4125   if (getTargetMachine().getCodeModel() == CodeModel::Large &&
4126       !Subtarget->isTargetMachO()) {
4127     const unsigned char MO_NC = AArch64II::MO_NC;
4128     return DAG.getNode(
4129         AArch64ISD::WrapperLarge, DL, PtrVT,
4130         DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G3),
4131         DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G2 | MO_NC),
4132         DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G1 | MO_NC),
4133         DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
4134                                AArch64II::MO_G0 | MO_NC));
4135   }
4136 
4137   SDValue Hi =
4138       DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_PAGE);
4139   SDValue Lo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
4140                                       AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4141   SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
4142   return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
4143 }
4144 
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const4145 SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
4146                                                  SelectionDAG &DAG) const {
4147   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4148   EVT PtrVT = getPointerTy(DAG.getDataLayout());
4149   SDLoc DL(Op);
4150 
4151   if (getTargetMachine().getCodeModel() == CodeModel::Large) {
4152     // Use the GOT for the large code model on iOS.
4153     if (Subtarget->isTargetMachO()) {
4154       SDValue GotAddr = DAG.getTargetConstantPool(
4155           CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
4156           AArch64II::MO_GOT);
4157       return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
4158     }
4159 
4160     const unsigned char MO_NC = AArch64II::MO_NC;
4161     return DAG.getNode(
4162         AArch64ISD::WrapperLarge, DL, PtrVT,
4163         DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4164                                   CP->getOffset(), AArch64II::MO_G3),
4165         DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4166                                   CP->getOffset(), AArch64II::MO_G2 | MO_NC),
4167         DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4168                                   CP->getOffset(), AArch64II::MO_G1 | MO_NC),
4169         DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4170                                   CP->getOffset(), AArch64II::MO_G0 | MO_NC));
4171   } else {
4172     // Use ADRP/ADD or ADRP/LDR for everything else: the small memory model on
4173     // ELF, the only valid one on Darwin.
4174     SDValue Hi =
4175         DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4176                                   CP->getOffset(), AArch64II::MO_PAGE);
4177     SDValue Lo = DAG.getTargetConstantPool(
4178         CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
4179         AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4180 
4181     SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
4182     return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
4183   }
4184 }
4185 
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const4186 SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
4187                                                SelectionDAG &DAG) const {
4188   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
4189   EVT PtrVT = getPointerTy(DAG.getDataLayout());
4190   SDLoc DL(Op);
4191   if (getTargetMachine().getCodeModel() == CodeModel::Large &&
4192       !Subtarget->isTargetMachO()) {
4193     const unsigned char MO_NC = AArch64II::MO_NC;
4194     return DAG.getNode(
4195         AArch64ISD::WrapperLarge, DL, PtrVT,
4196         DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G3),
4197         DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
4198         DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
4199         DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
4200   } else {
4201     SDValue Hi = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGE);
4202     SDValue Lo = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGEOFF |
4203                                                              AArch64II::MO_NC);
4204     SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
4205     return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
4206   }
4207 }
4208 
LowerDarwin_VASTART(SDValue Op,SelectionDAG & DAG) const4209 SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
4210                                                  SelectionDAG &DAG) const {
4211   AArch64FunctionInfo *FuncInfo =
4212       DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
4213 
4214   SDLoc DL(Op);
4215   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(),
4216                                  getPointerTy(DAG.getDataLayout()));
4217   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4218   return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
4219                       MachinePointerInfo(SV), false, false, 0);
4220 }
4221 
LowerAAPCS_VASTART(SDValue Op,SelectionDAG & DAG) const4222 SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
4223                                                 SelectionDAG &DAG) const {
4224   // The layout of the va_list struct is specified in the AArch64 Procedure Call
4225   // Standard, section B.3.
4226   MachineFunction &MF = DAG.getMachineFunction();
4227   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
4228   auto PtrVT = getPointerTy(DAG.getDataLayout());
4229   SDLoc DL(Op);
4230 
4231   SDValue Chain = Op.getOperand(0);
4232   SDValue VAList = Op.getOperand(1);
4233   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4234   SmallVector<SDValue, 4> MemOps;
4235 
4236   // void *__stack at offset 0
4237   SDValue Stack = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), PtrVT);
4238   MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
4239                                 MachinePointerInfo(SV), false, false, 8));
4240 
4241   // void *__gr_top at offset 8
4242   int GPRSize = FuncInfo->getVarArgsGPRSize();
4243   if (GPRSize > 0) {
4244     SDValue GRTop, GRTopAddr;
4245 
4246     GRTopAddr =
4247         DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(8, DL, PtrVT));
4248 
4249     GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), PtrVT);
4250     GRTop = DAG.getNode(ISD::ADD, DL, PtrVT, GRTop,
4251                         DAG.getConstant(GPRSize, DL, PtrVT));
4252 
4253     MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
4254                                   MachinePointerInfo(SV, 8), false, false, 8));
4255   }
4256 
4257   // void *__vr_top at offset 16
4258   int FPRSize = FuncInfo->getVarArgsFPRSize();
4259   if (FPRSize > 0) {
4260     SDValue VRTop, VRTopAddr;
4261     VRTopAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
4262                             DAG.getConstant(16, DL, PtrVT));
4263 
4264     VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), PtrVT);
4265     VRTop = DAG.getNode(ISD::ADD, DL, PtrVT, VRTop,
4266                         DAG.getConstant(FPRSize, DL, PtrVT));
4267 
4268     MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
4269                                   MachinePointerInfo(SV, 16), false, false, 8));
4270   }
4271 
4272   // int __gr_offs at offset 24
4273   SDValue GROffsAddr =
4274       DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(24, DL, PtrVT));
4275   MemOps.push_back(DAG.getStore(Chain, DL,
4276                                 DAG.getConstant(-GPRSize, DL, MVT::i32),
4277                                 GROffsAddr, MachinePointerInfo(SV, 24), false,
4278                                 false, 4));
4279 
4280   // int __vr_offs at offset 28
4281   SDValue VROffsAddr =
4282       DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(28, DL, PtrVT));
4283   MemOps.push_back(DAG.getStore(Chain, DL,
4284                                 DAG.getConstant(-FPRSize, DL, MVT::i32),
4285                                 VROffsAddr, MachinePointerInfo(SV, 28), false,
4286                                 false, 4));
4287 
4288   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
4289 }
4290 
LowerVASTART(SDValue Op,SelectionDAG & DAG) const4291 SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
4292                                             SelectionDAG &DAG) const {
4293   return Subtarget->isTargetDarwin() ? LowerDarwin_VASTART(Op, DAG)
4294                                      : LowerAAPCS_VASTART(Op, DAG);
4295 }
4296 
LowerVACOPY(SDValue Op,SelectionDAG & DAG) const4297 SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
4298                                            SelectionDAG &DAG) const {
4299   // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
4300   // pointer.
4301   SDLoc DL(Op);
4302   unsigned VaListSize = Subtarget->isTargetDarwin() ? 8 : 32;
4303   const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
4304   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
4305 
4306   return DAG.getMemcpy(Op.getOperand(0), DL, Op.getOperand(1),
4307                        Op.getOperand(2),
4308                        DAG.getConstant(VaListSize, DL, MVT::i32),
4309                        8, false, false, false, MachinePointerInfo(DestSV),
4310                        MachinePointerInfo(SrcSV));
4311 }
4312 
LowerVAARG(SDValue Op,SelectionDAG & DAG) const4313 SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
4314   assert(Subtarget->isTargetDarwin() &&
4315          "automatic va_arg instruction only works on Darwin");
4316 
4317   const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4318   EVT VT = Op.getValueType();
4319   SDLoc DL(Op);
4320   SDValue Chain = Op.getOperand(0);
4321   SDValue Addr = Op.getOperand(1);
4322   unsigned Align = Op.getConstantOperandVal(3);
4323   auto PtrVT = getPointerTy(DAG.getDataLayout());
4324 
4325   SDValue VAList = DAG.getLoad(PtrVT, DL, Chain, Addr, MachinePointerInfo(V),
4326                                false, false, false, 0);
4327   Chain = VAList.getValue(1);
4328 
4329   if (Align > 8) {
4330     assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2");
4331     VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
4332                          DAG.getConstant(Align - 1, DL, PtrVT));
4333     VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList,
4334                          DAG.getConstant(-(int64_t)Align, DL, PtrVT));
4335   }
4336 
4337   Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
4338   uint64_t ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy);
4339 
4340   // Scalar integer and FP values smaller than 64 bits are implicitly extended
4341   // up to 64 bits.  At the very least, we have to increase the striding of the
4342   // vaargs list to match this, and for FP values we need to introduce
4343   // FP_ROUND nodes as well.
4344   if (VT.isInteger() && !VT.isVector())
4345     ArgSize = 8;
4346   bool NeedFPTrunc = false;
4347   if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
4348     ArgSize = 8;
4349     NeedFPTrunc = true;
4350   }
4351 
4352   // Increment the pointer, VAList, to the next vaarg
4353   SDValue VANext = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
4354                                DAG.getConstant(ArgSize, DL, PtrVT));
4355   // Store the incremented VAList to the legalized pointer
4356   SDValue APStore = DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V),
4357                                  false, false, 0);
4358 
4359   // Load the actual argument out of the pointer VAList
4360   if (NeedFPTrunc) {
4361     // Load the value as an f64.
4362     SDValue WideFP = DAG.getLoad(MVT::f64, DL, APStore, VAList,
4363                                  MachinePointerInfo(), false, false, false, 0);
4364     // Round the value down to an f32.
4365     SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
4366                                    DAG.getIntPtrConstant(1, DL));
4367     SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
4368     // Merge the rounded value with the chain output of the load.
4369     return DAG.getMergeValues(Ops, DL);
4370   }
4371 
4372   return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo(), false,
4373                      false, false, 0);
4374 }
4375 
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const4376 SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
4377                                               SelectionDAG &DAG) const {
4378   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4379   MFI->setFrameAddressIsTaken(true);
4380 
4381   EVT VT = Op.getValueType();
4382   SDLoc DL(Op);
4383   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4384   SDValue FrameAddr =
4385       DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
4386   while (Depth--)
4387     FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
4388                             MachinePointerInfo(), false, false, false, 0);
4389   return FrameAddr;
4390 }
4391 
4392 // FIXME? Maybe this could be a TableGen attribute on some registers and
4393 // this table could be generated automatically from RegInfo.
getRegisterByName(const char * RegName,EVT VT,SelectionDAG & DAG) const4394 unsigned AArch64TargetLowering::getRegisterByName(const char* RegName, EVT VT,
4395                                                   SelectionDAG &DAG) const {
4396   unsigned Reg = StringSwitch<unsigned>(RegName)
4397                        .Case("sp", AArch64::SP)
4398                        .Default(0);
4399   if (Reg)
4400     return Reg;
4401   report_fatal_error(Twine("Invalid register name \""
4402                               + StringRef(RegName)  + "\"."));
4403 }
4404 
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const4405 SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
4406                                                SelectionDAG &DAG) const {
4407   MachineFunction &MF = DAG.getMachineFunction();
4408   MachineFrameInfo *MFI = MF.getFrameInfo();
4409   MFI->setReturnAddressIsTaken(true);
4410 
4411   EVT VT = Op.getValueType();
4412   SDLoc DL(Op);
4413   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4414   if (Depth) {
4415     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
4416     SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout()));
4417     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
4418                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
4419                        MachinePointerInfo(), false, false, false, 0);
4420   }
4421 
4422   // Return LR, which contains the return address. Mark it an implicit live-in.
4423   unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
4424   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
4425 }
4426 
4427 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
4428 /// i64 values and take a 2 x i64 value to shift plus a shift amount.
LowerShiftRightParts(SDValue Op,SelectionDAG & DAG) const4429 SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
4430                                                     SelectionDAG &DAG) const {
4431   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4432   EVT VT = Op.getValueType();
4433   unsigned VTBits = VT.getSizeInBits();
4434   SDLoc dl(Op);
4435   SDValue ShOpLo = Op.getOperand(0);
4436   SDValue ShOpHi = Op.getOperand(1);
4437   SDValue ShAmt = Op.getOperand(2);
4438   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
4439 
4440   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
4441 
4442   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
4443                                  DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
4444   SDValue HiBitsForLo = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
4445 
4446   // Unfortunately, if ShAmt == 0, we just calculated "(SHL ShOpHi, 64)" which
4447   // is "undef". We wanted 0, so CSEL it directly.
4448   SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64),
4449                                ISD::SETEQ, dl, DAG);
4450   SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32);
4451   HiBitsForLo =
4452       DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64),
4453                   HiBitsForLo, CCVal, Cmp);
4454 
4455   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
4456                                    DAG.getConstant(VTBits, dl, MVT::i64));
4457 
4458   SDValue LoBitsForLo = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
4459   SDValue LoForNormalShift =
4460       DAG.getNode(ISD::OR, dl, VT, LoBitsForLo, HiBitsForLo);
4461 
4462   Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE,
4463                        dl, DAG);
4464   CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
4465   SDValue LoForBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
4466   SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift,
4467                            LoForNormalShift, CCVal, Cmp);
4468 
4469   // AArch64 shifts larger than the register width are wrapped rather than
4470   // clamped, so we can't just emit "hi >> x".
4471   SDValue HiForNormalShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
4472   SDValue HiForBigShift =
4473       Opc == ISD::SRA
4474           ? DAG.getNode(Opc, dl, VT, ShOpHi,
4475                         DAG.getConstant(VTBits - 1, dl, MVT::i64))
4476           : DAG.getConstant(0, dl, VT);
4477   SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift,
4478                            HiForNormalShift, CCVal, Cmp);
4479 
4480   SDValue Ops[2] = { Lo, Hi };
4481   return DAG.getMergeValues(Ops, dl);
4482 }
4483 
4484 
4485 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
4486 /// i64 values and take a 2 x i64 value to shift plus a shift amount.
LowerShiftLeftParts(SDValue Op,SelectionDAG & DAG) const4487 SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
4488                                                    SelectionDAG &DAG) const {
4489   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4490   EVT VT = Op.getValueType();
4491   unsigned VTBits = VT.getSizeInBits();
4492   SDLoc dl(Op);
4493   SDValue ShOpLo = Op.getOperand(0);
4494   SDValue ShOpHi = Op.getOperand(1);
4495   SDValue ShAmt = Op.getOperand(2);
4496 
4497   assert(Op.getOpcode() == ISD::SHL_PARTS);
4498   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
4499                                  DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
4500   SDValue LoBitsForHi = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
4501 
4502   // Unfortunately, if ShAmt == 0, we just calculated "(SRL ShOpLo, 64)" which
4503   // is "undef". We wanted 0, so CSEL it directly.
4504   SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64),
4505                                ISD::SETEQ, dl, DAG);
4506   SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32);
4507   LoBitsForHi =
4508       DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64),
4509                   LoBitsForHi, CCVal, Cmp);
4510 
4511   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
4512                                    DAG.getConstant(VTBits, dl, MVT::i64));
4513   SDValue HiBitsForHi = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
4514   SDValue HiForNormalShift =
4515       DAG.getNode(ISD::OR, dl, VT, LoBitsForHi, HiBitsForHi);
4516 
4517   SDValue HiForBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
4518 
4519   Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE,
4520                        dl, DAG);
4521   CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
4522   SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift,
4523                            HiForNormalShift, CCVal, Cmp);
4524 
4525   // AArch64 shifts of larger than register sizes are wrapped rather than
4526   // clamped, so we can't just emit "lo << a" if a is too big.
4527   SDValue LoForBigShift = DAG.getConstant(0, dl, VT);
4528   SDValue LoForNormalShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4529   SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift,
4530                            LoForNormalShift, CCVal, Cmp);
4531 
4532   SDValue Ops[2] = { Lo, Hi };
4533   return DAG.getMergeValues(Ops, dl);
4534 }
4535 
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const4536 bool AArch64TargetLowering::isOffsetFoldingLegal(
4537     const GlobalAddressSDNode *GA) const {
4538   // The AArch64 target doesn't support folding offsets into global addresses.
4539   return false;
4540 }
4541 
isFPImmLegal(const APFloat & Imm,EVT VT) const4542 bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
4543   // We can materialize #0.0 as fmov $Rd, XZR for 64-bit and 32-bit cases.
4544   // FIXME: We should be able to handle f128 as well with a clever lowering.
4545   if (Imm.isPosZero() && (VT == MVT::f64 || VT == MVT::f32))
4546     return true;
4547 
4548   if (VT == MVT::f64)
4549     return AArch64_AM::getFP64Imm(Imm) != -1;
4550   else if (VT == MVT::f32)
4551     return AArch64_AM::getFP32Imm(Imm) != -1;
4552   return false;
4553 }
4554 
4555 //===----------------------------------------------------------------------===//
4556 //                          AArch64 Optimization Hooks
4557 //===----------------------------------------------------------------------===//
4558 
4559 /// getEstimate - Return the appropriate estimate DAG for either the reciprocal
4560 /// or the reciprocal square root.
getEstimate(const AArch64Subtarget & ST,const AArch64TargetLowering::DAGCombinerInfo & DCI,unsigned Opcode,const SDValue & Operand,unsigned & ExtraSteps)4561 static SDValue getEstimate(const AArch64Subtarget &ST,
4562   const AArch64TargetLowering::DAGCombinerInfo &DCI, unsigned Opcode,
4563   const SDValue &Operand, unsigned &ExtraSteps) {
4564   if (!ST.hasNEON())
4565     return SDValue();
4566 
4567   EVT VT = Operand.getValueType();
4568 
4569   std::string RecipOp;
4570   RecipOp = Opcode == (AArch64ISD::FRECPE) ? "div": "sqrt";
4571   RecipOp = ((VT.isVector()) ? "vec-": "") + RecipOp;
4572   RecipOp += (VT.getScalarType() == MVT::f64) ? "d": "f";
4573 
4574   TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals;
4575   if (!Recips.isEnabled(RecipOp))
4576     return SDValue();
4577 
4578   ExtraSteps = Recips.getRefinementSteps(RecipOp);
4579   return DCI.DAG.getNode(Opcode, SDLoc(Operand), VT, Operand);
4580 }
4581 
getRecipEstimate(SDValue Operand,DAGCombinerInfo & DCI,unsigned & ExtraSteps) const4582 SDValue AArch64TargetLowering::getRecipEstimate(SDValue Operand,
4583   DAGCombinerInfo &DCI, unsigned &ExtraSteps) const {
4584   return getEstimate(*Subtarget, DCI, AArch64ISD::FRECPE, Operand, ExtraSteps);
4585 }
4586 
getRsqrtEstimate(SDValue Operand,DAGCombinerInfo & DCI,unsigned & ExtraSteps,bool & UseOneConst) const4587 SDValue AArch64TargetLowering::getRsqrtEstimate(SDValue Operand,
4588   DAGCombinerInfo &DCI, unsigned &ExtraSteps, bool &UseOneConst) const {
4589   UseOneConst = true;
4590   return getEstimate(*Subtarget, DCI, AArch64ISD::FRSQRTE, Operand, ExtraSteps);
4591 }
4592 
4593 //===----------------------------------------------------------------------===//
4594 //                          AArch64 Inline Assembly Support
4595 //===----------------------------------------------------------------------===//
4596 
4597 // Table of Constraints
4598 // TODO: This is the current set of constraints supported by ARM for the
4599 // compiler, not all of them may make sense, e.g. S may be difficult to support.
4600 //
4601 // r - A general register
4602 // w - An FP/SIMD register of some size in the range v0-v31
4603 // x - An FP/SIMD register of some size in the range v0-v15
4604 // I - Constant that can be used with an ADD instruction
4605 // J - Constant that can be used with a SUB instruction
4606 // K - Constant that can be used with a 32-bit logical instruction
4607 // L - Constant that can be used with a 64-bit logical instruction
4608 // M - Constant that can be used as a 32-bit MOV immediate
4609 // N - Constant that can be used as a 64-bit MOV immediate
4610 // Q - A memory reference with base register and no offset
4611 // S - A symbolic address
4612 // Y - Floating point constant zero
4613 // Z - Integer constant zero
4614 //
4615 //   Note that general register operands will be output using their 64-bit x
4616 // register name, whatever the size of the variable, unless the asm operand
4617 // is prefixed by the %w modifier. Floating-point and SIMD register operands
4618 // will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
4619 // %q modifier.
LowerXConstraint(EVT ConstraintVT) const4620 const char *AArch64TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4621   // At this point, we have to lower this constraint to something else, so we
4622   // lower it to an "r" or "w". However, by doing this we will force the result
4623   // to be in register, while the X constraint is much more permissive.
4624   //
4625   // Although we are correct (we are free to emit anything, without
4626   // constraints), we might break use cases that would expect us to be more
4627   // efficient and emit something else.
4628   if (!Subtarget->hasFPARMv8())
4629     return "r";
4630 
4631   if (ConstraintVT.isFloatingPoint())
4632     return "w";
4633 
4634   if (ConstraintVT.isVector() &&
4635      (ConstraintVT.getSizeInBits() == 64 ||
4636       ConstraintVT.getSizeInBits() == 128))
4637     return "w";
4638 
4639   return "r";
4640 }
4641 
4642 /// getConstraintType - Given a constraint letter, return the type of
4643 /// constraint it is for this target.
4644 AArch64TargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const4645 AArch64TargetLowering::getConstraintType(StringRef Constraint) const {
4646   if (Constraint.size() == 1) {
4647     switch (Constraint[0]) {
4648     default:
4649       break;
4650     case 'z':
4651       return C_Other;
4652     case 'x':
4653     case 'w':
4654       return C_RegisterClass;
4655     // An address with a single base register. Due to the way we
4656     // currently handle addresses it is the same as 'r'.
4657     case 'Q':
4658       return C_Memory;
4659     }
4660   }
4661   return TargetLowering::getConstraintType(Constraint);
4662 }
4663 
4664 /// Examine constraint type and operand type and determine a weight value.
4665 /// This object must already have been set up with the operand type
4666 /// and the current alternative constraint selected.
4667 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const4668 AArch64TargetLowering::getSingleConstraintMatchWeight(
4669     AsmOperandInfo &info, const char *constraint) const {
4670   ConstraintWeight weight = CW_Invalid;
4671   Value *CallOperandVal = info.CallOperandVal;
4672   // If we don't have a value, we can't do a match,
4673   // but allow it at the lowest weight.
4674   if (!CallOperandVal)
4675     return CW_Default;
4676   Type *type = CallOperandVal->getType();
4677   // Look at the constraint type.
4678   switch (*constraint) {
4679   default:
4680     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
4681     break;
4682   case 'x':
4683   case 'w':
4684     if (type->isFloatingPointTy() || type->isVectorTy())
4685       weight = CW_Register;
4686     break;
4687   case 'z':
4688     weight = CW_Constant;
4689     break;
4690   }
4691   return weight;
4692 }
4693 
4694 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const4695 AArch64TargetLowering::getRegForInlineAsmConstraint(
4696     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
4697   if (Constraint.size() == 1) {
4698     switch (Constraint[0]) {
4699     case 'r':
4700       if (VT.getSizeInBits() == 64)
4701         return std::make_pair(0U, &AArch64::GPR64commonRegClass);
4702       return std::make_pair(0U, &AArch64::GPR32commonRegClass);
4703     case 'w':
4704       if (VT.getSizeInBits() == 32)
4705         return std::make_pair(0U, &AArch64::FPR32RegClass);
4706       if (VT.getSizeInBits() == 64)
4707         return std::make_pair(0U, &AArch64::FPR64RegClass);
4708       if (VT.getSizeInBits() == 128)
4709         return std::make_pair(0U, &AArch64::FPR128RegClass);
4710       break;
4711     // The instructions that this constraint is designed for can
4712     // only take 128-bit registers so just use that regclass.
4713     case 'x':
4714       if (VT.getSizeInBits() == 128)
4715         return std::make_pair(0U, &AArch64::FPR128_loRegClass);
4716       break;
4717     }
4718   }
4719   if (StringRef("{cc}").equals_lower(Constraint))
4720     return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);
4721 
4722   // Use the default implementation in TargetLowering to convert the register
4723   // constraint into a member of a register class.
4724   std::pair<unsigned, const TargetRegisterClass *> Res;
4725   Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
4726 
4727   // Not found as a standard register?
4728   if (!Res.second) {
4729     unsigned Size = Constraint.size();
4730     if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
4731         tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
4732       int RegNo;
4733       bool Failed = Constraint.slice(2, Size - 1).getAsInteger(10, RegNo);
4734       if (!Failed && RegNo >= 0 && RegNo <= 31) {
4735         // v0 - v31 are aliases of q0 - q31 or d0 - d31 depending on size.
4736         // By default we'll emit v0-v31 for this unless there's a modifier where
4737         // we'll emit the correct register as well.
4738         if (VT != MVT::Other && VT.getSizeInBits() == 64) {
4739           Res.first = AArch64::FPR64RegClass.getRegister(RegNo);
4740           Res.second = &AArch64::FPR64RegClass;
4741         } else {
4742           Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
4743           Res.second = &AArch64::FPR128RegClass;
4744         }
4745       }
4746     }
4747   }
4748 
4749   return Res;
4750 }
4751 
4752 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4753 /// vector.  If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const4754 void AArch64TargetLowering::LowerAsmOperandForConstraint(
4755     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
4756     SelectionDAG &DAG) const {
4757   SDValue Result;
4758 
4759   // Currently only support length 1 constraints.
4760   if (Constraint.length() != 1)
4761     return;
4762 
4763   char ConstraintLetter = Constraint[0];
4764   switch (ConstraintLetter) {
4765   default:
4766     break;
4767 
4768   // This set of constraints deal with valid constants for various instructions.
4769   // Validate and return a target constant for them if we can.
4770   case 'z': {
4771     // 'z' maps to xzr or wzr so it needs an input of 0.
4772     if (!isNullConstant(Op))
4773       return;
4774 
4775     if (Op.getValueType() == MVT::i64)
4776       Result = DAG.getRegister(AArch64::XZR, MVT::i64);
4777     else
4778       Result = DAG.getRegister(AArch64::WZR, MVT::i32);
4779     break;
4780   }
4781 
4782   case 'I':
4783   case 'J':
4784   case 'K':
4785   case 'L':
4786   case 'M':
4787   case 'N':
4788     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4789     if (!C)
4790       return;
4791 
4792     // Grab the value and do some validation.
4793     uint64_t CVal = C->getZExtValue();
4794     switch (ConstraintLetter) {
4795     // The I constraint applies only to simple ADD or SUB immediate operands:
4796     // i.e. 0 to 4095 with optional shift by 12
4797     // The J constraint applies only to ADD or SUB immediates that would be
4798     // valid when negated, i.e. if [an add pattern] were to be output as a SUB
4799     // instruction [or vice versa], in other words -1 to -4095 with optional
4800     // left shift by 12.
4801     case 'I':
4802       if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
4803         break;
4804       return;
4805     case 'J': {
4806       uint64_t NVal = -C->getSExtValue();
4807       if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) {
4808         CVal = C->getSExtValue();
4809         break;
4810       }
4811       return;
4812     }
4813     // The K and L constraints apply *only* to logical immediates, including
4814     // what used to be the MOVI alias for ORR (though the MOVI alias has now
4815     // been removed and MOV should be used). So these constraints have to
4816     // distinguish between bit patterns that are valid 32-bit or 64-bit
4817     // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
4818     // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
4819     // versa.
4820     case 'K':
4821       if (AArch64_AM::isLogicalImmediate(CVal, 32))
4822         break;
4823       return;
4824     case 'L':
4825       if (AArch64_AM::isLogicalImmediate(CVal, 64))
4826         break;
4827       return;
4828     // The M and N constraints are a superset of K and L respectively, for use
4829     // with the MOV (immediate) alias. As well as the logical immediates they
4830     // also match 32 or 64-bit immediates that can be loaded either using a
4831     // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
4832     // (M) or 64-bit 0x1234000000000000 (N) etc.
4833     // As a note some of this code is liberally stolen from the asm parser.
4834     case 'M': {
4835       if (!isUInt<32>(CVal))
4836         return;
4837       if (AArch64_AM::isLogicalImmediate(CVal, 32))
4838         break;
4839       if ((CVal & 0xFFFF) == CVal)
4840         break;
4841       if ((CVal & 0xFFFF0000ULL) == CVal)
4842         break;
4843       uint64_t NCVal = ~(uint32_t)CVal;
4844       if ((NCVal & 0xFFFFULL) == NCVal)
4845         break;
4846       if ((NCVal & 0xFFFF0000ULL) == NCVal)
4847         break;
4848       return;
4849     }
4850     case 'N': {
4851       if (AArch64_AM::isLogicalImmediate(CVal, 64))
4852         break;
4853       if ((CVal & 0xFFFFULL) == CVal)
4854         break;
4855       if ((CVal & 0xFFFF0000ULL) == CVal)
4856         break;
4857       if ((CVal & 0xFFFF00000000ULL) == CVal)
4858         break;
4859       if ((CVal & 0xFFFF000000000000ULL) == CVal)
4860         break;
4861       uint64_t NCVal = ~CVal;
4862       if ((NCVal & 0xFFFFULL) == NCVal)
4863         break;
4864       if ((NCVal & 0xFFFF0000ULL) == NCVal)
4865         break;
4866       if ((NCVal & 0xFFFF00000000ULL) == NCVal)
4867         break;
4868       if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
4869         break;
4870       return;
4871     }
4872     default:
4873       return;
4874     }
4875 
4876     // All assembler immediates are 64-bit integers.
4877     Result = DAG.getTargetConstant(CVal, SDLoc(Op), MVT::i64);
4878     break;
4879   }
4880 
4881   if (Result.getNode()) {
4882     Ops.push_back(Result);
4883     return;
4884   }
4885 
4886   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
4887 }
4888 
4889 //===----------------------------------------------------------------------===//
4890 //                     AArch64 Advanced SIMD Support
4891 //===----------------------------------------------------------------------===//
4892 
4893 /// WidenVector - Given a value in the V64 register class, produce the
4894 /// equivalent value in the V128 register class.
WidenVector(SDValue V64Reg,SelectionDAG & DAG)4895 static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
4896   EVT VT = V64Reg.getValueType();
4897   unsigned NarrowSize = VT.getVectorNumElements();
4898   MVT EltTy = VT.getVectorElementType().getSimpleVT();
4899   MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
4900   SDLoc DL(V64Reg);
4901 
4902   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
4903                      V64Reg, DAG.getConstant(0, DL, MVT::i32));
4904 }
4905 
4906 /// getExtFactor - Determine the adjustment factor for the position when
4907 /// generating an "extract from vector registers" instruction.
getExtFactor(SDValue & V)4908 static unsigned getExtFactor(SDValue &V) {
4909   EVT EltType = V.getValueType().getVectorElementType();
4910   return EltType.getSizeInBits() / 8;
4911 }
4912 
4913 /// NarrowVector - Given a value in the V128 register class, produce the
4914 /// equivalent value in the V64 register class.
