1//=- AArch64InstrInfo.td - Describe the AArch64 Instructions -*- tablegen -*-=// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// AArch64 Instruction definitions. 11// 12//===----------------------------------------------------------------------===// 13 14//===----------------------------------------------------------------------===// 15// ARM Instruction Predicate Definitions. 16// 17def HasV8_1a : Predicate<"Subtarget->hasV8_1aOps()">, 18 AssemblerPredicate<"HasV8_1aOps", "armv8.1a">; 19def HasV8_2a : Predicate<"Subtarget->hasV8_2aOps()">, 20 AssemblerPredicate<"HasV8_2aOps", "armv8.2a">; 21def HasFPARMv8 : Predicate<"Subtarget->hasFPARMv8()">, 22 AssemblerPredicate<"FeatureFPARMv8", "fp-armv8">; 23def HasNEON : Predicate<"Subtarget->hasNEON()">, 24 AssemblerPredicate<"FeatureNEON", "neon">; 25def HasCrypto : Predicate<"Subtarget->hasCrypto()">, 26 AssemblerPredicate<"FeatureCrypto", "crypto">; 27def HasCRC : Predicate<"Subtarget->hasCRC()">, 28 AssemblerPredicate<"FeatureCRC", "crc">; 29def HasRAS : Predicate<"Subtarget->hasRAS()">, 30 AssemblerPredicate<"FeatureRAS", "ras">; 31def HasPerfMon : Predicate<"Subtarget->hasPerfMon()">; 32def HasFullFP16 : Predicate<"Subtarget->hasFullFP16()">, 33 AssemblerPredicate<"FeatureFullFP16", "fullfp16">; 34def HasSPE : Predicate<"Subtarget->hasSPE()">, 35 AssemblerPredicate<"FeatureSPE", "spe">; 36 37def IsLE : Predicate<"Subtarget->isLittleEndian()">; 38def IsBE : Predicate<"!Subtarget->isLittleEndian()">; 39def UseAlternateSExtLoadCVTF32 40 : Predicate<"Subtarget->useAlternateSExtLoadCVTF32Pattern()">; 41 42//===----------------------------------------------------------------------===// 43// AArch64-specific DAG Nodes. 44// 45 46// SDTBinaryArithWithFlagsOut - RES1, FLAGS = op LHS, RHS 47def SDTBinaryArithWithFlagsOut : SDTypeProfile<2, 2, 48 [SDTCisSameAs<0, 2>, 49 SDTCisSameAs<0, 3>, 50 SDTCisInt<0>, SDTCisVT<1, i32>]>; 51 52// SDTBinaryArithWithFlagsIn - RES1, FLAGS = op LHS, RHS, FLAGS 53def SDTBinaryArithWithFlagsIn : SDTypeProfile<1, 3, 54 [SDTCisSameAs<0, 1>, 55 SDTCisSameAs<0, 2>, 56 SDTCisInt<0>, 57 SDTCisVT<3, i32>]>; 58 59// SDTBinaryArithWithFlagsInOut - RES1, FLAGS = op LHS, RHS, FLAGS 60def SDTBinaryArithWithFlagsInOut : SDTypeProfile<2, 3, 61 [SDTCisSameAs<0, 2>, 62 SDTCisSameAs<0, 3>, 63 SDTCisInt<0>, 64 SDTCisVT<1, i32>, 65 SDTCisVT<4, i32>]>; 66 67def SDT_AArch64Brcond : SDTypeProfile<0, 3, 68 [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>, 69 SDTCisVT<2, i32>]>; 70def SDT_AArch64cbz : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisVT<1, OtherVT>]>; 71def SDT_AArch64tbz : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>, 72 SDTCisVT<2, OtherVT>]>; 73 74 75def SDT_AArch64CSel : SDTypeProfile<1, 4, 76 [SDTCisSameAs<0, 1>, 77 SDTCisSameAs<0, 2>, 78 SDTCisInt<3>, 79 SDTCisVT<4, i32>]>; 80def SDT_AArch64CCMP : SDTypeProfile<1, 5, 81 [SDTCisVT<0, i32>, 82 SDTCisInt<1>, 83 SDTCisSameAs<1, 2>, 84 SDTCisInt<3>, 85 SDTCisInt<4>, 86 SDTCisVT<5, i32>]>; 87def SDT_AArch64FCCMP : SDTypeProfile<1, 5, 88 [SDTCisVT<0, i32>, 89 SDTCisFP<1>, 90 SDTCisSameAs<1, 2>, 91 SDTCisInt<3>, 92 SDTCisInt<4>, 93 SDTCisVT<5, i32>]>; 94def SDT_AArch64FCmp : SDTypeProfile<0, 2, 95 [SDTCisFP<0>, 96 SDTCisSameAs<0, 1>]>; 97def SDT_AArch64Dup : SDTypeProfile<1, 1, [SDTCisVec<0>]>; 98def SDT_AArch64DupLane : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisInt<2>]>; 99def SDT_AArch64Zip : SDTypeProfile<1, 2, [SDTCisVec<0>, 100 SDTCisSameAs<0, 1>, 101 SDTCisSameAs<0, 2>]>; 102def SDT_AArch64MOVIedit : SDTypeProfile<1, 1, [SDTCisInt<1>]>; 103def SDT_AArch64MOVIshift : SDTypeProfile<1, 2, [SDTCisInt<1>, SDTCisInt<2>]>; 104def SDT_AArch64vecimm : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>, 105 SDTCisInt<2>, SDTCisInt<3>]>; 106def SDT_AArch64UnaryVec: SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0,1>]>; 107def SDT_AArch64ExtVec: SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>, 108 SDTCisSameAs<0,2>, SDTCisInt<3>]>; 109def SDT_AArch64vshift : SDTypeProfile<1, 2, [SDTCisSameAs<0,1>, SDTCisInt<2>]>; 110 111def SDT_AArch64unvec : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0,1>]>; 112def SDT_AArch64fcmpz : SDTypeProfile<1, 1, []>; 113def SDT_AArch64fcmp : SDTypeProfile<1, 2, [SDTCisSameAs<1,2>]>; 114def SDT_AArch64binvec : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>, 115 SDTCisSameAs<0,2>]>; 116def SDT_AArch64trivec : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>, 117 SDTCisSameAs<0,2>, 118 SDTCisSameAs<0,3>]>; 119def SDT_AArch64TCRET : SDTypeProfile<0, 2, [SDTCisPtrTy<0>]>; 120def SDT_AArch64PREFETCH : SDTypeProfile<0, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<1>]>; 121 122def SDT_AArch64ITOF : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisSameAs<0,1>]>; 123 124def SDT_AArch64TLSDescCall : SDTypeProfile<0, -2, [SDTCisPtrTy<0>, 125 SDTCisPtrTy<1>]>; 126 127// Generates the general dynamic sequences, i.e. 128// adrp x0, :tlsdesc:var 129// ldr x1, [x0, #:tlsdesc_lo12:var] 130// add x0, x0, #:tlsdesc_lo12:var 131// .tlsdesccall var 132// blr x1 133 134// (the TPIDR_EL0 offset is put directly in X0, hence no "result" here) 135// number of operands (the variable) 136def SDT_AArch64TLSDescCallSeq : SDTypeProfile<0,1, 137 [SDTCisPtrTy<0>]>; 138 139def SDT_AArch64WrapperLarge : SDTypeProfile<1, 4, 140 [SDTCisVT<0, i64>, SDTCisVT<1, i32>, 141 SDTCisSameAs<1, 2>, SDTCisSameAs<1, 3>, 142 SDTCisSameAs<1, 4>]>; 143 144 145// Node definitions. 146def AArch64adrp : SDNode<"AArch64ISD::ADRP", SDTIntUnaryOp, []>; 147def AArch64addlow : SDNode<"AArch64ISD::ADDlow", SDTIntBinOp, []>; 148def AArch64LOADgot : SDNode<"AArch64ISD::LOADgot", SDTIntUnaryOp>; 149def AArch64callseq_start : SDNode<"ISD::CALLSEQ_START", 150 SDCallSeqStart<[ SDTCisVT<0, i32> ]>, 151 [SDNPHasChain, SDNPOutGlue]>; 152def AArch64callseq_end : SDNode<"ISD::CALLSEQ_END", 153 SDCallSeqEnd<[ SDTCisVT<0, i32>, 154 SDTCisVT<1, i32> ]>, 155 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; 156def AArch64call : SDNode<"AArch64ISD::CALL", 157 SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>, 158 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 159 SDNPVariadic]>; 160def AArch64brcond : SDNode<"AArch64ISD::BRCOND", SDT_AArch64Brcond, 161 [SDNPHasChain]>; 162def AArch64cbz : SDNode<"AArch64ISD::CBZ", SDT_AArch64cbz, 163 [SDNPHasChain]>; 164def AArch64cbnz : SDNode<"AArch64ISD::CBNZ", SDT_AArch64cbz, 165 [SDNPHasChain]>; 166def AArch64tbz : SDNode<"AArch64ISD::TBZ", SDT_AArch64tbz, 167 [SDNPHasChain]>; 168def AArch64tbnz : SDNode<"AArch64ISD::TBNZ", SDT_AArch64tbz, 169 [SDNPHasChain]>; 170 171 172def AArch64csel : SDNode<"AArch64ISD::CSEL", SDT_AArch64CSel>; 173def AArch64csinv : SDNode<"AArch64ISD::CSINV", SDT_AArch64CSel>; 174def AArch64csneg : SDNode<"AArch64ISD::CSNEG", SDT_AArch64CSel>; 175def AArch64csinc : SDNode<"AArch64ISD::CSINC", SDT_AArch64CSel>; 176def AArch64retflag : SDNode<"AArch64ISD::RET_FLAG", SDTNone, 177 [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; 178def AArch64adc : SDNode<"AArch64ISD::ADC", SDTBinaryArithWithFlagsIn >; 179def AArch64sbc : SDNode<"AArch64ISD::SBC", SDTBinaryArithWithFlagsIn>; 180def AArch64add_flag : SDNode<"AArch64ISD::ADDS", SDTBinaryArithWithFlagsOut, 181 [SDNPCommutative]>; 182def AArch64sub_flag : SDNode<"AArch64ISD::SUBS", SDTBinaryArithWithFlagsOut>; 183def AArch64and_flag : SDNode<"AArch64ISD::ANDS", SDTBinaryArithWithFlagsOut, 184 [SDNPCommutative]>; 185def AArch64adc_flag : SDNode<"AArch64ISD::ADCS", SDTBinaryArithWithFlagsInOut>; 186def AArch64sbc_flag : SDNode<"AArch64ISD::SBCS", SDTBinaryArithWithFlagsInOut>; 187 188def AArch64ccmp : SDNode<"AArch64ISD::CCMP", SDT_AArch64CCMP>; 189def AArch64ccmn : SDNode<"AArch64ISD::CCMN", SDT_AArch64CCMP>; 190def AArch64fccmp : SDNode<"AArch64ISD::FCCMP", SDT_AArch64FCCMP>; 191 192def AArch64threadpointer : SDNode<"AArch64ISD::THREAD_POINTER", SDTPtrLeaf>; 193 194def AArch64fcmp : SDNode<"AArch64ISD::FCMP", SDT_AArch64FCmp>; 195 196def AArch64dup : SDNode<"AArch64ISD::DUP", SDT_AArch64Dup>; 197def AArch64duplane8 : SDNode<"AArch64ISD::DUPLANE8", SDT_AArch64DupLane>; 198def AArch64duplane16 : SDNode<"AArch64ISD::DUPLANE16", SDT_AArch64DupLane>; 199def AArch64duplane32 : SDNode<"AArch64ISD::DUPLANE32", SDT_AArch64DupLane>; 200def AArch64duplane64 : SDNode<"AArch64ISD::DUPLANE64", SDT_AArch64DupLane>; 201 202def AArch64zip1 : SDNode<"AArch64ISD::ZIP1", SDT_AArch64Zip>; 203def AArch64zip2 : SDNode<"AArch64ISD::ZIP2", SDT_AArch64Zip>; 204def AArch64uzp1 : SDNode<"AArch64ISD::UZP1", SDT_AArch64Zip>; 205def AArch64uzp2 : SDNode<"AArch64ISD::UZP2", SDT_AArch64Zip>; 206def AArch64trn1 : SDNode<"AArch64ISD::TRN1", SDT_AArch64Zip>; 207def AArch64trn2 : SDNode<"AArch64ISD::TRN2", SDT_AArch64Zip>; 208 209def AArch64movi_edit : SDNode<"AArch64ISD::MOVIedit", SDT_AArch64MOVIedit>; 210def AArch64movi_shift : SDNode<"AArch64ISD::MOVIshift", SDT_AArch64MOVIshift>; 211def AArch64movi_msl : SDNode<"AArch64ISD::MOVImsl", SDT_AArch64MOVIshift>; 212def AArch64mvni_shift : SDNode<"AArch64ISD::MVNIshift", SDT_AArch64MOVIshift>; 213def AArch64mvni_msl : SDNode<"AArch64ISD::MVNImsl", SDT_AArch64MOVIshift>; 214def AArch64movi : SDNode<"AArch64ISD::MOVI", SDT_AArch64MOVIedit>; 215def AArch64fmov : SDNode<"AArch64ISD::FMOV", SDT_AArch64MOVIedit>; 216 217def AArch64rev16 : SDNode<"AArch64ISD::REV16", SDT_AArch64UnaryVec>; 218def AArch64rev32 : SDNode<"AArch64ISD::REV32", SDT_AArch64UnaryVec>; 219def AArch64rev64 : SDNode<"AArch64ISD::REV64", SDT_AArch64UnaryVec>; 220def AArch64ext : SDNode<"AArch64ISD::EXT", SDT_AArch64ExtVec>; 221 222def AArch64vashr : SDNode<"AArch64ISD::VASHR", SDT_AArch64vshift>; 223def AArch64vlshr : SDNode<"AArch64ISD::VLSHR", SDT_AArch64vshift>; 224def AArch64vshl : SDNode<"AArch64ISD::VSHL", SDT_AArch64vshift>; 225def AArch64sqshli : SDNode<"AArch64ISD::SQSHL_I", SDT_AArch64vshift>; 226def AArch64uqshli : SDNode<"AArch64ISD::UQSHL_I", SDT_AArch64vshift>; 227def AArch64sqshlui : SDNode<"AArch64ISD::SQSHLU_I", SDT_AArch64vshift>; 228def AArch64srshri : SDNode<"AArch64ISD::SRSHR_I", SDT_AArch64vshift>; 229def AArch64urshri : SDNode<"AArch64ISD::URSHR_I", SDT_AArch64vshift>; 230 231def