NarrowVector(SDValue V128Reg,SelectionDAG & DAG)4915 static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
4916   EVT VT = V128Reg.getValueType();
4917   unsigned WideSize = VT.getVectorNumElements();
4918   MVT EltTy = VT.getVectorElementType().getSimpleVT();
4919   MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
4920   SDLoc DL(V128Reg);
4921 
4922   return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg);
4923 }
4924 
4925 // Gather data to see if the operation can be modelled as a
4926 // shuffle in combination with VEXTs.
ReconstructShuffle(SDValue Op,SelectionDAG & DAG) const4927 SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
4928                                                   SelectionDAG &DAG) const {
4929   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
4930   SDLoc dl(Op);
4931   EVT VT = Op.getValueType();
4932   unsigned NumElts = VT.getVectorNumElements();
4933 
4934   struct ShuffleSourceInfo {
4935     SDValue Vec;
4936     unsigned MinElt;
4937     unsigned MaxElt;
4938 
4939     // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
4940     // be compatible with the shuffle we intend to construct. As a result
4941     // ShuffleVec will be some sliding window into the original Vec.
4942     SDValue ShuffleVec;
4943 
4944     // Code should guarantee that element i in Vec starts at element "WindowBase
4945     // + i * WindowScale in ShuffleVec".
4946     int WindowBase;
4947     int WindowScale;
4948 
4949     bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
4950     ShuffleSourceInfo(SDValue Vec)
4951         : Vec(Vec), MinElt(UINT_MAX), MaxElt(0), ShuffleVec(Vec), WindowBase(0),
4952           WindowScale(1) {}
4953   };
4954 
4955   // First gather all vectors used as an immediate source for this BUILD_VECTOR
4956   // node.
4957   SmallVector<ShuffleSourceInfo, 2> Sources;
4958   for (unsigned i = 0; i < NumElts; ++i) {
4959     SDValue V = Op.getOperand(i);
4960     if (V.isUndef())
4961       continue;
4962     else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4963              !isa<ConstantSDNode>(V.getOperand(1))) {
4964       // A shuffle can only come from building a vector from various
4965       // elements of other vectors, provided their indices are constant.
4966       return SDValue();
4967     }
4968 
4969     // Add this element source to the list if it's not already there.
4970     SDValue SourceVec = V.getOperand(0);
4971     auto Source = std::find(Sources.begin(), Sources.end(), SourceVec);
4972     if (Source == Sources.end())
4973       Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
4974 
4975     // Update the minimum and maximum lane number seen.
4976     unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4977     Source->MinElt = std::min(Source->MinElt, EltNo);
4978     Source->MaxElt = std::max(Source->MaxElt, EltNo);
4979   }
4980 
4981   // Currently only do something sane when at most two source vectors
4982   // are involved.
4983   if (Sources.size() > 2)
4984     return SDValue();
4985 
4986   // Find out the smallest element size among result and two sources, and use
4987   // it as element size to build the shuffle_vector.
4988   EVT SmallestEltTy = VT.getVectorElementType();
4989   for (auto &Source : Sources) {
4990     EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
4991     if (SrcEltTy.bitsLT(SmallestEltTy)) {
4992       SmallestEltTy = SrcEltTy;
4993     }
4994   }
4995   unsigned ResMultiplier =
4996       VT.getVectorElementType().getSizeInBits() / SmallestEltTy.getSizeInBits();
4997   NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
4998   EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
4999 
5000   // If the source vector is too wide or too narrow, we may nevertheless be able
5001   // to construct a compatible shuffle either by concatenating it with UNDEF or
5002   // extracting a suitable range of elements.
5003   for (auto &Src : Sources) {
5004     EVT SrcVT = Src.ShuffleVec.getValueType();
5005 
5006     if (SrcVT.getSizeInBits() == VT.getSizeInBits())
5007       continue;
5008 
5009     // This stage of the search produces a source with the same element type as
5010     // the original, but with a total width matching the BUILD_VECTOR output.
5011     EVT EltVT = SrcVT.getVectorElementType();
5012     unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
5013     EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
5014 
5015     if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
5016       assert(2 * SrcVT.getSizeInBits() == VT.getSizeInBits());
5017       // We can pad out the smaller vector for free, so if it's part of a
5018       // shuffle...
5019       Src.ShuffleVec =
5020           DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
5021                       DAG.getUNDEF(Src.ShuffleVec.getValueType()));
5022       continue;
5023     }
5024 
5025     assert(SrcVT.getSizeInBits() == 2 * VT.getSizeInBits());
5026 
5027     if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
5028       // Span too large for a VEXT to cope
5029       return SDValue();
5030     }
5031 
5032     if (Src.MinElt >= NumSrcElts) {
5033       // The extraction can just take the second half
5034       Src.ShuffleVec =
5035           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
5036                       DAG.getConstant(NumSrcElts, dl, MVT::i64));
5037       Src.WindowBase = -NumSrcElts;
5038     } else if (Src.MaxElt < NumSrcElts) {
5039       // The extraction can just take the first half
5040       Src.ShuffleVec =
5041           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
5042                       DAG.getConstant(0, dl, MVT::i64));
5043     } else {
5044       // An actual VEXT is needed
5045       SDValue VEXTSrc1 =
5046           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
5047                       DAG.getConstant(0, dl, MVT::i64));
5048       SDValue VEXTSrc2 =
5049           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
5050                       DAG.getConstant(NumSrcElts, dl, MVT::i64));
5051       unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1);
5052 
5053       Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1,
5054                                    VEXTSrc2,
5055                                    DAG.getConstant(Imm, dl, MVT::i32));
5056       Src.WindowBase = -Src.MinElt;
5057     }
5058   }
5059 
5060   // Another possible incompatibility occurs from the vector element types. We
5061   // can fix this by bitcasting the source vectors to the same type we intend
5062   // for the shuffle.
5063   for (auto &Src : Sources) {
5064     EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
5065     if (SrcEltTy == SmallestEltTy)
5066       continue;
5067     assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
5068     Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
5069     Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
5070     Src.WindowBase *= Src.WindowScale;
5071   }
5072 
5073   // Final sanity check before we try to actually produce a shuffle.
5074   DEBUG(
5075     for (auto Src : Sources)
5076       assert(Src.ShuffleVec.getValueType() == ShuffleVT);
5077   );
5078 
5079   // The stars all align, our next step is to produce the mask for the shuffle.
5080   SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
5081   int BitsPerShuffleLane = ShuffleVT.getVectorElementType().getSizeInBits();
5082   for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
5083     SDValue Entry = Op.getOperand(i);
5084     if (Entry.isUndef())
5085       continue;
5086 
5087     auto Src = std::find(Sources.begin(), Sources.end(), Entry.getOperand(0));
5088     int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
5089 
5090     // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
5091     // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
5092     // segment.
5093     EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
5094     int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
5095                                VT.getVectorElementType().getSizeInBits());
5096     int LanesDefined = BitsDefined / BitsPerShuffleLane;
5097 
5098     // This source is expected to fill ResMultiplier lanes of the final shuffle,
5099     // starting at the appropriate offset.
5100     int *LaneMask = &Mask[i * ResMultiplier];
5101 
5102     int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
5103     ExtractBase += NumElts * (Src - Sources.begin());
5104     for (int j = 0; j < LanesDefined; ++j)
5105       LaneMask[j] = ExtractBase + j;
5106   }
5107 
5108   // Final check before we try to produce nonsense...
5109   if (!isShuffleMaskLegal(Mask, ShuffleVT))
5110     return SDValue();
5111 
5112   SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
5113   for (unsigned i = 0; i < Sources.size(); ++i)
5114     ShuffleOps[i] = Sources[i].ShuffleVec;
5115 
5116   SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
5117                                          ShuffleOps[1], Mask);
5118   return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
5119 }
5120 
5121 // check if an EXT instruction can handle the shuffle mask when the
5122 // vector sources of the shuffle are the same.
isSingletonEXTMask(ArrayRef<int> M,EVT VT,unsigned & Imm)5123 static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
5124   unsigned NumElts = VT.getVectorNumElements();
5125 
5126   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
5127   if (M[0] < 0)
5128     return false;
5129 
5130   Imm = M[0];
5131 
5132   // If this is a VEXT shuffle, the immediate value is the index of the first
5133   // element.  The other shuffle indices must be the successive elements after
5134   // the first one.
5135   unsigned ExpectedElt = Imm;
5136   for (unsigned i = 1; i < NumElts; ++i) {
5137     // Increment the expected index.  If it wraps around, just follow it
5138     // back to index zero and keep going.
5139     ++ExpectedElt;
5140     if (ExpectedElt == NumElts)
5141       ExpectedElt = 0;
5142 
5143     if (M[i] < 0)
5144       continue; // ignore UNDEF indices
5145     if (ExpectedElt != static_cast<unsigned>(M[i]))
5146       return false;
5147   }
5148 
5149   return true;
5150 }
5151 
5152 // check if an EXT instruction can handle the shuffle mask when the
5153 // vector sources of the shuffle are different.
isEXTMask(ArrayRef<int> M,EVT VT,bool & ReverseEXT,unsigned & Imm)5154 static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
5155                       unsigned &Imm) {
5156   // Look for the first non-undef element.
5157   const int *FirstRealElt = std::find_if(M.begin(), M.end(),
5158       [](int Elt) {return Elt >= 0;});
5159 
5160   // Benefit form APInt to handle overflow when calculating expected element.
5161   unsigned NumElts = VT.getVectorNumElements();
5162   unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
5163   APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
5164   // The following shuffle indices must be the successive elements after the
5165   // first real element.
5166   const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(),
5167       [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;});
5168   if (FirstWrongElt != M.end())
5169     return false;
5170 
5171   // The index of an EXT is the first element if it is not UNDEF.
5172   // Watch out for the beginning UNDEFs. The EXT index should be the expected
5173   // value of the first element.  E.g.
5174   // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
5175   // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
5176   // ExpectedElt is the last mask index plus 1.
5177   Imm = ExpectedElt.getZExtValue();
5178 
5179   // There are two difference cases requiring to reverse input vectors.
5180   // For example, for vector <4 x i32> we have the following cases,
5181   // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
5182   // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
5183   // For both cases, we finally use mask <5, 6, 7, 0>, which requires
5184   // to reverse two input vectors.
5185   if (Imm < NumElts)
5186     ReverseEXT = true;
5187   else
5188     Imm -= NumElts;
5189 
5190   return true;
5191 }
5192 
5193 /// isREVMask - Check if a vector shuffle corresponds to a REV
5194 /// instruction with the specified blocksize.  (The order of the elements
5195 /// within each block of the vector is reversed.)
isREVMask(ArrayRef<int> M,EVT VT,unsigned BlockSize)5196 static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
5197   assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
5198          "Only possible block sizes for REV are: 16, 32, 64");
5199 
5200   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
5201   if (EltSz == 64)
5202     return false;
5203 
5204   unsigned NumElts = VT.getVectorNumElements();
5205   unsigned BlockElts = M[0] + 1;
5206   // If the first shuffle index is UNDEF, be optimistic.
5207   if (M[0] < 0)
5208     BlockElts = BlockSize / EltSz;
5209 
5210   if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
5211     return false;
5212 
5213   for (unsigned i = 0; i < NumElts; ++i) {
5214     if (M[i] < 0)
5215       continue; // ignore UNDEF indices
5216     if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
5217       return false;
5218   }
5219 
5220   return true;
5221 }
5222 
isZIPMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)5223 static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5224   unsigned NumElts = VT.getVectorNumElements();
5225   WhichResult = (M[0] == 0 ? 0 : 1);
5226   unsigned Idx = WhichResult * NumElts / 2;
5227   for (unsigned i = 0; i != NumElts; i += 2) {
5228     if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
5229         (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
5230       return false;
5231     Idx += 1;
5232   }
5233 
5234   return true;
5235 }
5236 
isUZPMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)5237 static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5238   unsigned NumElts = VT.getVectorNumElements();
5239   WhichResult = (M[0] == 0 ? 0 : 1);
5240   for (unsigned i = 0; i != NumElts; ++i) {
5241     if (M[i] < 0)
5242       continue; // ignore UNDEF indices
5243     if ((unsigned)M[i] != 2 * i + WhichResult)
5244       return false;
5245   }
5246 
5247   return true;
5248 }
5249 
isTRNMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)5250 static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5251   unsigned NumElts = VT.getVectorNumElements();
5252   WhichResult = (M[0] == 0 ? 0 : 1);
5253   for (unsigned i = 0; i < NumElts; i += 2) {
5254     if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
5255         (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
5256       return false;
5257   }
5258   return true;
5259 }
5260 
5261 /// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
5262 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5263 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
isZIP_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)5264 static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5265   unsigned NumElts = VT.getVectorNumElements();
5266   WhichResult = (M[0] == 0 ? 0 : 1);
5267   unsigned Idx = WhichResult * NumElts / 2;
5268   for (unsigned i = 0; i != NumElts; i += 2) {
5269     if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
5270         (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
5271       return false;
5272     Idx += 1;
5273   }
5274 
5275   return true;
5276 }
5277 
5278 /// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
5279 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5280 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
isUZP_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)5281 static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5282   unsigned Half = VT.getVectorNumElements() / 2;
5283   WhichResult = (M[0] == 0 ? 0 : 1);
5284   for (unsigned j = 0; j != 2; ++j) {
5285     unsigned Idx = WhichResult;
5286     for (unsigned i = 0; i != Half; ++i) {
5287       int MIdx = M[i + j * Half];
5288       if (MIdx >= 0 && (unsigned)MIdx != Idx)
5289         return false;
5290       Idx += 2;
5291     }
5292   }
5293 
5294   return true;
5295 }
5296 
5297 /// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
5298 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5299 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
isTRN_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)5300 static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5301   unsigned NumElts = VT.getVectorNumElements();
5302   WhichResult = (M[0] == 0 ? 0 : 1);
5303   for (unsigned i = 0; i < NumElts; i += 2) {
5304     if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
5305         (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
5306       return false;
5307   }
5308   return true;
5309 }
5310 
isINSMask(ArrayRef<int> M,int NumInputElements,bool & DstIsLeft,int & Anomaly)5311 static bool isINSMask(ArrayRef<int> M, int NumInputElements,
5312                       bool &DstIsLeft, int &Anomaly) {
5313   if (M.size() != static_cast<size_t>(NumInputElements))
5314     return false;
5315 
5316   int NumLHSMatch = 0, NumRHSMatch = 0;
5317   int LastLHSMismatch = -1, LastRHSMismatch = -1;
5318 
5319   for (int i = 0; i < NumInputElements; ++i) {
5320     if (M[i] == -1) {
5321       ++NumLHSMatch;
5322       ++NumRHSMatch;
5323       continue;
5324     }
5325 
5326     if (M[i] == i)
5327       ++NumLHSMatch;
5328     else
5329       LastLHSMismatch = i;
5330 
5331     if (M[i] == i + NumInputElements)
5332       ++NumRHSMatch;
5333     else
5334       LastRHSMismatch = i;
5335   }
5336 
5337   if (NumLHSMatch == NumInputElements - 1) {
5338     DstIsLeft = true;
5339     Anomaly = LastLHSMismatch;
5340     return true;
5341   } else if (NumRHSMatch == NumInputElements - 1) {
5342     DstIsLeft = false;
5343     Anomaly = LastRHSMismatch;
5344     return true;
5345   }
5346 
5347   return false;
5348 }
5349 
isConcatMask(ArrayRef<int> Mask,EVT VT,bool SplitLHS)5350 static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
5351   if (VT.getSizeInBits() != 128)
5352     return false;
5353 
5354   unsigned NumElts = VT.getVectorNumElements();
5355 
5356   for (int I = 0, E = NumElts / 2; I != E; I++) {
5357     if (Mask[I] != I)
5358       return false;
5359   }
5360 
5361   int Offset = NumElts / 2;
5362   for (int I = NumElts / 2, E = NumElts; I != E; I++) {
5363     if (Mask[I] != I + SplitLHS * Offset)
5364       return false;
5365   }
5366 
5367   return true;
5368 }
5369 
tryFormConcatFromShuffle(SDValue Op,SelectionDAG & DAG)5370 static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
5371   SDLoc DL(Op);
5372   EVT VT = Op.getValueType();
5373   SDValue V0 = Op.getOperand(0);
5374   SDValue V1 = Op.getOperand(1);
5375   ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
5376 
5377   if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
5378       VT.getVectorElementType() != V1.getValueType().getVectorElementType())
5379     return SDValue();
5380 
5381   bool SplitV0 = V0.getValueType().getSizeInBits() == 128;
5382 
5383   if (!isConcatMask(Mask, VT, SplitV0))
5384     return SDValue();
5385 
5386   EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
5387                                 VT.getVectorNumElements() / 2);
5388   if (SplitV0) {
5389     V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
5390                      DAG.getConstant(0, DL, MVT::i64));
5391   }
5392   if (V1.getValueType().getSizeInBits() == 128) {
5393     V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
5394                      DAG.getConstant(0, DL, MVT::i64));
5395   }
5396   return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
5397 }
5398 
5399 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
5400 /// the specified operations to build the shuffle.
GeneratePerfectShuffle(unsigned PFEntry,SDValue LHS,SDValue RHS,SelectionDAG & DAG,const SDLoc & dl)5401 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
5402                                       SDValue RHS, SelectionDAG &DAG,
5403                                       const SDLoc &dl) {
5404   unsigned OpNum = (PFEntry >> 26) & 0x0F;
5405   unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
5406   unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);
5407 
5408   enum {
5409     OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
5410     OP_VREV,
5411     OP_VDUP0,
5412     OP_VDUP1,
5413     OP_VDUP2,
5414     OP_VDUP3,
5415     OP_VEXT1,
5416     OP_VEXT2,
5417     OP_VEXT3,
5418     OP_VUZPL, // VUZP, left result
5419     OP_VUZPR, // VUZP, right result
5420     OP_VZIPL, // VZIP, left result
5421     OP_VZIPR, // VZIP, right result
5422     OP_VTRNL, // VTRN, left result
5423     OP_VTRNR  // VTRN, right result
5424   };
5425 
5426   if (OpNum == OP_COPY) {
5427     if (LHSID == (1 * 9 + 2) * 9 + 3)
5428       return LHS;
5429     assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
5430     return RHS;
5431   }
5432 
5433   SDValue OpLHS, OpRHS;
5434   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
5435   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
5436   EVT VT = OpLHS.getValueType();
5437 
5438   switch (OpNum) {
5439   default:
5440     llvm_unreachable("Unknown shuffle opcode!");
5441   case OP_VREV:
5442     // VREV divides the vector in half and swaps within the half.
5443     if (VT.getVectorElementType() == MVT::i32 ||
5444         VT.getVectorElementType() == MVT::f32)
5445       return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
5446     // vrev <4 x i16> -> REV32
5447     if (VT.getVectorElementType() == MVT::i16 ||
5448         VT.getVectorElementType() == MVT::f16)
5449       return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
5450     // vrev <4 x i8> -> REV16
5451     assert(VT.getVectorElementType() == MVT::i8);
5452     return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
5453   case OP_VDUP0:
5454   case OP_VDUP1:
5455   case OP_VDUP2:
5456   case OP_VDUP3: {
5457     EVT EltTy = VT.getVectorElementType();
5458     unsigned Opcode;
5459     if (EltTy == MVT::i8)
5460       Opcode = AArch64ISD::DUPLANE8;
5461     else if (EltTy == MVT::i16 || EltTy == MVT::f16)
5462       Opcode = AArch64ISD::DUPLANE16;
5463     else if (EltTy == MVT::i32 || EltTy == MVT::f32)
5464       Opcode = AArch64ISD::DUPLANE32;
5465     else if (EltTy == MVT::i64 || EltTy == MVT::f64)
5466       Opcode = AArch64ISD::DUPLANE64;
5467     else
5468       llvm_unreachable("Invalid vector element type?");
5469 
5470     if (VT.getSizeInBits() == 64)
5471       OpLHS = WidenVector(OpLHS, DAG);
5472     SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, dl, MVT::i64);
5473     return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
5474   }
5475   case OP_VEXT1:
5476   case OP_VEXT2:
5477   case OP_VEXT3: {
5478     unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
5479     return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
5480                        DAG.getConstant(Imm, dl, MVT::i32));
5481   }
5482   case OP_VUZPL:
5483     return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS,
5484                        OpRHS);
5485   case OP_VUZPR:
5486     return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS,
5487                        OpRHS);
5488   case OP_VZIPL:
5489     return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS,
5490                        OpRHS);
5491   case OP_VZIPR:
5492     return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS,
5493                        OpRHS);
5494   case OP_VTRNL:
5495     return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS,
5496                        OpRHS);
5497   case OP_VTRNR:
5498     return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS,
5499                        OpRHS);
5500   }
5501 }
5502 
GenerateTBL(SDValue Op,ArrayRef<int> ShuffleMask,SelectionDAG & DAG)5503 static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
5504                            SelectionDAG &DAG) {
5505   // Check to see if we can use the TBL instruction.
5506   SDValue V1 = Op.getOperand(0);
5507   SDValue V2 = Op.getOperand(1);
5508   SDLoc DL(Op);
5509 
5510   EVT EltVT = Op.getValueType().getVectorElementType();
5511   unsigned BytesPerElt = EltVT.getSizeInBits() / 8;
5512 
5513   SmallVector<SDValue, 8> TBLMask;
5514   for (int Val : ShuffleMask) {
5515     for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
5516       unsigned Offset = Byte + Val * BytesPerElt;
5517       TBLMask.push_back(DAG.getConstant(Offset, DL, MVT::i32));
5518     }
5519   }
5520 
5521   MVT IndexVT = MVT::v8i8;
5522   unsigned IndexLen = 8;
5523   if (Op.getValueType().getSizeInBits() == 128) {
5524     IndexVT = MVT::v16i8;
5525     IndexLen = 16;
5526   }
5527 
5528   SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
5529   SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);
5530 
5531   SDValue Shuffle;
5532   if (V2.getNode()->isUndef()) {
5533     if (IndexLen == 8)
5534       V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
5535     Shuffle = DAG.getNode(
5536         ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
5537         DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
5538         DAG.getBuildVector(IndexVT, DL,
5539                            makeArrayRef(TBLMask.data(), IndexLen)));
5540   } else {
5541     if (IndexLen == 8) {
5542       V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
5543       Shuffle = DAG.getNode(
5544           ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
5545           DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
5546           DAG.getBuildVector(IndexVT, DL,
5547                              makeArrayRef(TBLMask.data(), IndexLen)));
5548     } else {
5549       // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
5550       // cannot currently represent the register constraints on the input
5551       // table registers.
5552       //  Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
5553       //                   DAG.getBuildVector(IndexVT, DL, &TBLMask[0],
5554       //                   IndexLen));
5555       Shuffle = DAG.getNode(
5556           ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
5557           DAG.getConstant(Intrinsic::aarch64_neon_tbl2, DL, MVT::i32), V1Cst,
5558           V2Cst, DAG.getBuildVector(IndexVT, DL,
5559                                     makeArrayRef(TBLMask.data(), IndexLen)));
5560     }
5561   }
5562   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
5563 }
5564 
getDUPLANEOp(EVT EltType)5565 static unsigned getDUPLANEOp(EVT EltType) {
5566   if (EltType == MVT::i8)
5567     return AArch64ISD::DUPLANE8;
5568   if (EltType == MVT::i16 || EltType == MVT::f16)
5569     return AArch64ISD::DUPLANE16;
5570   if (EltType == MVT::i32 || EltType == MVT::f32)
5571     return AArch64ISD::DUPLANE32;
5572   if (EltType == MVT::i64 || EltType == MVT::f64)
5573     return AArch64ISD::DUPLANE64;
5574 
5575   llvm_unreachable("Invalid vector element type?");
5576 }
5577 
LowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG) const5578 SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
5579                                                    SelectionDAG &DAG) const {
5580   SDLoc dl(Op);
5581   EVT VT = Op.getValueType();
5582 
5583   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
5584 
5585   // Convert shuffles that are directly supported on NEON to target-specific
5586   // DAG nodes, instead of keeping them as shuffles and matching them again
5587   // during code selection.  This is more efficient and avoids the possibility
5588   // of inconsistencies between legalization and selection.
5589   ArrayRef<int> ShuffleMask = SVN->getMask();
5590 
5591   SDValue V1 = Op.getOperand(0);
5592   SDValue V2 = Op.getOperand(1);
5593 
5594   if (SVN->isSplat()) {
5595     int Lane = SVN->getSplatIndex();
5596     // If this is undef splat, generate it via "just" vdup, if possible.
5597     if (Lane == -1)
5598       Lane = 0;
5599 
5600     if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
5601       return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
5602                          V1.getOperand(0));
5603     // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
5604     // constant. If so, we can just reference the lane's definition directly.
5605     if (V1.getOpcode() == ISD::BUILD_VECTOR &&
5606         !isa<ConstantSDNode>(V1.getOperand(Lane)))
5607       return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));
5608 
5609     // Otherwise, duplicate from the lane of the input vector.
5610     unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
5611 
5612     // SelectionDAGBuilder may have "helpfully" already extracted or conatenated
5613     // to make a vector of the same size as this SHUFFLE. We can ignore the
5614     // extract entirely, and canonicalise the concat using WidenVector.
5615     if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
5616       Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
5617       V1 = V1.getOperand(0);
5618     } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) {
5619       unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
5620       Lane -= Idx * VT.getVectorNumElements() / 2;
5621       V1 = WidenVector(V1.getOperand(Idx), DAG);
5622     } else if (VT.getSizeInBits() == 64)
5623       V1 = WidenVector(V1, DAG);
5624 
5625     return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, dl, MVT::i64));
5626   }
5627 
5628   if (isREVMask(ShuffleMask, VT, 64))
5629     return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
5630   if (isREVMask(ShuffleMask, VT, 32))
5631     return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
5632   if (isREVMask(ShuffleMask, VT, 16))
5633     return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);
5634 
5635   bool ReverseEXT = false;
5636   unsigned Imm;
5637   if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
5638     if (ReverseEXT)
5639       std::swap(V1, V2);
5640     Imm *= getExtFactor(V1);
5641     return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
5642                        DAG.getConstant(Imm, dl, MVT::i32));
5643   } else if (V2->isUndef() && isSingletonEXTMask(ShuffleMask, VT, Imm)) {
5644     Imm *= getExtFactor(V1);
5645     return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
5646                        DAG.getConstant(Imm, dl, MVT::i32));
5647   }
5648 
5649   unsigned WhichResult;
5650   if (isZIPMask(ShuffleMask, VT, WhichResult)) {
5651     unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
5652     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5653   }
5654   if (isUZPMask(ShuffleMask, VT, WhichResult)) {
5655     unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
5656     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5657   }
5658   if (isTRNMask(ShuffleMask, VT, WhichResult)) {
5659     unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
5660     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5661   }
5662 
5663   if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5664     unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
5665     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5666   }
5667   if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5668     unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
5669     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5670   }
5671   if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5672     unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
5673     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5674   }
5675 
5676   if (SDValue Concat = tryFormConcatFromShuffle(Op, DAG))
5677     return Concat;
5678 
5679   bool DstIsLeft;
5680   int Anomaly;
5681   int NumInputElements = V1.getValueType().getVectorNumElements();
5682   if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
5683     SDValue DstVec = DstIsLeft ? V1 : V2;
5684     SDValue DstLaneV = DAG.getConstant(Anomaly, dl, MVT::i64);
5685 
5686     SDValue SrcVec = V1;
5687     int SrcLane = ShuffleMask[Anomaly];
5688     if (SrcLane >= NumInputElements) {
5689       SrcVec = V2;
5690       SrcLane -= VT.getVectorNumElements();
5691     }
5692     SDValue SrcLaneV = DAG.getConstant(SrcLane, dl, MVT::i64);
5693 
5694     EVT ScalarVT = VT.getVectorElementType();
5695 
5696     if (ScalarVT.getSizeInBits() < 32 && ScalarVT.isInteger())
5697       ScalarVT = MVT::i32;
5698 
5699     return DAG.getNode(
5700         ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
5701         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
5702         DstLaneV);
5703   }
5704 
5705   // If the shuffle is not directly supported and it has 4 elements, use
5706   // the PerfectShuffle-generated table to synthesize it from other shuffles.
5707   unsigned NumElts = VT.getVectorNumElements();
5708   if (NumElts == 4) {
5709     unsigned PFIndexes[4];
5710     for (unsigned i = 0; i != 4; ++i) {
5711       if (ShuffleMask[i] < 0)
5712         PFIndexes[i] = 8;
5713       else
5714         PFIndexes[i] = ShuffleMask[i];
5715     }
5716 
5717     // Compute the index in the perfect shuffle table.
5718     unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
5719                             PFIndexes[2] * 9 + PFIndexes[3];
5720     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5721     unsigned Cost = (PFEntry >> 30);
5722 
5723     if (Cost <= 4)
5724       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
5725   }
5726 
5727   return GenerateTBL(Op, ShuffleMask, DAG);
5728 }
5729 
resolveBuildVector(BuildVectorSDNode * BVN,APInt & CnstBits,APInt & UndefBits)5730 static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
5731                                APInt &UndefBits) {
5732   EVT VT = BVN->getValueType(0);
5733   APInt SplatBits, SplatUndef;
5734   unsigned SplatBitSize;
5735   bool HasAnyUndefs;
5736   if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
5737     unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;
5738 
5739     for (unsigned i = 0; i < NumSplats; ++i) {
5740       CnstBits <<= SplatBitSize;
5741       UndefBits <<= SplatBitSize;
5742       CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
5743       UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
5744     }
5745 
5746     return true;
5747   }
5748 
5749   return false;
5750 }
5751 
LowerVectorAND(SDValue Op,SelectionDAG & DAG) const5752 SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op,
5753                                               SelectionDAG &DAG) const {
5754   BuildVectorSDNode *BVN =
5755       dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5756   SDValue LHS = Op.getOperand(0);
5757   SDLoc dl(Op);
5758   EVT VT = Op.getValueType();
5759 
5760   if (!BVN)
5761     return Op;
5762 
5763   APInt CnstBits(VT.getSizeInBits(), 0);
5764   APInt UndefBits(VT.getSizeInBits(), 0);
5765   if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5766     // We only have BIC vector immediate instruction, which is and-not.
5767     CnstBits = ~CnstBits;
5768 
5769     // We make use of a little bit of goto ickiness in order to avoid having to
5770     // duplicate the immediate matching logic for the undef toggled case.
5771     bool SecondTry = false;
5772   AttemptModImm:
5773 
5774     if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5775       CnstBits = CnstBits.zextOrTrunc(64);
5776       uint64_t CnstVal = CnstBits.getZExtValue();
5777 
5778       if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5779         CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5780         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5781         SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5782                                   DAG.getConstant(CnstVal, dl, MVT::i32),
5783                                   DAG.getConstant(0, dl, MVT::i32));
5784         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5785       }
5786 
5787       if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5788         CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5789         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5790         SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5791                                   DAG.getConstant(CnstVal, dl, MVT::i32),
5792                                   DAG.getConstant(8, dl, MVT::i32));
5793         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5794       }
5795 
5796       if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5797         CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5798         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5799         SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5800                                   DAG.getConstant(CnstVal, dl, MVT::i32),
5801                                   DAG.getConstant(16, dl, MVT::i32));
5802         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5803       }
5804 
5805       if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5806         CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5807         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5808         SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5809                                   DAG.getConstant(CnstVal, dl, MVT::i32),
5810                                   DAG.getConstant(24, dl, MVT::i32));
5811         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5812       }
5813 
5814       if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5815         CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5816         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5817         SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5818                                   DAG.getConstant(CnstVal, dl, MVT::i32),
5819                                   DAG.getConstant(0, dl, MVT::i32));
5820         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5821       }
5822 
5823       if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5824         CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5825         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5826         SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5827                                   DAG.getConstant(CnstVal, dl, MVT::i32),
5828                                   DAG.getConstant(8, dl, MVT::i32));
5829         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5830       }
5831     }
5832 
5833     if (SecondTry)
5834       goto FailedModImm;
5835     SecondTry = true;
5836     CnstBits = ~UndefBits;
5837     goto AttemptModImm;
5838   }
5839 
5840 // We can always fall back to a non-immediate AND.
5841 FailedModImm:
5842   return Op;
5843 }
5844 
5845 // Specialized code to quickly find if PotentialBVec is a BuildVector that
5846 // consists of only the same constant int value, returned in reference arg
5847 // ConstVal
isAllConstantBuildVector(const SDValue & PotentialBVec,uint64_t & ConstVal)5848 static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
5849                                      uint64_t &ConstVal) {
5850   BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
5851   if (!Bvec)
5852     return false;
5853   ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
5854   if (!FirstElt)
5855     return false;
5856   EVT VT = Bvec->getValueType(0);
5857   unsigned NumElts = VT.getVectorNumElements();
5858   for (unsigned i = 1; i < NumElts; ++i)
5859     if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
5860       return false;
5861   ConstVal = FirstElt->getZExtValue();
5862   return true;
5863 }
5864 
getIntrinsicID(const SDNode * N)5865 static unsigned getIntrinsicID(const SDNode *N) {
5866   unsigned Opcode = N->getOpcode();
5867   switch (Opcode) {
5868   default:
5869     return Intrinsic::not_intrinsic;
5870   case ISD::INTRINSIC_WO_CHAIN: {
5871     unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
5872     if (IID < Intrinsic::num_intrinsics)
5873       return IID;
5874     return Intrinsic::not_intrinsic;
5875   }
5876   }
5877 }
5878 
5879 // Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
5880 // to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
5881 // BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
5882 // Also, logical shift right -> sri, with the same structure.
tryLowerToSLI(SDNode * N,SelectionDAG & DAG)5883 static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
5884   EVT VT = N->getValueType(0);
5885 
5886   if (!VT.isVector())
5887     return SDValue();
5888 
5889   SDLoc DL(N);
5890 
5891   // Is the first op an AND?
5892   const SDValue And = N->getOperand(0);
5893   if (And.getOpcode() != ISD::AND)
5894     return SDValue();
5895 
5896   // Is the second op an shl or lshr?
5897   SDValue Shift = N->getOperand(1);
5898   // This will have been turned into: AArch64ISD::VSHL vector, #shift
5899   // or AArch64ISD::VLSHR vector, #shift
5900   unsigned ShiftOpc = Shift.getOpcode();
5901   if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR))
5902     return SDValue();
5903   bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR;
5904 
5905   // Is the shift amount constant?
5906   ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
5907   if (!C2node)
5908     return SDValue();
5909 
5910   // Is the and mask vector all constant?
5911   uint64_t C1;
5912   if (!isAllConstantBuildVector(And.getOperand(1), C1))
5913     return SDValue();
5914 
5915   // Is C1 == ~C2, taking into account how much one can shift elements of a
5916   // particular size?
5917   uint64_t C2 = C2node->getZExtValue();
5918   unsigned ElemSizeInBits = VT.getVectorElementType().getSizeInBits();
5919   if (C2 > ElemSizeInBits)
5920     return SDValue();
5921   unsigned ElemMask = (1 << ElemSizeInBits) - 1;
5922   if ((C1 & ElemMask) != (~C2 & ElemMask))
5923     return SDValue();
5924 
5925   SDValue X = And.getOperand(0);
5926   SDValue Y = Shift.getOperand(0);
5927 
5928   unsigned Intrin =
5929       IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli;
5930   SDValue ResultSLI =
5931       DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
5932                   DAG.getConstant(Intrin, DL, MVT::i32), X, Y,
5933                   Shift.getOperand(1));
5934 
5935   DEBUG(dbgs() << "aarch64-lower: transformed: \n");
5936   DEBUG(N->dump(&DAG));
5937   DEBUG(dbgs() << "into: \n");
5938   DEBUG(ResultSLI->dump(&DAG));
5939 
5940   ++NumShiftInserts;
5941   return ResultSLI;
5942 }
5943 
LowerVectorOR(SDValue Op,SelectionDAG & DAG) const5944 SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
5945                                              SelectionDAG &DAG) const {
5946   // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
5947   if (EnableAArch64SlrGeneration) {
5948     if (SDValue Res = tryLowerToSLI(Op.getNode(), DAG))
5949       return Res;
5950   }
5951 
5952   BuildVectorSDNode *BVN =
5953       dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
5954   SDValue LHS = Op.getOperand(1);
5955   SDLoc dl(Op);
5956   EVT VT = Op.getValueType();
5957 
5958   // OR commutes, so try swapping the operands.
5959   if (!BVN) {
5960     LHS = Op.getOperand(0);
5961     BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5962   }
5963   if (!BVN)
5964     return Op;
5965 
5966   APInt CnstBits(VT.getSizeInBits(), 0);
5967   APInt UndefBits(VT.getSizeInBits(), 0);
5968   if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5969     // We make use of a little bit of goto ickiness in order to avoid having to
5970     // duplicate the immediate matching logic for the undef toggled case.
5971     bool SecondTry = false;
5972   AttemptModImm:
5973 
5974     if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5975       CnstBits = CnstBits.zextOrTrunc(64);
5976       uint64_t CnstVal = CnstBits.getZExtValue();
5977 
5978       if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5979         CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5980         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5981         SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5982                                   DAG.getConstant(CnstVal, dl, MVT::i32),
5983                                   DAG.getConstant(0, dl, MVT::i32));
5984         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5985       }
5986 
5987       if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5988         CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5989         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5990         SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5991                                   DAG.getConstant(CnstVal, dl, MVT::i32),
5992                                   DAG.getConstant(8, dl, MVT::i32));
5993         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5994       }
5995 
5996       if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5997         CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5998         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5999         SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
6000                                   DAG.getConstant(CnstVal, dl, MVT::i32),
6001                                   DAG.getConstant(16, dl, MVT::i32));
6002         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6003       }
6004 
6005       if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
6006         CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
6007         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6008         SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
6009                                   DAG.getConstant(CnstVal, dl, MVT::i32),
6010                                   DAG.getConstant(24, dl, MVT::i32));
6011         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6012       }
6013 
6014       if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
6015         CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
6016         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6017         SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
6018                                   DAG.getConstant(CnstVal, dl, MVT::i32),
6019                                   DAG.getConstant(0, dl, MVT::i32));
6020         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6021       }
6022 
6023       if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
6024         CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
6025         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6026         SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
6027                                   DAG.getConstant(CnstVal, dl, MVT::i32),
6028                                   DAG.getConstant(8, dl, MVT::i32));
6029         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6030       }
6031     }
6032 
6033     if (SecondTry)
6034       goto FailedModImm;
6035     SecondTry = true;
6036     CnstBits = UndefBits;
6037     goto AttemptModImm;
6038   }
6039 
6040 // We can always fall back to a non-immediate OR.
6041 FailedModImm:
6042   return Op;
6043 }
6044 
6045 // Normalize the operands of BUILD_VECTOR. The value of constant operands will
6046 // be truncated to fit element width.
NormalizeBuildVector(SDValue Op,SelectionDAG & DAG)6047 static SDValue NormalizeBuildVector(SDValue Op,
6048                                     SelectionDAG &DAG) {
6049   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
6050   SDLoc dl(Op);
6051   EVT VT = Op.getValueType();
6052   EVT EltTy= VT.getVectorElementType();
6053 
6054   if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16)
6055     return Op;
6056 
6057   SmallVector<SDValue, 16> Ops;
6058   for (SDValue Lane : Op->ops()) {
6059     if (auto *CstLane = dyn_cast<ConstantSDNode>(Lane)) {
6060       APInt LowBits(EltTy.getSizeInBits(),
6061                     CstLane->getZExtValue());
6062       Lane = DAG.getConstant(LowBits.getZExtValue(), dl, MVT::i32);
6063     }
6064     Ops.push_back(Lane);
6065   }
6066   return DAG.getBuildVector(VT, dl, Ops);
6067 }
6068 
LowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG) const6069 SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
6070                                                  SelectionDAG &DAG) const {
6071   SDLoc dl(Op);
6072   EVT VT = Op.getValueType();
6073   Op = NormalizeBuildVector(Op, DAG);
6074   BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
6075 
6076   APInt CnstBits(VT.getSizeInBits(), 0);
6077   APInt UndefBits(VT.getSizeInBits(), 0);
6078   if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
6079     // We make use of a little bit of goto ickiness in order to avoid having to
6080     // duplicate the immediate matching logic for the undef toggled case.
6081     bool SecondTry = false;
6082   AttemptModImm:
6083 
6084     if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
6085       CnstBits = CnstBits.zextOrTrunc(64);
6086       uint64_t CnstVal = CnstBits.getZExtValue();
6087 
6088       // Certain magic vector constants (used to express things like NOT
6089       // and NEG) are passed through unmodified.  This allows codegen patterns
6090       // for these operations to match.  Special-purpose patterns will lower
6091       // these immediates to MOVIs if it proves necessary.
6092       if (VT.isInteger() && (CnstVal == 0 || CnstVal == ~0ULL))
6093         return Op;
6094 
6095       // The many faces of MOVI...
6096       if (AArch64_AM::isAdvSIMDModImmType10(CnstVal)) {
6097         CnstVal = AArch64_AM::encodeAdvSIMDModImmType10(CnstVal);
6098         if (VT.getSizeInBits() == 128) {
6099           SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::v2i64,
6100                                     DAG.getConstant(CnstVal, dl, MVT::i32));
6101           return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6102         }
6103 
6104         // Support the V64 version via subregister insertion.
6105         SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::f64,
6106                                   DAG.getConstant(CnstVal, dl, MVT::i32));
6107         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6108       }
6109 
6110       if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
6111         CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
6112         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6113         SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
6114                                   DAG.getConstant(CnstVal, dl, MVT::i32),
6115                                   DAG.getConstant(0, dl, MVT::i32));
6116         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6117       }
6118 
6119       if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
6120         CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
6121         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6122         SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
6123                                   DAG.getConstant(CnstVal, dl, MVT::i32),
6124                                   DAG.getConstant(8, dl, MVT::i32));
6125         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6126       }
6127 
6128       if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
6129         CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
6130         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6131         SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
6132                                   DAG.getConstant(CnstVal, dl, MVT::i32),
6133                                   DAG.getConstant(16, dl, MVT::i32));
6134         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6135       }
6136 
6137       if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
6138         CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
6139         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6140         SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
6141                                   DAG.getConstant(CnstVal, dl, MVT::i32),
6142                                   DAG.getConstant(24, dl, MVT::i32));
6143         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6144       }
6145 
6146       if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
6147         CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
6148         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6149         SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
6150                                   DAG.getConstant(CnstVal, dl, MVT::i32),
6151                                   DAG.getConstant(0, dl, MVT::i32));
6152         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6153       }
6154 
6155       if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
6156         CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
6157         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6158         SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
6159                                   DAG.getConstant(CnstVal, dl, MVT::i32),
6160                                   DAG.getConstant(8, dl, MVT::i32));
6161         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6162       }
6163 
6164       if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
6165         CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
6166         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6167         SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
6168                                   DAG.getConstant(CnstVal, dl, MVT::i32),
6169                                   DAG.getConstant(264, dl, MVT::i32));
6170         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6171       }
6172 
6173       if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
6174         CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
6175         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6176         SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
6177                                   DAG.getConstant(CnstVal, dl, MVT::i32),
6178                                   DAG.getConstant(272, dl, MVT::i32));
6179         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6180       }
6181 
6182       if (AArch64_AM::isAdvSIMDModImmType9(CnstVal)) {
6183         CnstVal = AArch64_AM::encodeAdvSIMDModImmType9(CnstVal);
6184         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
6185         SDValue Mov = DAG.getNode(AArch64ISD::MOVI, dl, MovTy,
6186                                   DAG.getConstant(CnstVal, dl, MVT::i32));
6187         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6188       }
6189 
6190       // The few faces of FMOV...
6191       if (AArch64_AM::isAdvSIMDModImmType11(CnstVal)) {
6192         CnstVal = AArch64_AM::encodeAdvSIMDModImmType11(CnstVal);
6193         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4f32 : MVT::v2f32;
6194         SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MovTy,
6195                                   DAG.getConstant(CnstVal, dl, MVT::i32));
6196         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6197       }
6198 
6199       if (AArch64_AM::isAdvSIMDModImmType12(CnstVal) &&
6200           VT.getSizeInBits() == 128) {
6201         CnstVal = AArch64_AM::encodeAdvSIMDModImmType12(CnstVal);
6202         SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MVT::v2f64,
6203                                   DAG.getConstant(CnstVal, dl, MVT::i32));
6204         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6205       }
6206 
6207       // The many faces of MVNI...
6208       CnstVal = ~CnstVal;
6209       if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
6210         CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
6211         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6212         SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
6213                                   DAG.getConstant(CnstVal, dl, MVT::i32),
6214                                   DAG.getConstant(0, dl, MVT::i32));
6215         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6216       }
6217 
6218       if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
6219         CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
6220         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6221         SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
6222                                   DAG.getConstant(CnstVal, dl, MVT::i32),
6223                                   DAG.getConstant(8, dl, MVT::i32));
6224         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6225       }
6226 
6227       if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
6228         CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
6229         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6230         SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
6231                                   DAG.getConstant(CnstVal, dl, MVT::i32),
6232                                   DAG.getConstant(16, dl, MVT::i32));
6233         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6234       }
6235 
6236       if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
6237         CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
6238         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6239         SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
6240                                   DAG.getConstant(CnstVal, dl, MVT::i32),
6241                                   DAG.getConstant(24, dl, MVT::i32));
6242         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6243       }
6244 
6245       if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
6246         CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
6247         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6248         SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
6249                                   DAG.getConstant(CnstVal, dl, MVT::i32),
6250                                   DAG.getConstant(0, dl, MVT::i32));
6251         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6252       }
6253 
6254       if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
6255         CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
6256         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6257         SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
6258                                   DAG.getConstant(CnstVal, dl, MVT::i32),
6259                                   DAG.getConstant(8, dl, MVT::i32));
6260         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6261       }
6262 
6263       if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
6264         CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
6265         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6266         SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
6267                                   DAG.getConstant(CnstVal, dl, MVT::i32),
6268                                   DAG.getConstant(264, dl, MVT::i32));
6269         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6270       }
6271 
6272       if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
6273         CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
6274         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6275         SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
6276                                   DAG.getConstant(CnstVal, dl, MVT::i32),
6277                                   DAG.getConstant(272, dl, MVT::i32));
6278         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6279       }
6280     }
6281 
6282     if (SecondTry)
6283       goto FailedModImm;
6284     SecondTry = true;
6285     CnstBits = UndefBits;
6286     goto AttemptModImm;
6287   }
6288 FailedModImm:
6289 
6290   // Scan through the operands to find some interesting properties we can
6291   // exploit:
6292   //   1) If only one value is used, we can use a DUP, or
6293   //   2) if only the low element is not undef, we can just insert that, or
6294   //   3) if only one constant value is used (w/ some non-constant lanes),
6295   //      we can splat the constant value into the whole vector then fill
6296   //      in the non-constant lanes.
6297   //   4) FIXME: If different constant values are used, but we can intelligently
6298   //             select the values we'll be overwriting for the non-constant
6299   //             lanes such that we can directly materialize the vector
6300   //             some other way (MOVI, e.g.), we can be sneaky.
6301   unsigned NumElts = VT.getVectorNumElements();
6302   bool isOnlyLowElement = true;
6303   bool usesOnlyOneValue = true;
6304   bool usesOnlyOneConstantValue = true;
6305   bool isConstant = true;
6306   unsigned NumConstantLanes = 0;
6307   SDValue Value;
6308   SDValue ConstantValue;
6309   for (unsigned i = 0; i < NumElts; ++i) {
6310     SDValue V = Op.getOperand(i);
6311     if (V.isUndef())
6312       continue;
6313     if (i > 0)
6314       isOnlyLowElement = false;
6315     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
6316       isConstant = false;
6317 
6318     if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) {
6319       ++NumConstantLanes;
6320       if (!ConstantValue.getNode())
6321         ConstantValue = V;
6322       else if (ConstantValue != V)
6323         usesOnlyOneConstantValue = false;
6324     }
6325 
6326     if (!Value.getNode())
6327       Value = V;
6328     else if (V != Value)
6329       usesOnlyOneValue = false;
6330   }
6331 
6332   if (!Value.getNode())
6333     return DAG.getUNDEF(VT);
6334 
6335   if (isOnlyLowElement)
6336     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
6337 
6338   // Use DUP for non-constant splats.  For f32 constant splats, reduce to
6339   // i32 and try again.
6340   if (usesOnlyOneValue) {
6341     if (!isConstant) {
6342       if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
6343           Value.getValueType() != VT)
6344         return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
6345 
6346       // This is actually a DUPLANExx operation, which keeps everything vectory.
6347 
6348       // DUPLANE works on 128-bit vectors, widen it if necessary.
6349       SDValue Lane = Value.getOperand(1);
6350       Value = Value.getOperand(0);
6351       if (Value.getValueType().getSizeInBits() == 64)
6352         Value = WidenVector(Value, DAG);
6353 
6354       unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
6355       return DAG.getNode(Opcode, dl, VT, Value, Lane);
6356     }
6357 
6358     if (VT.getVectorElementType().isFloatingPoint()) {
6359       SmallVector<SDValue, 8> Ops;
6360       EVT EltTy = VT.getVectorElementType();
6361       assert ((EltTy == MVT::f16 || EltTy == MVT::f32 || EltTy == MVT::f64) &&
6362               "Unsupported floating-point vector type");
6363       MVT NewType = MVT::getIntegerVT(EltTy.getSizeInBits());
6364       for (unsigned i = 0; i < NumElts; ++i)
6365         Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
6366       EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
6367       SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
6368       Val = LowerBUILD_VECTOR(Val, DAG);
6369       if (Val.getNode())
6370         return DAG.getNode(ISD::BITCAST, dl, VT, Val);
6371     }
6372   }
6373 
6374   // If there was only one constant value used and for more than one lane,
6375   // start by splatting that value, then replace the non-constant lanes. This
6376   // is better than the default, which will perform a separate initialization
6377   // for each lane.
6378   if (NumConstantLanes > 0 && usesOnlyOneConstantValue) {
6379     SDValue Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
6380     // Now insert the non-constant lanes.
6381     for (unsigned i = 0; i < NumElts; ++i) {
6382       SDValue V = Op.getOperand(i);
6383       SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
6384       if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V)) {
6385         // Note that type legalization likely mucked about with the VT of the
6386         // source operand, so we may have to convert it here before inserting.
6387         Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
6388       }
6389     }
6390     return Val;
6391   }
6392 
6393   // If all elements are constants and the case above didn't get hit, fall back
6394   // to the default expansion, which will generate a load from the constant
6395   // pool.
6396   if (isConstant)
6397     return SDValue();
6398 
6399   // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
6400   if (NumElts >= 4) {
6401     if (SDValue shuffle = ReconstructShuffle(Op, DAG))
6402       return shuffle;
6403   }
6404 
6405   // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
6406   // know the default expansion would otherwise fall back on something even
6407   // worse. For a vector with one or two non-undef values, that's
6408   // scalar_to_vector for the elements followed by a shuffle (provided the
6409   // shuffle is valid for the target) and materialization element by element
6410   // on the stack followed by a load for everything else.
6411   if (!isConstant && !usesOnlyOneValue) {
6412     SDValue Vec = DAG.getUNDEF(VT);
6413     SDValue Op0 = Op.getOperand(0);
6414     unsigned ElemSize = VT.getVectorElementType().getSizeInBits();
6415     unsigned i = 0;
6416     // For 32 and 64 bit types, use INSERT_SUBREG for lane zero to
6417     // a) Avoid a RMW dependency on the full vector register, and
6418     // b) Allow the register coalescer to fold away the copy if the
6419     //    value is already in an S or D register.
6420     // Do not do this for UNDEF/LOAD nodes because we have better patterns
6421     // for those avoiding the SCALAR_TO_VECTOR/BUILD_VECTOR.
6422     if (!Op0.isUndef() && Op0.getOpcode() != ISD::LOAD &&
6423         (ElemSize == 32 || ElemSize == 64)) {
6424       unsigned SubIdx = ElemSize == 32 ? AArch64::ssub : AArch64::dsub;
6425       MachineSDNode *N =
6426           DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, VT, Vec, Op0,
6427                              DAG.getTargetConstant(SubIdx, dl, MVT::i32));
6428       Vec = SDValue(N, 0);
6429       ++i;
6430     }
6431     for (; i < NumElts; ++i) {
6432       SDValue V = Op.getOperand(i);
6433       if (V.isUndef())
6434         continue;
6435       SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
6436       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
6437     }
6438     return Vec;
6439   }
6440 
6441   // Just use the default expansion. We failed to find a better alternative.
6442   return SDValue();
6443 }
6444 
LowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const6445 SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
6446                                                       SelectionDAG &DAG) const {
6447   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
6448 
6449   // Check for non-constant or out of range lane.
6450   EVT VT = Op.getOperand(0).getValueType();
6451   ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2));
6452   if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
6453     return SDValue();
6454 
6455 
6456   // Insertion/extraction are legal for V128 types.
6457   if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
6458       VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
6459       VT == MVT::v8f16)
6460     return Op;
6461 
6462   if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
6463       VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
6464     return SDValue();
6465 
6466   // For V64 types, we perform insertion by expanding the value
6467   // to a V128 type and perform the insertion on that.
6468   SDLoc DL(Op);
6469   SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
6470   EVT WideTy = WideVec.getValueType();
6471 
6472   SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
6473                              Op.getOperand(1), Op.getOperand(2));
6474   // Re-narrow the resultant vector.
6475   return NarrowVector(Node, DAG);
6476 }
6477 
6478 SDValue
LowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const6479 AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6480                                                SelectionDAG &DAG) const {
6481   assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
6482 
6483   // Check for non-constant or out of range lane.
6484   EVT VT = Op.getOperand(0).getValueType();
6485   ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6486   if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
6487     return SDValue();
6488 
6489 
6490   // Insertion/extraction are legal for V128 types.
6491   if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
6492       VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
6493       VT == MVT::v8f16)
6494     return Op;
6495 
6496   if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
6497       VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
6498     return SDValue();
6499 
6500   // For V64 types, we perform extraction by expanding the value
6501   // to a V128 type and perform the extraction on that.
6502   SDLoc DL(Op);
6503   SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
6504   EVT WideTy = WideVec.getValueType();
6505 
6506   EVT ExtrTy = WideTy.getVectorElementType();
6507   if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
6508     ExtrTy = MVT::i32;
6509 
6510   // For extractions, we just return the result directly.
6511   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
6512                      Op.getOperand(1));
6513 }
6514 
LowerEXTRACT_SUBVECTOR(SDValue Op,SelectionDAG & DAG) const6515 SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
6516                                                       SelectionDAG &DAG) const {
6517   EVT VT = Op.getOperand(0).getValueType();
6518   SDLoc dl(Op);
6519   // Just in case...
6520   if (!VT.isVector())
6521     return SDValue();
6522 
6523   ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6524   if (!Cst)
6525     return SDValue();
6526   unsigned Val = Cst->getZExtValue();
6527 
6528   unsigned Size = Op.getValueType().getSizeInBits();
6529 
6530   // This will get lowered to an appropriate EXTRACT_SUBREG in ISel.
6531   if (Val == 0)
6532     return Op;
6533 
6534   // If this is extracting the upper 64-bits of a 128-bit vector, we match
6535   // that directly.
6536   if (Size == 64 && Val * VT.getVectorElementType().getSizeInBits() == 64)
6537     return Op;
6538 
6539   return SDValue();
6540 }
6541 
isShuffleMaskLegal(const SmallVectorImpl<int> & M,EVT VT) const6542 bool AArch64TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
6543                                                EVT VT) const {
6544   if (VT.getVectorNumElements() == 4 &&
6545       (VT.is128BitVector() || VT.is64BitVector())) {
6546     unsigned PFIndexes[4];
6547     for (unsigned i = 0; i != 4; ++i) {
6548       if (M[i] < 0)
6549         PFIndexes[i] = 8;
6550       else
6551         PFIndexes[i] = M[i];
6552     }
6553 
6554     // Compute the index in the perfect shuffle table.
6555     unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
6556                             PFIndexes[2] * 9 + PFIndexes[3];
6557     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
6558     unsigned Cost = (PFEntry >> 30);
6559 
6560     if (Cost <= 4)
6561       return true;
6562   }
6563 
6564   bool DummyBool;
6565   int DummyInt;
6566   unsigned DummyUnsigned;
6567 
6568   return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
6569           isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
6570           isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
6571           // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
6572           isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) ||
6573           isZIPMask(M, VT, DummyUnsigned) ||
6574           isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
6575           isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
6576           isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
6577           isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) ||
6578           isConcatMask(M, VT, VT.getSizeInBits() == 128));
6579 }
6580 
6581 /// getVShiftImm - Check if this is a valid build_vector for the immediate
6582 /// operand of a vector shift operation, where all the elements of the
6583 /// build_vector must have the same constant integer value.
getVShiftImm(SDValue Op,unsigned ElementBits,int64_t & Cnt)6584 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
6585   // Ignore bit_converts.
6586   while (Op.getOpcode() == ISD::BITCAST)
6587     Op = Op.getOperand(0);
6588   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
6589   APInt SplatBits, SplatUndef;
6590   unsigned SplatBitSize;
6591   bool HasAnyUndefs;
6592   if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
6593                                     HasAnyUndefs, ElementBits) ||
6594       SplatBitSize > ElementBits)
6595     return false;
6596   Cnt = SplatBits.getSExtValue();
6597   return true;
6598 }
6599 
6600 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
6601 /// operand of a vector shift left operation.  That value must be in the range:
6602 ///   0 <= Value < ElementBits for a left shift; or
6603 ///   0 <= Value <= ElementBits for a long left shift.
isVShiftLImm(SDValue Op,EVT VT,bool isLong,int64_t & Cnt)6604 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
6605   assert(VT.isVector() && "vector shift count is not a vector type");
6606   int64_t ElementBits = VT.getVectorElementType().getSizeInBits();
6607   if (!getVShiftImm(Op, ElementBits, Cnt))
6608     return false;
6609   return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
6610 }
6611 
6612 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
6613 /// operand of a vector shift right operation. The value must be in the range:
6614 ///   1 <= Value <= ElementBits for a right shift; or
isVShiftRImm(SDValue Op,EVT VT,bool isNarrow,int64_t & Cnt)6615 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, int64_t &Cnt) {
6616   assert(VT.isVector() && "vector shift count is not a vector type");
6617   int64_t ElementBits = VT.getVectorElementType().getSizeInBits();
6618   if (!getVShiftImm(Op, ElementBits, Cnt))
6619     return false;
6620   return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
6621 }
6622 
LowerVectorSRA_SRL_SHL(SDValue Op,SelectionDAG & DAG) const6623 SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
6624                                                       SelectionDAG &DAG) const {
6625   EVT VT = Op.getValueType();
6626   SDLoc DL(Op);
6627   int64_t Cnt;
6628 
6629   if (!Op.getOperand(1).getValueType().isVector())
6630     return Op;
6631   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
6632 
6633   switch (Op.getOpcode()) {
6634   default:
6635     llvm_unreachable("unexpected shift opcode");
6636 
6637   case ISD::SHL:
6638     if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
6639       return DAG.getNode(AArch64ISD::VSHL, DL, VT, Op.getOperand(0),
6640                          DAG.getConstant(Cnt, DL, MVT::i32));
6641     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
6642                        DAG.getConstant(Intrinsic::aarch64_neon_ushl, DL,
6643                                        MVT::i32),
6644                        Op.getOperand(0), Op.getOperand(1));
6645   case ISD::SRA:
6646   case ISD::SRL:
6647     // Right shift immediate
6648     if (isVShiftRImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) {
6649       unsigned Opc =
6650           (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
6651       return DAG.getNode(Opc, DL, VT, Op.getOperand(0),
6652                          DAG.getConstant(Cnt, DL, MVT::i32));
6653     }
6654 
6655     // Right shift register.  Note, there is not a shift right register
6656     // instruction, but the shift left register instruction takes a signed
6657     // value, where negative numbers specify a right shift.
6658     unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
6659                                                 : Intrinsic::aarch64_neon_ushl;
6660     // negate the shift amount
6661     SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1));
6662     SDValue NegShiftLeft =
6663         DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
6664                     DAG.getConstant(Opc, DL, MVT::i32), Op.getOperand(0),
6665                     NegShift);
6666     return NegShiftLeft;
6667   }
6668 
6669   return SDValue();
6670 }
6671 
EmitVectorComparison(SDValue LHS,SDValue RHS,AArch64CC::CondCode CC,bool NoNans,EVT VT,const SDLoc & dl,SelectionDAG & DAG)6672 static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
6673                                     AArch64CC::CondCode CC, bool NoNans, EVT VT,
6674                                     const SDLoc &dl, SelectionDAG &DAG) {
6675   EVT SrcVT = LHS.getValueType();
6676   assert(VT.getSizeInBits() == SrcVT.getSizeInBits() &&
6677          "function only supposed to emit natural comparisons");
6678 
6679   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
6680   APInt CnstBits(VT.getSizeInBits(), 0);
6681   APInt UndefBits(VT.getSizeInBits(), 0);
6682   bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
6683   bool IsZero = IsCnst && (CnstBits == 0);
6684 
6685   if (SrcVT.getVectorElementType().isFloatingPoint()) {
6686     switch (CC) {
6687     default:
6688       return SDValue();
6689     case AArch64CC::NE: {
6690       SDValue Fcmeq;
6691       if (IsZero)
6692         Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
6693       else
6694         Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
6695       return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq);
6696     }
6697     case AArch64CC::EQ:
6698       if (IsZero)
6699         return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
6700       return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
6701     case AArch64CC::GE:
6702       if (IsZero)
6703         return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
6704       return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
6705     case AArch64CC::GT:
6706       if (IsZero)
6707         return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
6708       return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
6709     case AArch64CC::LS:
6710       if (IsZero)
6711         return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
6712       return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
6713     case AArch64CC::LT:
6714       if (!NoNans)
6715         return SDValue();
6716     // If we ignore NaNs then we can use to the MI implementation.