AArch64not: SDNode<"AArch64ISD::NOT", SDT_AArch64unvec>; 232def AArch64bit: SDNode<"AArch64ISD::BIT", SDT_AArch64trivec>; 233def AArch64bsl: SDNode<"AArch64ISD::BSL", SDT_AArch64trivec>; 234 235def AArch64cmeq: SDNode<"AArch64ISD::CMEQ", SDT_AArch64binvec>; 236def AArch64cmge: SDNode<"AArch64ISD::CMGE", SDT_AArch64binvec>; 237def AArch64cmgt: SDNode<"AArch64ISD::CMGT", SDT_AArch64binvec>; 238def AArch64cmhi: SDNode<"AArch64ISD::CMHI", SDT_AArch64binvec>; 239def AArch64cmhs: SDNode<"AArch64ISD::CMHS", SDT_AArch64binvec>; 240 241def AArch64fcmeq: SDNode<"AArch64ISD::FCMEQ", SDT_AArch64fcmp>; 242def AArch64fcmge: SDNode<"AArch64ISD::FCMGE", SDT_AArch64fcmp>; 243def AArch64fcmgt: SDNode<"AArch64ISD::FCMGT", SDT_AArch64fcmp>; 244 245def AArch64cmeqz: SDNode<"AArch64ISD::CMEQz", SDT_AArch64unvec>; 246def AArch64cmgez: SDNode<"AArch64ISD::CMGEz", SDT_AArch64unvec>; 247def AArch64cmgtz: SDNode<"AArch64ISD::CMGTz", SDT_AArch64unvec>; 248def AArch64cmlez: SDNode<"AArch64ISD::CMLEz", SDT_AArch64unvec>; 249def AArch64cmltz: SDNode<"AArch64ISD::CMLTz", SDT_AArch64unvec>; 250def AArch64cmtst : PatFrag<(ops node:$LHS, node:$RHS), 251 (AArch64not (AArch64cmeqz (and node:$LHS, node:$RHS)))>; 252 253def AArch64fcmeqz: SDNode<"AArch64ISD::FCMEQz", SDT_AArch64fcmpz>; 254def AArch64fcmgez: SDNode<"AArch64ISD::FCMGEz", SDT_AArch64fcmpz>; 255def AArch64fcmgtz: SDNode<"AArch64ISD::FCMGTz", SDT_AArch64fcmpz>; 256def AArch64fcmlez: SDNode<"AArch64ISD::FCMLEz", SDT_AArch64fcmpz>; 257def AArch64fcmltz: SDNode<"AArch64ISD::FCMLTz", SDT_AArch64fcmpz>; 258 259def AArch64bici: SDNode<"AArch64ISD::BICi", SDT_AArch64vecimm>; 260def AArch64orri: SDNode<"AArch64ISD::ORRi", SDT_AArch64vecimm>; 261 262def AArch64neg : SDNode<"AArch64ISD::NEG", SDT_AArch64unvec>; 263 264def AArch64tcret: SDNode<"AArch64ISD::TC_RETURN", SDT_AArch64TCRET, 265 [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; 266 267def AArch64Prefetch : SDNode<"AArch64ISD::PREFETCH", SDT_AArch64PREFETCH, 268 [SDNPHasChain, SDNPSideEffect]>; 269 270def AArch64sitof: SDNode<"AArch64ISD::SITOF", SDT_AArch64ITOF>; 271def AArch64uitof: SDNode<"AArch64ISD::UITOF", SDT_AArch64ITOF>; 272 273def AArch64tlsdesc_callseq : SDNode<"AArch64ISD::TLSDESC_CALLSEQ", 274 SDT_AArch64TLSDescCallSeq, 275 [SDNPInGlue, SDNPOutGlue, SDNPHasChain, 276 SDNPVariadic]>; 277 278 279def AArch64WrapperLarge : SDNode<"AArch64ISD::WrapperLarge", 280 SDT_AArch64WrapperLarge>; 281 282def AArch64NvCast : SDNode<"AArch64ISD::NVCAST", SDTUnaryOp>; 283 284def SDT_AArch64mull : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisInt<1>, 285 SDTCisSameAs<1, 2>]>; 286def AArch64smull : SDNode<"AArch64ISD::SMULL", SDT_AArch64mull>; 287def AArch64umull : SDNode<"AArch64ISD::UMULL", SDT_AArch64mull>; 288 289def AArch64frecpe : SDNode<"AArch64ISD::FRECPE", SDTFPUnaryOp>; 290def AArch64frsqrte : SDNode<"AArch64ISD::FRSQRTE", SDTFPUnaryOp>; 291 292def AArch64saddv : SDNode<"AArch64ISD::SADDV", SDT_AArch64UnaryVec>; 293def AArch64uaddv : SDNode<"AArch64ISD::UADDV", SDT_AArch64UnaryVec>; 294def AArch64sminv : SDNode<"AArch64ISD::SMINV", SDT_AArch64UnaryVec>; 295def AArch64uminv : SDNode<"AArch64ISD::UMINV", SDT_AArch64UnaryVec>; 296def AArch64smaxv : SDNode<"AArch64ISD::SMAXV", SDT_AArch64UnaryVec>; 297def AArch64umaxv : SDNode<"AArch64ISD::UMAXV", SDT_AArch64UnaryVec>; 298 299//===----------------------------------------------------------------------===// 300 301//===----------------------------------------------------------------------===// 302 303// AArch64 Instruction Predicate Definitions. 304def IsDarwin : Predicate<"Subtarget->isTargetDarwin()">; 305def IsNotDarwin: Predicate<"!Subtarget->isTargetDarwin()">; 306def ForCodeSize : Predicate<"ForCodeSize">; 307def NotForCodeSize : Predicate<"!ForCodeSize">; 308 309include "AArch64InstrFormats.td" 310 311//===----------------------------------------------------------------------===// 312 313//===----------------------------------------------------------------------===// 314// Miscellaneous instructions. 315//===----------------------------------------------------------------------===// 316 317let Defs = [SP], Uses = [SP], hasSideEffects = 1, isCodeGenOnly = 1 in { 318// We set Sched to empty list because we expect these instructions to simply get 319// removed in most cases. 320def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt), 321 [(AArch64callseq_start timm:$amt)]>, Sched<[]>; 322def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), 323 [(AArch64callseq_end timm:$amt1, timm:$amt2)]>, 324 Sched<[]>; 325} // Defs = [SP], Uses = [SP], hasSideEffects = 1, isCodeGenOnly = 1 326 327let isReMaterializable = 1, isCodeGenOnly = 1 in { 328// FIXME: The following pseudo instructions are only needed because remat 329// cannot handle multiple instructions. When that changes, they can be 330// removed, along with the AArch64Wrapper node. 331 332let AddedComplexity = 10 in 333def LOADgot : Pseudo<(outs GPR64:$dst), (ins i64imm:$addr), 334 [(set GPR64:$dst, (AArch64LOADgot tglobaladdr:$addr))]>, 335 Sched<[WriteLDAdr]>; 336 337// The MOVaddr instruction should match only when the add is not folded 338// into a load or store address. 339def MOVaddr 340 : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low), 341 [(set GPR64:$dst, (AArch64addlow (AArch64adrp tglobaladdr:$hi), 342 tglobaladdr:$low))]>, 343 Sched<[WriteAdrAdr]>; 344def MOVaddrJT 345 : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low), 346 [(set GPR64:$dst, (AArch64addlow (AArch64adrp tjumptable:$hi), 347 tjumptable:$low))]>, 348 Sched<[WriteAdrAdr]>; 349def MOVaddrCP 350 : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low), 351 [(set GPR64:$dst, (AArch64addlow (AArch64adrp tconstpool:$hi), 352 tconstpool:$low))]>, 353 Sched<[WriteAdrAdr]>; 354def MOVaddrBA 355 : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low), 356 [(set GPR64:$dst, (AArch64addlow (AArch64adrp tblockaddress:$hi), 357 tblockaddress:$low))]>, 358 Sched<[WriteAdrAdr]>; 359def MOVaddrTLS 360 : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low), 361 [(set GPR64:$dst, (AArch64addlow (AArch64adrp tglobaltlsaddr:$hi), 362 tglobaltlsaddr:$low))]>, 363 Sched<[WriteAdrAdr]>; 364def MOVaddrEXT 365 : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low), 366 [(set GPR64:$dst, (AArch64addlow (AArch64adrp texternalsym:$hi), 367 texternalsym:$low))]>, 368 Sched<[WriteAdrAdr]>; 369 370} // isReMaterializable, isCodeGenOnly 371 372def : Pat<(AArch64LOADgot tglobaltlsaddr:$addr), 373 (LOADgot tglobaltlsaddr:$addr)>; 374 375def : Pat<(AArch64LOADgot texternalsym:$addr), 376 (LOADgot texternalsym:$addr)>; 377 378def : Pat<(AArch64LOADgot tconstpool:$addr), 379 (LOADgot tconstpool:$addr)>; 380 381//===----------------------------------------------------------------------===// 382// System instructions. 383//===----------------------------------------------------------------------===// 384 385def HINT : HintI<"hint">; 386def : InstAlias<"nop", (HINT 0b000)>; 387def : InstAlias<"yield",(HINT 0b001)>; 388def : InstAlias<"wfe", (HINT 0b010)>; 389def : InstAlias<"wfi", (HINT 0b011)>; 390def : InstAlias<"sev", (HINT 0b100)>; 391def : InstAlias<"sevl", (HINT 0b101)>; 392def : InstAlias<"esb", (HINT 0b10000)>, Requires<[HasRAS]>; 393 394// v8.2a Statistical Profiling extension 395def : InstAlias<"psb $op", (HINT psbhint_op:$op)>, Requires<[HasSPE]>; 396 397// As far as LLVM is concerned this writes to the system's exclusive monitors. 398let mayLoad = 1, mayStore = 1 in 399def CLREX : CRmSystemI<imm0_15, 0b010, "clrex">; 400 401// NOTE: ideally, this would have mayStore = 0, mayLoad = 0, but we cannot 402// model patterns with sufficiently fine granularity. 403let mayLoad = ?, mayStore = ? in { 404def DMB : CRmSystemI<barrier_op, 0b101, "dmb", 405 [(int_aarch64_dmb (i32 imm32_0_15:$CRm))]>; 406 407def DSB : CRmSystemI<barrier_op, 0b100, "dsb", 408 [(int_aarch64_dsb (i32 imm32_0_15:$CRm))]>; 409 410def ISB : CRmSystemI<barrier_op, 0b110, "isb", 411 [(int_aarch64_isb (i32 imm32_0_15:$CRm))]>; 412} 413 414def : InstAlias<"clrex", (CLREX 0xf)>; 415def : InstAlias<"isb", (ISB 0xf)>; 416 417def MRS : MRSI; 418def MSR : MSRI; 419def MSRpstateImm1 : MSRpstateImm0_1; 420def MSRpstateImm4 : MSRpstateImm0_15; 421 422// The thread pointer (on Linux, at least, where this has been implemented) is 423// TPIDR_EL0. 424def : Pat<(AArch64threadpointer), (MRS 0xde82)>; 425 426// The cycle counter PMC register is PMCCNTR_EL0. 427let Predicates = [HasPerfMon] in 428def : Pat<(readcyclecounter), (MRS 0xdce8)>; 429 430// Generic system instructions 431def SYSxt : SystemXtI<0, "sys">; 432def SYSLxt : SystemLXtI<1, "sysl">; 433 434def : InstAlias<"sys $op1, $Cn, $Cm, $op2", 435 (SYSxt imm0_7:$op1, sys_cr_op:$Cn, 436 sys_cr_op:$Cm, imm0_7:$op2, XZR)>; 437 438//===----------------------------------------------------------------------===// 439// Move immediate instructions. 440//===----------------------------------------------------------------------===// 441 442defm MOVK : InsertImmediate<0b11, "movk">; 443defm MOVN : MoveImmediate<0b00, "movn">; 444 445let PostEncoderMethod = "fixMOVZ" in 446defm MOVZ : MoveImmediate<0b10, "movz">; 447 448// First group of aliases covers an implicit "lsl #0". 449def : InstAlias<"movk $dst, $imm", (MOVKWi GPR32:$dst, imm0_65535:$imm, 0)>; 450def : InstAlias<"movk $dst, $imm", (MOVKXi GPR64:$dst, imm0_65535:$imm, 0)>; 451def : InstAlias<"movn $dst, $imm", (MOVNWi GPR32:$dst, imm0_65535:$imm, 0)>; 452def : InstAlias<"movn $dst, $imm", (MOVNXi GPR64:$dst, imm0_65535:$imm, 0)>; 453def : InstAlias<"movz $dst, $imm", (MOVZWi GPR32:$dst, imm0_65535:$imm, 0)>; 454def : InstAlias<"movz $dst, $imm", (MOVZXi GPR64:$dst, imm0_65535:$imm, 0)>; 455 456// Next, we have various ELF relocations with the ":XYZ_g0:sym" syntax. 