6717     // Fallthrough.
6718     case AArch64CC::MI:
6719       if (IsZero)
6720         return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
6721       return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
6722     }
6723   }
6724 
6725   switch (CC) {
6726   default:
6727     return SDValue();
6728   case AArch64CC::NE: {
6729     SDValue Cmeq;
6730     if (IsZero)
6731       Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
6732     else
6733       Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
6734     return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq);
6735   }
6736   case AArch64CC::EQ:
6737     if (IsZero)
6738       return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
6739     return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
6740   case AArch64CC::GE:
6741     if (IsZero)
6742       return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
6743     return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
6744   case AArch64CC::GT:
6745     if (IsZero)
6746       return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
6747     return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
6748   case AArch64CC::LE:
6749     if (IsZero)
6750       return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
6751     return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
6752   case AArch64CC::LS:
6753     return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
6754   case AArch64CC::LO:
6755     return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
6756   case AArch64CC::LT:
6757     if (IsZero)
6758       return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
6759     return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
6760   case AArch64CC::HI:
6761     return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
6762   case AArch64CC::HS:
6763     return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
6764   }
6765 }
6766 
LowerVSETCC(SDValue Op,SelectionDAG & DAG) const6767 SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
6768                                            SelectionDAG &DAG) const {
6769   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6770   SDValue LHS = Op.getOperand(0);
6771   SDValue RHS = Op.getOperand(1);
6772   EVT CmpVT = LHS.getValueType().changeVectorElementTypeToInteger();
6773   SDLoc dl(Op);
6774 
6775   if (LHS.getValueType().getVectorElementType().isInteger()) {
6776     assert(LHS.getValueType() == RHS.getValueType());
6777     AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
6778     SDValue Cmp =
6779         EmitVectorComparison(LHS, RHS, AArch64CC, false, CmpVT, dl, DAG);
6780     return DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
6781   }
6782 
6783   if (LHS.getValueType().getVectorElementType() == MVT::f16)
6784     return SDValue();
6785 
6786   assert(LHS.getValueType().getVectorElementType() == MVT::f32 ||
6787          LHS.getValueType().getVectorElementType() == MVT::f64);
6788 
6789   // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
6790   // clean.  Some of them require two branches to implement.
6791   AArch64CC::CondCode CC1, CC2;
6792   bool ShouldInvert;
6793   changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);
6794 
6795   bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath;
6796   SDValue Cmp =
6797       EmitVectorComparison(LHS, RHS, CC1, NoNaNs, CmpVT, dl, DAG);
6798   if (!Cmp.getNode())
6799     return SDValue();
6800 
6801   if (CC2 != AArch64CC::AL) {
6802     SDValue Cmp2 =
6803         EmitVectorComparison(LHS, RHS, CC2, NoNaNs, CmpVT, dl, DAG);
6804     if (!Cmp2.getNode())
6805       return SDValue();
6806 
6807     Cmp = DAG.getNode(ISD::OR, dl, CmpVT, Cmp, Cmp2);
6808   }
6809 
6810   Cmp = DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
6811 
6812   if (ShouldInvert)
6813     return Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());
6814 
6815   return Cmp;
6816 }
6817 
6818 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
6819 /// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
6820 /// specified in the intrinsic calls.
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & I,unsigned Intrinsic) const6821 bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
6822                                                const CallInst &I,
6823                                                unsigned Intrinsic) const {
6824   auto &DL = I.getModule()->getDataLayout();
6825   switch (Intrinsic) {
6826   case Intrinsic::aarch64_neon_ld2:
6827   case Intrinsic::aarch64_neon_ld3:
6828   case Intrinsic::aarch64_neon_ld4:
6829   case Intrinsic::aarch64_neon_ld1x2:
6830   case Intrinsic::aarch64_neon_ld1x3:
6831   case Intrinsic::aarch64_neon_ld1x4:
6832   case Intrinsic::aarch64_neon_ld2lane:
6833   case Intrinsic::aarch64_neon_ld3lane:
6834   case Intrinsic::aarch64_neon_ld4lane:
6835   case Intrinsic::aarch64_neon_ld2r:
6836   case Intrinsic::aarch64_neon_ld3r:
6837   case Intrinsic::aarch64_neon_ld4r: {
6838     Info.opc = ISD::INTRINSIC_W_CHAIN;
6839     // Conservatively set memVT to the entire set of vectors loaded.
6840     uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
6841     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6842     Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
6843     Info.offset = 0;
6844     Info.align = 0;
6845     Info.vol = false; // volatile loads with NEON intrinsics not supported
6846     Info.readMem = true;
6847     Info.writeMem = false;
6848     return true;
6849   }
6850   case Intrinsic::aarch64_neon_st2:
6851   case Intrinsic::aarch64_neon_st3:
6852   case Intrinsic::aarch64_neon_st4:
6853   case Intrinsic::aarch64_neon_st1x2:
6854   case Intrinsic::aarch64_neon_st1x3:
6855   case Intrinsic::aarch64_neon_st1x4:
6856   case Intrinsic::aarch64_neon_st2lane:
6857   case Intrinsic::aarch64_neon_st3lane:
6858   case Intrinsic::aarch64_neon_st4lane: {
6859     Info.opc = ISD::INTRINSIC_VOID;
6860     // Conservatively set memVT to the entire set of vectors stored.
6861     unsigned NumElts = 0;
6862     for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
6863       Type *ArgTy = I.getArgOperand(ArgI)->getType();
6864       if (!ArgTy->isVectorTy())
6865         break;
6866       NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
6867     }
6868     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6869     Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
6870     Info.offset = 0;
6871     Info.align = 0;
6872     Info.vol = false; // volatile stores with NEON intrinsics not supported
6873     Info.readMem = false;
6874     Info.writeMem = true;
6875     return true;
6876   }
6877   case Intrinsic::aarch64_ldaxr:
6878   case Intrinsic::aarch64_ldxr: {
6879     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
6880     Info.opc = ISD::INTRINSIC_W_CHAIN;
6881     Info.memVT = MVT::getVT(PtrTy->getElementType());
6882     Info.ptrVal = I.getArgOperand(0);
6883     Info.offset = 0;
6884     Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
6885     Info.vol = true;
6886     Info.readMem = true;
6887     Info.writeMem = false;
6888     return true;
6889   }
6890   case Intrinsic::aarch64_stlxr:
6891   case Intrinsic::aarch64_stxr: {
6892     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
6893     Info.opc = ISD::INTRINSIC_W_CHAIN;
6894     Info.memVT = MVT::getVT(PtrTy->getElementType());
6895     Info.ptrVal = I.getArgOperand(1);
6896     Info.offset = 0;
6897     Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
6898     Info.vol = true;
6899     Info.readMem = false;
6900     Info.writeMem = true;
6901     return true;
6902   }
6903   case Intrinsic::aarch64_ldaxp:
6904   case Intrinsic::aarch64_ldxp: {
6905     Info.opc = ISD::INTRINSIC_W_CHAIN;
6906     Info.memVT = MVT::i128;
6907     Info.ptrVal = I.getArgOperand(0);
6908     Info.offset = 0;
6909     Info.align = 16;
6910     Info.vol = true;
6911     Info.readMem = true;
6912     Info.writeMem = false;
6913     return true;
6914   }
6915   case Intrinsic::aarch64_stlxp:
6916   case Intrinsic::aarch64_stxp: {
6917     Info.opc = ISD::INTRINSIC_W_CHAIN;
6918     Info.memVT = MVT::i128;
6919     Info.ptrVal = I.getArgOperand(2);
6920     Info.offset = 0;
6921     Info.align = 16;
6922     Info.vol = true;
6923     Info.readMem = false;
6924     Info.writeMem = true;
6925     return true;
6926   }
6927   default:
6928     break;
6929   }
6930 
6931   return false;
6932 }
6933 
6934 // Truncations from 64-bit GPR to 32-bit GPR is free.
isTruncateFree(Type * Ty1,Type * Ty2) const6935 bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
6936   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6937     return false;
6938   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6939   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
6940   return NumBits1 > NumBits2;
6941 }
isTruncateFree(EVT VT1,EVT VT2) const6942 bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
6943   if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
6944     return false;
6945   unsigned NumBits1 = VT1.getSizeInBits();
6946   unsigned NumBits2 = VT2.getSizeInBits();
6947   return NumBits1 > NumBits2;
6948 }
6949 
6950 /// Check if it is profitable to hoist instruction in then/else to if.
6951 /// Not profitable if I and it's user can form a FMA instruction
6952 /// because we prefer FMSUB/FMADD.
isProfitableToHoist(Instruction * I) const6953 bool AArch64TargetLowering::isProfitableToHoist(Instruction *I) const {
6954   if (I->getOpcode() != Instruction::FMul)
6955     return true;
6956 
6957   if (I->getNumUses() != 1)
6958     return true;
6959 
6960   Instruction *User = I->user_back();
6961 
6962   if (User &&
6963       !(User->getOpcode() == Instruction::FSub ||
6964         User->getOpcode() == Instruction::FAdd))
6965     return true;
6966 
6967   const TargetOptions &Options = getTargetMachine().Options;
6968   const DataLayout &DL = I->getModule()->getDataLayout();
6969   EVT VT = getValueType(DL, User->getOperand(0)->getType());
6970 
6971   return !(isFMAFasterThanFMulAndFAdd(VT) &&
6972            isOperationLegalOrCustom(ISD::FMA, VT) &&
6973            (Options.AllowFPOpFusion == FPOpFusion::Fast ||
6974             Options.UnsafeFPMath));
6975 }
6976 
6977 // All 32-bit GPR operations implicitly zero the high-half of the corresponding
6978 // 64-bit GPR.
isZExtFree(Type * Ty1,Type * Ty2) const6979 bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
6980   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6981     return false;
6982   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6983   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
6984   return NumBits1 == 32 && NumBits2 == 64;
6985 }
isZExtFree(EVT VT1,EVT VT2) const6986 bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
6987   if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
6988     return false;
6989   unsigned NumBits1 = VT1.getSizeInBits();
6990   unsigned NumBits2 = VT2.getSizeInBits();
6991   return NumBits1 == 32 && NumBits2 == 64;
6992 }
6993 
isZExtFree(SDValue Val,EVT VT2) const6994 bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
6995   EVT VT1 = Val.getValueType();
6996   if (isZExtFree(VT1, VT2)) {
6997     return true;
6998   }
6999 
7000   if (Val.getOpcode() != ISD::LOAD)
7001     return false;
7002 
7003   // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
7004   return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() &&
7005           VT2.isSimple() && !VT2.isVector() && VT2.isInteger() &&
7006           VT1.getSizeInBits() <= 32);
7007 }
7008 
isExtFreeImpl(const Instruction * Ext) const7009 bool AArch64TargetLowering::isExtFreeImpl(const Instruction *Ext) const {
7010   if (isa<FPExtInst>(Ext))
7011     return false;
7012 
7013   // Vector types are next free.
7014   if (Ext->getType()->isVectorTy())
7015     return false;
7016 
7017   for (const Use &U : Ext->uses()) {
7018     // The extension is free if we can fold it with a left shift in an
7019     // addressing mode or an arithmetic operation: add, sub, and cmp.
7020 
7021     // Is there a shift?
7022     const Instruction *Instr = cast<Instruction>(U.getUser());
7023 
7024     // Is this a constant shift?
7025     switch (Instr->getOpcode()) {
7026     case Instruction::Shl:
7027       if (!isa<ConstantInt>(Instr->getOperand(1)))
7028         return false;
7029       break;
7030     case Instruction::GetElementPtr: {
7031       gep_type_iterator GTI = gep_type_begin(Instr);
7032       auto &DL = Ext->getModule()->getDataLayout();
7033       std::advance(GTI, U.getOperandNo());
7034       Type *IdxTy = *GTI;
7035       // This extension will end up with a shift because of the scaling factor.
7036       // 8-bit sized types have a scaling factor of 1, thus a shift amount of 0.
7037       // Get the shift amount based on the scaling factor:
7038       // log2(sizeof(IdxTy)) - log2(8).
7039       uint64_t ShiftAmt =
7040           countTrailingZeros(DL.getTypeStoreSizeInBits(IdxTy)) - 3;
7041       // Is the constant foldable in the shift of the addressing mode?
7042       // I.e., shift amount is between 1 and 4 inclusive.
7043       if (ShiftAmt == 0 || ShiftAmt > 4)
7044         return false;
7045       break;
7046     }
7047     case Instruction::Trunc:
7048       // Check if this is a noop.
7049       // trunc(sext ty1 to ty2) to ty1.
7050       if (Instr->getType() == Ext->getOperand(0)->getType())
7051         continue;
7052     // FALL THROUGH.
7053     default:
7054       return false;
7055     }
7056 
7057     // At this point we can use the bfm family, so this extension is free
7058     // for that use.
7059   }
7060   return true;
7061 }
7062 
hasPairedLoad(Type * LoadedType,unsigned & RequiredAligment) const7063 bool AArch64TargetLowering::hasPairedLoad(Type *LoadedType,
7064                                           unsigned &RequiredAligment) const {
7065   if (!LoadedType->isIntegerTy() && !LoadedType->isFloatTy())
7066     return false;
7067   // Cyclone supports unaligned accesses.
7068   RequiredAligment = 0;
7069   unsigned NumBits = LoadedType->getPrimitiveSizeInBits();
7070   return NumBits == 32 || NumBits == 64;
7071 }
7072 
hasPairedLoad(EVT LoadedType,unsigned & RequiredAligment) const7073 bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
7074                                           unsigned &RequiredAligment) const {
7075   if (!LoadedType.isSimple() ||
7076       (!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
7077     return false;
7078   // Cyclone supports unaligned accesses.
7079   RequiredAligment = 0;
7080   unsigned NumBits = LoadedType.getSizeInBits();
7081   return NumBits == 32 || NumBits == 64;
7082 }
7083 
7084 /// \brief Lower an interleaved load into a ldN intrinsic.
7085 ///
7086 /// E.g. Lower an interleaved load (Factor = 2):
7087 ///        %wide.vec = load <8 x i32>, <8 x i32>* %ptr
7088 ///        %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6>  ; Extract even elements
7089 ///        %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7>  ; Extract odd elements
7090 ///
7091 ///      Into:
7092 ///        %ld2 = { <4 x i32>, <4 x i32> } call llvm.aarch64.neon.ld2(%ptr)
7093 ///        %vec0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0
7094 ///        %vec1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1
lowerInterleavedLoad(LoadInst * LI,ArrayRef<ShuffleVectorInst * > Shuffles,ArrayRef<unsigned> Indices,unsigned Factor) const7095 bool AArch64TargetLowering::lowerInterleavedLoad(
7096     LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
7097     ArrayRef<unsigned> Indices, unsigned Factor) const {
7098   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
7099          "Invalid interleave factor");
7100   assert(!Shuffles.empty() && "Empty shufflevector input");
7101   assert(Shuffles.size() == Indices.size() &&
7102          "Unmatched number of shufflevectors and indices");
7103 
7104   const DataLayout &DL = LI->getModule()->getDataLayout();
7105 
7106   VectorType *VecTy = Shuffles[0]->getType();
7107   unsigned VecSize = DL.getTypeSizeInBits(VecTy);
7108 
7109   // Skip if we do not have NEON and skip illegal vector types.
7110   if (!Subtarget->hasNEON() || (VecSize != 64 && VecSize != 128))
7111     return false;
7112 
7113   // A pointer vector can not be the return type of the ldN intrinsics. Need to
7114   // load integer vectors first and then convert to pointer vectors.
7115   Type *EltTy = VecTy->getVectorElementType();
7116   if (EltTy->isPointerTy())
7117     VecTy =
7118         VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
7119 
7120   Type *PtrTy = VecTy->getPointerTo(LI->getPointerAddressSpace());
7121   Type *Tys[2] = {VecTy, PtrTy};
7122   static const Intrinsic::ID LoadInts[3] = {Intrinsic::aarch64_neon_ld2,
7123                                             Intrinsic::aarch64_neon_ld3,
7124                                             Intrinsic::aarch64_neon_ld4};
7125   Function *LdNFunc =
7126       Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
7127 
7128   IRBuilder<> Builder(LI);
7129   Value *Ptr = Builder.CreateBitCast(LI->getPointerOperand(), PtrTy);
7130 
7131   CallInst *LdN = Builder.CreateCall(LdNFunc, Ptr, "ldN");
7132 
7133   // Replace uses of each shufflevector with the corresponding vector loaded
7134   // by ldN.
7135   for (unsigned i = 0; i < Shuffles.size(); i++) {
7136     ShuffleVectorInst *SVI = Shuffles[i];
7137     unsigned Index = Indices[i];
7138 
7139     Value *SubVec = Builder.CreateExtractValue(LdN, Index);
7140 
7141     // Convert the integer vector to pointer vector if the element is pointer.
7142     if (EltTy->isPointerTy())
7143       SubVec = Builder.CreateIntToPtr(SubVec, SVI->getType());
7144 
7145     SVI->replaceAllUsesWith(SubVec);
7146   }
7147 
7148   return true;
7149 }
7150 
7151 /// \brief Get a mask consisting of sequential integers starting from \p Start.
7152 ///
7153 /// I.e. <Start, Start + 1, ..., Start + NumElts - 1>
getSequentialMask(IRBuilder<> & Builder,unsigned Start,unsigned NumElts)7154 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned Start,
7155                                    unsigned NumElts) {
7156   SmallVector<Constant *, 16> Mask;
7157   for (unsigned i = 0; i < NumElts; i++)
7158     Mask.push_back(Builder.getInt32(Start + i));
7159 
7160   return ConstantVector::get(Mask);
7161 }
7162 
7163 /// \brief Lower an interleaved store into a stN intrinsic.
7164 ///
7165 /// E.g. Lower an interleaved store (Factor = 3):
7166 ///        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
7167 ///                                  <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
7168 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr
7169 ///
7170 ///      Into:
7171 ///        %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
7172 ///        %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
7173 ///        %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
7174 ///        call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
7175 ///
7176 /// Note that the new shufflevectors will be removed and we'll only generate one
7177 /// st3 instruction in CodeGen.
lowerInterleavedStore(StoreInst * SI,ShuffleVectorInst * SVI,unsigned Factor) const7178 bool AArch64TargetLowering::lowerInterleavedStore(StoreInst *SI,
7179                                                   ShuffleVectorInst *SVI,
7180                                                   unsigned Factor) const {
7181   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
7182          "Invalid interleave factor");
7183 
7184   VectorType *VecTy = SVI->getType();
7185   assert(VecTy->getVectorNumElements() % Factor == 0 &&
7186          "Invalid interleaved store");
7187 
7188   unsigned NumSubElts = VecTy->getVectorNumElements() / Factor;
7189   Type *EltTy = VecTy->getVectorElementType();
7190   VectorType *SubVecTy = VectorType::get(EltTy, NumSubElts);
7191 
7192   const DataLayout &DL = SI->getModule()->getDataLayout();
7193   unsigned SubVecSize = DL.getTypeSizeInBits(SubVecTy);
7194 
7195   // Skip if we do not have NEON and skip illegal vector types.
7196   if (!Subtarget->hasNEON() || (SubVecSize != 64 && SubVecSize != 128))
7197     return false;
7198 
7199   Value *Op0 = SVI->getOperand(0);
7200   Value *Op1 = SVI->getOperand(1);
7201   IRBuilder<> Builder(SI);
7202 
7203   // StN intrinsics don't support pointer vectors as arguments. Convert pointer
7204   // vectors to integer vectors.
7205   if (EltTy->isPointerTy()) {
7206     Type *IntTy = DL.getIntPtrType(EltTy);
7207     unsigned NumOpElts =
7208         dyn_cast<VectorType>(Op0->getType())->getVectorNumElements();
7209 
7210     // Convert to the corresponding integer vector.
7211     Type *IntVecTy = VectorType::get(IntTy, NumOpElts);
7212     Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
7213     Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
7214 
7215     SubVecTy = VectorType::get(IntTy, NumSubElts);
7216   }
7217 
7218   Type *PtrTy = SubVecTy->getPointerTo(SI->getPointerAddressSpace());
7219   Type *Tys[2] = {SubVecTy, PtrTy};
7220   static const Intrinsic::ID StoreInts[3] = {Intrinsic::aarch64_neon_st2,
7221                                              Intrinsic::aarch64_neon_st3,
7222                                              Intrinsic::aarch64_neon_st4};
7223   Function *StNFunc =
7224       Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys);
7225 
7226   SmallVector<Value *, 5> Ops;
7227 
7228   // Split the shufflevector operands into sub vectors for the new stN call.
7229   for (unsigned i = 0; i < Factor; i++)
7230     Ops.push_back(Builder.CreateShuffleVector(
7231         Op0, Op1, getSequentialMask(Builder, NumSubElts * i, NumSubElts)));
7232 
7233   Ops.push_back(Builder.CreateBitCast(SI->getPointerOperand(), PtrTy));
7234   Builder.CreateCall(StNFunc, Ops);
7235   return true;
7236 }
7237 
memOpAlign(unsigned DstAlign,unsigned SrcAlign,unsigned AlignCheck)7238 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
7239                        unsigned AlignCheck) {
7240   return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
7241           (DstAlign == 0 || DstAlign % AlignCheck == 0));
7242 }
7243 
getOptimalMemOpType(uint64_t Size,unsigned DstAlign,unsigned SrcAlign,bool IsMemset,bool ZeroMemset,bool MemcpyStrSrc,MachineFunction & MF) const7244 EVT AArch64TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
7245                                                unsigned SrcAlign, bool IsMemset,
7246                                                bool ZeroMemset,
7247                                                bool MemcpyStrSrc,
7248                                                MachineFunction &MF) const {
7249   // Don't use AdvSIMD to implement 16-byte memset. It would have taken one
7250   // instruction to materialize the v2i64 zero and one store (with restrictive
7251   // addressing mode). Just do two i64 store of zero-registers.
7252   bool Fast;
7253   const Function *F = MF.getFunction();
7254   if (Subtarget->hasFPARMv8() && !IsMemset && Size >= 16 &&
7255       !F->hasFnAttribute(Attribute::NoImplicitFloat) &&
7256       (memOpAlign(SrcAlign, DstAlign, 16) ||
7257        (allowsMisalignedMemoryAccesses(MVT::f128, 0, 1, &Fast) && Fast)))
7258     return MVT::f128;
7259 
7260   if (Size >= 8 &&
7261       (memOpAlign(SrcAlign, DstAlign, 8) ||
7262        (allowsMisalignedMemoryAccesses(MVT::i64, 0, 1, &Fast) && Fast)))
7263     return MVT::i64;
7264 
7265   if (Size >= 4 &&
7266       (memOpAlign(SrcAlign, DstAlign, 4) ||
7267        (allowsMisalignedMemoryAccesses(MVT::i32, 0, 1, &Fast) && Fast)))
7268     return MVT::i32;
7269 
7270   return MVT::Other;
7271 }
7272 
7273 // 12-bit optionally shifted immediates are legal for adds.
isLegalAddImmediate(int64_t Immed) const7274 bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
7275   // Avoid UB for INT64_MIN.
7276   if (Immed == std::numeric_limits<int64_t>::min())
7277     return false;
7278   // Same encoding for add/sub, just flip the sign.
7279   Immed = std::abs(Immed);
7280   return ((Immed >> 12) == 0 || ((Immed & 0xfff) == 0 && Immed >> 24 == 0));
7281 }
7282 
7283 // Integer comparisons are implemented with ADDS/SUBS, so the range of valid
7284 // immediates is the same as for an add or a sub.
isLegalICmpImmediate(int64_t Immed) const7285 bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
7286   return isLegalAddImmediate(Immed);
7287 }
7288 
7289 /// isLegalAddressingMode - Return true if the addressing mode represented
7290 /// by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS) const7291 bool AArch64TargetLowering::isLegalAddressingMode(const DataLayout &DL,
7292                                                   const AddrMode &AM, Type *Ty,
7293                                                   unsigned AS) const {
7294   // AArch64 has five basic addressing modes:
7295   //  reg
7296   //  reg + 9-bit signed offset
7297   //  reg + SIZE_IN_BYTES * 12-bit unsigned offset
7298   //  reg1 + reg2
7299   //  reg + SIZE_IN_BYTES * reg
7300 
7301   // No global is ever allowed as a base.
7302   if (AM.BaseGV)
7303     return false;
7304 
7305   // No reg+reg+imm addressing.
7306   if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
7307     return false;
7308 
7309   // check reg + imm case:
7310   // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
7311   uint64_t NumBytes = 0;
7312   if (Ty->isSized()) {
7313     uint64_t NumBits = DL.getTypeSizeInBits(Ty);
7314     NumBytes = NumBits / 8;
7315     if (!isPowerOf2_64(NumBits))
7316       NumBytes = 0;
7317   }
7318 
7319   if (!AM.Scale) {
7320     int64_t Offset = AM.BaseOffs;
7321 
7322     // 9-bit signed offset
7323     if (Offset >= -(1LL << 9) && Offset <= (1LL << 9) - 1)
7324       return true;
7325 
7326     // 12-bit unsigned offset
7327     unsigned shift = Log2_64(NumBytes);
7328     if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
7329         // Must be a multiple of NumBytes (NumBytes is a power of 2)
7330         (Offset >> shift) << shift == Offset)
7331       return true;
7332     return false;
7333   }
7334 
7335   // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
7336 
7337   return !AM.Scale || AM.Scale == 1 ||
7338          (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes);
7339 }
7340 
getScalingFactorCost(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS) const7341 int AArch64TargetLowering::getScalingFactorCost(const DataLayout &DL,
7342                                                 const AddrMode &AM, Type *Ty,
7343                                                 unsigned AS) const {
7344   // Scaling factors are not free at all.
7345   // Operands                     | Rt Latency
7346   // -------------------------------------------
7347   // Rt, [Xn, Xm]                 | 4
7348   // -------------------------------------------
7349   // Rt, [Xn, Xm, lsl #imm]       | Rn: 4 Rm: 5
7350   // Rt, [Xn, Wm, <extend> #imm]  |
7351   if (isLegalAddressingMode(DL, AM, Ty, AS))
7352     // Scale represents reg2 * scale, thus account for 1 if
7353     // it is not equal to 0 or 1.
7354     return AM.Scale != 0 && AM.Scale != 1;
7355   return -1;
7356 }
7357 
isFMAFasterThanFMulAndFAdd(EVT VT) const7358 bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
7359   VT = VT.getScalarType();
7360 
7361   if (!VT.isSimple())
7362     return false;
7363 
7364   switch (VT.getSimpleVT().SimpleTy) {
7365   case MVT::f32:
7366   case MVT::f64:
7367     return true;
7368   default:
7369     break;
7370   }
7371 
7372   return false;
7373 }
7374 
7375 const MCPhysReg *
getScratchRegisters(CallingConv::ID) const7376 AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
7377   // LR is a callee-save register, but we must treat it as clobbered by any call
7378   // site. Hence we include LR in the scratch registers, which are in turn added
7379   // as implicit-defs for stackmaps and patchpoints.
7380   static const MCPhysReg ScratchRegs[] = {
7381     AArch64::X16, AArch64::X17, AArch64::LR, 0
7382   };
7383   return ScratchRegs;
7384 }
7385 
7386 bool
isDesirableToCommuteWithShift(const SDNode * N) const7387 AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N) const {
7388   EVT VT = N->getValueType(0);
7389     // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
7390     // it with shift to let it be lowered to UBFX.
7391   if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
7392       isa<ConstantSDNode>(N->getOperand(1))) {
7393     uint64_t TruncMask = N->getConstantOperandVal(1);
7394     if (isMask_64(TruncMask) &&
7395       N->getOperand(0).getOpcode() == ISD::SRL &&
7396       isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
7397       return false;
7398   }
7399   return true;
7400 }
7401 
shouldConvertConstantLoadToIntImm(const APInt & Imm,Type * Ty) const7402 bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
7403                                                               Type *Ty) const {
7404   assert(Ty->isIntegerTy());
7405 
7406   unsigned BitSize = Ty->getPrimitiveSizeInBits();
7407   if (BitSize == 0)
7408     return false;
7409 
7410   int64_t Val = Imm.getSExtValue();
7411   if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
7412     return true;
7413 
7414   if ((int64_t)Val < 0)
7415     Val = ~Val;
7416   if (BitSize == 32)
7417     Val &= (1LL << 32) - 1;
7418 
7419   unsigned LZ = countLeadingZeros((uint64_t)Val);
7420   unsigned Shift = (63 - LZ) / 16;
7421   // MOVZ is free so return true for one or fewer MOVK.
7422   return Shift < 3;
7423 }
7424 
7425 /// Turn vector tests of the signbit in the form of:
7426 ///   xor (sra X, elt_size(X)-1), -1
7427 /// into:
7428 ///   cmge X, X, #0
foldVectorXorShiftIntoCmp(SDNode * N,SelectionDAG & DAG,const AArch64Subtarget * Subtarget)7429 static SDValue foldVectorXorShiftIntoCmp(SDNode *N, SelectionDAG &DAG,
7430                                          const AArch64Subtarget *Subtarget) {
7431   EVT VT = N->getValueType(0);
7432   if (!Subtarget->hasNEON() || !VT.isVector())
7433     return SDValue();
7434 
7435   // There must be a shift right algebraic before the xor, and the xor must be a
7436   // 'not' operation.
7437   SDValue Shift = N->getOperand(0);
7438   SDValue Ones = N->getOperand(1);
7439   if (Shift.getOpcode() != AArch64ISD::VASHR || !Shift.hasOneUse() ||
7440       !ISD::isBuildVectorAllOnes(Ones.getNode()))
7441     return SDValue();
7442 
7443   // The shift should be smearing the sign bit across each vector element.
7444   auto *ShiftAmt = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
7445   EVT ShiftEltTy = Shift.getValueType().getVectorElementType();
7446   if (!ShiftAmt || ShiftAmt->getZExtValue() != ShiftEltTy.getSizeInBits() - 1)
7447     return SDValue();
7448 
7449   return DAG.getNode(AArch64ISD::CMGEz, SDLoc(N), VT, Shift.getOperand(0));
7450 }
7451 
7452 // Generate SUBS and CSEL for integer abs.
performIntegerAbsCombine(SDNode * N,SelectionDAG & DAG)7453 static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
7454   EVT VT = N->getValueType(0);
7455 
7456   SDValue N0 = N->getOperand(0);
7457   SDValue N1 = N->getOperand(1);
7458   SDLoc DL(N);
7459 
7460   // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
7461   // and change it to SUB and CSEL.
7462   if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
7463       N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 &&
7464       N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0))
7465     if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
7466       if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) {
7467         SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
7468                                   N0.getOperand(0));
7469         // Generate SUBS & CSEL.
7470         SDValue Cmp =
7471             DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
7472                         N0.getOperand(0), DAG.getConstant(0, DL, VT));
7473         return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg,
7474                            DAG.getConstant(AArch64CC::PL, DL, MVT::i32),
7475                            SDValue(Cmp.getNode(), 1));
7476       }
7477   return SDValue();
7478 }
7479 
performXorCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const AArch64Subtarget * Subtarget)7480 static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
7481                                  TargetLowering::DAGCombinerInfo &DCI,
7482                                  const AArch64Subtarget *Subtarget) {
7483   if (DCI.isBeforeLegalizeOps())
7484     return SDValue();
7485 
7486   if (SDValue Cmp = foldVectorXorShiftIntoCmp(N, DAG, Subtarget))
7487     return Cmp;
7488 
7489   return performIntegerAbsCombine(N, DAG);
7490 }
7491 
7492 SDValue
BuildSDIVPow2(SDNode * N,const APInt & Divisor,SelectionDAG & DAG,std::vector<SDNode * > * Created) const7493 AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
7494                                      SelectionDAG &DAG,
7495                                      std::vector<SDNode *> *Created) const {
7496   AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes();
7497   if (isIntDivCheap(N->getValueType(0), Attr))
7498     return SDValue(N,0); // Lower SDIV as SDIV
7499 
7500   // fold (sdiv X, pow2)
7501   EVT VT = N->getValueType(0);
7502   if ((VT != MVT::i32 && VT != MVT::i64) ||
7503       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
7504     return SDValue();
7505 
7506   SDLoc DL(N);
7507   SDValue N0 = N->getOperand(0);
7508   unsigned Lg2 = Divisor.countTrailingZeros();
7509   SDValue Zero = DAG.getConstant(0, DL, VT);
7510   SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
7511 
7512   // Add (N0 < 0) ? Pow2 - 1 : 0;
7513   SDValue CCVal;
7514   SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL);
7515   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
7516   SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp);
7517 
7518   if (Created) {
7519     Created->push_back(Cmp.getNode());
7520     Created->push_back(Add.getNode());
7521     Created->push_back(CSel.getNode());
7522   }
7523 
7524   // Divide by pow2.
7525   SDValue SRA =
7526       DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, DL, MVT::i64));
7527 
7528   // If we're dividing by a positive value, we're done.  Otherwise, we must
7529   // negate the result.
7530   if (Divisor.isNonNegative())
7531     return SRA;
7532 
7533   if (Created)
7534     Created->push_back(SRA.getNode());
7535   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
7536 }
7537 
performMulCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const AArch64Subtarget * Subtarget)7538 static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
7539                                  TargetLowering::DAGCombinerInfo &DCI,
7540                                  const AArch64Subtarget *Subtarget) {
7541   if (DCI.isBeforeLegalizeOps())
7542     return SDValue();
7543 
7544   // Multiplication of a power of two plus/minus one can be done more
7545   // cheaply as as shift+add/sub. For now, this is true unilaterally. If
7546   // future CPUs have a cheaper MADD instruction, this may need to be
7547   // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
7548   // 64-bit is 5 cycles, so this is always a win.
7549   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
7550     const APInt &Value = C->getAPIntValue();
7551     EVT VT = N->getValueType(0);
7552     SDLoc DL(N);
7553     if (Value.isNonNegative()) {
7554       // (mul x, 2^N + 1) => (add (shl x, N), x)
7555       APInt VM1 = Value - 1;
7556       if (VM1.isPowerOf2()) {
7557         SDValue ShiftedVal =
7558             DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
7559                         DAG.getConstant(VM1.logBase2(), DL, MVT::i64));
7560         return DAG.getNode(ISD::ADD, DL, VT, ShiftedVal,
7561                            N->getOperand(0));
7562       }
7563       // (mul x, 2^N - 1) => (sub (shl x, N), x)
7564       APInt VP1 = Value + 1;
7565       if (VP1.isPowerOf2()) {
7566         SDValue ShiftedVal =
7567             DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
7568                         DAG.getConstant(VP1.logBase2(), DL, MVT::i64));
7569         return DAG.getNode(ISD::SUB, DL, VT, ShiftedVal,
7570                            N->getOperand(0));
7571       }
7572     } else {
7573       // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
7574       APInt VNP1 = -Value + 1;
7575       if (VNP1.isPowerOf2()) {
7576         SDValue ShiftedVal =
7577             DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
7578                         DAG.getConstant(VNP1.logBase2(), DL, MVT::i64));
7579         return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0),
7580                            ShiftedVal);
7581       }
7582       // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
7583       APInt VNM1 = -Value - 1;
7584       if (VNM1.isPowerOf2()) {
7585         SDValue ShiftedVal =
7586             DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
7587                         DAG.getConstant(VNM1.logBase2(), DL, MVT::i64));
7588         SDValue Add =
7589             DAG.getNode(ISD::ADD, DL, VT, ShiftedVal, N->getOperand(0));
7590         return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Add);
7591       }
7592     }
7593   }
7594   return SDValue();
7595 }
7596 
performVectorCompareAndMaskUnaryOpCombine(SDNode * N,SelectionDAG & DAG)7597 static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
7598                                                          SelectionDAG &DAG) {
7599   // Take advantage of vector comparisons producing 0 or -1 in each lane to
7600   // optimize away operation when it's from a constant.
7601   //
7602   // The general transformation is:
7603   //    UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
7604   //       AND(VECTOR_CMP(x,y), constant2)
7605   //    constant2 = UNARYOP(constant)
7606 
7607   // Early exit if this isn't a vector operation, the operand of the
7608   // unary operation isn't a bitwise AND, or if the sizes of the operations
7609   // aren't the same.
7610   EVT VT = N->getValueType(0);
7611   if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
7612       N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
7613       VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
7614     return SDValue();
7615 
7616   // Now check that the other operand of the AND is a constant. We could
7617   // make the transformation for non-constant splats as well, but it's unclear
7618   // that would be a benefit as it would not eliminate any operations, just
7619   // perform one more step in scalar code before moving to the vector unit.
7620   if (BuildVectorSDNode *BV =
7621           dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
7622     // Bail out if the vector isn't a constant.
7623     if (!BV->isConstant())
7624       return SDValue();
7625 
7626     // Everything checks out. Build up the new and improved node.
7627     SDLoc DL(N);
7628     EVT IntVT = BV->getValueType(0);
7629     // Create a new constant of the appropriate type for the transformed
7630     // DAG.
7631     SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
7632     // The AND node needs bitcasts to/from an integer vector type around it.
7633     SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
7634     SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
7635                                  N->getOperand(0)->getOperand(0), MaskConst);
7636     SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
7637     return Res;
7638   }
7639 
7640   return SDValue();
7641 }
7642 
performIntToFpCombine(SDNode * N,SelectionDAG & DAG,const AArch64Subtarget * Subtarget)7643 static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG,
7644                                      const AArch64Subtarget *Subtarget) {
7645   // First try to optimize away the conversion when it's conditionally from
7646   // a constant. Vectors only.
7647   if (SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG))
7648     return Res;
7649 
7650   EVT VT = N->getValueType(0);
7651   if (VT != MVT::f32 && VT != MVT::f64)
7652     return SDValue();
7653 
7654   // Only optimize when the source and destination types have the same width.
7655   if (VT.getSizeInBits() != N->getOperand(0).getValueType().getSizeInBits())
7656     return SDValue();
7657 
7658   // If the result of an integer load is only used by an integer-to-float
7659   // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
7660   // This eliminates an "integer-to-vector-move" UOP and improves throughput.
7661   SDValue N0 = N->getOperand(0);
7662   if (Subtarget->hasNEON() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
7663       // Do not change the width of a volatile load.
7664       !cast<LoadSDNode>(N0)->isVolatile()) {
7665     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
7666     SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
7667                                LN0->getPointerInfo(), LN0->isVolatile(),
7668                                LN0->isNonTemporal(), LN0->isInvariant(),
7669                                LN0->getAlignment());
7670 
7671     // Make sure successors of the original load stay after it by updating them
7672     // to use the new Chain.
7673     DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));
7674 
7675     unsigned Opcode =
7676         (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
7677     return DAG.getNode(Opcode, SDLoc(N), VT, Load);
7678   }
7679 
7680   return SDValue();
7681 }
7682 
7683 /// Fold a floating-point multiply by power of two into floating-point to
7684 /// fixed-point conversion.
performFpToIntCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const AArch64Subtarget * Subtarget)7685 static SDValue performFpToIntCombine(SDNode *N, SelectionDAG &DAG,
7686                                      TargetLowering::DAGCombinerInfo &DCI,
7687                                      const AArch64Subtarget *Subtarget) {
7688   if (!Subtarget->hasNEON())
7689     return SDValue();
7690 
7691   SDValue Op = N->getOperand(0);
7692   if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
7693       Op.getOpcode() != ISD::FMUL)
7694     return SDValue();
7695 
7696   SDValue ConstVec = Op->getOperand(1);
7697   if (!isa<BuildVectorSDNode>(ConstVec))
7698     return SDValue();
7699 
7700   MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
7701   uint32_t FloatBits = FloatTy.getSizeInBits();
7702   if (FloatBits != 32 && FloatBits != 64)
7703     return SDValue();
7704 
7705   MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
7706   uint32_t IntBits = IntTy.getSizeInBits();
7707   if (IntBits != 16 && IntBits != 32 && IntBits != 64)
7708     return SDValue();
7709 
7710   // Avoid conversions where iN is larger than the float (e.g., float -> i64).
7711   if (IntBits > FloatBits)
7712     return SDValue();
7713 
7714   BitVector UndefElements;
7715   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
7716   int32_t Bits = IntBits == 64 ? 64 : 32;
7717   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, Bits + 1);
7718   if (C == -1 || C == 0 || C > Bits)
7719     return SDValue();
7720 
7721   MVT ResTy;
7722   unsigned NumLanes = Op.getValueType().getVectorNumElements();
7723   switch (NumLanes) {
7724   default:
7725     return SDValue();
7726   case 2:
7727     ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
7728     break;
7729   case 4:
7730     ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64;
7731     break;
7732   }
7733 
7734   if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps())
7735     return SDValue();
7736 
7737   assert((ResTy != MVT::v4i64 || DCI.isBeforeLegalizeOps()) &&
7738          "Illegal vector type after legalization");
7739 
7740   SDLoc DL(N);
7741   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
7742   unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfp2fxs
7743                                       : Intrinsic::aarch64_neon_vcvtfp2fxu;
7744   SDValue FixConv =
7745       DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, ResTy,
7746                   DAG.getConstant(IntrinsicOpcode, DL, MVT::i32),
7747                   Op->getOperand(0), DAG.getConstant(C, DL, MVT::i32));
7748   // We can handle smaller integers by generating an extra trunc.
7749   if (IntBits < FloatBits)
7750     FixConv = DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), FixConv);
7751 
7752   return FixConv;
7753 }
7754 
7755 /// Fold a floating-point divide by power of two into fixed-point to
7756 /// floating-point conversion.
performFDivCombine(SDNode * N,SelectionDAG & DAG,const AArch64Subtarget * Subtarget)7757 static SDValue performFDivCombine(SDNode *N, SelectionDAG &DAG,
7758                                   const AArch64Subtarget *Subtarget) {
7759   if (!Subtarget->hasNEON())
7760     return SDValue();
7761 
7762   SDValue Op = N->getOperand(0);
7763   unsigned Opc = Op->getOpcode();
7764   if (!Op.getValueType().isVector() ||
7765       (Opc != ISD::SINT_TO_FP && Opc != ISD::UINT_TO_FP))
7766     return SDValue();
7767 
7768   SDValue ConstVec = N->getOperand(1);
7769   if (!isa<BuildVectorSDNode>(ConstVec))
7770     return SDValue();
7771 
7772   MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
7773   int32_t IntBits = IntTy.getSizeInBits();
7774   if (IntBits != 16 && IntBits != 32 && IntBits != 64)
7775     return SDValue();
7776 
7777   MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
7778   int32_t FloatBits = FloatTy.getSizeInBits();
7779   if (FloatBits != 32 && FloatBits != 64)
7780     return SDValue();
7781 
7782   // Avoid conversions where iN is larger than the float (e.g., i64 -> float).
7783   if (IntBits > FloatBits)
7784     return SDValue();
7785 
7786   BitVector UndefElements;
7787   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
7788   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, FloatBits + 1);
7789   if (C == -1 || C == 0 || C > FloatBits)
7790     return SDValue();
7791 
7792   MVT ResTy;
7793   unsigned NumLanes = Op.getValueType().getVectorNumElements();
7794   switch (NumLanes) {
7795   default:
7796     return SDValue();
7797   case 2:
7798     ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
7799     break;
7800   case 4:
7801     ResTy = MVT::v4i32;
7802     break;
7803   }
7804 
7805   SDLoc DL(N);
7806   SDValue ConvInput = Op.getOperand(0);
7807   bool IsSigned = Opc == ISD::SINT_TO_FP;
7808   if (IntBits < FloatBits)
7809     ConvInput = DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL,
7810                             ResTy, ConvInput);
7811 
7812   unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfxs2fp
7813                                       : Intrinsic::aarch64_neon_vcvtfxu2fp;
7814   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(),
7815                      DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), ConvInput,
7816                      DAG.getConstant(C, DL, MVT::i32));
7817 }
7818 
7819 /// An EXTR instruction is made up of two shifts, ORed together. This helper
7820 /// searches for and classifies those shifts.
findEXTRHalf(SDValue N,SDValue & Src,uint32_t & ShiftAmount,bool & FromHi)7821 static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
7822                          bool &FromHi) {
7823   if (N.getOpcode() == ISD::SHL)
7824     FromHi = false;
7825   else if (N.getOpcode() == ISD::SRL)
7826     FromHi = true;
7827   else
7828     return false;
7829 
7830   if (!isa<ConstantSDNode>(N.getOperand(1)))
7831     return false;
7832 
7833   ShiftAmount = N->getConstantOperandVal(1);
7834   Src = N->getOperand(0);
7835   return true;
7836 }
7837 
7838 /// EXTR instruction extracts a contiguous chunk of bits from two existing
7839 /// registers viewed as a high/low pair. This function looks for the pattern:
7840 /// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
7841 /// EXTR. Can't quite be done in TableGen because the two immediates aren't
7842 /// independent.
tryCombineToEXTR(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)7843 static SDValue tryCombineToEXTR(SDNode *N,
7844                                 TargetLowering::DAGCombinerInfo &DCI) {
7845   SelectionDAG &DAG = DCI.DAG;
7846   SDLoc DL(N);
7847   EVT VT = N->getValueType(0);
7848 
7849   assert(N->getOpcode() == ISD::OR && "Unexpected root");
7850 
7851   if (VT != MVT::i32 && VT != MVT::i64)
7852     return SDValue();
7853 
7854   SDValue LHS;
7855   uint32_t ShiftLHS = 0;
7856   bool LHSFromHi = 0;
7857   if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
7858     return SDValue();
7859 
7860   SDValue RHS;
7861   uint32_t ShiftRHS = 0;
7862   bool RHSFromHi = 0;
7863   if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
7864     return SDValue();
7865 
7866   // If they're both trying to come from the high part of the register, they're
7867   // not really an EXTR.
7868   if (LHSFromHi == RHSFromHi)
7869     return SDValue();
7870 
7871   if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
7872     return SDValue();
7873 
7874   if (LHSFromHi) {
7875     std::swap(LHS, RHS);
7876     std::swap(ShiftLHS, ShiftRHS);
7877   }
7878 
7879   return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS,
7880                      DAG.getConstant(ShiftRHS, DL, MVT::i64));
7881 }
7882 
tryCombineToBSL(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)7883 static SDValue tryCombineToBSL(SDNode *N,
7884                                 TargetLowering::DAGCombinerInfo &DCI) {
7885   EVT VT = N->getValueType(0);
7886   SelectionDAG &DAG = DCI.DAG;
7887   SDLoc DL(N);
7888 
7889   if (!VT.isVector())
7890     return SDValue();
7891 
7892   SDValue N0 = N->getOperand(0);
7893   if (N0.getOpcode() != ISD::AND)
7894     return SDValue();
7895 
7896   SDValue N1 = N->getOperand(1);
7897   if (N1.getOpcode() != ISD::AND)
7898     return SDValue();
7899 
7900   // We only have to look for constant vectors here since the general, variable
7901   // case can be handled in TableGen.
7902   unsigned Bits = VT.getVectorElementType().getSizeInBits();
7903   uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
7904   for (int i = 1; i >= 0; --i)
7905     for (int j = 1; j >= 0; --j) {
7906       BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
7907       BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
7908       if (!BVN0 || !BVN1)
7909         continue;
7910 
7911       bool FoundMatch = true;
7912       for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
7913         ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
7914         ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
7915         if (!CN0 || !CN1 ||
7916             CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
7917           FoundMatch = false;
7918           break;
7919         }
7920       }
7921 
7922       if (FoundMatch)
7923         return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0),
7924                            N0->getOperand(1 - i), N1->getOperand(1 - j));
7925     }
7926 
7927   return SDValue();
7928 }
7929 
performORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const AArch64Subtarget * Subtarget)7930 static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
7931                                 const AArch64Subtarget *Subtarget) {
7932   // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
7933   SelectionDAG &DAG = DCI.DAG;
7934   EVT VT = N->getValueType(0);
7935 
7936   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
7937     return SDValue();
7938 
7939   if (SDValue Res = tryCombineToEXTR(N, DCI))
7940     return Res;
7941 
7942   if (SDValue Res = tryCombineToBSL(N, DCI))
7943     return Res;
7944 
7945   return SDValue();
7946 }
7947 
performSRLCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)7948 static SDValue performSRLCombine(SDNode *N,
7949                                  TargetLowering::DAGCombinerInfo &DCI) {
7950   SelectionDAG &DAG = DCI.DAG;
7951   EVT VT = N->getValueType(0);
7952   if (VT != MVT::i32 && VT != MVT::i64)
7953     return SDValue();
7954 
7955   // Canonicalize (srl (bswap i32 x), 16) to (rotr (bswap i32 x), 16), if the
7956   // high 16-bits of x are zero. Similarly, canonicalize (srl (bswap i64 x), 32)
7957   // to (rotr (bswap i64 x), 32), if the high 32-bits of x are zero.
7958   SDValue N0 = N->getOperand(0);
7959   if (N0.getOpcode() == ISD::BSWAP) {
7960     SDLoc DL(N);
7961     SDValue N1 = N->getOperand(1);
7962     SDValue N00 = N0.getOperand(0);
7963     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
7964       uint64_t ShiftAmt = C->getZExtValue();
7965       if (VT == MVT::i32 && ShiftAmt == 16 &&
7966           DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(32, 16)))
7967         return DAG.getNode(ISD::ROTR, DL, VT, N0, N1);
7968       if (VT == MVT::i64 && ShiftAmt == 32 &&
7969           DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(64, 32)))
7970         return DAG.getNode(ISD::ROTR, DL, VT, N0, N1);
7971     }
7972   }
7973   return SDValue();
7974 }
7975 
performBitcastCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)7976 static SDValue performBitcastCombine(SDNode *N,
7977                                      TargetLowering::DAGCombinerInfo &DCI,
7978                                      SelectionDAG &DAG) {
7979   // Wait 'til after everything is legalized to try this. That way we have
7980   // legal vector types and such.
7981   if (DCI.isBeforeLegalizeOps())
7982     return SDValue();
7983 
7984   // Remove extraneous bitcasts around an extract_subvector.
7985   // For example,
7986   //    (v4i16 (bitconvert
7987   //             (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1)))))
7988   //  becomes
7989   //    (extract_subvector ((v8i16 ...), (i64 4)))
7990 
7991   // Only interested in 64-bit vectors as the ultimate result.
7992   EVT VT = N->getValueType(0);
7993   if (!VT.isVector())
7994     return SDValue();
7995   if (VT.getSimpleVT().getSizeInBits() != 64)
7996     return SDValue();
7997   // Is the operand an extract_subvector starting at the beginning or halfway
7998   // point of the vector? A low half may also come through as an
7999   // EXTRACT_SUBREG, so look for that, too.
8000   SDValue Op0 = N->getOperand(0);
8001   if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR &&
8002       !(Op0->isMachineOpcode() &&
8003         Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG))
8004     return SDValue();
8005   uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue();
8006   if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
8007     if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0)
8008       return SDValue();
8009   } else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) {
8010     if (idx != AArch64::dsub)
8011       return SDValue();
8012     // The dsub reference is equivalent to a lane zero subvector reference.
8013     idx = 0;
8014   }
8015   // Look through the bitcast of the input to the extract.
8016   if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST)
8017     return SDValue();
8018   SDValue Source = Op0->getOperand(0)->getOperand(0);
8019   // If the source type has twice the number of elements as our destination
8020   // type, we know this is an extract of the high or low half of the vector.
8021   EVT SVT = Source->getValueType(0);
8022   if (SVT.getVectorNumElements() != VT.getVectorNumElements() * 2)
8023     return SDValue();
8024 
8025   DEBUG(dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n");
8026 
8027   // Create the simplified form to just extract the low or high half of the
8028   // vector directly rather than bothering with the bitcasts.
8029   SDLoc dl(N);
8030   unsigned NumElements = VT.getVectorNumElements();
8031   if (idx) {
8032     SDValue HalfIdx = DAG.getConstant(NumElements, dl, MVT::i64);
8033     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx);
8034   } else {
8035     SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, dl, MVT::i32);
8036     return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT,
8037                                       Source, SubReg),
8038                    0);
8039   }
8040 }
8041 
performConcatVectorsCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)8042 static SDValue performConcatVectorsCombine(SDNode *N,
8043                                            TargetLowering::DAGCombinerInfo &DCI,
8044                                            SelectionDAG &DAG) {
8045   SDLoc dl(N);
8046   EVT VT = N->getValueType(0);
8047   SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
8048 
8049   // Optimize concat_vectors of truncated vectors, where the intermediate
8050   // type is illegal, to avoid said illegality,  e.g.,
8051   //   (v4i16 (concat_vectors (v2i16 (truncate (v2i64))),
8052   //                          (v2i16 (truncate (v2i64)))))
8053   // ->
8054   //   (v4i16 (truncate (vector_shuffle (v4i32 (bitcast (v2i64))),
8055   //                                    (v4i32 (bitcast (v2i64))),
8056   //                                    <0, 2, 4, 6>)))
8057   // This isn't really target-specific, but ISD::TRUNCATE legality isn't keyed
8058   // on both input and result type, so we might generate worse code.
8059   // On AArch64 we know it's fine for v2i64->v4i16 and v4i32->v8i8.
8060   if (N->getNumOperands() == 2 &&
8061       N0->getOpcode() == ISD::TRUNCATE &&
8062       N1->getOpcode() == ISD::TRUNCATE) {
8063     SDValue N00 = N0->getOperand(0);
8064     SDValue N10 = N1->getOperand(0);
8065     EVT N00VT = N00.getValueType();
8066 
8067     if (N00VT == N10.getValueType() &&
8068         (N00VT == MVT::v2i64 || N00VT == MVT::v4i32) &&
8069         N00VT.getScalarSizeInBits() == 4 * VT.getScalarSizeInBits()) {
8070       MVT MidVT = (N00VT == MVT::v2i64 ? MVT::v4i32 : MVT::v8i16);
8071       SmallVector<int, 8> Mask(MidVT.getVectorNumElements());
8072       for (size_t i = 0; i < Mask.size(); ++i)
8073         Mask[i] = i * 2;
8074       return DAG.getNode(ISD::TRUNCATE, dl, VT,
8075                          DAG.getVectorShuffle(
8076                              MidVT, dl,
8077                              DAG.getNode(ISD::BITCAST, dl, MidVT, N00),
8078                              DAG.getNode(ISD::BITCAST, dl, MidVT, N10), Mask));
8079     }
8080   }
8081 
8082   // Wait 'til after everything is legalized to try this. That way we have
8083   // legal vector types and such.
8084   if (DCI.isBeforeLegalizeOps())
8085     return SDValue();
8086 
8087   // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
8088   // splat. The indexed instructions are going to be expecting a DUPLANE64, so
8089   // canonicalise to that.
8090   if (N0 == N1 && VT.getVectorNumElements() == 2) {
8091     assert(VT.getVectorElementType().getSizeInBits() == 64);
8092     return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT, WidenVector(N0, DAG),
8093                        DAG.getConstant(0, dl, MVT::i64));
8094   }
8095 
8096   // Canonicalise concat_vectors so that the right-hand vector has as few
8097   // bit-casts as possible before its real operation. The primary matching
8098   // destination for these operations will be the narrowing "2" instructions,
8099   // which depend on the operation being performed on this right-hand vector.
8100   // For example,
8101   //    (concat_vectors LHS,  (v1i64 (bitconvert (v4i16 RHS))))
8102   // becomes
8103   //    (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
8104 
8105   if (N1->getOpcode() != ISD::BITCAST)
8106     return SDValue();
8107   SDValue RHS = N1->getOperand(0);
8108   MVT RHSTy = RHS.getValueType().getSimpleVT();
8109   // If the RHS is not a vector, this is not the pattern we're looking for.
8110   if (!RHSTy.isVector())
8111     return SDValue();
8112 
8113   DEBUG(dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
8114 
8115   MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
8116                                   RHSTy.getVectorNumElements() * 2);
8117   return DAG.getNode(ISD::BITCAST, dl, VT,
8118                      DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
8119                                  DAG.getNode(ISD::BITCAST, dl, RHSTy, N0),
8120                                  RHS));
8121 }
8122 
tryCombineFixedPointConvert(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)8123 static SDValue tryCombineFixedPointConvert(SDNode *N,
8124                                            TargetLowering::DAGCombinerInfo &DCI,
8125                                            SelectionDAG &DAG) {
8126   // Wait 'til after everything is legalized to try this. That way we have
8127   // legal vector types and such.
8128   if (DCI.isBeforeLegalizeOps())
8129     return SDValue();
8130   // Transform a scalar conversion of a value from a lane extract into a
8131   // lane extract of a vector conversion. E.g., from foo1 to foo2:
8132   // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
8133   // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
8134   //
8135   // The second form interacts better with instruction selection and the
8136   // register allocator to avoid cross-class register copies that aren't
8137   // coalescable due to a lane reference.
8138 
8139   // Check the operand and see if it originates from a lane extract.
8140   SDValue Op1 = N->getOperand(1);
8141   if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
8142     // Yep, no additional predication needed. Perform the transform.
8143     SDValue IID = N->getOperand(0);
8144     SDValue Shift = N->getOperand(2);
8145     SDValue Vec = Op1.getOperand(0);
8146     SDValue Lane = Op1.getOperand(1);
8147     EVT ResTy = N->getValueType(0);
8148     EVT VecResTy;
8149     SDLoc DL(N);
8150 
8151     // The vector width should be 128 bits by the time we get here, even
8152     // if it started as 64 bits (the extract_vector handling will have
8153     // done so).
8154     assert(Vec.getValueType().getSizeInBits() == 128 &&
8155            "unexpected vector size on extract_vector_elt!");
8156     if (Vec.getValueType() == MVT::v4i32)
8157       VecResTy = MVT::v4f32;
8158     else if (Vec.getValueType() == MVT::v2i64)
8159       VecResTy = MVT::v2f64;
8160     else
8161       llvm_unreachable("unexpected vector type!");
8162 
8163     SDValue Convert =
8164         DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
8165     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
8166   }
8167   return SDValue();
8168 }
8169 
8170 // AArch64 high-vector "long" operations are formed by performing the non-high
8171 // version on an extract_subvector of each operand which gets the high half:
8172 //
8173 //  (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
8174 //
8175 // However, there are cases which don't have an extract_high explicitly, but
8176 // have another operation that can be made compatible with one for free. For
8177 // example:
8178 //
8179 //  (dupv64 scalar) --> (extract_high (dup128 scalar))
8180 //
8181 // This routine does the actual conversion of such DUPs, once outer routines
8182 // have determined that everything else is in order.
8183 // It also supports immediate DUP-like nodes (MOVI/MVNi), which we can fold
8184 // similarly here.
tryExtendDUPToExtractHigh(SDValue N,SelectionDAG & DAG)8185 static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
8186   switch (N.getOpcode()) {
8187   case AArch64ISD::DUP:
8188   case AArch64ISD::DUPLANE8:
8189   case AArch64ISD::DUPLANE16:
8190   case AArch64ISD::DUPLANE32:
8191   case AArch64ISD::DUPLANE64:
8192   case AArch64ISD::MOVI:
8193   case AArch64ISD::MOVIshift:
8194   case AArch64ISD::MOVIedit:
8195   case AArch64ISD::MOVImsl:
8196   case AArch64ISD::MVNIshift:
8197   case AArch64ISD::MVNImsl:
8198     break;
8199   default:
8200     // FMOV could be supported, but isn't very useful, as it would only occur
8201     // if you passed a bitcast' floating point immediate to an eligible long
8202     // integer op (addl, smull, ...).
8203     return SDValue();
8204   }
8205 
8206   MVT NarrowTy = N.getSimpleValueType();
8207   if (!NarrowTy.is64BitVector())
8208     return SDValue();
8209 
8210   MVT ElementTy = NarrowTy.getVectorElementType();
8211   unsigned NumElems = NarrowTy.getVectorNumElements();
8212   MVT NewVT = MVT::getVectorVT(ElementTy, NumElems * 2);
8213 
8214   SDLoc dl(N);
8215   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NarrowTy,
8216                      DAG.getNode(N->getOpcode(), dl, NewVT, N->ops()),
8217                      DAG.getConstant(NumElems, dl, MVT::i64));
8218 }
8219 
isEssentiallyExtractSubvector(SDValue N)8220 static bool isEssentiallyExtractSubvector(SDValue N) {
8221   if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR)
8222     return true;
8223 
8224   return N.getOpcode() == ISD::BITCAST &&
8225          N.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR;
8226 }
8227 
8228 /// \brief Helper structure to keep track of ISD::SET_CC operands.