457def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movz_symbol_g3:$sym, 48)>; 458def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movz_symbol_g2:$sym, 32)>; 459def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movz_symbol_g1:$sym, 16)>; 460def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movz_symbol_g0:$sym, 0)>; 461 462def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movz_symbol_g3:$sym, 48)>; 463def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movz_symbol_g2:$sym, 32)>; 464def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movz_symbol_g1:$sym, 16)>; 465def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movz_symbol_g0:$sym, 0)>; 466 467def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movk_symbol_g3:$sym, 48)>; 468def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movk_symbol_g2:$sym, 32)>; 469def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movk_symbol_g1:$sym, 16)>; 470def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movk_symbol_g0:$sym, 0)>; 471 472def : InstAlias<"movz $Rd, $sym", (MOVZWi GPR32:$Rd, movz_symbol_g1:$sym, 16)>; 473def : InstAlias<"movz $Rd, $sym", (MOVZWi GPR32:$Rd, movz_symbol_g0:$sym, 0)>; 474 475def : InstAlias<"movn $Rd, $sym", (MOVNWi GPR32:$Rd, movz_symbol_g1:$sym, 16)>; 476def : InstAlias<"movn $Rd, $sym", (MOVNWi GPR32:$Rd, movz_symbol_g0:$sym, 0)>; 477 478def : InstAlias<"movk $Rd, $sym", (MOVKWi GPR32:$Rd, movk_symbol_g1:$sym, 16)>; 479def : InstAlias<"movk $Rd, $sym", (MOVKWi GPR32:$Rd, movk_symbol_g0:$sym, 0)>; 480 481// Final group of aliases covers true "mov $Rd, $imm" cases. 482multiclass movw_mov_alias<string basename,Instruction INST, RegisterClass GPR, 483 int width, int shift> { 484 def _asmoperand : AsmOperandClass { 485 let Name = basename # width # "_lsl" # shift # "MovAlias"; 486 let PredicateMethod = "is" # basename # "MovAlias<" # width # ", " 487 # shift # ">"; 488 let RenderMethod = "add" # basename # "MovAliasOperands<" # shift # ">"; 489 } 490 491 def _movimm : Operand<i32> { 492 let ParserMatchClass = !cast<AsmOperandClass>(NAME # "_asmoperand"); 493 } 494 495 def : InstAlias<"mov $Rd, $imm", 496 (INST GPR:$Rd, !cast<Operand>(NAME # "_movimm"):$imm, shift)>; 497} 498 499defm : movw_mov_alias<"MOVZ", MOVZWi, GPR32, 32, 0>; 500defm : movw_mov_alias<"MOVZ", MOVZWi, GPR32, 32, 16>; 501 502defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 0>; 503defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 16>; 504defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 32>; 505defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 48>; 506 507defm : movw_mov_alias<"MOVN", MOVNWi, GPR32, 32, 0>; 508defm : movw_mov_alias<"MOVN", MOVNWi, GPR32, 32, 16>; 509 510defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 0>; 511defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 16>; 512defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 32>; 513defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 48>; 514 515let isReMaterializable = 1, isCodeGenOnly = 1, isMoveImm = 1, 516 isAsCheapAsAMove = 1 in { 517// FIXME: The following pseudo instructions are only needed because remat 518// cannot handle multiple instructions. When that changes, we can select 519// directly to the real instructions and get rid of these pseudos. 520 521def MOVi32imm 522 : Pseudo<(outs GPR32:$dst), (ins i32imm:$src), 523 [(set GPR32:$dst, imm:$src)]>, 524 Sched<[WriteImm]>; 525def MOVi64imm 526 : Pseudo<(outs GPR64:$dst), (ins i64imm:$src), 527 [(set GPR64:$dst, imm:$src)]>, 528 Sched<[WriteImm]>; 529} // isReMaterializable, isCodeGenOnly 530 531// If possible, we want to use MOVi32imm even for 64-bit moves. This gives the 532// eventual expansion code fewer bits to worry about getting right. Marshalling 533// the types is a little tricky though: 534def i64imm_32bit : ImmLeaf<i64, [{ 535 return (Imm & 0xffffffffULL) == static_cast<uint64_t>(Imm); 536}]>; 537 538def s64imm_32bit : ImmLeaf<i64, [{ 539 int64_t Imm64 = static_cast<int64_t>(Imm); 540 return Imm64 >= std::numeric_limits<int32_t>::min() && 541 Imm64 <= std::numeric_limits<int32_t>::max(); 542}]>; 543 544def trunc_imm : SDNodeXForm<imm, [{ 545 return CurDAG->getTargetConstant(N->getZExtValue(), SDLoc(N), MVT::i32); 546}]>; 547 548def : Pat<(i64 i64imm_32bit:$src), 549 (SUBREG_TO_REG (i64 0), (MOVi32imm (trunc_imm imm:$src)), sub_32)>; 550 551// Materialize FP constants via MOVi32imm/MOVi64imm (MachO large code model). 552def bitcast_fpimm_to_i32 : SDNodeXForm<fpimm, [{ 553return CurDAG->getTargetConstant( 554 N->getValueAPF().bitcastToAPInt().getZExtValue(), SDLoc(N), MVT::i32); 555}]>; 556 557def bitcast_fpimm_to_i64 : SDNodeXForm<fpimm, [{ 558return CurDAG->getTargetConstant( 559 N->getValueAPF().bitcastToAPInt().getZExtValue(), SDLoc(N), MVT::i64); 560}]>; 561 562 563def : Pat<(f32 fpimm:$in), 564 (COPY_TO_REGCLASS (MOVi32imm (bitcast_fpimm_to_i32 f32:$in)), FPR32)>; 565def : Pat<(f64 fpimm:$in), 566 (COPY_TO_REGCLASS (MOVi64imm (bitcast_fpimm_to_i64 f64:$in)), FPR64)>; 567 568 569// Deal with the various forms of (ELF) large addressing with MOVZ/MOVK 570// sequences. 571def : Pat<(AArch64WrapperLarge tglobaladdr:$g3, tglobaladdr:$g2, 572 tglobaladdr:$g1, tglobaladdr:$g0), 573 (MOVKXi (MOVKXi (MOVKXi (MOVZXi tglobaladdr:$g3, 48), 574 tglobaladdr:$g2, 32), 575 tglobaladdr:$g1, 16), 576 tglobaladdr:$g0, 0)>; 577 578def : Pat<(AArch64WrapperLarge tblockaddress:$g3, tblockaddress:$g2, 579 tblockaddress:$g1, tblockaddress:$g0), 580 (MOVKXi (MOVKXi (MOVKXi (MOVZXi tblockaddress:$g3, 48), 581 tblockaddress:$g2, 32), 582 tblockaddress:$g1, 16), 583 tblockaddress:$g0, 0)>; 584 585def : Pat<(AArch64WrapperLarge tconstpool:$g3, tconstpool:$g2, 586 tconstpool:$g1, tconstpool:$g0), 587 (MOVKXi (MOVKXi (MOVKXi (MOVZXi tconstpool:$g3, 48), 588 tconstpool:$g2, 32), 589 tconstpool:$g1, 16), 590 tconstpool:$g0, 0)>; 591 592def : Pat<(AArch64WrapperLarge tjumptable:$g3, tjumptable:$g2, 593 tjumptable:$g1, tjumptable:$g0), 594 (MOVKXi (MOVKXi (MOVKXi (MOVZXi tjumptable:$g3, 48), 595 tjumptable:$g2, 32), 596 tjumptable:$g1, 16), 597 tjumptable:$g0, 0)>; 598 599 600//===----------------------------------------------------------------------===// 601// Arithmetic instructions. 602//===----------------------------------------------------------------------===// 603 604// Add/subtract with carry. 605defm ADC : AddSubCarry<0, "adc", "adcs", AArch64adc, AArch64adc_flag>; 606defm SBC : AddSubCarry<1, "sbc", "sbcs", AArch64sbc, AArch64sbc_flag>; 607 608def : InstAlias<"ngc $dst, $src", (SBCWr GPR32:$dst, WZR, GPR32:$src)>; 609def : InstAlias<"ngc $dst, $src", (SBCXr GPR64:$dst, XZR, GPR64:$src)>; 610def : InstAlias<"ngcs $dst, $src", (SBCSWr GPR32:$dst, WZR, GPR32:$src)>; 611def : InstAlias<"ngcs $dst, $src", (SBCSXr GPR64:$dst, XZR, GPR64:$src)>; 612 613// Add/subtract 614defm ADD : AddSub<0, "add", "sub", add>; 615defm SUB : AddSub<1, "sub", "add">; 616 617def : InstAlias<"mov $dst, $src", 618 (ADDWri GPR32sponly:$dst, GPR32sp:$src, 0, 0)>; 619def : InstAlias<"mov $dst, $src", 620 (ADDWri GPR32sp:$dst, GPR32sponly:$src, 0, 0)>; 621def : InstAlias<"mov $dst, $src", 622 (ADDXri GPR64sponly:$dst, GPR64sp:$src, 0, 0)>; 623def : InstAlias<"mov $dst, $src", 624 (ADDXri GPR64sp:$dst, GPR64sponly:$src, 0, 0)>; 625 626defm ADDS : AddSubS<0, "adds", AArch64add_flag, "cmn", "subs", "cmp">; 627defm SUBS : AddSubS<1, "subs", AArch64sub_flag, "cmp", "adds", "cmn">; 628 629// Use SUBS instead of SUB to enable CSE between SUBS and SUB. 630def : Pat<(sub GPR32sp:$Rn, addsub_shifted_imm32:$imm), 631 (SUBSWri GPR32sp:$Rn, addsub_shifted_imm32:$imm)>; 632def : Pat<(sub GPR64sp:$Rn, addsub_shifted_imm64:$imm), 633 (SUBSXri GPR64sp:$Rn, addsub_shifted_imm64:$imm)>; 634def : Pat<(sub GPR32:$Rn, GPR32:$Rm), 635 (SUBSWrr GPR32:$Rn, GPR32:$Rm)>; 636def : Pat<(sub GPR64:$Rn, GPR64:$Rm), 637 (SUBSXrr GPR64:$Rn, GPR64:$Rm)>; 638def : Pat<(sub GPR32:$Rn, arith_shifted_reg32:$Rm), 639 (SUBSWrs GPR32:$Rn, arith_shifted_reg32:$Rm)>; 640def : Pat<(sub GPR64:$Rn, arith_shifted_reg64:$Rm), 641 (SUBSXrs GPR64:$Rn, arith_shifted_reg64:$Rm)>; 642let AddedComplexity = 1 in { 643def : Pat<(sub GPR32sp:$R2, arith_extended_reg32<i32>:$R3), 644 (SUBSWrx GPR32sp:$R2, arith_extended_reg32<i32>:$R3)>; 645def : Pat<(sub GPR64sp:$R2, arith_extended_reg32to64<i64>:$R3), 646 (SUBSXrx GPR64sp:$R2, arith_extended_reg32to64<i64>:$R3)>; 647} 648 649// Because of the immediate format for add/sub-imm instructions, the 650// expression (add x, -1) must be transformed to (SUB{W,X}ri x, 1). 651// These patterns capture that transformation. 652let AddedComplexity = 1 in { 653def : Pat<(add GPR32:$Rn, neg_addsub_shifted_imm32:$imm), 654 (SUBSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>; 655def : Pat<(add GPR64:$Rn, neg_addsub_shifted_imm64:$imm), 656 (SUBSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>; 657def : Pat<(sub GPR32:$Rn, neg_addsub_shifted_imm32:$imm), 658 (ADDWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>; 659def : Pat<(sub GPR64:$Rn, neg_addsub_shifted_imm64:$imm), 660 (ADDXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>; 661} 662 663// Because of the immediate format for add/sub-imm instructions, the 664// expression (add x, -1) must be transformed to (SUB{W,X}ri x, 1). 665// These patterns capture that transformation. 