8229 struct GenericSetCCInfo {
8230   const SDValue *Opnd0;
8231   const SDValue *Opnd1;
8232   ISD::CondCode CC;
8233 };
8234 
8235 /// \brief Helper structure to keep track of a SET_CC lowered into AArch64 code.
8236 struct AArch64SetCCInfo {
8237   const SDValue *Cmp;
8238   AArch64CC::CondCode CC;
8239 };
8240 
8241 /// \brief Helper structure to keep track of SetCC information.
8242 union SetCCInfo {
8243   GenericSetCCInfo Generic;
8244   AArch64SetCCInfo AArch64;
8245 };
8246 
8247 /// \brief Helper structure to be able to read SetCC information.  If set to
8248 /// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
8249 /// GenericSetCCInfo.
8250 struct SetCCInfoAndKind {
8251   SetCCInfo Info;
8252   bool IsAArch64;
8253 };
8254 
8255 /// \brief Check whether or not \p Op is a SET_CC operation, either a generic or
8256 /// an
8257 /// AArch64 lowered one.
8258 /// \p SetCCInfo is filled accordingly.
8259 /// \post SetCCInfo is meanginfull only when this function returns true.
8260 /// \return True when Op is a kind of SET_CC operation.
isSetCC(SDValue Op,SetCCInfoAndKind & SetCCInfo)8261 static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
8262   // If this is a setcc, this is straight forward.
8263   if (Op.getOpcode() == ISD::SETCC) {
8264     SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
8265     SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
8266     SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8267     SetCCInfo.IsAArch64 = false;
8268     return true;
8269   }
8270   // Otherwise, check if this is a matching csel instruction.
8271   // In other words:
8272   // - csel 1, 0, cc
8273   // - csel 0, 1, !cc
8274   if (Op.getOpcode() != AArch64ISD::CSEL)
8275     return false;
8276   // Set the information about the operands.
8277   // TODO: we want the operands of the Cmp not the csel
8278   SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
8279   SetCCInfo.IsAArch64 = true;
8280   SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>(
8281       cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
8282 
8283   // Check that the operands matches the constraints:
8284   // (1) Both operands must be constants.
8285   // (2) One must be 1 and the other must be 0.
8286   ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
8287   ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8288 
8289   // Check (1).
8290   if (!TValue || !FValue)
8291     return false;
8292 
8293   // Check (2).
8294   if (!TValue->isOne()) {
8295     // Update the comparison when we are interested in !cc.
8296     std::swap(TValue, FValue);
8297     SetCCInfo.Info.AArch64.CC =
8298         AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
8299   }
8300   return TValue->isOne() && FValue->isNullValue();
8301 }
8302 
8303 // Returns true if Op is setcc or zext of setcc.
isSetCCOrZExtSetCC(const SDValue & Op,SetCCInfoAndKind & Info)8304 static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
8305   if (isSetCC(Op, Info))
8306     return true;
8307   return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
8308     isSetCC(Op->getOperand(0), Info));
8309 }
8310 
8311 // The folding we want to perform is:
8312 // (add x, [zext] (setcc cc ...) )
8313 //   -->
8314 // (csel x, (add x, 1), !cc ...)
8315 //
8316 // The latter will get matched to a CSINC instruction.
performSetccAddFolding(SDNode * Op,SelectionDAG & DAG)8317 static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
8318   assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
8319   SDValue LHS = Op->getOperand(0);
8320   SDValue RHS = Op->getOperand(1);
8321   SetCCInfoAndKind InfoAndKind;
8322 
8323   // If neither operand is a SET_CC, give up.
8324   if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
8325     std::swap(LHS, RHS);
8326     if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
8327       return SDValue();
8328   }
8329 
8330   // FIXME: This could be generatized to work for FP comparisons.
8331   EVT CmpVT = InfoAndKind.IsAArch64
8332                   ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
8333                   : InfoAndKind.Info.Generic.Opnd0->getValueType();
8334   if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
8335     return SDValue();
8336 
8337   SDValue CCVal;
8338   SDValue Cmp;
8339   SDLoc dl(Op);
8340   if (InfoAndKind.IsAArch64) {
8341     CCVal = DAG.getConstant(
8342         AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), dl,
8343         MVT::i32);
8344     Cmp = *InfoAndKind.Info.AArch64.Cmp;
8345   } else
8346     Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0,
8347                       *InfoAndKind.Info.Generic.Opnd1,
8348                       ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true),
8349                       CCVal, DAG, dl);
8350 
8351   EVT VT = Op->getValueType(0);
8352   LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, dl, VT));
8353   return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
8354 }
8355 
8356 // The basic add/sub long vector instructions have variants with "2" on the end
8357 // which act on the high-half of their inputs. They are normally matched by
8358 // patterns like:
8359 //
8360 // (add (zeroext (extract_high LHS)),
8361 //      (zeroext (extract_high RHS)))
8362 // -> uaddl2 vD, vN, vM
8363 //
8364 // However, if one of the extracts is something like a duplicate, this
8365 // instruction can still be used profitably. This function puts the DAG into a
8366 // more appropriate form for those patterns to trigger.
performAddSubLongCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)8367 static SDValue performAddSubLongCombine(SDNode *N,
8368                                         TargetLowering::DAGCombinerInfo &DCI,
8369                                         SelectionDAG &DAG) {
8370   if (DCI.isBeforeLegalizeOps())
8371     return SDValue();
8372 
8373   MVT VT = N->getSimpleValueType(0);
8374   if (!VT.is128BitVector()) {
8375     if (N->getOpcode() == ISD::ADD)
8376       return performSetccAddFolding(N, DAG);
8377     return SDValue();
8378   }
8379 
8380   // Make sure both branches are extended in the same way.
8381   SDValue LHS = N->getOperand(0);
8382   SDValue RHS = N->getOperand(1);
8383   if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
8384        LHS.getOpcode() != ISD::SIGN_EXTEND) ||
8385       LHS.getOpcode() != RHS.getOpcode())
8386     return SDValue();
8387 
8388   unsigned ExtType = LHS.getOpcode();
8389 
8390   // It's not worth doing if at least one of the inputs isn't already an
8391   // extract, but we don't know which it'll be so we have to try both.
8392   if (isEssentiallyExtractSubvector(LHS.getOperand(0))) {
8393     RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
8394     if (!RHS.getNode())
8395       return SDValue();
8396 
8397     RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
8398   } else if (isEssentiallyExtractSubvector(RHS.getOperand(0))) {
8399     LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
8400     if (!LHS.getNode())
8401       return SDValue();
8402 
8403     LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
8404   }
8405 
8406   return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
8407 }
8408 
8409 // Massage DAGs which we can use the high-half "long" operations on into
8410 // something isel will recognize better. E.g.
8411 //
8412 // (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
8413 //   (aarch64_neon_umull (extract_high (v2i64 vec)))
8414 //                     (extract_high (v2i64 (dup128 scalar)))))
8415 //
tryCombineLongOpWithDup(unsigned IID,SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)8416 static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N,
8417                                        TargetLowering::DAGCombinerInfo &DCI,
8418                                        SelectionDAG &DAG) {
8419   if (DCI.isBeforeLegalizeOps())
8420     return SDValue();
8421 
8422   SDValue LHS = N->getOperand(1);
8423   SDValue RHS = N->getOperand(2);
8424   assert(LHS.getValueType().is64BitVector() &&
8425          RHS.getValueType().is64BitVector() &&
8426          "unexpected shape for long operation");
8427 
8428   // Either node could be a DUP, but it's not worth doing both of them (you'd
8429   // just as well use the non-high version) so look for a corresponding extract
8430   // operation on the other "wing".
8431   if (isEssentiallyExtractSubvector(LHS)) {
8432     RHS = tryExtendDUPToExtractHigh(RHS, DAG);
8433     if (!RHS.getNode())
8434       return SDValue();
8435   } else if (isEssentiallyExtractSubvector(RHS)) {
8436     LHS = tryExtendDUPToExtractHigh(LHS, DAG);
8437     if (!LHS.getNode())
8438       return SDValue();
8439   }
8440 
8441   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
8442                      N->getOperand(0), LHS, RHS);
8443 }
8444 
tryCombineShiftImm(unsigned IID,SDNode * N,SelectionDAG & DAG)8445 static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
8446   MVT ElemTy = N->getSimpleValueType(0).getScalarType();
8447   unsigned ElemBits = ElemTy.getSizeInBits();
8448 
8449   int64_t ShiftAmount;
8450   if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
8451     APInt SplatValue, SplatUndef;
8452     unsigned SplatBitSize;
8453     bool HasAnyUndefs;
8454     if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
8455                               HasAnyUndefs, ElemBits) ||
8456         SplatBitSize != ElemBits)
8457       return SDValue();
8458 
8459     ShiftAmount = SplatValue.getSExtValue();
8460   } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
8461     ShiftAmount = CVN->getSExtValue();
8462   } else
8463     return SDValue();
8464 
8465   unsigned Opcode;
8466   bool IsRightShift;
8467   switch (IID) {
8468   default:
8469     llvm_unreachable("Unknown shift intrinsic");
8470   case Intrinsic::aarch64_neon_sqshl:
8471     Opcode = AArch64ISD::SQSHL_I;
8472     IsRightShift = false;
8473     break;
8474   case Intrinsic::aarch64_neon_uqshl:
8475     Opcode = AArch64ISD::UQSHL_I;
8476     IsRightShift = false;
8477     break;
8478   case Intrinsic::aarch64_neon_srshl:
8479     Opcode = AArch64ISD::SRSHR_I;
8480     IsRightShift = true;
8481     break;
8482   case Intrinsic::aarch64_neon_urshl:
8483     Opcode = AArch64ISD::URSHR_I;
8484     IsRightShift = true;
8485     break;
8486   case Intrinsic::aarch64_neon_sqshlu:
8487     Opcode = AArch64ISD::SQSHLU_I;
8488     IsRightShift = false;
8489     break;
8490   }
8491 
8492   if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits) {
8493     SDLoc dl(N);
8494     return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
8495                        DAG.getConstant(-ShiftAmount, dl, MVT::i32));
8496   } else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits) {
8497     SDLoc dl(N);
8498     return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
8499                        DAG.getConstant(ShiftAmount, dl, MVT::i32));
8500   }
8501 
8502   return SDValue();
8503 }
8504 
8505 // The CRC32[BH] instructions ignore the high bits of their data operand. Since
8506 // the intrinsics must be legal and take an i32, this means there's almost
8507 // certainly going to be a zext in the DAG which we can eliminate.
tryCombineCRC32(unsigned Mask,SDNode * N,SelectionDAG & DAG)8508 static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
8509   SDValue AndN = N->getOperand(2);
8510   if (AndN.getOpcode() != ISD::AND)
8511     return SDValue();
8512 
8513   ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
8514   if (!CMask || CMask->getZExtValue() != Mask)
8515     return SDValue();
8516 
8517   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
8518                      N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
8519 }
8520 
combineAcrossLanesIntrinsic(unsigned Opc,SDNode * N,SelectionDAG & DAG)8521 static SDValue combineAcrossLanesIntrinsic(unsigned Opc, SDNode *N,
8522                                            SelectionDAG &DAG) {
8523   SDLoc dl(N);
8524   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0),
8525                      DAG.getNode(Opc, dl,
8526                                  N->getOperand(1).getSimpleValueType(),
8527                                  N->getOperand(1)),
8528                      DAG.getConstant(0, dl, MVT::i64));
8529 }
8530 
performIntrinsicCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const AArch64Subtarget * Subtarget)8531 static SDValue performIntrinsicCombine(SDNode *N,
8532                                        TargetLowering::DAGCombinerInfo &DCI,
8533                                        const AArch64Subtarget *Subtarget) {
8534   SelectionDAG &DAG = DCI.DAG;
8535   unsigned IID = getIntrinsicID(N);
8536   switch (IID) {
8537   default:
8538     break;
8539   case Intrinsic::aarch64_neon_vcvtfxs2fp:
8540   case Intrinsic::aarch64_neon_vcvtfxu2fp:
8541     return tryCombineFixedPointConvert(N, DCI, DAG);
8542   case Intrinsic::aarch64_neon_saddv:
8543     return combineAcrossLanesIntrinsic(AArch64ISD::SADDV, N, DAG);
8544   case Intrinsic::aarch64_neon_uaddv:
8545     return combineAcrossLanesIntrinsic(AArch64ISD::UADDV, N, DAG);
8546   case Intrinsic::aarch64_neon_sminv:
8547     return combineAcrossLanesIntrinsic(AArch64ISD::SMINV, N, DAG);
8548   case Intrinsic::aarch64_neon_uminv:
8549     return combineAcrossLanesIntrinsic(AArch64ISD::UMINV, N, DAG);
8550   case Intrinsic::aarch64_neon_smaxv:
8551     return combineAcrossLanesIntrinsic(AArch64ISD::SMAXV, N, DAG);
8552   case Intrinsic::aarch64_neon_umaxv:
8553     return combineAcrossLanesIntrinsic(AArch64ISD::UMAXV, N, DAG);
8554   case Intrinsic::aarch64_neon_fmax:
8555     return DAG.getNode(ISD::FMAXNAN, SDLoc(N), N->getValueType(0),
8556                        N->getOperand(1), N->getOperand(2));
8557   case Intrinsic::aarch64_neon_fmin:
8558     return DAG.getNode(ISD::FMINNAN, SDLoc(N), N->getValueType(0),
8559                        N->getOperand(1), N->getOperand(2));
8560   case Intrinsic::aarch64_neon_fmaxnm:
8561     return DAG.getNode(ISD::FMAXNUM, SDLoc(N), N->getValueType(0),
8562                        N->getOperand(1), N->getOperand(2));
8563   case Intrinsic::aarch64_neon_fminnm:
8564     return DAG.getNode(ISD::FMINNUM, SDLoc(N), N->getValueType(0),
8565                        N->getOperand(1), N->getOperand(2));
8566   case Intrinsic::aarch64_neon_smull:
8567   case Intrinsic::aarch64_neon_umull:
8568   case Intrinsic::aarch64_neon_pmull:
8569   case Intrinsic::aarch64_neon_sqdmull:
8570     return tryCombineLongOpWithDup(IID, N, DCI, DAG);
8571   case Intrinsic::aarch64_neon_sqshl:
8572   case Intrinsic::aarch64_neon_uqshl:
8573   case Intrinsic::aarch64_neon_sqshlu:
8574   case Intrinsic::aarch64_neon_srshl:
8575   case Intrinsic::aarch64_neon_urshl:
8576     return tryCombineShiftImm(IID, N, DAG);
8577   case Intrinsic::aarch64_crc32b:
8578   case Intrinsic::aarch64_crc32cb:
8579     return tryCombineCRC32(0xff, N, DAG);
8580   case Intrinsic::aarch64_crc32h:
8581   case Intrinsic::aarch64_crc32ch:
8582     return tryCombineCRC32(0xffff, N, DAG);
8583   }
8584   return SDValue();
8585 }
8586 
performExtendCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)8587 static SDValue performExtendCombine(SDNode *N,
8588                                     TargetLowering::DAGCombinerInfo &DCI,
8589                                     SelectionDAG &DAG) {
8590   // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
8591   // we can convert that DUP into another extract_high (of a bigger DUP), which
8592   // helps the backend to decide that an sabdl2 would be useful, saving a real
8593   // extract_high operation.
8594   if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
8595       N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
8596     SDNode *ABDNode = N->getOperand(0).getNode();
8597     unsigned IID = getIntrinsicID(ABDNode);
8598     if (IID == Intrinsic::aarch64_neon_sabd ||
8599         IID == Intrinsic::aarch64_neon_uabd) {
8600       SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG);
8601       if (!NewABD.getNode())
8602         return SDValue();
8603 
8604       return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0),
8605                          NewABD);
8606     }
8607   }
8608 
8609   // This is effectively a custom type legalization for AArch64.
8610   //
8611   // Type legalization will split an extend of a small, legal, type to a larger
8612   // illegal type by first splitting the destination type, often creating
8613   // illegal source types, which then get legalized in isel-confusing ways,
8614   // leading to really terrible codegen. E.g.,
8615   //   %result = v8i32 sext v8i8 %value
8616   // becomes
8617   //   %losrc = extract_subreg %value, ...
8618   //   %hisrc = extract_subreg %value, ...
8619   //   %lo = v4i32 sext v4i8 %losrc
8620   //   %hi = v4i32 sext v4i8 %hisrc
8621   // Things go rapidly downhill from there.
8622   //
8623   // For AArch64, the [sz]ext vector instructions can only go up one element
8624   // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
8625   // take two instructions.
8626   //
8627   // This implies that the most efficient way to do the extend from v8i8
8628   // to two v4i32 values is to first extend the v8i8 to v8i16, then do
8629   // the normal splitting to happen for the v8i16->v8i32.
8630 
8631   // This is pre-legalization to catch some cases where the default
8632   // type legalization will create ill-tempered code.
8633   if (!DCI.isBeforeLegalizeOps())
8634     return SDValue();
8635 
8636   // We're only interested in cleaning things up for non-legal vector types
8637   // here. If both the source and destination are legal, things will just
8638   // work naturally without any fiddling.
8639   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8640   EVT ResVT = N->getValueType(0);
8641   if (!ResVT.isVector() || TLI.isTypeLegal(ResVT))
8642     return SDValue();
8643   // If the vector type isn't a simple VT, it's beyond the scope of what
8644   // we're  worried about here. Let legalization do its thing and hope for
8645   // the best.
8646   SDValue Src = N->getOperand(0);
8647   EVT SrcVT = Src->getValueType(0);
8648   if (!ResVT.isSimple() || !SrcVT.isSimple())
8649     return SDValue();
8650 
8651   // If the source VT is a 64-bit vector, we can play games and get the
8652   // better results we want.
8653   if (SrcVT.getSizeInBits() != 64)
8654     return SDValue();
8655 
8656   unsigned SrcEltSize = SrcVT.getVectorElementType().getSizeInBits();
8657   unsigned ElementCount = SrcVT.getVectorNumElements();
8658   SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount);
8659   SDLoc DL(N);
8660   Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src);
8661 
8662   // Now split the rest of the operation into two halves, each with a 64
8663   // bit source.
8664   EVT LoVT, HiVT;
8665   SDValue Lo, Hi;
8666   unsigned NumElements = ResVT.getVectorNumElements();
8667   assert(!(NumElements & 1) && "Splitting vector, but not in half!");
8668   LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
8669                                  ResVT.getVectorElementType(), NumElements / 2);
8670 
8671   EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
8672                                LoVT.getVectorNumElements());
8673   Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
8674                    DAG.getConstant(0, DL, MVT::i64));
8675   Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
8676                    DAG.getConstant(InNVT.getVectorNumElements(), DL, MVT::i64));
8677   Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo);
8678   Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi);
8679 
8680   // Now combine the parts back together so we still have a single result
8681   // like the combiner expects.
8682   return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
8683 }
8684 
8685 /// Replace a splat of a scalar to a vector store by scalar stores of the scalar
8686 /// value. The load store optimizer pass will merge them to store pair stores.
8687 /// This has better performance than a splat of the scalar followed by a split
8688 /// vector store. Even if the stores are not merged it is four stores vs a dup,
8689 /// followed by an ext.b and two stores.
replaceSplatVectorStore(SelectionDAG & DAG,StoreSDNode * St)8690 static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode *St) {
8691   SDValue StVal = St->getValue();
8692   EVT VT = StVal.getValueType();
8693 
8694   // Don't replace floating point stores, they possibly won't be transformed to
8695   // stp because of the store pair suppress pass.
8696   if (VT.isFloatingPoint())
8697     return SDValue();
8698 
8699   // Check for insert vector elements.
8700   if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
8701     return SDValue();
8702 
8703   // We can express a splat as store pair(s) for 2 or 4 elements.
8704   unsigned NumVecElts = VT.getVectorNumElements();
8705   if (NumVecElts != 4 && NumVecElts != 2)
8706     return SDValue();
8707   SDValue SplatVal = StVal.getOperand(1);
8708   unsigned RemainInsertElts = NumVecElts - 1;
8709 
8710   // Check that this is a splat.
8711   while (--RemainInsertElts) {
8712     SDValue NextInsertElt = StVal.getOperand(0);
8713     if (NextInsertElt.getOpcode() != ISD::INSERT_VECTOR_ELT)
8714       return SDValue();
8715     if (NextInsertElt.getOperand(1) != SplatVal)
8716       return SDValue();
8717     StVal = NextInsertElt;
8718   }
8719   unsigned OrigAlignment = St->getAlignment();
8720   unsigned EltOffset = NumVecElts == 4 ? 4 : 8;
8721   unsigned Alignment = std::min(OrigAlignment, EltOffset);
8722 
8723   // Create scalar stores. This is at least as good as the code sequence for a
8724   // split unaligned store which is a dup.s, ext.b, and two stores.
8725   // Most of the time the three stores should be replaced by store pair
8726   // instructions (stp).
8727   SDLoc DL(St);
8728   SDValue BasePtr = St->getBasePtr();
8729   SDValue NewST1 =
8730       DAG.getStore(St->getChain(), DL, SplatVal, BasePtr, St->getPointerInfo(),
8731                    St->isVolatile(), St->isNonTemporal(), St->getAlignment());
8732 
8733   unsigned Offset = EltOffset;
8734   while (--NumVecElts) {
8735     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
8736                                     DAG.getConstant(Offset, DL, MVT::i64));
8737     NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
8738                           St->getPointerInfo(), St->isVolatile(),
8739                           St->isNonTemporal(), Alignment);
8740     Offset += EltOffset;
8741   }
8742   return NewST1;
8743 }
8744 
split16BStores(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG,const AArch64Subtarget * Subtarget)8745 static SDValue split16BStores(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
8746                               SelectionDAG &DAG,
8747                               const AArch64Subtarget *Subtarget) {
8748   if (!DCI.isBeforeLegalize())
8749     return SDValue();
8750 
8751   StoreSDNode *S = cast<StoreSDNode>(N);
8752   if (S->isVolatile())
8753     return SDValue();
8754 
8755   // FIXME: The logic for deciding if an unaligned store should be split should
8756   // be included in TLI.allowsMisalignedMemoryAccesses(), and there should be
8757   // a call to that function here.
8758 
8759   if (!Subtarget->isMisaligned128StoreSlow())
8760     return SDValue();
8761 
8762   // Don't split at -Oz.
8763   if (DAG.getMachineFunction().getFunction()->optForMinSize())
8764     return SDValue();
8765 
8766   SDValue StVal = S->getValue();
8767   EVT VT = StVal.getValueType();
8768 
8769   // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
8770   // those up regresses performance on micro-benchmarks and olden/bh.
8771   if (!VT.isVector() || VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
8772     return SDValue();
8773 
8774   // Split unaligned 16B stores. They are terrible for performance.
8775   // Don't split stores with alignment of 1 or 2. Code that uses clang vector
8776   // extensions can use this to mark that it does not want splitting to happen
8777   // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
8778   // eliminating alignment hazards is only 1 in 8 for alignment of 2.
8779   if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 ||
8780       S->getAlignment() <= 2)
8781     return SDValue();
8782 
8783   // If we get a splat of a scalar convert this vector store to a store of
8784   // scalars. They will be merged into store pairs thereby removing two
8785   // instructions.
8786   if (SDValue ReplacedSplat = replaceSplatVectorStore(DAG, S))
8787     return ReplacedSplat;
8788 
8789   SDLoc DL(S);
8790   unsigned NumElts = VT.getVectorNumElements() / 2;
8791   // Split VT into two.
8792   EVT HalfVT =
8793       EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts);
8794   SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
8795                                    DAG.getConstant(0, DL, MVT::i64));
8796   SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
8797                                    DAG.getConstant(NumElts, DL, MVT::i64));
8798   SDValue BasePtr = S->getBasePtr();
8799   SDValue NewST1 =
8800       DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
8801                    S->isVolatile(), S->isNonTemporal(), S->getAlignment());
8802   SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
8803                                   DAG.getConstant(8, DL, MVT::i64));
8804   return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
8805                       S->getPointerInfo(), S->isVolatile(), S->isNonTemporal(),
8806                       S->getAlignment());
8807 }
8808 
8809 /// Target-specific DAG combine function for post-increment LD1 (lane) and
8810 /// post-increment LD1R.
performPostLD1Combine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,bool IsLaneOp)8811 static SDValue performPostLD1Combine(SDNode *N,
8812                                      TargetLowering::DAGCombinerInfo &DCI,
8813                                      bool IsLaneOp) {
8814   if (DCI.isBeforeLegalizeOps())
8815     return SDValue();
8816 
8817   SelectionDAG &DAG = DCI.DAG;
8818   EVT VT = N->getValueType(0);
8819 
8820   unsigned LoadIdx = IsLaneOp ? 1 : 0;
8821   SDNode *LD = N->getOperand(LoadIdx).getNode();
8822   // If it is not LOAD, can not do such combine.
8823   if (LD->getOpcode() != ISD::LOAD)
8824     return SDValue();
8825 
8826   LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
8827   EVT MemVT = LoadSDN->getMemoryVT();
8828   // Check if memory operand is the same type as the vector element.
8829   if (MemVT != VT.getVectorElementType())
8830     return SDValue();
8831 
8832   // Check if there are other uses. If so, do not combine as it will introduce
8833   // an extra load.
8834   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
8835        ++UI) {
8836     if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
8837       continue;
8838     if (*UI != N)
8839       return SDValue();
8840   }
8841 
8842   SDValue Addr = LD->getOperand(1);
8843   SDValue Vector = N->getOperand(0);
8844   // Search for a use of the address operand that is an increment.
8845   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
8846        Addr.getNode()->use_end(); UI != UE; ++UI) {
8847     SDNode *User = *UI;
8848     if (User->getOpcode() != ISD::ADD
8849         || UI.getUse().getResNo() != Addr.getResNo())
8850       continue;
8851 
8852     // Check that the add is independent of the load.  Otherwise, folding it
8853     // would create a cycle.
8854     if (User->isPredecessorOf(LD) || LD->isPredecessorOf(User))
8855       continue;
8856     // Also check that add is not used in the vector operand.  This would also
8857     // create a cycle.
8858     if (User->isPredecessorOf(Vector.getNode()))
8859       continue;
8860 
8861     // If the increment is a constant, it must match the memory ref size.
8862     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
8863     if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
8864       uint32_t IncVal = CInc->getZExtValue();
8865       unsigned NumBytes = VT.getScalarSizeInBits() / 8;
8866       if (IncVal != NumBytes)
8867         continue;
8868       Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
8869     }
8870 
8871     // Finally, check that the vector doesn't depend on the load.
8872     // Again, this would create a cycle.
8873     // The load depending on the vector is fine, as that's the case for the
8874     // LD1*post we'll eventually generate anyway.
8875     if (LoadSDN->isPredecessorOf(Vector.getNode()))
8876       continue;
8877 
8878     SmallVector<SDValue, 8> Ops;
8879     Ops.push_back(LD->getOperand(0));  // Chain
8880     if (IsLaneOp) {
8881       Ops.push_back(Vector);           // The vector to be inserted
8882       Ops.push_back(N->getOperand(2)); // The lane to be inserted in the vector
8883     }
8884     Ops.push_back(Addr);
8885     Ops.push_back(Inc);
8886 
8887     EVT Tys[3] = { VT, MVT::i64, MVT::Other };
8888     SDVTList SDTys = DAG.getVTList(Tys);
8889     unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
8890     SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
8891                                            MemVT,
8892                                            LoadSDN->getMemOperand());
8893 
8894     // Update the uses.
8895     SDValue NewResults[] = {
8896         SDValue(LD, 0),            // The result of load
8897         SDValue(UpdN.getNode(), 2) // Chain
8898     };
8899     DCI.CombineTo(LD, NewResults);
8900     DCI.CombineTo(N, SDValue(UpdN.getNode(), 0));     // Dup/Inserted Result
8901     DCI.CombineTo(User, SDValue(UpdN.getNode(), 1));  // Write back register
8902 
8903     break;
8904   }
8905   return SDValue();
8906 }
8907 
8908 /// Simplify \Addr given that the top byte of it is ignored by HW during
8909 /// address translation.
performTBISimplification(SDValue Addr,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)8910 static bool performTBISimplification(SDValue Addr,
8911                                      TargetLowering::DAGCombinerInfo &DCI,
8912                                      SelectionDAG &DAG) {
8913   APInt DemandedMask = APInt::getLowBitsSet(64, 56);
8914   APInt KnownZero, KnownOne;
8915   TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
8916                                         DCI.isBeforeLegalizeOps());
8917   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8918   if (TLI.SimplifyDemandedBits(Addr, DemandedMask, KnownZero, KnownOne, TLO)) {
8919     DCI.CommitTargetLoweringOpt(TLO);
8920     return true;
8921   }
8922   return false;
8923 }
8924 
performSTORECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG,const AArch64Subtarget * Subtarget)8925 static SDValue performSTORECombine(SDNode *N,
8926                                    TargetLowering::DAGCombinerInfo &DCI,
8927                                    SelectionDAG &DAG,
8928                                    const AArch64Subtarget *Subtarget) {
8929   if (SDValue Split = split16BStores(N, DCI, DAG, Subtarget))
8930     return Split;
8931 
8932   if (Subtarget->supportsAddressTopByteIgnored() &&
8933       performTBISimplification(N->getOperand(2), DCI, DAG))
8934     return SDValue(N, 0);
8935 
8936   return SDValue();
8937 }
8938 
8939   /// This function handles the log2-shuffle pattern produced by the
8940 /// LoopVectorizer for the across vector reduction. It consists of
8941 /// log2(NumVectorElements) steps and, in each step, 2^(s) elements
8942 /// are reduced, where s is an induction variable from 0 to
8943 /// log2(NumVectorElements).
tryMatchAcrossLaneShuffleForReduction(SDNode * N,SDValue OpV,unsigned Op,SelectionDAG & DAG)8944 static SDValue tryMatchAcrossLaneShuffleForReduction(SDNode *N, SDValue OpV,
8945                                                      unsigned Op,
8946                                                      SelectionDAG &DAG) {
8947   EVT VTy = OpV->getOperand(0).getValueType();
8948   if (!VTy.isVector())
8949     return SDValue();
8950 
8951   int NumVecElts = VTy.getVectorNumElements();
8952   if (Op == ISD::FMAXNUM || Op == ISD::FMINNUM) {
8953     if (NumVecElts != 4)
8954       return SDValue();
8955   } else {
8956     if (NumVecElts != 4 && NumVecElts != 8 && NumVecElts != 16)
8957       return SDValue();
8958   }
8959 
8960   int NumExpectedSteps = APInt(8, NumVecElts).logBase2();
8961   SDValue PreOp = OpV;
8962   // Iterate over each step of the across vector reduction.