666let AddedComplexity = 1 in { 667def : Pat<(AArch64add_flag GPR32:$Rn, neg_addsub_shifted_imm32:$imm), 668 (SUBSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>; 669def : Pat<(AArch64add_flag GPR64:$Rn, neg_addsub_shifted_imm64:$imm), 670 (SUBSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>; 671def : Pat<(AArch64sub_flag GPR32:$Rn, neg_addsub_shifted_imm32:$imm), 672 (ADDSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>; 673def : Pat<(AArch64sub_flag GPR64:$Rn, neg_addsub_shifted_imm64:$imm), 674 (ADDSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>; 675} 676 677def : InstAlias<"neg $dst, $src", (SUBWrs GPR32:$dst, WZR, GPR32:$src, 0), 3>; 678def : InstAlias<"neg $dst, $src", (SUBXrs GPR64:$dst, XZR, GPR64:$src, 0), 3>; 679def : InstAlias<"neg $dst, $src$shift", 680 (SUBWrs GPR32:$dst, WZR, GPR32:$src, arith_shift32:$shift), 2>; 681def : InstAlias<"neg $dst, $src$shift", 682 (SUBXrs GPR64:$dst, XZR, GPR64:$src, arith_shift64:$shift), 2>; 683 684def : InstAlias<"negs $dst, $src", (SUBSWrs GPR32:$dst, WZR, GPR32:$src, 0), 3>; 685def : InstAlias<"negs $dst, $src", (SUBSXrs GPR64:$dst, XZR, GPR64:$src, 0), 3>; 686def : InstAlias<"negs $dst, $src$shift", 687 (SUBSWrs GPR32:$dst, WZR, GPR32:$src, arith_shift32:$shift), 2>; 688def : InstAlias<"negs $dst, $src$shift", 689 (SUBSXrs GPR64:$dst, XZR, GPR64:$src, arith_shift64:$shift), 2>; 690 691 692// Unsigned/Signed divide 693defm UDIV : Div<0, "udiv", udiv>; 694defm SDIV : Div<1, "sdiv", sdiv>; 695 696def : Pat<(int_aarch64_udiv GPR32:$Rn, GPR32:$Rm), (UDIVWr $Rn, $Rm)>; 697def : Pat<(int_aarch64_udiv GPR64:$Rn, GPR64:$Rm), (UDIVXr $Rn, $Rm)>; 698def : Pat<(int_aarch64_sdiv GPR32:$Rn, GPR32:$Rm), (SDIVWr $Rn, $Rm)>; 699def : Pat<(int_aarch64_sdiv GPR64:$Rn, GPR64:$Rm), (SDIVXr $Rn, $Rm)>; 700 701// Variable shift 702defm ASRV : Shift<0b10, "asr", sra>; 703defm LSLV : Shift<0b00, "lsl", shl>; 704defm LSRV : Shift<0b01, "lsr", srl>; 705defm RORV : Shift<0b11, "ror", rotr>; 706 707def : ShiftAlias<"asrv", ASRVWr, GPR32>; 708def : ShiftAlias<"asrv", ASRVXr, GPR64>; 709def : ShiftAlias<"lslv", LSLVWr, GPR32>; 710def : ShiftAlias<"lslv", LSLVXr, GPR64>; 711def : ShiftAlias<"lsrv", LSRVWr, GPR32>; 712def : ShiftAlias<"lsrv", LSRVXr, GPR64>; 713def : ShiftAlias<"rorv", RORVWr, GPR32>; 714def : ShiftAlias<"rorv", RORVXr, GPR64>; 715 716// Multiply-add 717let AddedComplexity = 7 in { 718defm MADD : MulAccum<0, "madd", add>; 719defm MSUB : MulAccum<1, "msub", sub>; 720 721def : Pat<(i32 (mul GPR32:$Rn, GPR32:$Rm)), 722 (MADDWrrr GPR32:$Rn, GPR32:$Rm, WZR)>; 723def : Pat<(i64 (mul GPR64:$Rn, GPR64:$Rm)), 724 (MADDXrrr GPR64:$Rn, GPR64:$Rm, XZR)>; 725 726def : Pat<(i32 (ineg (mul GPR32:$Rn, GPR32:$Rm))), 727 (MSUBWrrr GPR32:$Rn, GPR32:$Rm, WZR)>; 728def : Pat<(i64 (ineg (mul GPR64:$Rn, GPR64:$Rm))), 729 (MSUBXrrr GPR64:$Rn, GPR64:$Rm, XZR)>; 730def : Pat<(i32 (mul (ineg GPR32:$Rn), GPR32:$Rm)), 731 (MSUBWrrr GPR32:$Rn, GPR32:$Rm, WZR)>; 732def : Pat<(i64 (mul (ineg GPR64:$Rn), GPR64:$Rm)), 733 (MSUBXrrr GPR64:$Rn, GPR64:$Rm, XZR)>; 734} // AddedComplexity = 7 735 736let AddedComplexity = 5 in { 737def SMADDLrrr : WideMulAccum<0, 0b001, "smaddl", add, sext>; 738def SMSUBLrrr : WideMulAccum<1, 0b001, "smsubl", sub, sext>; 739def UMADDLrrr : WideMulAccum<0, 0b101, "umaddl", add, zext>; 740def UMSUBLrrr : WideMulAccum<1, 0b101, "umsubl", sub, zext>; 741 742def : Pat<(i64 (mul (sext GPR32:$Rn), (sext GPR32:$Rm))), 743 (SMADDLrrr GPR32:$Rn, GPR32:$Rm, XZR)>; 744def : Pat<(i64 (mul (zext GPR32:$Rn), (zext GPR32:$Rm))), 745 (UMADDLrrr GPR32:$Rn, GPR32:$Rm, XZR)>; 746 747def : Pat<(i64 (ineg (mul (sext GPR32:$Rn), (sext GPR32:$Rm)))), 748 (SMSUBLrrr GPR32:$Rn, GPR32:$Rm, XZR)>; 749def : Pat<(i64 (ineg (mul (zext GPR32:$Rn), (zext GPR32:$Rm)))), 750 (UMSUBLrrr GPR32:$Rn, GPR32:$Rm, XZR)>; 751 752def : Pat<(i64 (mul (sext GPR32:$Rn), (s64imm_32bit:$C))), 753 (SMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>; 754def : Pat<(i64 (mul (zext GPR32:$Rn), (i64imm_32bit:$C))), 755 (UMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>; 756def : Pat<(i64 (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C))), 757 (SMADDLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)), 758 (MOVi32imm (trunc_imm imm:$C)), XZR)>; 759 760def : Pat<(i64 (ineg (mul (sext GPR32:$Rn), (s64imm_32bit:$C)))), 761 (SMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>; 762def : Pat<(i64 (ineg (mul (zext GPR32:$Rn), (i64imm_32bit:$C)))), 763 (UMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>; 764def : Pat<(i64 (ineg (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C)))), 765 (SMSUBLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)), 766 (MOVi32imm (trunc_imm imm:$C)), XZR)>; 767 768def : Pat<(i64 (add (mul (sext GPR32:$Rn), (s64imm_32bit:$C)), GPR64:$Ra)), 769 (SMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>; 770def : Pat<(i64 (add (mul (zext GPR32:$Rn), (i64imm_32bit:$C)), GPR64:$Ra)), 771 (UMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>; 772def : Pat<(i64 (add (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C)), 773 GPR64:$Ra)), 774 (SMADDLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)), 775 (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>; 776 777def : Pat<(i64 (sub GPR64:$Ra, (mul (sext GPR32:$Rn), (s64imm_32bit:$C)))), 778 (SMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>; 779def : Pat<(i64 (sub GPR64:$Ra, (mul (zext GPR32:$Rn), (i64imm_32bit:$C)))), 780 (UMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>; 781def : Pat<(i64 (sub GPR64:$Ra, (mul (sext_inreg GPR64:$Rn, i32), 782 (s64imm_32bit:$C)))), 783 (SMSUBLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)), 784 (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>; 785} // AddedComplexity = 5 786 787def : MulAccumWAlias<"mul", MADDWrrr>; 788def : MulAccumXAlias<"mul", MADDXrrr>; 789def : MulAccumWAlias<"mneg", MSUBWrrr>; 790def : MulAccumXAlias<"mneg", MSUBXrrr>; 791def : WideMulAccumAlias<"smull", SMADDLrrr>; 792def : WideMulAccumAlias<"smnegl", SMSUBLrrr>; 793def : WideMulAccumAlias<"umull", UMADDLrrr>; 794def : WideMulAccumAlias<"umnegl", UMSUBLrrr>; 795 796// Multiply-high 797def SMULHrr : MulHi<0b010, "smulh", mulhs>; 798def UMULHrr : MulHi<0b110, "umulh", mulhu>; 799 800// CRC32 801def CRC32Brr : BaseCRC32<0, 0b00, 0, GPR32, int_aarch64_crc32b, "crc32b">; 802def CRC32Hrr : BaseCRC32<0, 0b01, 0, GPR32, int_aarch64_crc32h, "crc32h">; 803def CRC32Wrr : BaseCRC32<0, 0b10, 0, GPR32, int_aarch64_crc32w, "crc32w">; 804def CRC32Xrr : BaseCRC32<1, 0b11, 0, GPR64, int_aarch64_crc32x, "crc32x">; 805 806def CRC32CBrr : BaseCRC32<0, 0b00, 1, GPR32, int_aarch64_crc32cb, "crc32cb">; 807def CRC32CHrr : BaseCRC32<0, 0b01, 1, GPR32, int_aarch64_crc32ch, "crc32ch">; 808def CRC32CWrr : BaseCRC32<0, 0b10, 1, GPR32, int_aarch64_crc32cw, "crc32cw">; 809def CRC32CXrr : BaseCRC32<1, 0b11, 1, GPR64, int_aarch64_crc32cx, "crc32cx">; 810 811// v8.1 atomic CAS 812defm CAS : CompareAndSwap<0, 0, "">; 813defm CASA : CompareAndSwap<1, 0, "a">; 814defm CASL : CompareAndSwap<0, 1, "l">; 815defm CASAL : CompareAndSwap<1, 1, "al">; 816 817// v8.1 atomic CASP 818defm CASP : CompareAndSwapPair<0, 0, "">; 819defm CASPA : CompareAndSwapPair<1, 0, "a">; 820defm CASPL : CompareAndSwapPair<0, 1, "l">; 821defm CASPAL : CompareAndSwapPair<1, 1, "al">; 822 823// v8.1 atomic SWP 824defm SWP : Swap<0, 0, "">; 825defm SWPA : Swap<1, 0, "a">; 826defm SWPL : Swap<0, 1, "l">; 827defm SWPAL : Swap<1, 1, "al">; 828 829// v8.1 atomic LD<OP>(register). Performs load and then ST<OP>(register) 830defm LDADD : LDOPregister<0b000, "add", 0, 0, "">; 831defm LDADDA : LDOPregister<0b000, "add", 1, 0, "a">; 832defm LDADDL : LDOPregister<0b000, "add", 0, 1, "l">; 833defm LDADDAL : LDOPregister<0b000, "add", 1, 1, "al">; 834 835defm LDCLR : LDOPregister<0b001, "clr", 0, 0, "">; 836defm LDCLRA : LDOPregister<0b001, "clr", 1, 0, "a">; 837defm LDCLRL : LDOPregister<0b001, "clr", 0, 1, "l">; 838defm LDCLRAL : LDOPregister<0b001, "clr", 1, 1, "al">; 839 840defm LDEOR : LDOPregister<0b010, "eor", 0, 0, "">; 841defm LDEORA : LDOPregister<0b010, "eor", 1, 0, "a">; 842defm LDEORL : LDOPregister<0b010, "eor", 0, 1, "l">; 843defm LDEORAL : LDOPregister<0b010, "eor", 1, 1, "al">; 844 845defm LDSET : LDOPregister<0b011, "set", 0, 0, "">; 846defm LDSETA : LDOPregister<0b011, "set", 1, 0, "a">; 847defm LDSETL : LDOPregister<0b011, "set", 0, 1, "l">; 848defm LDSETAL : LDOPregister<0b011, "set", 1, 1, "al">; 849 850defm LDSMAX : LDOPregister<0b100, "smax", 0, 0, "">; 851defm LDSMAXA : LDOPregister<0b100, "smax", 1, 0, "a">; 852defm LDSMAXL : LDOPregister<0b100, "smax", 0, 1, "l">; 853defm LDSMAXAL : LDOPregister<0b100, "smax", 1, 1, "al">; 854 855defm LDSMIN : LDOPregister<0b101, "smin", 0, 0, "">; 856defm LDSMINA : LDOPregister<0b101, "smin", 1, 0, "a">; 857defm LDSMINL : LDOPregister<0b101, "smin", 0, 1, "l">; 858defm LDSMINAL : LDOPregister<0b101, "smin", 1, 1, "al">; 859 860defm LDUMAX : LDOPregister<0b110, "umax", 0, 0, "">; 861defm LDUMAXA : LDOPregister<0b110, "umax", 1, 0, "a">; 862defm LDUMAXL : LDOPregister<0b110, "umax", 0, 1, "l">; 863defm LDUMAXAL : LDOPregister<0b110, "umax", 1, 1, "al">; 864 865defm LDUMIN : LDOPregister<0b111, "umin", 0, 0, "">; 866defm LDUMINA : LDOPregister<0b111, "umin", 1, 0, "a">; 867defm LDUMINL : LDOPregister<0b111, "umin", 0, 1, "l">; 868defm LDUMINAL : LDOPregister<0b111, "umin", 1, 1, "al">; 869 870// v8.1 atomic ST<OP>(register) as aliases to "LD<OP>(register) when Rt=xZR" 871defm : STOPregister<"stadd","LDADD">; // STADDx 872defm : STOPregister<"stclr","LDCLR">; // STCLRx 873defm : STOPregister<"steor","LDEOR">; // STEORx 874defm : STOPregister<"stset","LDSET">; // STSETx 875defm : STOPregister<"stsmax","LDSMAX">;// STSMAXx 876defm : STOPregister<"stsmin","LDSMIN">;// STSMINx 877defm : STOPregister<"stumax","LDUMAX">;// STUMAXx 878defm : STOPregister<"stumin","LDUMIN">;// STUMINx 879 880//===----------------------------------------------------------------------===// 881// Logical instructions. 882//===----------------------------------------------------------------------===// 883 884// (immediate) 885defm ANDS : LogicalImmS<0b11, "ands", AArch64and_flag, "bics">; 886defm AND : LogicalImm<0b00, "and", and, "bic">; 887defm EOR : LogicalImm<0b10, "eor", xor, "eon">; 888defm ORR : LogicalImm<0b01, "orr", or, "orn">; 889 890// FIXME: these aliases *are* canonical sometimes (when movz can't be 891// used). Actually, it seems to be working right now, but putting logical_immXX 892// here is a bit dodgy on the AsmParser side too. 893def : InstAlias<"mov $dst, $imm", (ORRWri GPR32sp:$dst, WZR, 894 logical_imm32:$imm), 0>; 895def : InstAlias<"mov $dst, $imm", (ORRXri GPR64sp:$dst, XZR, 896 logical_imm64:$imm), 0>; 897 898 899// (register) 900defm ANDS : LogicalRegS<0b11, 0, "ands", AArch64and_flag>; 901defm BICS : LogicalRegS<0b11, 1, "bics", 902 BinOpFrag<(AArch64and_flag node:$LHS, (not node:$RHS))>>; 903defm AND : LogicalReg<0b00, 0, "and", and>; 904defm BIC : LogicalReg<0b00, 1, "bic", 905 BinOpFrag<(and node:$LHS, (not node:$RHS))>>; 906defm EON : LogicalReg<0b10, 1, "eon", 907 BinOpFrag<(not (xor node:$LHS, node:$RHS))>>; 908defm EOR : LogicalReg<0b10, 0, "eor", xor>; 909defm ORN : LogicalReg<0b01, 1, "orn", 910 BinOpFrag<(or node:$LHS, (not node:$RHS))>>; 911defm ORR : LogicalReg<0b01, 0, "orr", or>; 912 913def : InstAlias<"mov $dst, $src", (ORRWrs GPR32:$dst, WZR, GPR32:$src, 0), 2>; 914def : InstAlias<"mov $dst, $src", (ORRXrs GPR64:$dst, XZR, GPR64:$src, 0), 2>; 915 916def : InstAlias<"mvn $Wd, $Wm", (ORNWrs GPR32:$Wd, WZR, GPR32:$Wm, 0), 3>; 917def : InstAlias<"mvn $Xd, $Xm", (ORNXrs GPR64:$Xd, XZR, GPR64:$Xm, 0), 3>; 918 919def : InstAlias<"mvn $Wd, $Wm$sh", 920 (ORNWrs GPR32:$Wd, WZR, GPR32:$Wm, logical_shift32:$sh), 2>; 921def : InstAlias<"mvn $Xd, $Xm$sh", 922 (ORNXrs GPR64:$Xd, XZR, GPR64:$Xm, logical_shift64:$sh), 2>; 923 924def : InstAlias<"tst $src1, $src2", 925 (ANDSWri WZR, GPR32:$src1, logical_imm32:$src2), 2>; 926def : InstAlias<"tst $src1, $src2", 927 (ANDSXri XZR, GPR64:$src1, logical_imm64:$src2), 2>; 928 929def : InstAlias<"tst $src1, $src2", 930 (ANDSWrs WZR, GPR32:$src1, GPR32:$src2, 0), 3>; 931def : InstAlias<"tst $src1, $src2", 932 (ANDSXrs XZR, GPR64:$src1, GPR64:$src2, 0), 3>; 933 934def : InstAlias<"tst $src1, $src2$sh", 935 (ANDSWrs WZR, GPR32:$src1, GPR32:$src2, logical_shift32:$sh), 2>; 936def : InstAlias<"tst $src1, $src2$sh", 937 (ANDSXrs XZR, GPR64:$src1, GPR64:$src2, logical_shift64:$sh), 2>; 938 939 940def : Pat<(not GPR32:$Wm), (ORNWrr WZR, GPR32:$Wm)>; 941def : Pat<(not GPR64:$Xm), (ORNXrr XZR, GPR64:$Xm)>; 942 943 944//===----------------------------------------------------------------------===// 945// One operand data processing instructions. 946//===----------------------------------------------------------------------===// 947 948defm CLS : OneOperandData<0b101, "cls">; 949defm CLZ : OneOperandData<0b100, "clz", ctlz>; 950defm RBIT : OneOperandData<0b000, "rbit">; 951 952def : Pat<(int_aarch64_rbit GPR32:$Rn), (RBITWr $Rn)>; 953def : Pat<(int_aarch64_rbit GPR64:$Rn), (RBITXr $Rn)>; 954 955def REV16Wr : OneWRegData<0b001, "rev16", 956 UnOpFrag<(rotr (bswap node:$LHS), (i64 16))>>; 957def REV16Xr : OneXRegData<0b001, "rev16", null_frag>; 958 959def : Pat<(cttz GPR32:$Rn), 960 (CLZWr (RBITWr GPR32:$Rn))>; 961def : Pat<(cttz GPR64:$Rn), 962 (CLZXr (RBITXr GPR64:$Rn))>; 963def : Pat<(ctlz (or (shl (xor (sra GPR32:$Rn, (i64 31)), GPR32:$Rn), (i64 1)), 964 (i32 1))), 965 (CLSWr GPR32:$Rn)>; 966def : Pat<(ctlz (or (shl (xor (sra GPR64:$Rn, (i64 63)), GPR64:$Rn), (i64 1)), 967 (i64 1))), 968 (CLSXr GPR64:$Rn)>; 969 970// Unlike the other one operand instructions, the instructions with the "rev" 971// mnemonic do *not* just different in the size bit, but actually use different 972// opcode bits for the different sizes. 973def REVWr : OneWRegData<0b010, "rev", bswap>; 974def REVXr : OneXRegData<0b011, "rev", bswap>; 975def REV32Xr : OneXRegData<0b010, "rev32", 976 UnOpFrag<(rotr (bswap node:$LHS), (i64 32))>>; 977 978def : InstAlias<"rev64 $Rd, $Rn", (REVXr GPR64:$Rd, GPR64:$Rn), 0>; 979 980// The bswap commutes with the rotr so we want a pattern for both possible 981// orders. 982def : Pat<(bswap (rotr GPR32:$Rn, (i64 16))), (REV16Wr GPR32:$Rn)>; 983def : Pat<(bswap (rotr GPR64:$Rn, (i64 32))), (REV32Xr GPR64:$Rn)>; 984 985//===----------------------------------------------------------------------===// 986// Bitfield immediate extraction instruction. 987//===----------------------------------------------------------------------===// 988let hasSideEffects = 0 in 989defm EXTR : ExtractImm<"extr">; 990def : InstAlias<"ror $dst, $src, $shift", 991 (EXTRWrri GPR32:$dst, GPR32:$src, GPR32:$src, imm0_31:$shift)>; 992def : InstAlias<"ror $dst, $src, $shift", 993 (EXTRXrri GPR64:$dst, GPR64:$src, GPR64:$src, imm0_63:$shift)>; 994 995def : Pat<(rotr GPR32:$Rn, (i64 imm0_31:$imm)), 996 (EXTRWrri GPR32:$Rn, GPR32:$Rn, imm0_31:$imm)>; 997def : Pat<(rotr GPR64:$Rn, (i64 imm0_63:$imm)), 998 (EXTRXrri GPR64:$Rn, GPR64:$Rn, imm0_63:$imm)>; 999 1000//===----------------------------------------------------------------------===// 1001// Other bitfield immediate instructions. 1002//===----------------------------------------------------------------------===// 1003let hasSideEffects = 0 in { 1004defm BFM : BitfieldImmWith2RegArgs<0b01, "bfm">; 1005defm SBFM : BitfieldImm<0b00, "sbfm">; 1006defm UBFM : BitfieldImm<0b10, "ubfm">; 1007} 1008 1009def i32shift_a : Operand<i64>, SDNodeXForm<imm, [{ 1010 uint64_t enc = (32 - N->getZExtValue()) & 0x1f; 1011 return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64); 1012}]>; 1013 1014def i32shift_b : Operand<i64>, SDNodeXForm<imm, [{ 1015 uint64_t enc = 31 - N->getZExtValue(); 1016 return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64); 1017}]>; 1018 1019// min(7, 31 - shift_amt) 1020def i32shift_sext_i8 : Operand<i64>, SDNodeXForm<imm, [{ 1021 uint64_t enc = 31 - N->getZExtValue(); 1022 enc = enc > 7 ? 7 : enc; 1023 return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64); 1024}]>; 1025 1026// min(15, 31 - shift_amt) 1027def i32shift_sext_i16 : Operand<i64>, SDNodeXForm<imm, [{ 1028 uint64_t enc = 31 - N->getZExtValue(); 1029 enc = enc > 15 ? 15 : enc; 1030 return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64); 1031}]>; 1032 1033def i64shift_a : Operand<i64>, SDNodeXForm<imm, [{ 1034 uint64_t enc = (64 - N->getZExtValue()) & 0x3f; 1035 return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64); 1036}]>; 1037 1038def i64shift_b : Operand<i64>, SDNodeXForm<imm, [{ 1039 uint64_t enc = 63 - N->getZExtValue(); 1040 return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64); 1041}]>; 1042 1043// min(7, 63 - shift_amt) 1044def i64shift_sext_i8 : Operand<i64>, SDNodeXForm<imm, [{ 1045 uint64_t enc = 63 - N->getZExtValue(); 1046 enc = enc > 7 ? 7 : enc; 1047 return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64); 1048}]>; 1049 1050// min(15, 63 - shift_amt) 1051def i64shift_sext_i16 : Operand<i64>, SDNodeXForm<imm, [{ 1052 uint64_t enc = 63 - N->getZExtValue(); 1053 enc = enc > 15 ? 15 : enc; 1054 return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64); 1055}]>; 1056 1057// min(31, 63 - shift_amt) 1058def i64shift_sext_i32 : Operand<i64>, SDNodeXForm<imm, [{ 1059 uint64_t enc = 63 - N->getZExtValue(); 1060 enc = enc > 31 ? 31 : enc; 1061 return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64); 1062}]>; 1063 1064def : Pat<(shl GPR32:$Rn, (i64 imm0_31:$imm)), 1065 (UBFMWri GPR32:$Rn, (i64 (i32shift_a imm0_31:$imm)), 1066 (i64 (i32shift_b imm0_31:$imm)))>; 1067def : Pat<(shl GPR64:$Rn, (i64 imm0_63:$imm)), 1068 (UBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)), 1069 (i64 (i64shift_b imm0_63:$imm)))>; 1070 1071let AddedComplexity = 10 in { 1072def : Pat<(sra GPR32:$Rn, (i64 imm0_31:$imm)), 1073 (SBFMWri GPR32:$Rn, imm0_31:$imm, 31)>; 1074def : Pat<(sra GPR64:$Rn, (i64 imm0_63:$imm)), 1075 (SBFMXri GPR64:$Rn, imm0_63:$imm, 63)>; 1076} 1077 1078def : InstAlias<"asr $dst, $src, $shift", 1079 (SBFMWri GPR32:$dst, GPR32:$src, imm0_31:$shift, 31)>; 1080def : InstAlias<"asr $dst, $src, $shift", 1081 (SBFMXri GPR64:$dst, GPR64:$src, imm0_63:$shift, 63)>; 1082def : InstAlias<"sxtb $dst, $src", (SBFMWri GPR32:$dst, GPR32:$src, 0, 7)>; 1083def : InstAlias<"sxtb $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 7)>; 1084def : InstAlias<"sxth $dst, $src", (SBFMWri GPR32:$dst, GPR32:$src, 0, 15)>; 1085def : InstAlias<"sxth $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 15)>; 1086def : InstAlias<"sxtw $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 31)>; 1087 1088def : Pat<(srl GPR32:$Rn, (i64 imm0_31:$imm)), 1089 (UBFMWri GPR32:$Rn, imm0_31:$imm, 31)>; 1090def : Pat<(srl GPR64:$Rn, (i64 imm0_63:$imm)), 1091 (UBFMXri GPR64:$Rn, imm0_63:$imm, 63)>; 1092 1093def : InstAlias<"lsr $dst, $src, $shift", 1094 (UBFMWri GPR32:$dst, GPR32:$src, imm0_31:$shift, 31)>; 1095def : InstAlias<"lsr $dst, $src, $shift", 1096 (UBFMXri GPR64:$dst, GPR64:$src, imm0_63:$shift, 63)>; 1097def : InstAlias<"uxtb $dst, $src", (UBFMWri GPR32:$dst, GPR32:$src, 0, 7)>; 1098def : InstAlias<"uxtb $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 7)>; 1099def : InstAlias<"uxth $dst, $src", (UBFMWri GPR32:$dst, GPR32:$src, 0, 15)>; 1100def : InstAlias<"uxth $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 15)>; 1101def : InstAlias<"uxtw $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 31)>; 1102 1103//===----------------------------------------------------------------------===// 1104// Conditional comparison instructions. 1105//===----------------------------------------------------------------------===// 1106defm CCMN : CondComparison<0, "ccmn", AArch64ccmn>; 1107defm CCMP : CondComparison<1, "ccmp", AArch64ccmp>; 1108 1109//===----------------------------------------------------------------------===// 1110// Conditional select instructions. 1111//===----------------------------------------------------------------------===// 1112defm CSEL : CondSelect<0, 0b00, "csel">; 1113 1114def inc : PatFrag<(ops node:$in), (add node:$in, 1)>; 1115defm CSINC : CondSelectOp<0, 0b01, "csinc", inc>; 1116defm CSINV : CondSelectOp<1, 0b00, "csinv", not>; 1117defm CSNEG : CondSelectOp<1, 0b01, "csneg", ineg>; 1118 1119def : Pat<(AArch64csinv GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV), 1120 (CSINVWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>; 1121def : Pat<(AArch64csinv GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV), 1122 (CSINVXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>; 1123def : Pat<(AArch64csneg GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV), 1124 (CSNEGWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>; 1125def : Pat<(AArch64csneg GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV), 1126 (CSNEGXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>; 1127def : Pat<(AArch64csinc GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV), 1128 (CSINCWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>; 1129def : Pat<(AArch64csinc GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV), 1130 (CSINCXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>; 1131 1132def : Pat<(AArch64csel (i32 0), (i32 1), (i32 imm:$cc), NZCV), 1133 (CSINCWr WZR, WZR, (i32 imm:$cc))>; 1134def : Pat<(AArch64csel (i64 0), (i64 1), (i32 imm:$cc), NZCV), 1135 (CSINCXr XZR, XZR, (i32 imm:$cc))>; 1136def : Pat<(AArch64csel (i32 0), (i32 -1), (i32 imm:$cc), NZCV), 1137 (CSINVWr WZR, WZR, (i32 imm:$cc))>; 1138def : Pat<(AArch64csel (i64 0), (i64 -1), (i32 imm:$cc), NZCV), 1139 (CSINVXr XZR, XZR, (i32 imm:$cc))>; 1140def : Pat<(AArch64csel GPR32:$tval, (i32 -1), (i32 imm:$cc), NZCV), 1141 (CSINVWr GPR32:$tval, WZR, (i32 imm:$cc))>; 1142def : Pat<(AArch64csel GPR64:$tval, (i64 -1), (i32 imm:$cc), NZCV), 1143 (CSINVXr GPR64:$tval, XZR, (i32 imm:$cc))>; 1144def : Pat<(AArch64csel (i32 -1), GPR32:$fval, (i32 imm:$cc), NZCV), 1145 (CSINVWr GPR32:$fval, WZR, (i32 (inv_cond_XFORM imm:$cc)))>; 1146def : Pat<(AArch64csel (i64 -1), GPR64:$fval, (i32 imm:$cc), NZCV), 1147 (CSINVXr GPR64:$fval, XZR, (i32 (inv_cond_XFORM imm:$cc)))>; 1148 1149// The inverse of the condition code from the alias instruction is what is used 1150// in the aliased instruction. The parser all ready inverts the condition code 1151// for these aliases. 