8963   for (int CurStep = 0; CurStep != NumExpectedSteps; ++CurStep) {
8964     SDValue CurOp = PreOp.getOperand(0);
8965     SDValue Shuffle = PreOp.getOperand(1);
8966     if (Shuffle.getOpcode() != ISD::VECTOR_SHUFFLE) {
8967       // Try to swap the 1st and 2nd operand as add and min/max instructions
8968       // are commutative.
8969       CurOp = PreOp.getOperand(1);
8970       Shuffle = PreOp.getOperand(0);
8971       if (Shuffle.getOpcode() != ISD::VECTOR_SHUFFLE)
8972         return SDValue();
8973     }
8974 
8975     // Check if the input vector is fed by the operator we want to handle,
8976     // except the last step; the very first input vector is not necessarily
8977     // the same operator we are handling.
8978     if (CurOp.getOpcode() != Op && (CurStep != (NumExpectedSteps - 1)))
8979       return SDValue();
8980 
8981     // Check if it forms one step of the across vector reduction.
8982     // E.g.,
8983     //   %cur = add %1, %0
8984     //   %shuffle = vector_shuffle %cur, <2, 3, u, u>
8985     //   %pre = add %cur, %shuffle
8986     if (Shuffle.getOperand(0) != CurOp)
8987       return SDValue();
8988 
8989     int NumMaskElts = 1 << CurStep;
8990     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Shuffle)->getMask();
8991     // Check mask values in each step.
8992     // We expect the shuffle mask in each step follows a specific pattern
8993     // denoted here by the <M, U> form, where M is a sequence of integers
8994     // starting from NumMaskElts, increasing by 1, and the number integers
8995     // in M should be NumMaskElts. U is a sequence of UNDEFs and the number
8996     // of undef in U should be NumVecElts - NumMaskElts.
8997     // E.g., for <8 x i16>, mask values in each step should be :
8998     //   step 0 : <1,u,u,u,u,u,u,u>
8999     //   step 1 : <2,3,u,u,u,u,u,u>
9000     //   step 2 : <4,5,6,7,u,u,u,u>
9001     for (int i = 0; i < NumVecElts; ++i)
9002       if ((i < NumMaskElts && Mask[i] != (NumMaskElts + i)) ||
9003           (i >= NumMaskElts && !(Mask[i] < 0)))
9004         return SDValue();
9005 
9006     PreOp = CurOp;
9007   }
9008   unsigned Opcode;
9009   bool IsIntrinsic = false;
9010 
9011   switch (Op) {
9012   default:
9013     llvm_unreachable("Unexpected operator for across vector reduction");
9014   case ISD::ADD:
9015     Opcode = AArch64ISD::UADDV;
9016     break;
9017   case ISD::SMAX:
9018     Opcode = AArch64ISD::SMAXV;
9019     break;
9020   case ISD::UMAX:
9021     Opcode = AArch64ISD::UMAXV;
9022     break;
9023   case ISD::SMIN:
9024     Opcode = AArch64ISD::SMINV;
9025     break;
9026   case ISD::UMIN:
9027     Opcode = AArch64ISD::UMINV;
9028     break;
9029   case ISD::FMAXNUM:
9030     Opcode = Intrinsic::aarch64_neon_fmaxnmv;
9031     IsIntrinsic = true;
9032     break;
9033   case ISD::FMINNUM:
9034     Opcode = Intrinsic::aarch64_neon_fminnmv;
9035     IsIntrinsic = true;
9036     break;
9037   }
9038   SDLoc DL(N);
9039 
9040   return IsIntrinsic
9041              ? DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, N->getValueType(0),
9042                            DAG.getConstant(Opcode, DL, MVT::i32), PreOp)
9043              : DAG.getNode(
9044                    ISD::EXTRACT_VECTOR_ELT, DL, N->getValueType(0),
9045                    DAG.getNode(Opcode, DL, PreOp.getSimpleValueType(), PreOp),
9046                    DAG.getConstant(0, DL, MVT::i64));
9047 }
9048 
9049 /// Target-specific DAG combine for the across vector min/max reductions.
9050 /// This function specifically handles the final clean-up step of the vector
9051 /// min/max reductions produced by the LoopVectorizer. It is the log2-shuffle
9052 /// pattern, which narrows down and finds the final min/max value from all
9053 /// elements of the vector.
9054 /// For example, for a <16 x i8> vector :
9055 ///   svn0 = vector_shuffle %0, undef<8,9,10,11,12,13,14,15,u,u,u,u,u,u,u,u>
9056 ///   %smax0 = smax %arr, svn0
9057 ///   %svn1 = vector_shuffle %smax0, undef<4,5,6,7,u,u,u,u,u,u,u,u,u,u,u,u>
9058 ///   %smax1 = smax %smax0, %svn1
9059 ///   %svn2 = vector_shuffle %smax1, undef<2,3,u,u,u,u,u,u,u,u,u,u,u,u,u,u>
9060 ///   %smax2 = smax %smax1, svn2
9061 ///   %svn3 = vector_shuffle %smax2, undef<1,u,u,u,u,u,u,u,u,u,u,u,u,u,u,u>
9062 ///   %sc = setcc %smax2, %svn3, gt
9063 ///   %n0 = extract_vector_elt %sc, #0
9064 ///   %n1 = extract_vector_elt %smax2, #0
9065 ///   %n2 = extract_vector_elt $smax2, #1
9066 ///   %result = select %n0, %n1, n2
9067 ///     becomes :
9068 ///   %1 = smaxv %0
9069 ///   %result = extract_vector_elt %1, 0
9070 static SDValue
performAcrossLaneMinMaxReductionCombine(SDNode * N,SelectionDAG & DAG,const AArch64Subtarget * Subtarget)9071 performAcrossLaneMinMaxReductionCombine(SDNode *N, SelectionDAG &DAG,
9072                                         const AArch64Subtarget *Subtarget) {
9073   if (!Subtarget->hasNEON())
9074     return SDValue();
9075 
9076   SDValue N0 = N->getOperand(0);
9077   SDValue IfTrue = N->getOperand(1);
9078   SDValue IfFalse = N->getOperand(2);
9079 
9080   // Check if the SELECT merges up the final result of the min/max
9081   // from a vector.
9082   if (N0.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9083       IfTrue.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9084       IfFalse.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9085     return SDValue();
9086 
9087   // Expect N0 is fed by SETCC.
9088   SDValue SetCC = N0.getOperand(0);
9089   EVT SetCCVT = SetCC.getValueType();
9090   if (SetCC.getOpcode() != ISD::SETCC || !SetCCVT.isVector() ||
9091       SetCCVT.getVectorElementType() != MVT::i1)
9092     return SDValue();
9093 
9094   SDValue VectorOp = SetCC.getOperand(0);
9095   unsigned Op = VectorOp->getOpcode();
9096   // Check if the input vector is fed by the operator we want to handle.
9097   if (Op != ISD::SMAX && Op != ISD::UMAX && Op != ISD::SMIN &&
9098       Op != ISD::UMIN && Op != ISD::FMAXNUM && Op != ISD::FMINNUM)
9099     return SDValue();
9100 
9101   EVT VTy = VectorOp.getValueType();
9102   if (!VTy.isVector())
9103     return SDValue();
9104 
9105   if (VTy.getSizeInBits() < 64)
9106     return SDValue();
9107 
9108   EVT EltTy = VTy.getVectorElementType();
9109   if (Op == ISD::FMAXNUM || Op == ISD::FMINNUM) {
9110     if (EltTy != MVT::f32)
9111       return SDValue();
9112   } else {
9113     if (EltTy != MVT::i32 && EltTy != MVT::i16 && EltTy != MVT::i8)
9114       return SDValue();
9115   }
9116 
9117   // Check if extracting from the same vector.
9118   // For example,
9119   //   %sc = setcc %vector, %svn1, gt
9120   //   %n0 = extract_vector_elt %sc, #0
9121   //   %n1 = extract_vector_elt %vector, #0
9122   //   %n2 = extract_vector_elt $vector, #1
9123   if (!(VectorOp == IfTrue->getOperand(0) &&
9124         VectorOp == IfFalse->getOperand(0)))
9125     return SDValue();
9126 
9127   // Check if the condition code is matched with the operator type.
9128   ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
9129   if ((Op == ISD::SMAX && CC != ISD::SETGT && CC != ISD::SETGE) ||
9130       (Op == ISD::UMAX && CC != ISD::SETUGT && CC != ISD::SETUGE) ||
9131       (Op == ISD::SMIN && CC != ISD::SETLT && CC != ISD::SETLE) ||
9132       (Op == ISD::UMIN && CC != ISD::SETULT && CC != ISD::SETULE) ||
9133       (Op == ISD::FMAXNUM && CC != ISD::SETOGT && CC != ISD::SETOGE &&
9134        CC != ISD::SETUGT && CC != ISD::SETUGE && CC != ISD::SETGT &&
9135        CC != ISD::SETGE) ||
9136       (Op == ISD::FMINNUM && CC != ISD::SETOLT && CC != ISD::SETOLE &&
9137        CC != ISD::SETULT && CC != ISD::SETULE && CC != ISD::SETLT &&
9138        CC != ISD::SETLE))
9139     return SDValue();
9140 
9141   // Expect to check only lane 0 from the vector SETCC.
9142   if (!isNullConstant(N0.getOperand(1)))
9143     return SDValue();
9144 
9145   // Expect to extract the true value from lane 0.
9146   if (!isNullConstant(IfTrue.getOperand(1)))
9147     return SDValue();
9148 
9149   // Expect to extract the false value from lane 1.
9150   if (!isOneConstant(IfFalse.getOperand(1)))
9151     return SDValue();
9152 
9153   return tryMatchAcrossLaneShuffleForReduction(N, SetCC, Op, DAG);
9154 }
9155 
9156 /// Target-specific DAG combine for the across vector add reduction.
9157 /// This function specifically handles the final clean-up step of the vector
9158 /// add reduction produced by the LoopVectorizer. It is the log2-shuffle
9159 /// pattern, which adds all elements of a vector together.
9160 /// For example, for a <4 x i32> vector :
9161 ///   %1 = vector_shuffle %0, <2,3,u,u>
9162 ///   %2 = add %0, %1
9163 ///   %3 = vector_shuffle %2, <1,u,u,u>
9164 ///   %4 = add %2, %3
9165 ///   %result = extract_vector_elt %4, 0
9166 /// becomes :
9167 ///   %0 = uaddv %0
9168 ///   %result = extract_vector_elt %0, 0
9169 static SDValue
performAcrossLaneAddReductionCombine(SDNode * N,SelectionDAG & DAG,const AArch64Subtarget * Subtarget)9170 performAcrossLaneAddReductionCombine(SDNode *N, SelectionDAG &DAG,
9171                                      const AArch64Subtarget *Subtarget) {
9172   if (!Subtarget->hasNEON())
9173     return SDValue();
9174   SDValue N0 = N->getOperand(0);
9175   SDValue N1 = N->getOperand(1);
9176 
9177   // Check if the input vector is fed by the ADD.
9178   if (N0->getOpcode() != ISD::ADD)
9179     return SDValue();
9180 
9181   // The vector extract idx must constant zero because we only expect the final
9182   // result of the reduction is placed in lane 0.
9183   if (!isNullConstant(N1))
9184     return SDValue();
9185 
9186   EVT VTy = N0.getValueType();
9187   if (!VTy.isVector())
9188     return SDValue();
9189 
9190   EVT EltTy = VTy.getVectorElementType();
9191   if (EltTy != MVT::i32 && EltTy != MVT::i16 && EltTy != MVT::i8)
9192     return SDValue();
9193 
9194   if (VTy.getSizeInBits() < 64)
9195     return SDValue();
9196 
9197   return tryMatchAcrossLaneShuffleForReduction(N, N0, ISD::ADD, DAG);
9198 }
9199 
9200 /// Target-specific DAG combine function for NEON load/store intrinsics
9201 /// to merge base address updates.
performNEONPostLDSTCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)9202 static SDValue performNEONPostLDSTCombine(SDNode *N,
9203                                           TargetLowering::DAGCombinerInfo &DCI,
9204                                           SelectionDAG &DAG) {
9205   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
9206     return SDValue();
9207 
9208   unsigned AddrOpIdx = N->getNumOperands() - 1;
9209   SDValue Addr = N->getOperand(AddrOpIdx);
9210 
9211   // Search for a use of the address operand that is an increment.
9212   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
9213        UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
9214     SDNode *User = *UI;
9215     if (User->getOpcode() != ISD::ADD ||
9216         UI.getUse().getResNo() != Addr.getResNo())
9217       continue;
9218 
9219     // Check that the add is independent of the load/store.  Otherwise, folding
9220     // it would create a cycle.
9221     if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
9222       continue;
9223 
9224     // Find the new opcode for the updating load/store.
9225     bool IsStore = false;
9226     bool IsLaneOp = false;
9227     bool IsDupOp = false;
9228     unsigned NewOpc = 0;
9229     unsigned NumVecs = 0;
9230     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9231     switch (IntNo) {
9232     default: llvm_unreachable("unexpected intrinsic for Neon base update");
9233     case Intrinsic::aarch64_neon_ld2:       NewOpc = AArch64ISD::LD2post;
9234       NumVecs = 2; break;
9235     case Intrinsic::aarch64_neon_ld3:       NewOpc = AArch64ISD::LD3post;
9236       NumVecs = 3; break;
9237     case Intrinsic::aarch64_neon_ld4:       NewOpc = AArch64ISD::LD4post;
9238       NumVecs = 4; break;
9239     case Intrinsic::aarch64_neon_st2:       NewOpc = AArch64ISD::ST2post;
9240       NumVecs = 2; IsStore = true; break;
9241     case Intrinsic::aarch64_neon_st3:       NewOpc = AArch64ISD::ST3post;
9242       NumVecs = 3; IsStore = true; break;
9243     case Intrinsic::aarch64_neon_st4:       NewOpc = AArch64ISD::ST4post;
9244       NumVecs = 4; IsStore = true; break;
9245     case Intrinsic::aarch64_neon_ld1x2:     NewOpc = AArch64ISD::LD1x2post;
9246       NumVecs = 2; break;
9247     case Intrinsic::aarch64_neon_ld1x3:     NewOpc = AArch64ISD::LD1x3post;
9248       NumVecs = 3; break;
9249     case Intrinsic::aarch64_neon_ld1x4:     NewOpc = AArch64ISD::LD1x4post;
9250       NumVecs = 4; break;
9251     case Intrinsic::aarch64_neon_st1x2:     NewOpc = AArch64ISD::ST1x2post;
9252       NumVecs = 2; IsStore = true; break;
9253     case Intrinsic::aarch64_neon_st1x3:     NewOpc = AArch64ISD::ST1x3post;
9254       NumVecs = 3; IsStore = true; break;
9255     case Intrinsic::aarch64_neon_st1x4:     NewOpc = AArch64ISD::ST1x4post;
9256       NumVecs = 4; IsStore = true; break;
9257     case Intrinsic::aarch64_neon_ld2r:      NewOpc = AArch64ISD::LD2DUPpost;
9258       NumVecs = 2; IsDupOp = true; break;
9259     case Intrinsic::aarch64_neon_ld3r:      NewOpc = AArch64ISD::LD3DUPpost;
9260       NumVecs = 3; IsDupOp = true; break;
9261     case Intrinsic::aarch64_neon_ld4r:      NewOpc = AArch64ISD::LD4DUPpost;
9262       NumVecs = 4; IsDupOp = true; break;
9263     case Intrinsic::aarch64_neon_ld2lane:   NewOpc = AArch64ISD::LD2LANEpost;
9264       NumVecs = 2; IsLaneOp = true; break;
9265     case Intrinsic::aarch64_neon_ld3lane:   NewOpc = AArch64ISD::LD3LANEpost;
9266       NumVecs = 3; IsLaneOp = true; break;
9267     case Intrinsic::aarch64_neon_ld4lane:   NewOpc = AArch64ISD::LD4LANEpost;
9268       NumVecs = 4; IsLaneOp = true; break;
9269     case Intrinsic::aarch64_neon_st2lane:   NewOpc = AArch64ISD::ST2LANEpost;
9270       NumVecs = 2; IsStore = true; IsLaneOp = true; break;
9271     case Intrinsic::aarch64_neon_st3lane:   NewOpc = AArch64ISD::ST3LANEpost;
9272       NumVecs = 3; IsStore = true; IsLaneOp = true; break;
9273     case Intrinsic::aarch64_neon_st4lane:   NewOpc = AArch64ISD::ST4LANEpost;
9274       NumVecs = 4; IsStore = true; IsLaneOp = true; break;
9275     }
9276 
9277     EVT VecTy;
9278     if (IsStore)
9279       VecTy = N->getOperand(2).getValueType();
9280     else
9281       VecTy = N->getValueType(0);
9282 
9283     // If the increment is a constant, it must match the memory ref size.
9284     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
9285     if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
9286       uint32_t IncVal = CInc->getZExtValue();
9287       unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
9288       if (IsLaneOp || IsDupOp)
9289         NumBytes /= VecTy.getVectorNumElements();
9290       if (IncVal != NumBytes)
9291         continue;
9292       Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
9293     }
9294     SmallVector<SDValue, 8> Ops;
9295     Ops.push_back(N->getOperand(0)); // Incoming chain
9296     // Load lane and store have vector list as input.
9297     if (IsLaneOp || IsStore)
9298       for (unsigned i = 2; i < AddrOpIdx; ++i)
9299         Ops.push_back(N->getOperand(i));
9300     Ops.push_back(Addr); // Base register
9301     Ops.push_back(Inc);
9302 
9303     // Return Types.
9304     EVT Tys[6];
9305     unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
9306     unsigned n;
9307     for (n = 0; n < NumResultVecs; ++n)
9308       Tys[n] = VecTy;
9309     Tys[n++] = MVT::i64;  // Type of write back register
9310     Tys[n] = MVT::Other;  // Type of the chain
9311     SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2));
9312 
9313     MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
9314     SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
9315                                            MemInt->getMemoryVT(),
9316                                            MemInt->getMemOperand());
9317 
9318     // Update the uses.
9319     std::vector<SDValue> NewResults;
9320     for (unsigned i = 0; i < NumResultVecs; ++i) {
9321       NewResults.push_back(SDValue(UpdN.getNode(), i));
9322     }
9323     NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
9324     DCI.CombineTo(N, NewResults);
9325     DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
9326 
9327     break;
9328   }
9329   return SDValue();
9330 }
9331 
9332 // Checks to see if the value is the prescribed width and returns information
9333 // about its extension mode.
9334 static
checkValueWidth(SDValue V,unsigned width,ISD::LoadExtType & ExtType)9335 bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) {
9336   ExtType = ISD::NON_EXTLOAD;
9337   switch(V.getNode()->getOpcode()) {
9338   default:
9339     return false;
9340   case ISD::LOAD: {
9341     LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode());
9342     if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8)
9343        || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) {
9344       ExtType = LoadNode->getExtensionType();
9345       return true;
9346     }
9347     return false;
9348   }
9349   case ISD::AssertSext: {
9350     VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
9351     if ((TypeNode->getVT() == MVT::i8 && width == 8)
9352        || (TypeNode->getVT() == MVT::i16 && width == 16)) {
9353       ExtType = ISD::SEXTLOAD;
9354       return true;
9355     }
9356     return false;
9357   }
9358   case ISD::AssertZext: {
9359     VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
9360     if ((TypeNode->getVT() == MVT::i8 && width == 8)
9361        || (TypeNode->getVT() == MVT::i16 && width == 16)) {
9362       ExtType = ISD::ZEXTLOAD;
9363       return true;
9364     }
9365     return false;
9366   }
9367   case ISD::Constant:
9368   case ISD::TargetConstant: {
9369     return std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) <
9370            1LL << (width - 1);
9371   }
9372   }
9373 
9374   return true;
9375 }
9376 
9377 // This function does a whole lot of voodoo to determine if the tests are
9378 // equivalent without and with a mask. Essentially what happens is that given a
9379 // DAG resembling:
9380 //
9381 //  +-------------+ +-------------+ +-------------+ +-------------+
9382 //  |    Input    | | AddConstant | | CompConstant| |     CC      |
9383 //  +-------------+ +-------------+ +-------------+ +-------------+
9384 //           |           |           |               |
9385 //           V           V           |    +----------+
9386 //          +-------------+  +----+  |    |
9387 //          |     ADD     |  |0xff|  |    |
9388 //          +-------------+  +----+  |    |
9389 //                  |           |    |    |
9390 //                  V           V    |    |
9391 //                 +-------------+   |    |
9392 //                 |     AND     |   |    |
9393 //                 +-------------+   |    |
9394 //                      |            |    |
9395 //                      +-----+      |    |
9396 //                            |      |    |
9397 //                            V      V    V
9398 //                           +-------------+
9399 //                           |     CMP     |
9400 //                           +-------------+
9401 //
9402 // The AND node may be safely removed for some combinations of inputs. In
9403 // particular we need to take into account the extension type of the Input,
9404 // the exact values of AddConstant, CompConstant, and CC, along with the nominal
9405 // width of the input (this can work for any width inputs, the above graph is
9406 // specific to 8 bits.
9407 //
9408 // The specific equations were worked out by generating output tables for each
9409 // AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The
9410 // problem was simplified by working with 4 bit inputs, which means we only
9411 // needed to reason about 24 distinct bit patterns: 8 patterns unique to zero
9412 // extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8
9413 // patterns present in both extensions (0,7). For every distinct set of
9414 // AddConstant and CompConstants bit patterns we can consider the masked and
9415 // unmasked versions to be equivalent if the result of this function is true for
9416 // all 16 distinct bit patterns of for the current extension type of Input (w0).
9417 //
9418 //   sub      w8, w0, w1
9419 //   and      w10, w8, #0x0f
9420 //   cmp      w8, w2
9421 //   cset     w9, AArch64CC
9422 //   cmp      w10, w2
9423 //   cset     w11, AArch64CC
9424 //   cmp      w9, w11
9425 //   cset     w0, eq
9426 //   ret
9427 //
9428 // Since the above function shows when the outputs are equivalent it defines
9429 // when it is safe to remove the AND. Unfortunately it only runs on AArch64 and
9430 // would be expensive to run during compiles. The equations below were written
9431 // in a test harness that confirmed they gave equivalent outputs to the above
9432 // for all inputs function, so they can be used determine if the removal is
9433 // legal instead.
9434 //
9435 // isEquivalentMaskless() is the code for testing if the AND can be removed
9436 // factored out of the DAG recognition as the DAG can take several forms.
9437 
isEquivalentMaskless(unsigned CC,unsigned width,ISD::LoadExtType ExtType,int AddConstant,int CompConstant)9438 static bool isEquivalentMaskless(unsigned CC, unsigned width,
9439                                  ISD::LoadExtType ExtType, int AddConstant,
9440                                  int CompConstant) {
9441   // By being careful about our equations and only writing the in term
9442   // symbolic values and well known constants (0, 1, -1, MaxUInt) we can
9443   // make them generally applicable to all bit widths.
9444   int MaxUInt = (1 << width);
9445 
9446   // For the purposes of these comparisons sign extending the type is
9447   // equivalent to zero extending the add and displacing it by half the integer
9448   // width. Provided we are careful and make sure our equations are valid over
9449   // the whole range we can just adjust the input and avoid writing equations
9450   // for sign extended inputs.
9451   if (ExtType == ISD::SEXTLOAD)
9452     AddConstant -= (1 << (width-1));
9453 
9454   switch(CC) {
9455   case AArch64CC::LE:
9456   case AArch64CC::GT: {
9457     if ((AddConstant == 0) ||
9458         (CompConstant == MaxUInt - 1 && AddConstant < 0) ||
9459         (AddConstant >= 0 && CompConstant < 0) ||
9460         (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant))
9461       return true;
9462   } break;
9463   case AArch64CC::LT:
9464   case AArch64CC::GE: {
9465     if ((AddConstant == 0) ||
9466         (AddConstant >= 0 && CompConstant <= 0) ||
9467         (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant))
9468       return true;
9469   } break;
9470   case AArch64CC::HI:
9471   case AArch64CC::LS: {
9472     if ((AddConstant >= 0 && CompConstant < 0) ||
9473        (AddConstant <= 0 && CompConstant >= -1 &&
9474         CompConstant < AddConstant + MaxUInt))
9475       return true;
9476   } break;
9477   case AArch64CC::PL:
9478   case AArch64CC::MI: {
9479     if ((AddConstant == 0) ||
9480         (AddConstant > 0 && CompConstant <= 0) ||
9481         (AddConstant < 0 && CompConstant <= AddConstant))
9482       return true;
9483   } break;
9484   case AArch64CC::LO:
9485   case AArch64CC::HS: {
9486     if ((AddConstant >= 0 && CompConstant <= 0) ||
9487         (AddConstant <= 0 && CompConstant >= 0 &&
9488          CompConstant <= AddConstant + MaxUInt))
9489       return true;
9490   } break;
9491   case AArch64CC::EQ:
9492   case AArch64CC::NE: {
9493     if ((AddConstant > 0 && CompConstant < 0) ||
9494         (AddConstant < 0 && CompConstant >= 0 &&
9495          CompConstant < AddConstant + MaxUInt) ||
9496         (AddConstant >= 0 && CompConstant >= 0 &&
9497          CompConstant >= AddConstant) ||
9498         (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant))
9499 
9500       return true;
9501   } break;
9502   case AArch64CC::VS:
9503   case AArch64CC::VC:
9504   case AArch64CC::AL:
9505   case AArch64CC::NV:
9506     return true;
9507   case AArch64CC::Invalid:
9508     break;
9509   }
9510 
9511   return false;
9512 }
9513 
9514 static
performCONDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG,unsigned CCIndex,unsigned CmpIndex)9515 SDValue performCONDCombine(SDNode *N,
9516                            TargetLowering::DAGCombinerInfo &DCI,
9517                            SelectionDAG &DAG, unsigned CCIndex,
9518                            unsigned CmpIndex) {
9519   unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue();
9520   SDNode *SubsNode = N->getOperand(CmpIndex).getNode();
9521   unsigned CondOpcode = SubsNode->getOpcode();
9522 
9523   if (CondOpcode != AArch64ISD::SUBS)
9524     return SDValue();
9525 
9526   // There is a SUBS feeding this condition. Is it fed by a mask we can
9527   // use?
9528 
9529   SDNode *AndNode = SubsNode->getOperand(0).getNode();
9530   unsigned MaskBits = 0;
9531 
9532   if (AndNode->getOpcode() != ISD::AND)
9533     return SDValue();
9534 
9535   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) {
9536     uint32_t CNV = CN->getZExtValue();
9537     if (CNV == 255)
9538       MaskBits = 8;
9539     else if (CNV == 65535)
9540       MaskBits = 16;
9541   }
9542 
9543   if (!MaskBits)
9544     return SDValue();
9545 
9546   SDValue AddValue = AndNode->getOperand(0);
9547 
9548   if (AddValue.getOpcode() != ISD::ADD)
9549     return SDValue();
9550 
9551   // The basic dag structure is correct, grab the inputs and validate them.
9552 
9553   SDValue AddInputValue1 = AddValue.getNode()->getOperand(0);
9554   SDValue AddInputValue2 = AddValue.getNode()->getOperand(1);
9555   SDValue SubsInputValue = SubsNode->getOperand(1);
9556 
9557   // The mask is present and the provenance of all the values is a smaller type,
9558   // lets see if the mask is superfluous.
9559 
9560   if (!isa<ConstantSDNode>(AddInputValue2.getNode()) ||
9561       !isa<ConstantSDNode>(SubsInputValue.getNode()))
9562     return SDValue();
9563 
9564   ISD::LoadExtType ExtType;
9565 
9566   if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) ||
9567       !checkValueWidth(AddInputValue2, MaskBits, ExtType) ||
9568       !checkValueWidth(AddInputValue1, MaskBits, ExtType) )
9569     return SDValue();
9570 
9571   if(!isEquivalentMaskless(CC, MaskBits, ExtType,
9572                 cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(),
9573                 cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue()))
9574     return SDValue();
9575 
9576   // The AND is not necessary, remove it.
9577 
9578   SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0),
9579                                SubsNode->getValueType(1));
9580   SDValue Ops[] = { AddValue, SubsNode->getOperand(1) };
9581 
9582   SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops);
9583   DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode());
9584 
9585   return SDValue(N, 0);
9586 }
9587 
9588 // Optimize compare with zero and branch.
performBRCONDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)9589 static SDValue performBRCONDCombine(SDNode *N,
9590                                     TargetLowering::DAGCombinerInfo &DCI,
9591                                     SelectionDAG &DAG) {
9592   if (SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3))
9593     N = NV.getNode();
9594   SDValue Chain = N->getOperand(0);
9595   SDValue Dest = N->getOperand(1);
9596   SDValue CCVal = N->getOperand(2);
9597   SDValue Cmp = N->getOperand(3);
9598 
9599   assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
9600   unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
9601   if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
9602     return SDValue();
9603 
9604   unsigned CmpOpc = Cmp.getOpcode();
9605   if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
9606     return SDValue();
9607 
9608   // Only attempt folding if there is only one use of the flag and no use of the
9609   // value.
9610   if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
9611     return SDValue();
9612 
9613   SDValue LHS = Cmp.getOperand(0);
9614   SDValue RHS = Cmp.getOperand(1);
9615 
9616   assert(LHS.getValueType() == RHS.getValueType() &&
9617          "Expected the value type to be the same for both operands!");
9618   if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
9619     return SDValue();
9620 
9621   if (isNullConstant(LHS))
9622     std::swap(LHS, RHS);
9623 
9624   if (!isNullConstant(RHS))
9625     return SDValue();
9626 
9627   if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
9628       LHS.getOpcode() == ISD::SRL)
9629     return SDValue();
9630 
9631   // Fold the compare into the branch instruction.
9632   SDValue BR;
9633   if (CC == AArch64CC::EQ)
9634     BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
9635   else
9636     BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
9637 
9638   // Do not add new nodes to DAG combiner worklist.
9639   DCI.CombineTo(N, BR, false);
9640 
9641   return SDValue();
9642 }
9643 
9644 // Optimize some simple tbz/tbnz cases.  Returns the new operand and bit to test
9645 // as well as whether the test should be inverted.  This code is required to
9646 // catch these cases (as opposed to standard dag combines) because
9647 // AArch64ISD::TBZ is matched during legalization.
getTestBitOperand(SDValue Op,unsigned & Bit,bool & Invert,SelectionDAG & DAG)9648 static SDValue getTestBitOperand(SDValue Op, unsigned &Bit, bool &Invert,
9649                                  SelectionDAG &DAG) {
9650 
9651   if (!Op->hasOneUse())
9652     return Op;
9653 
9654   // We don't handle undef/constant-fold cases below, as they should have
9655   // already been taken care of (e.g. and of 0, test of undefined shifted bits,
9656   // etc.)