1152def : InstAlias<"cset $dst, $cc", 1153 (CSINCWr GPR32:$dst, WZR, WZR, inv_ccode:$cc)>; 1154def : InstAlias<"cset $dst, $cc", 1155 (CSINCXr GPR64:$dst, XZR, XZR, inv_ccode:$cc)>; 1156 1157def : InstAlias<"csetm $dst, $cc", 1158 (CSINVWr GPR32:$dst, WZR, WZR, inv_ccode:$cc)>; 1159def : InstAlias<"csetm $dst, $cc", 1160 (CSINVXr GPR64:$dst, XZR, XZR, inv_ccode:$cc)>; 1161 1162def : InstAlias<"cinc $dst, $src, $cc", 1163 (CSINCWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>; 1164def : InstAlias<"cinc $dst, $src, $cc", 1165 (CSINCXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>; 1166 1167def : InstAlias<"cinv $dst, $src, $cc", 1168 (CSINVWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>; 1169def : InstAlias<"cinv $dst, $src, $cc", 1170 (CSINVXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>; 1171 1172def : InstAlias<"cneg $dst, $src, $cc", 1173 (CSNEGWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>; 1174def : InstAlias<"cneg $dst, $src, $cc", 1175 (CSNEGXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>; 1176 1177//===----------------------------------------------------------------------===// 1178// PC-relative instructions. 1179//===----------------------------------------------------------------------===// 1180let isReMaterializable = 1 in { 1181let hasSideEffects = 0, mayStore = 0, mayLoad = 0 in { 1182def ADR : ADRI<0, "adr", adrlabel, []>; 1183} // hasSideEffects = 0 1184 1185def ADRP : ADRI<1, "adrp", adrplabel, 1186 [(set GPR64:$Xd, (AArch64adrp tglobaladdr:$label))]>; 1187} // isReMaterializable = 1 1188 1189// page address of a constant pool entry, block address 1190def : Pat<(AArch64adrp tconstpool:$cp), (ADRP tconstpool:$cp)>; 1191def : Pat<(AArch64adrp tblockaddress:$cp), (ADRP tblockaddress:$cp)>; 1192 1193//===----------------------------------------------------------------------===// 1194// Unconditional branch (register) instructions. 1195//===----------------------------------------------------------------------===// 1196 1197let isReturn = 1, isTerminator = 1, isBarrier = 1 in { 1198def RET : BranchReg<0b0010, "ret", []>; 1199def DRPS : SpecialReturn<0b0101, "drps">; 1200def ERET : SpecialReturn<0b0100, "eret">; 1201} // isReturn = 1, isTerminator = 1, isBarrier = 1 1202 1203// Default to the LR register. 1204def : InstAlias<"ret", (RET LR)>; 1205 1206let isCall = 1, Defs = [LR], Uses = [SP] in { 1207def BLR : BranchReg<0b0001, "blr", [(AArch64call GPR64:$Rn)]>; 1208} // isCall 1209 1210let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in { 1211def BR : BranchReg<0b0000, "br", [(brind GPR64:$Rn)]>; 1212} // isBranch, isTerminator, isBarrier, isIndirectBranch 1213 1214// Create a separate pseudo-instruction for codegen to use so that we don't 1215// flag lr as used in every function. It'll be restored before the RET by the 1216// epilogue if it's legitimately used. 1217def RET_ReallyLR : Pseudo<(outs), (ins), [(AArch64retflag)]>, 1218 Sched<[WriteBrReg]> { 1219 let isTerminator = 1; 1220 let isBarrier = 1; 1221 let isReturn = 1; 1222} 1223 1224// This is a directive-like pseudo-instruction. The purpose is to insert an 1225// R_AARCH64_TLSDESC_CALL relocation at the offset of the following instruction 1226// (which in the usual case is a BLR). 1227let hasSideEffects = 1 in 1228def TLSDESCCALL : Pseudo<(outs), (ins i64imm:$sym), []>, Sched<[]> { 1229 let AsmString = ".tlsdesccall $sym"; 1230} 1231 1232// FIXME: maybe the scratch register used shouldn't be fixed to X1? 1233// FIXME: can "hasSideEffects be dropped? 1234let isCall = 1, Defs = [LR, X0, X1], hasSideEffects = 1, 1235 isCodeGenOnly = 1 in 1236def TLSDESC_CALLSEQ 1237 : Pseudo<(outs), (ins i64imm:$sym), 1238 [(AArch64tlsdesc_callseq tglobaltlsaddr:$sym)]>, 1239 Sched<[WriteI, WriteLD, WriteI, WriteBrReg]>; 1240def : Pat<(AArch64tlsdesc_callseq texternalsym:$sym), 1241 (TLSDESC_CALLSEQ texternalsym:$sym)>; 1242 1243//===----------------------------------------------------------------------===// 1244// Conditional branch (immediate) instruction. 1245//===----------------------------------------------------------------------===// 1246def Bcc : BranchCond; 1247 1248//===----------------------------------------------------------------------===// 1249// Compare-and-branch instructions. 1250//===----------------------------------------------------------------------===// 1251defm CBZ : CmpBranch<0, "cbz", AArch64cbz>; 1252defm CBNZ : CmpBranch<1, "cbnz", AArch64cbnz>; 1253 1254//===----------------------------------------------------------------------===// 1255// Test-bit-and-branch instructions. 1256//===----------------------------------------------------------------------===// 1257defm TBZ : TestBranch<0, "tbz", AArch64tbz>; 1258defm TBNZ : TestBranch<1, "tbnz", AArch64tbnz>; 1259 1260//===----------------------------------------------------------------------===// 1261// Unconditional branch (immediate) instructions. 1262//===----------------------------------------------------------------------===// 1263let isBranch = 1, isTerminator = 1, isBarrier = 1 in { 1264def B : BranchImm<0, "b", [(br bb:$addr)]>; 1265} // isBranch, isTerminator, isBarrier 1266 1267let isCall = 1, Defs = [LR], Uses = [SP] in { 1268def BL : CallImm<1, "bl", [(AArch64call tglobaladdr:$addr)]>; 1269} // isCall 1270def : Pat<(AArch64call texternalsym:$func), (BL texternalsym:$func)>; 1271 1272//===----------------------------------------------------------------------===// 1273// Exception generation instructions. 1274//===----------------------------------------------------------------------===// 1275def BRK : ExceptionGeneration<0b001, 0b00, "brk">; 1276def DCPS1 : ExceptionGeneration<0b101, 0b01, "dcps1">; 1277def DCPS2 : ExceptionGeneration<0b101, 0b10, "dcps2">; 1278def DCPS3 : ExceptionGeneration<0b101, 0b11, "dcps3">; 1279def HLT : ExceptionGeneration<0b010, 0b00, "hlt">; 1280def HVC : ExceptionGeneration<0b000, 0b10, "hvc">; 1281def SMC : ExceptionGeneration<0b000, 0b11, "smc">; 1282def SVC : ExceptionGeneration<0b000, 0b01, "svc">; 1283 1284// DCPSn defaults to an immediate operand of zero if unspecified. 1285def : InstAlias<"dcps1", (DCPS1 0)>; 1286def : InstAlias<"dcps2", (DCPS2 0)>; 1287def : InstAlias<"dcps3", (DCPS3 0)>; 1288 1289//===----------------------------------------------------------------------===// 1290// Load instructions. 1291//===----------------------------------------------------------------------===// 1292 1293// Pair (indexed, offset) 1294defm LDPW : LoadPairOffset<0b00, 0, GPR32, simm7s4, "ldp">; 1295defm LDPX : LoadPairOffset<0b10, 0, GPR64, simm7s8, "ldp">; 1296defm LDPS : LoadPairOffset<0b00, 1, FPR32, simm7s4, "ldp">; 1297defm LDPD : LoadPairOffset<0b01, 1, FPR64, simm7s8, "ldp">; 1298defm LDPQ : LoadPairOffset<0b10, 1, FPR128, simm7s16, "ldp">; 1299 1300defm LDPSW : LoadPairOffset<0b01, 0, GPR64, simm7s4, "ldpsw">; 1301 1302// Pair (pre-indexed) 1303def LDPWpre : LoadPairPreIdx<0b00, 0, GPR32, simm7s4, "ldp">; 1304def LDPXpre : LoadPairPreIdx<0b10, 0, GPR64, simm7s8, "ldp">; 1305def LDPSpre : LoadPairPreIdx<0b00, 1, FPR32, simm7s4, "ldp">; 1306def LDPDpre : LoadPairPreIdx<0b01, 1, FPR64, simm7s8, "ldp">; 1307def LDPQpre : LoadPairPreIdx<0b10, 1, FPR128, simm7s16, "ldp">; 1308 1309def LDPSWpre : LoadPairPreIdx<0b01, 0, GPR64, simm7s4, "ldpsw">; 1310 1311// Pair (post-indexed) 1312def LDPWpost : LoadPairPostIdx<0b00, 0, GPR32, simm7s4, "ldp">; 1313def LDPXpost : LoadPairPostIdx<0b10, 0, GPR64, simm7s8, "ldp">; 1314def LDPSpost : LoadPairPostIdx<0b00, 1, FPR32, simm7s4, "ldp">; 1315def LDPDpost : LoadPairPostIdx<0b01, 1, FPR64, simm7s8, "ldp">; 1316def LDPQpost : LoadPairPostIdx<0b10, 1, FPR128, simm7s16, "ldp">; 1317 1318def LDPSWpost : LoadPairPostIdx<0b01, 0, GPR64, simm7s4, "ldpsw">; 1319 1320 1321// Pair (no allocate) 1322defm LDNPW : LoadPairNoAlloc<0b00, 0, GPR32, simm7s4, "ldnp">; 1323defm LDNPX : LoadPairNoAlloc<0b10, 0, GPR64, simm7s8, "ldnp">; 1324defm LDNPS : LoadPairNoAlloc<0b00, 1, FPR32, simm7s4, "ldnp">; 1325defm LDNPD : LoadPairNoAlloc<0b01, 1, FPR64, simm7s8, "ldnp">; 1326defm LDNPQ : LoadPairNoAlloc<0b10, 1, FPR128, simm7s16, "ldnp">; 1327 1328//--- 1329// (register offset) 1330//--- 1331 1332// Integer 1333defm LDRBB : Load8RO<0b00, 0, 0b01, GPR32, "ldrb", i32, zextloadi8>; 1334defm LDRHH : Load16RO<0b01, 0, 0b01, GPR32, "ldrh", i32, zextloadi16>; 1335defm LDRW : Load32RO<0b10, 0, 0b01, GPR32, "ldr", i32, load>; 1336defm LDRX : Load64RO<0b11, 0, 0b01, GPR64, "ldr", i64, load>; 1337 1338// Floating-point 1339defm LDRB : Load8RO<0b00, 1, 0b01, FPR8, "ldr", untyped, load>; 1340defm LDRH : Load16RO<0b01, 1, 0b01, FPR16, "ldr", f16, load>; 1341defm LDRS : Load32RO<0b10, 1, 0b01, FPR32, "ldr", f32, load>; 1342defm LDRD : Load64RO<0b11, 1, 0b01, FPR64, "ldr", f64, load>; 1343defm LDRQ : Load128RO<0b00, 1, 0b11, FPR128, "ldr", f128, load>; 1344 1345// Load sign-extended half-word 1346defm LDRSHW : Load16RO<0b01, 0, 0b11, GPR32, "ldrsh", i32, sextloadi16>; 1347defm LDRSHX : Load16RO<0b01, 0, 0b10, GPR64, "ldrsh", i64, sextloadi16>; 1348 1349// Load sign-extended byte 1350defm LDRSBW : Load8RO<0b00, 0, 0b11, GPR32, "ldrsb", i32, sextloadi8>; 1351defm LDRSBX : Load8RO<0b00, 0, 0b10, GPR64, "ldrsb", i64, sextloadi8>; 1352 1353// Load sign-extended word 1354defm LDRSW : Load32RO<0b10, 0, 0b10, GPR64, "ldrsw", i64, sextloadi32>; 1355 1356// Pre-fetch. 