9657 
9658   // (tbz (trunc x), b) -> (tbz x, b)
9659   // This case is just here to enable more of the below cases to be caught.
9660   if (Op->getOpcode() == ISD::TRUNCATE &&
9661       Bit < Op->getValueType(0).getSizeInBits()) {
9662     return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
9663   }
9664 
9665   if (Op->getNumOperands() != 2)
9666     return Op;
9667 
9668   auto *C = dyn_cast<ConstantSDNode>(Op->getOperand(1));
9669   if (!C)
9670     return Op;
9671 
9672   switch (Op->getOpcode()) {
9673   default:
9674     return Op;
9675 
9676   // (tbz (and x, m), b) -> (tbz x, b)
9677   case ISD::AND:
9678     if ((C->getZExtValue() >> Bit) & 1)
9679       return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
9680     return Op;
9681 
9682   // (tbz (shl x, c), b) -> (tbz x, b-c)
9683   case ISD::SHL:
9684     if (C->getZExtValue() <= Bit &&
9685         (Bit - C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) {
9686       Bit = Bit - C->getZExtValue();
9687       return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
9688     }
9689     return Op;
9690 
9691   // (tbz (sra x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits in x
9692   case ISD::SRA:
9693     Bit = Bit + C->getZExtValue();
9694     if (Bit >= Op->getValueType(0).getSizeInBits())
9695       Bit = Op->getValueType(0).getSizeInBits() - 1;
9696     return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
9697 
9698   // (tbz (srl x, c), b) -> (tbz x, b+c)
9699   case ISD::SRL:
9700     if ((Bit + C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) {
9701       Bit = Bit + C->getZExtValue();
9702       return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
9703     }
9704     return Op;
9705 
9706   // (tbz (xor x, -1), b) -> (tbnz x, b)
9707   case ISD::XOR:
9708     if ((C->getZExtValue() >> Bit) & 1)
9709       Invert = !Invert;
9710     return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
9711   }
9712 }
9713 
9714 // Optimize test single bit zero/non-zero and branch.
performTBZCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)9715 static SDValue performTBZCombine(SDNode *N,
9716                                  TargetLowering::DAGCombinerInfo &DCI,
9717                                  SelectionDAG &DAG) {
9718   unsigned Bit = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
9719   bool Invert = false;
9720   SDValue TestSrc = N->getOperand(1);
9721   SDValue NewTestSrc = getTestBitOperand(TestSrc, Bit, Invert, DAG);
9722 
9723   if (TestSrc == NewTestSrc)
9724     return SDValue();
9725 
9726   unsigned NewOpc = N->getOpcode();
9727   if (Invert) {
9728     if (NewOpc == AArch64ISD::TBZ)
9729       NewOpc = AArch64ISD::TBNZ;
9730     else {
9731       assert(NewOpc == AArch64ISD::TBNZ);
9732       NewOpc = AArch64ISD::TBZ;
9733     }
9734   }
9735 
9736   SDLoc DL(N);
9737   return DAG.getNode(NewOpc, DL, MVT::Other, N->getOperand(0), NewTestSrc,
9738                      DAG.getConstant(Bit, DL, MVT::i64), N->getOperand(3));
9739 }
9740 
9741 // vselect (v1i1 setcc) ->
9742 //     vselect (v1iXX setcc)  (XX is the size of the compared operand type)
9743 // FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
9744 // condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
9745 // such VSELECT.
performVSelectCombine(SDNode * N,SelectionDAG & DAG)9746 static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
9747   SDValue N0 = N->getOperand(0);
9748   EVT CCVT = N0.getValueType();
9749 
9750   if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
9751       CCVT.getVectorElementType() != MVT::i1)
9752     return SDValue();
9753 
9754   EVT ResVT = N->getValueType(0);
9755   EVT CmpVT = N0.getOperand(0).getValueType();
9756   // Only combine when the result type is of the same size as the compared
9757   // operands.
9758   if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
9759     return SDValue();
9760 
9761   SDValue IfTrue = N->getOperand(1);
9762   SDValue IfFalse = N->getOperand(2);
9763   SDValue SetCC =
9764       DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
9765                    N0.getOperand(0), N0.getOperand(1),
9766                    cast<CondCodeSDNode>(N0.getOperand(2))->get());
9767   return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
9768                      IfTrue, IfFalse);
9769 }
9770 
9771 /// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
9772 /// the compare-mask instructions rather than going via NZCV, even if LHS and
9773 /// RHS are really scalar. This replaces any scalar setcc in the above pattern
9774 /// with a vector one followed by a DUP shuffle on the result.
performSelectCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)9775 static SDValue performSelectCombine(SDNode *N,
9776                                     TargetLowering::DAGCombinerInfo &DCI) {
9777   SelectionDAG &DAG = DCI.DAG;
9778   SDValue N0 = N->getOperand(0);
9779   EVT ResVT = N->getValueType(0);
9780 
9781   if (N0.getOpcode() != ISD::SETCC)
9782     return SDValue();
9783 
9784   // Make sure the SETCC result is either i1 (initial DAG), or i32, the lowered
9785   // scalar SetCCResultType. We also don't expect vectors, because we assume
9786   // that selects fed by vector SETCCs are canonicalized to VSELECT.
9787   assert((N0.getValueType() == MVT::i1 || N0.getValueType() == MVT::i32) &&
9788          "Scalar-SETCC feeding SELECT has unexpected result type!");
9789 
9790   // If NumMaskElts == 0, the comparison is larger than select result. The
9791   // largest real NEON comparison is 64-bits per lane, which means the result is
9792   // at most 32-bits and an illegal vector. Just bail out for now.
9793   EVT SrcVT = N0.getOperand(0).getValueType();
9794 
9795   // Don't try to do this optimization when the setcc itself has i1 operands.
9796   // There are no legal vectors of i1, so this would be pointless.
9797   if (SrcVT == MVT::i1)
9798     return SDValue();
9799 
9800   int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits();
9801   if (!ResVT.isVector() || NumMaskElts == 0)
9802     return SDValue();
9803 
9804   SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts);
9805   EVT CCVT = SrcVT.changeVectorElementTypeToInteger();
9806 
9807   // Also bail out if the vector CCVT isn't the same size as ResVT.
9808   // This can happen if the SETCC operand size doesn't divide the ResVT size
9809   // (e.g., f64 vs v3f32).
9810   if (CCVT.getSizeInBits() != ResVT.getSizeInBits())
9811     return SDValue();
9812 
9813   // Make sure we didn't create illegal types, if we're not supposed to.
9814   assert(DCI.isBeforeLegalize() ||
9815          DAG.getTargetLoweringInfo().isTypeLegal(SrcVT));
9816 
9817   // First perform a vector comparison, where lane 0 is the one we're interested
9818   // in.
9819   SDLoc DL(N0);
9820   SDValue LHS =
9821       DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
9822   SDValue RHS =
9823       DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
9824   SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));
9825 
9826   // Now duplicate the comparison mask we want across all other lanes.
9827   SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
9828   SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask);
9829   Mask = DAG.getNode(ISD::BITCAST, DL,
9830                      ResVT.changeVectorElementTypeToInteger(), Mask);
9831 
9832   return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
9833 }
9834 
9835 /// Get rid of unnecessary NVCASTs (that don't change the type).
performNVCASTCombine(SDNode * N)9836 static SDValue performNVCASTCombine(SDNode *N) {
9837   if (N->getValueType(0) == N->getOperand(0).getValueType())
9838     return N->getOperand(0);
9839 
9840   return SDValue();
9841 }
9842 
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const9843 SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
9844                                                  DAGCombinerInfo &DCI) const {
9845   SelectionDAG &DAG = DCI.DAG;
9846   switch (N->getOpcode()) {
9847   default:
9848     break;
9849   case ISD::ADD:
9850   case ISD::SUB:
9851     return performAddSubLongCombine(N, DCI, DAG);
9852   case ISD::XOR:
9853     return performXorCombine(N, DAG, DCI, Subtarget);
9854   case ISD::MUL:
9855     return performMulCombine(N, DAG, DCI, Subtarget);
9856   case ISD::SINT_TO_FP:
9857   case ISD::UINT_TO_FP:
9858     return performIntToFpCombine(N, DAG, Subtarget);
9859   case ISD::FP_TO_SINT:
9860   case ISD::FP_TO_UINT:
9861     return performFpToIntCombine(N, DAG, DCI, Subtarget);
9862   case ISD::FDIV:
9863     return performFDivCombine(N, DAG, Subtarget);
9864   case ISD::OR:
9865     return performORCombine(N, DCI, Subtarget);
9866   case ISD::SRL:
9867     return performSRLCombine(N, DCI);
9868   case ISD::INTRINSIC_WO_CHAIN:
9869     return performIntrinsicCombine(N, DCI, Subtarget);
9870   case ISD::ANY_EXTEND:
9871   case ISD::ZERO_EXTEND:
9872   case ISD::SIGN_EXTEND:
9873     return performExtendCombine(N, DCI, DAG);
9874   case ISD::BITCAST:
9875     return performBitcastCombine(N, DCI, DAG);
9876   case ISD::CONCAT_VECTORS:
9877     return performConcatVectorsCombine(N, DCI, DAG);
9878   case ISD::SELECT: {
9879     SDValue RV = performSelectCombine(N, DCI);
9880     if (!RV.getNode())
9881       RV = performAcrossLaneMinMaxReductionCombine(N, DAG, Subtarget);
9882     return RV;
9883   }
9884   case ISD::VSELECT:
9885     return performVSelectCombine(N, DCI.DAG);
9886   case ISD::LOAD:
9887     if (performTBISimplification(N->getOperand(1), DCI, DAG))
9888       return SDValue(N, 0);
9889     break;
9890   case ISD::STORE:
9891     return performSTORECombine(N, DCI, DAG, Subtarget);
9892   case AArch64ISD::BRCOND:
9893     return performBRCONDCombine(N, DCI, DAG);
9894   case AArch64ISD::TBNZ:
9895   case AArch64ISD::TBZ:
9896     return performTBZCombine(N, DCI, DAG);
9897   case AArch64ISD::CSEL:
9898     return performCONDCombine(N, DCI, DAG, 2, 3);
9899   case AArch64ISD::DUP:
9900     return performPostLD1Combine(N, DCI, false);
9901   case AArch64ISD::NVCAST:
9902     return performNVCASTCombine(N);
9903   case ISD::INSERT_VECTOR_ELT:
9904     return performPostLD1Combine(N, DCI, true);
9905   case ISD::EXTRACT_VECTOR_ELT:
9906     return performAcrossLaneAddReductionCombine(N, DAG, Subtarget);
9907   case ISD::INTRINSIC_VOID:
9908   case ISD::INTRINSIC_W_CHAIN:
9909     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
9910     case Intrinsic::aarch64_neon_ld2:
9911     case Intrinsic::aarch64_neon_ld3:
9912     case Intrinsic::aarch64_neon_ld4:
9913     case Intrinsic::aarch64_neon_ld1x2:
9914     case Intrinsic::aarch64_neon_ld1x3:
9915     case Intrinsic::aarch64_neon_ld1x4:
9916     case Intrinsic::aarch64_neon_ld2lane:
9917     case Intrinsic::aarch64_neon_ld3lane:
9918     case Intrinsic::aarch64_neon_ld4lane:
9919     case Intrinsic::aarch64_neon_ld2r:
9920     case Intrinsic::aarch64_neon_ld3r:
9921     case Intrinsic::aarch64_neon_ld4r:
9922     case Intrinsic::aarch64_neon_st2:
9923     case Intrinsic::aarch64_neon_st3:
9924     case Intrinsic::aarch64_neon_st4:
9925     case Intrinsic::aarch64_neon_st1x2:
9926     case Intrinsic::aarch64_neon_st1x3:
9927     case Intrinsic::aarch64_neon_st1x4:
9928     case Intrinsic::aarch64_neon_st2lane:
9929     case Intrinsic::aarch64_neon_st3lane:
9930     case Intrinsic::aarch64_neon_st4lane:
9931       return performNEONPostLDSTCombine(N, DCI, DAG);
9932     default:
9933       break;
9934     }
9935   }
9936   return SDValue();
9937 }
9938 
9939 // Check if the return value is used as only a return value, as otherwise
9940 // we can't perform a tail-call. In particular, we need to check for
9941 // target ISD nodes that are returns and any other "odd" constructs
9942 // that the generic analysis code won't necessarily catch.
isUsedByReturnOnly(SDNode * N,SDValue & Chain) const9943 bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
9944                                                SDValue &Chain) const {
9945   if (N->getNumValues() != 1)
9946     return false;
9947   if (!N->hasNUsesOfValue(1, 0))
9948     return false;
9949 
9950   SDValue TCChain = Chain;
9951   SDNode *Copy = *N->use_begin();
9952   if (Copy->getOpcode() == ISD::CopyToReg) {
9953     // If the copy has a glue operand, we conservatively assume it isn't safe to
9954     // perform a tail call.
9955     if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
9956         MVT::Glue)
9957       return false;
9958     TCChain = Copy->getOperand(0);
9959   } else if (Copy->getOpcode() != ISD::FP_EXTEND)
9960     return false;
9961 
9962   bool HasRet = false;
9963   for (SDNode *Node : Copy->uses()) {
9964     if (Node->getOpcode() != AArch64ISD::RET_FLAG)
9965       return false;
9966     HasRet = true;
9967   }
9968 
9969   if (!HasRet)
9970     return false;
9971 
9972   Chain = TCChain;
9973   return true;
9974 }
9975 
9976 // Return whether the an instruction can potentially be optimized to a tail
9977 // call. This will cause the optimizers to attempt to move, or duplicate,
9978 // return instructions to help enable tail call optimizations for this
9979 // instruction.
mayBeEmittedAsTailCall(CallInst * CI) const9980 bool AArch64TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
9981   return CI->isTailCall();
9982 }
9983 
getIndexedAddressParts(SDNode * Op,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,bool & IsInc,SelectionDAG & DAG) const9984 bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
9985                                                    SDValue &Offset,
9986                                                    ISD::MemIndexedMode &AM,
9987                                                    bool &IsInc,
9988                                                    SelectionDAG &DAG) const {
9989   if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
9990     return false;
9991 
9992   Base = Op->getOperand(0);
9993   // All of the indexed addressing mode instructions take a signed
9994   // 9 bit immediate offset.
9995   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
9996     int64_t RHSC = (int64_t)RHS->getZExtValue();
9997     if (RHSC >= 256 || RHSC <= -256)
9998       return false;
9999     IsInc = (Op->getOpcode() == ISD::ADD);
10000     Offset = Op->getOperand(1);
10001     return true;
10002   }
10003   return false;
10004 }
10005 
getPreIndexedAddressParts(SDNode * N,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const10006 bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
10007                                                       SDValue &Offset,
10008                                                       ISD::MemIndexedMode &AM,
10009                                                       SelectionDAG &DAG) const {
10010   EVT VT;
10011   SDValue Ptr;
10012   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
10013     VT = LD->getMemoryVT();
10014     Ptr = LD->getBasePtr();
10015   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
10016     VT = ST->getMemoryVT();
10017     Ptr = ST->getBasePtr();
10018   } else
10019     return false;
10020 
10021   bool IsInc;
10022   if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
10023     return false;
10024   AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
10025   return true;
10026 }
10027 
getPostIndexedAddressParts(SDNode * N,SDNode * Op,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const10028 bool AArch64TargetLowering::getPostIndexedAddressParts(
10029     SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
10030     ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
10031   EVT VT;
10032   SDValue Ptr;
10033   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
10034     VT = LD->getMemoryVT();
10035     Ptr = LD->getBasePtr();
10036   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
10037     VT = ST->getMemoryVT();
10038     Ptr = ST->getBasePtr();
10039   } else
10040     return false;
10041 
10042   bool IsInc;
10043   if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
10044     return false;
10045   // Post-indexing updates the base, so it's not a valid transform
10046   // if that's not the same as the load's pointer.
10047   if (Ptr != Base)
10048     return false;
10049   AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
10050   return true;
10051 }
10052 
ReplaceBITCASTResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG)10053 static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
10054                                   SelectionDAG &DAG) {
10055   SDLoc DL(N);
10056   SDValue Op = N->getOperand(0);
10057 
10058   if (N->getValueType(0) != MVT::i16 || Op.getValueType() != MVT::f16)
10059     return;
10060 
10061   Op = SDValue(
10062       DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32,
10063                          DAG.getUNDEF(MVT::i32), Op,
10064                          DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
10065       0);
10066   Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op);
10067   Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op));
10068 }
10069 
ReplaceReductionResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG,unsigned InterOp,unsigned AcrossOp)10070 static void ReplaceReductionResults(SDNode *N,
10071                                     SmallVectorImpl<SDValue> &Results,
10072                                     SelectionDAG &DAG, unsigned InterOp,
10073                                     unsigned AcrossOp) {
10074   EVT LoVT, HiVT;
10075   SDValue Lo, Hi;
10076   SDLoc dl(N);
10077   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
10078   std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
10079   SDValue InterVal = DAG.getNode(InterOp, dl, LoVT, Lo, Hi);
10080   SDValue SplitVal = DAG.getNode(AcrossOp, dl, LoVT, InterVal);
10081   Results.push_back(SplitVal);
10082 }
10083 
ReplaceCMP_SWAP_128Results(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG)10084 static void ReplaceCMP_SWAP_128Results(SDNode *N,
10085                                        SmallVectorImpl<SDValue> & Results,
10086                                        SelectionDAG &DAG) {
10087   assert(N->getValueType(0) == MVT::i128 &&
10088          "AtomicCmpSwap on types less than 128 should be legal");
10089   SDValue Ops[] = {N->getOperand(1),
10090                    N->getOperand(2)->getOperand(0),
10091                    N->getOperand(2)->getOperand(1),
10092                    N->getOperand(3)->getOperand(0),
10093                    N->getOperand(3)->getOperand(1),
10094                    N->getOperand(0)};
10095   SDNode *CmpSwap = DAG.getMachineNode(
10096       AArch64::CMP_SWAP_128, SDLoc(N),
10097       DAG.getVTList(MVT::i64, MVT::i64, MVT::i32, MVT::Other), Ops);
10098 
10099   MachineFunction &MF = DAG.getMachineFunction();
10100   MachineSDNode::mmo_iterator MemOp = MF.allocateMemRefsArray(1);
10101   MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
10102   cast<MachineSDNode>(CmpSwap)->setMemRefs(MemOp, MemOp + 1);
10103 
10104   Results.push_back(SDValue(CmpSwap, 0));
10105   Results.push_back(SDValue(CmpSwap, 1));
10106   Results.push_back(SDValue(CmpSwap, 3));
10107 }
10108 
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const10109 void AArch64TargetLowering::ReplaceNodeResults(
10110     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
10111   switch (N->getOpcode()) {
10112   default:
10113     llvm_unreachable("Don't know how to custom expand this");
10114   case ISD::BITCAST:
10115     ReplaceBITCASTResults(N, Results, DAG);
10116     return;
10117   case AArch64ISD::SADDV:
10118     ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::SADDV);
10119     return;
10120   case AArch64ISD::UADDV:
10121     ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::UADDV);
10122     return;
10123   case AArch64ISD::SMINV:
10124     ReplaceReductionResults(N, Results, DAG, ISD::SMIN, AArch64ISD::SMINV);
10125     return;
10126   case AArch64ISD::UMINV:
10127     ReplaceReductionResults(N, Results, DAG, ISD::UMIN, AArch64ISD::UMINV);
10128     return;
10129   case AArch64ISD::SMAXV:
10130     ReplaceReductionResults(N, Results, DAG, ISD::SMAX, AArch64ISD::SMAXV);
10131     return;
10132   case AArch64ISD::UMAXV:
10133     ReplaceReductionResults(N, Results, DAG, ISD::UMAX, AArch64ISD::UMAXV);
10134     return;
10135   case ISD::FP_TO_UINT:
10136   case ISD::FP_TO_SINT:
10137     assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
10138     // Let normal code take care of it by not adding anything to Results.
10139     return;
10140   case ISD::ATOMIC_CMP_SWAP:
10141     ReplaceCMP_SWAP_128Results(N, Results, DAG);
10142     return;
10143   }
10144 }
10145 
useLoadStackGuardNode() const10146 bool AArch64TargetLowering::useLoadStackGuardNode() const {
10147   if (!Subtarget->isTargetAndroid())
10148     return true;
10149   return TargetLowering::useLoadStackGuardNode();
10150 }
10151 
combineRepeatedFPDivisors() const10152 unsigned AArch64TargetLowering::combineRepeatedFPDivisors() const {
10153   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
10154   // reciprocal if there are three or more FDIVs.
10155   return 3;
10156 }
10157 
10158 TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(EVT VT) const10159 AArch64TargetLowering::getPreferredVectorAction(EVT VT) const {
10160   MVT SVT = VT.getSimpleVT();
10161   // During type legalization, we prefer to widen v1i8, v1i16, v1i32  to v8i8,
10162   // v4i16, v2i32 instead of to promote.
10163   if (SVT == MVT::v1i8 || SVT == MVT::v1i16 || SVT == MVT::v1i32
10164       || SVT == MVT::v1f32)
10165     return TypeWidenVector;
10166 
10167   return TargetLoweringBase::getPreferredVectorAction(VT);
10168 }
10169 
10170 // Loads and stores less than 128-bits are already atomic; ones above that
10171 // are doomed anyway, so defer to the default libcall and blame the OS when
10172 // things go wrong.
shouldExpandAtomicStoreInIR(StoreInst * SI) const10173 bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
10174   unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
10175   return Size == 128;
10176 }
10177 
10178 // Loads and stores less than 128-bits are already atomic; ones above that
10179 // are doomed anyway, so defer to the default libcall and blame the OS when
10180 // things go wrong.
10181 TargetLowering::AtomicExpansionKind
shouldExpandAtomicLoadInIR(LoadInst * LI) const10182 AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
10183   unsigned Size = LI->getType()->getPrimitiveSizeInBits();
10184   return Size == 128 ? AtomicExpansionKind::LLSC : AtomicExpansionKind::None;
10185 }
10186 
10187 // For the real atomic operations, we have ldxr/stxr up to 128 bits,
10188 TargetLowering::AtomicExpansionKind
shouldExpandAtomicRMWInIR(AtomicRMWInst * AI) const10189 AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
10190   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
10191   return Size <= 128 ? AtomicExpansionKind::LLSC : AtomicExpansionKind::None;
10192 }
10193 
shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst * AI) const10194 bool AArch64TargetLowering::shouldExpandAtomicCmpXchgInIR(
10195     AtomicCmpXchgInst *AI) const {
10196   // At -O0, fast-regalloc cannot cope with the live vregs necessary to
10197   // implement cmpxchg without spilling. If the address being exchanged is also
10198   // on the stack and close enough to the spill slot, this can lead to a
10199   // situation where the monitor always gets cleared and the atomic operation
10200   // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
10201   return getTargetMachine().getOptLevel() != 0;
10202 }
10203 
emitLoadLinked(IRBuilder<> & Builder,Value * Addr,AtomicOrdering Ord) const10204 Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
10205                                              AtomicOrdering Ord) const {
10206   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
10207   Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
10208   bool IsAcquire = isAcquireOrStronger(Ord);
10209 
10210   // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
10211   // intrinsic must return {i64, i64} and we have to recombine them into a
10212   // single i128 here.
10213   if (ValTy->getPrimitiveSizeInBits() == 128) {
10214     Intrinsic::ID Int =
10215         IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
10216     Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int);
10217 
10218     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
10219     Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi");
10220 
10221     Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
10222     Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
10223     Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
10224     Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
10225     return Builder.CreateOr(
10226         Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
10227   }
10228 
10229   Type *Tys[] = { Addr->getType() };
10230   Intrinsic::ID Int =
10231       IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
10232   Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int, Tys);
10233 
10234   return Builder.CreateTruncOrBitCast(
10235       Builder.CreateCall(Ldxr, Addr),
10236       cast<PointerType>(Addr->getType())->getElementType());
10237 }
10238 
emitAtomicCmpXchgNoStoreLLBalance(IRBuilder<> & Builder) const10239 void AArch64TargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
10240     IRBuilder<> &Builder) const {
10241   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
10242   Builder.CreateCall(
10243       llvm::Intrinsic::getDeclaration(M, Intrinsic::aarch64_clrex));
10244 }
10245 
emitStoreConditional(IRBuilder<> & Builder,Value * Val,Value * Addr,AtomicOrdering Ord) const10246 Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
10247                                                    Value *Val, Value *Addr,
10248                                                    AtomicOrdering Ord) const {
10249   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
10250   bool IsRelease = isReleaseOrStronger(Ord);
10251 
10252   // Since the intrinsics must have legal type, the i128 intrinsics take two
10253   // parameters: "i64, i64". We must marshal Val into the appropriate form
10254   // before the call.
10255   if (Val->getType()->getPrimitiveSizeInBits() == 128) {
10256     Intrinsic::ID Int =
10257         IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
10258     Function *Stxr = Intrinsic::getDeclaration(M, Int);
10259     Type *Int64Ty = Type::getInt64Ty(M->getContext());
10260 
10261     Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo");
10262     Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi");
10263     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
10264     return Builder.CreateCall(Stxr, {Lo, Hi, Addr});
10265   }
10266 
10267   Intrinsic::ID Int =
10268       IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
10269   Type *Tys[] = { Addr->getType() };
10270   Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys);
10271 
10272   return Builder.CreateCall(Stxr,
10273                             {Builder.CreateZExtOrBitCast(
10274                                  Val, Stxr->getFunctionType()->getParamType(0)),
10275                              Addr});
10276 }
10277 
functionArgumentNeedsConsecutiveRegisters(Type * Ty,CallingConv::ID CallConv,bool isVarArg) const10278 bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters(
10279     Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
10280   return Ty->isArrayTy();
10281 }
10282 
shouldNormalizeToSelectSequence(LLVMContext &,EVT) const10283 bool AArch64TargetLowering::shouldNormalizeToSelectSequence(LLVMContext &,
10284                                                             EVT) const {
10285   return false;
10286 }
10287 
getIRStackGuard(IRBuilder<> & IRB) const10288 Value *AArch64TargetLowering::getIRStackGuard(IRBuilder<> &IRB) const {
10289   if (!Subtarget->isTargetAndroid())
10290     return TargetLowering::getIRStackGuard(IRB);
10291 
10292   // Android provides a fixed TLS slot for the stack cookie. See the definition
10293   // of TLS_SLOT_STACK_GUARD in
10294   // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
10295   const unsigned TlsOffset = 0x28;
10296   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
10297   Function *ThreadPointerFunc =
10298       Intrinsic::getDeclaration(M, Intrinsic::thread_pointer);
10299   return IRB.CreatePointerCast(
10300       IRB.CreateConstGEP1_32(IRB.CreateCall(ThreadPointerFunc), TlsOffset),
10301       Type::getInt8PtrTy(IRB.getContext())->getPointerTo(0));
10302 }
10303 
getSafeStackPointerLocation(IRBuilder<> & IRB) const10304 Value *AArch64TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
10305   if (!Subtarget->isTargetAndroid())
10306     return TargetLowering::getSafeStackPointerLocation(IRB);
10307 
10308   // Android provides a fixed TLS slot for the SafeStack pointer. See the
10309   // definition of TLS_SLOT_SAFESTACK in
10310   // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
10311   const unsigned TlsOffset = 0x48;
10312   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
10313   Function *ThreadPointerFunc =
10314       Intrinsic::getDeclaration(M, Intrinsic::thread_pointer);
10315   return IRB.CreatePointerCast(
10316       IRB.CreateConstGEP1_32(IRB.CreateCall(ThreadPointerFunc), TlsOffset),
10317       Type::getInt8PtrTy(IRB.getContext())->getPointerTo(0));
10318 }
10319 
initializeSplitCSR(MachineBasicBlock * Entry) const10320 void AArch64TargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
10321   // Update IsSplitCSR in AArch64unctionInfo.
10322   AArch64FunctionInfo *AFI = Entry->getParent()->getInfo<AArch64FunctionInfo>();
10323   AFI->setIsSplitCSR(true);
10324 }
10325 
insertCopiesSplitCSR(MachineBasicBlock * Entry,const SmallVectorImpl<MachineBasicBlock * > & Exits) const10326 void AArch64TargetLowering::insertCopiesSplitCSR(
10327     MachineBasicBlock *Entry,
10328     const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
10329   const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
10330   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
10331   if (!IStart)
10332     return;
10333 
10334   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
10335   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
10336   MachineBasicBlock::iterator MBBI = Entry->begin();
10337   for (const MCPhysReg *I = IStart; *I; ++I) {
10338     const TargetRegisterClass *RC = nullptr;
10339     if (AArch64::GPR64RegClass.contains(*I))
10340       RC = &AArch64::GPR64RegClass;
10341     else if (AArch64::FPR64RegClass.contains(*I))
10342       RC = &AArch64::FPR64RegClass;
10343     else
10344       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
10345 
10346     unsigned NewVR = MRI->createVirtualRegister(RC);
10347     // Create copy from CSR to a virtual register.
10348     // FIXME: this currently does not emit CFI pseudo-instructions, it works
10349     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
10350     // nounwind. If we want to generalize this later, we may need to emit
10351     // CFI pseudo-instructions.
10352     assert(Entry->getParent()->getFunction()->hasFnAttribute(
10353                Attribute::NoUnwind) &&
10354            "Function should be nounwind in insertCopiesSplitCSR!");
10355     Entry->addLiveIn(*I);
10356     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
10357         .addReg(*I);
10358 
10359     // Insert the copy-back instructions right before the terminator.
10360     for (auto *Exit : Exits)
10361       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
10362               TII->get(TargetOpcode::COPY), *I)
10363           .addReg(NewVR);
10364   }
10365 }
10366 
isIntDivCheap(EVT VT,AttributeSet Attr) const10367 bool AArch64TargetLowering::isIntDivCheap(EVT VT, AttributeSet Attr) const {
10368   // Integer division on AArch64 is expensive. However, when aggressively
10369   // optimizing for code size, we prefer to use a div instruction, as it is
10370   // usually smaller than the alternative sequence.
10371   // The exception to this is vector division. Since AArch64 doesn't have vector
10372   // integer division, leaving the division as-is is a loss even in terms of
10373   // size, because it will have to be scalarized, while the alternative code
10374   // sequence can be performed in vector form.
10375   bool OptSize =
10376       Attr.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize);
10377   return OptSize && !VT.isVector();
10378 }
10379