1357defm PRFM : PrefetchRO<0b11, 0, 0b10, "prfm">; 1358 1359// For regular load, we do not have any alignment requirement. 1360// Thus, it is safe to directly map the vector loads with interesting 1361// addressing modes. 1362// FIXME: We could do the same for bitconvert to floating point vectors. 1363multiclass ScalToVecROLoadPat<ROAddrMode ro, SDPatternOperator loadop, 1364 ValueType ScalTy, ValueType VecTy, 1365 Instruction LOADW, Instruction LOADX, 1366 SubRegIndex sub> { 1367 def : Pat<(VecTy (scalar_to_vector (ScalTy 1368 (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$offset))))), 1369 (INSERT_SUBREG (VecTy (IMPLICIT_DEF)), 1370 (LOADW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$offset), 1371 sub)>; 1372 1373 def : Pat<(VecTy (scalar_to_vector (ScalTy 1374 (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$offset))))), 1375 (INSERT_SUBREG (VecTy (IMPLICIT_DEF)), 1376 (LOADX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$offset), 1377 sub)>; 1378} 1379 1380let AddedComplexity = 10 in { 1381defm : ScalToVecROLoadPat<ro8, extloadi8, i32, v8i8, LDRBroW, LDRBroX, bsub>; 1382defm : ScalToVecROLoadPat<ro8, extloadi8, i32, v16i8, LDRBroW, LDRBroX, bsub>; 1383 1384defm : ScalToVecROLoadPat<ro16, extloadi16, i32, v4i16, LDRHroW, LDRHroX, hsub>; 1385defm : ScalToVecROLoadPat<ro16, extloadi16, i32, v8i16, LDRHroW, LDRHroX, hsub>; 1386 1387defm : ScalToVecROLoadPat<ro16, load, i32, v4f16, LDRHroW, LDRHroX, hsub>; 1388defm : ScalToVecROLoadPat<ro16, load, i32, v8f16, LDRHroW, LDRHroX, hsub>; 1389 1390defm : ScalToVecROLoadPat<ro32, load, i32, v2i32, LDRSroW, LDRSroX, ssub>; 1391defm : ScalToVecROLoadPat<ro32, load, i32, v4i32, LDRSroW, LDRSroX, ssub>; 1392 1393defm : ScalToVecROLoadPat<ro32, load, f32, v2f32, LDRSroW, LDRSroX, ssub>; 1394defm : ScalToVecROLoadPat<ro32, load, f32, v4f32, LDRSroW, LDRSroX, ssub>; 1395 1396defm : ScalToVecROLoadPat<ro64, load, i64, v2i64, LDRDroW, LDRDroX, dsub>; 1397 1398defm : ScalToVecROLoadPat<ro64, load, f64, v2f64, LDRDroW, LDRDroX, dsub>; 1399 1400 1401def : Pat <(v1i64 (scalar_to_vector (i64 1402 (load (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm, 1403 ro_Wextend64:$extend))))), 1404 (LDRDroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend)>; 1405 1406def : Pat <(v1i64 (scalar_to_vector (i64 1407 (load (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm, 1408 ro_Xextend64:$extend))))), 1409 (LDRDroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend)>; 1410} 1411 1412// Match all load 64 bits width whose type is compatible with FPR64 1413multiclass VecROLoadPat<ROAddrMode ro, ValueType VecTy, 1414 Instruction LOADW, Instruction LOADX> { 1415 1416 def : Pat<(VecTy (load (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))), 1417 (LOADW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>; 1418 1419 def : Pat<(VecTy (load (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))), 1420 (LOADX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>; 1421} 1422 1423let AddedComplexity = 10 in { 1424let Predicates = [IsLE] in { 1425 // We must do vector loads with LD1 in big-endian. 1426 defm : VecROLoadPat<ro64, v2i32, LDRDroW, LDRDroX>; 1427 defm : VecROLoadPat<ro64, v2f32, LDRDroW, LDRDroX>; 1428 defm : VecROLoadPat<ro64, v8i8, LDRDroW, LDRDroX>; 1429 defm : VecROLoadPat<ro64, v4i16, LDRDroW, LDRDroX>; 1430 defm : VecROLoadPat<ro64, v4f16, LDRDroW, LDRDroX>; 1431} 1432 1433defm : VecROLoadPat<ro64, v1i64, LDRDroW, LDRDroX>; 1434defm : VecROLoadPat<ro64, v1f64, LDRDroW, LDRDroX>; 1435 1436// Match all load 128 bits width whose type is compatible with FPR128 1437let Predicates = [IsLE] in { 1438 // We must do vector loads with LD1 in big-endian. 1439 defm : VecROLoadPat<ro128, v2i64, LDRQroW, LDRQroX>; 1440 defm : VecROLoadPat<ro128, v2f64, LDRQroW, LDRQroX>; 1441 defm : VecROLoadPat<ro128, v4i32, LDRQroW, LDRQroX>; 1442 defm : VecROLoadPat<ro128, v4f32, LDRQroW, LDRQroX>; 1443 defm : VecROLoadPat<ro128, v8i16, LDRQroW, LDRQroX>; 1444 defm : VecROLoadPat<ro128, v8f16, LDRQroW, LDRQroX>; 1445 defm : VecROLoadPat<ro128, v16i8, LDRQroW, LDRQroX>; 1446} 1447} // AddedComplexity = 10 1448 1449// zextload -> i64 1450multiclass ExtLoadTo64ROPat<ROAddrMode ro, SDPatternOperator loadop, 1451 Instruction INSTW, Instruction INSTX> { 1452 def : Pat<(i64 (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))), 1453 (SUBREG_TO_REG (i64 0), 1454 (INSTW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend), 1455 sub_32)>; 1456 1457 def : Pat<(i64 (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))), 1458 (SUBREG_TO_REG (i64 0), 1459 (INSTX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend), 1460 sub_32)>; 1461} 1462 1463let AddedComplexity = 10 in { 1464 defm : ExtLoadTo64ROPat<ro8, zextloadi8, LDRBBroW, LDRBBroX>; 1465 defm : ExtLoadTo64ROPat<ro16, zextloadi16, LDRHHroW, LDRHHroX>; 1466 defm : ExtLoadTo64ROPat<ro32, zextloadi32, LDRWroW, LDRWroX>; 1467 1468 // zextloadi1 -> zextloadi8 1469 defm : ExtLoadTo64ROPat<ro8, zextloadi1, LDRBBroW, LDRBBroX>; 1470 1471 // extload -> zextload 1472 defm : ExtLoadTo64ROPat<ro8, extloadi8, LDRBBroW, LDRBBroX>; 1473 defm : ExtLoadTo64ROPat<ro16, extloadi16, LDRHHroW, LDRHHroX>; 1474 defm : ExtLoadTo64ROPat<ro32, extloadi32, LDRWroW, LDRWroX>; 1475 1476 // extloadi1 -> zextloadi8 1477 defm : ExtLoadTo64ROPat<ro8, extloadi1, LDRBBroW, LDRBBroX>; 1478} 1479 1480 1481// zextload -> i64 1482multiclass ExtLoadTo32ROPat<ROAddrMode ro, SDPatternOperator loadop, 1483 Instruction INSTW, Instruction INSTX> { 1484 def : Pat<(i32 (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))), 1485 (INSTW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>; 1486 1487 def : Pat<(i32 (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))), 1488 (INSTX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>; 1489 1490} 1491 1492let AddedComplexity = 10 in { 1493 // extload -> zextload 1494 defm : ExtLoadTo32ROPat<ro8, extloadi8, LDRBBroW, LDRBBroX>; 1495 defm : ExtLoadTo32ROPat<ro16, extloadi16, LDRHHroW, LDRHHroX>; 1496 defm : ExtLoadTo32ROPat<ro32, extloadi32, LDRWroW, LDRWroX>; 1497 1498 // zextloadi1 -> zextloadi8 1499 defm : ExtLoadTo32ROPat<ro8, zextloadi1, LDRBBroW, LDRBBroX>; 1500} 1501 1502//--- 1503// (unsigned immediate) 1504//--- 1505defm LDRX : LoadUI<0b11, 0, 0b01, GPR64, uimm12s8, "ldr", 1506 [(set GPR64:$Rt, 1507 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)))]>; 1508defm LDRW : LoadUI<0b10, 0, 0b01, GPR32, uimm12s4, "ldr", 1509 [(set GPR32:$Rt, 1510 (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)))]>; 1511defm LDRB : LoadUI<0b00, 1, 0b01, FPR8, uimm12s1, "ldr", 1512 [(set FPR8:$Rt, 1513 (load (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset)))]>; 1514defm LDRH : LoadUI<0b01, 1, 0b01, FPR16, uimm12s2, "ldr", 1515 [(set (f16 FPR16:$Rt), 1516 (load (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)))]>; 1517defm LDRS : LoadUI<0b10, 1, 0b01, FPR32, uimm12s4, "ldr", 1518 [(set (f32 FPR32:$Rt), 1519 (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)))]>; 1520defm LDRD : LoadUI<0b11, 1, 0b01, FPR64, uimm12s8, "ldr", 1521 [(set (f64 FPR64:$Rt), 1522 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)))]>; 1523defm LDRQ : LoadUI<0b00, 1, 0b11, FPR128, uimm12s16, "ldr", 1524 [(set (f128 FPR128:$Rt), 1525 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)))]>; 1526 1527// For regular load, we do not have any alignment requirement. 1528// Thus, it is safe to directly map the vector loads with interesting 1529// addressing modes. 1530// FIXME: We could do the same for bitconvert to floating point vectors. 1531def : Pat <(v8i8 (scalar_to_vector (i32 1532 (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))), 1533 (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)), 1534 (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub)>; 1535def : Pat <(v16i8 (scalar_to_vector (i32 1536 (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))), 1537 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 1538 (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub)>; 1539def : Pat <(v4i16 (scalar_to_vector (i32 1540 (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))), 1541 (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)), 1542 (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub)>; 1543def : Pat <(v8i16 (scalar_to_vector (i32 1544 (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))), 1545 (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), 1546 (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub)>; 1547def : Pat <(v2i32 (scalar_to_vector (i32 1548 (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))), 1549 (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)), 1550 (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub)>; 1551def : Pat <(v4i32 (scalar_to_vector (i32 1552 (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))), 1553 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), 1554 (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub)>; 1555def : Pat <(v1i64 (scalar_to_vector (i64 1556 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))))), 1557 (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>; 1558def : Pat <(v2i64 (scalar_to_vector (i64 1559 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))))), 1560 (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), 1561 (LDRDui GPR64sp:$Rn, uimm12s8:$offset), dsub)>; 1562 1563// Match all load 64 bits width whose type is compatible with FPR64 1564let Predicates = [IsLE] in { 1565 // We must use LD1 to perform vector loads in big-endian. 1566 def : Pat<(v2f32 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))), 1567 (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>; 1568 def : Pat<(v8i8 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))), 1569 (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>; 1570 def : Pat<(v4i16 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))), 1571 (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>; 1572 def : Pat<(v2i32 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))), 1573 (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>; 1574 def : Pat<(v4f16 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))), 1575 (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>; 1576} 1577def : Pat<(v1f64 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))), 1578 (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>; 1579def : Pat<(v1i64 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))), 1580 (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>; 1581 1582// Match all load 128 bits width whose type is compatible with FPR128 1583let Predicates = [IsLE] in { 1584 // We must use LD1 to perform vector loads in big-endian. 1585 def : Pat<(v4f32 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))), 1586 (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>; 1587 def : Pat<(v2f64 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))), 1588 (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>; 1589 def : Pat<(v16i8 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))), 1590 (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>; 1591 def : Pat<(v8i16 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))), 1592 (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>; 1593 def : Pat<(v4i32 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))), 1594 (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>; 1595 def : Pat<(v2i64 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))), 1596 (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>; 1597 def : Pat<(v8f16 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))), 1598 (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>; 1599} 1600def : Pat<(f128 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))), 1601 (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>; 1602 1603defm LDRHH : LoadUI<0b01, 0, 0b01, GPR32, uimm12s2, "ldrh", 1604 [(set GPR32:$Rt, 1605 (zextloadi16 (am_indexed16 GPR64sp:$Rn, 1606 uimm12s2:$offset)))]>; 1607defm LDRBB : LoadUI<0b00, 0, 0b01, GPR32, uimm12s1, "ldrb", 1608 [(set GPR32:$Rt, 1609 (zextloadi8 (am_indexed8 GPR64sp:$Rn, 1610 uimm12s1:$offset)))]>; 1611// zextload -> i64 1612def : Pat<(i64 (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))), 1613 (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>; 1614def : Pat<(i64 (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))), 1615 (SUBREG_TO_REG (i64 0), (LDRHHui GPR64sp:$Rn, uimm12s2:$offset), sub_32)>; 1616 1617// zextloadi1 -> zextloadi8 1618def : Pat<(i32 (zextloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))), 1619 (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>; 1620def : Pat<(i64 (zextloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))), 1621 (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>; 1622 1623// extload -> zextload 1624def : Pat<(i32 (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))), 1625 (LDRHHui GPR64sp:$Rn, uimm12s2:$offset)>; 1626def : Pat<(i32 (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))), 1627 (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>; 1628def : Pat<(i32 (extloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))), 1629 (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>; 1630def : Pat<(i64 (extloadi32 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))), 1631 (SUBREG_TO_REG (i64 0), (LDRWui GPR64sp:$Rn, uimm12s4:$offset), sub_32)>; 1632def : Pat<(i64 (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))), 1633 (SUBREG_TO_REG (i64 0), (LDRHHui GPR64sp:$Rn, uimm12s2:$offset), sub_32)>; 1634def : Pat<(i64 (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))), 1635 (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>; 1636def : Pat<(i64 (extloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))), 1637 (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>; 1638 1639// load sign-extended half-word 1640defm LDRSHW : LoadUI<0b01, 0, 0b11, GPR32, uimm12s2, "ldrsh", 1641 [(set GPR32:$Rt, 1642 (sextloadi16 (am_indexed16 GPR64sp:$Rn, 1643 uimm12s2:$offset)))]>; 1644defm LDRSHX : LoadUI<0b01, 0, 0b10, GPR64, uimm12s2, "ldrsh", 1645 [(set GPR64:$Rt, 1646 (sextloadi16 (am_indexed16 GPR64sp:$Rn, 1647 uimm12s2:$offset)))]>; 1648 1649// load sign-extended byte 1650defm LDRSBW : LoadUI<0b00, 0, 0b11, GPR32, uimm12s1, "ldrsb", 1651 [(set GPR32:$Rt, 1652 (sextloadi8 (am_indexed8 GPR64sp:$Rn, 1653 uimm12s1:$offset)))]>; 1654defm LDRSBX : LoadUI<0b00, 0, 0b10, GPR64, uimm12s1, "ldrsb", 1655 [(set GPR64:$Rt, 1656 (sextloadi8 (am_indexed8 GPR64sp:$Rn, 1657 uimm12s1:$offset)))]>; 1658 1659// load sign-extended word 1660defm LDRSW : LoadUI<0b10, 0, 0b10, GPR64, uimm12s4, "ldrsw", 1661 [(set GPR64:$Rt, 1662 (sextloadi32 (am_indexed32 GPR64sp:$Rn, 1663 uimm12s4:$offset)))]>; 1664 1665// load zero-extended word 1666def : Pat<(i64 (zextloadi32 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))), 1667 (SUBREG_TO_REG (i64 0), (LDRWui GPR64sp:$Rn, uimm12s4:$offset), sub_32)>; 1668 1669// Pre-fetch. 1670def PRFMui : PrefetchUI<0b11, 0, 0b10, "prfm", 1671 [(AArch64Prefetch imm:$Rt, 1672 (am_indexed64 GPR64sp:$Rn, 1673 uimm12s8:$offset))]>; 1674 1675def : InstAlias<"prfm $Rt, [$Rn]", (PRFMui prfop:$Rt, GPR64sp:$Rn, 0)>; 1676 1677//--- 1678// (literal) 1679def LDRWl : LoadLiteral<0b00, 0, GPR32, "ldr">; 1680def LDRXl : LoadLiteral<0b01, 0, GPR64, "ldr">; 1681def LDRSl : LoadLiteral<0b00, 1, FPR32, "ldr">; 1682def LDRDl : LoadLiteral<0b01, 1, FPR64, "ldr">; 1683def LDRQl : LoadLiteral<0b10, 1, FPR128, "ldr">; 1684 1685// load sign-extended word 1686def LDRSWl : LoadLiteral<0b10, 0, GPR64, "ldrsw">; 1687 1688// prefetch 1689def PRFMl : PrefetchLiteral<0b11, 0, "prfm", []>; 1690// [(AArch64Prefetch imm:$Rt, tglobaladdr:$label)]>; 1691 1692//--- 1693// (unscaled immediate) 1694defm LDURX : LoadUnscaled<0b11, 0, 0b01, GPR64, "ldur", 1695 [(set GPR64:$Rt, 1696 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset)))]>; 1697defm LDURW : LoadUnscaled<0b10, 0, 0b01, GPR32, "ldur", 1698 [(set GPR32:$Rt, 1699 (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>; 1700defm LDURB : LoadUnscaled<0b00, 1, 0b01, FPR8, "ldur", 1701 [(set FPR8:$Rt, 1702 (load (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>; 1703defm LDURH : LoadUnscaled<0b01, 1, 0b01, FPR16, "ldur", 1704 [(set FPR16:$Rt, 1705 (load (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>; 1706defm LDURS : LoadUnscaled<0b10, 1, 0b01, FPR32, "ldur", 1707 [(set (f32 FPR32:$Rt), 1708 (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>; 1709defm LDURD : LoadUnscaled<0b11, 1, 0b01, FPR64, "ldur", 1710 [(set (f64 FPR64:$Rt), 1711 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset)))]>; 1712defm LDURQ : LoadUnscaled<0b00, 1, 0b11, FPR128, "ldur", 1713 [(set (f128 FPR128:$Rt), 1714 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset)))]>; 1715 1716defm LDURHH 1717 : LoadUnscaled<0b01, 0, 0b01, GPR32, "ldurh", 1718 [(set GPR32:$Rt, 1719 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>; 1720defm LDURBB 1721 : LoadUnscaled<0b00, 0, 0b01, GPR32, "ldurb", 1722 [(set GPR32:$Rt, 1723 (zextloadi8 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>; 1724 1725// Match all load 64 bits width whose type is compatible with FPR64 1726let Predicates = [IsLE] in { 1727 def : Pat<(v2f32 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))), 1728 (LDURDi GPR64sp:$Rn, simm9:$offset)>; 1729 def : Pat<(v2i32 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))), 1730 (LDURDi GPR64sp:$Rn, simm9:$offset)>; 1731 def : Pat<(v4i16 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))), 1732 (LDURDi GPR64sp:$Rn, simm9:$offset)>; 1733 def : Pat<(v8i8 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))), 1734 (LDURDi GPR64sp:$Rn, simm9:$offset)>; 1735 def : Pat<(v4f16 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))), 1736 (LDURDi GPR64sp:$Rn, simm9:$offset)>; 1737} 1738def : Pat<(v1f64 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))), 1739 (LDURDi GPR64sp:$Rn, simm9:$offset)>; 1740def : Pat<(v1i64 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))), 1741 (LDURDi GPR64sp:$Rn, simm9:$offset)>; 1742 1743// Match all load 128 bits width whose type is compatible with FPR128 1744let Predicates = [IsLE] in { 1745 def : Pat<(v2f64 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))), 1746 (LDURQi GPR64sp:$Rn, simm9:$offset)>; 1747 def : Pat<(v2i64 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))), 1748 (LDURQi GPR64sp:$Rn, simm9:$offset)>; 1749 def : Pat<(v4f32 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))), 1750 (LDURQi GPR64sp:$Rn, simm9:$offset)>; 1751 def : Pat<(v4i32 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))), 1752 (LDURQi GPR64sp:$Rn, simm9:$offset)>; 1753 def : Pat<(v8i16 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))), 1754 (LDURQi GPR64sp:$Rn, simm9:$offset)>; 1755 def : Pat<(v16i8 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))), 1756 (LDURQi GPR64sp:$Rn, simm9:$offset)>; 1757 def : Pat<(v8f16 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))), 1758 (LDURQi GPR64sp:$Rn, simm9:$offset)>; 1759} 1760 1761// anyext -> zext 1762def : Pat<(i32 (extloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))), 1763 (LDURHHi GPR64sp:$Rn, simm9:$offset)>; 1764def : Pat<(i32 (extloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))), 1765 (LDURBBi GPR64sp:$Rn, simm9:$offset)>; 1766def : Pat<(i32 (extloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))), 1767 (LDURBBi GPR64sp:$Rn, simm9:$offset)>; 1768def : Pat<(i64 (extloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))), 1769 (SUBREG_TO_REG (i64 0), (LDURWi GPR64sp:$Rn, simm9:$offset), sub_32)>; 1770def : Pat<(i64 (extloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))), 1771 (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>; 1772def : Pat<(i64 (extloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))), 1773 (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>; 1774def : Pat<(i64 (extloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))), 1775 (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>; 1776// unscaled zext 1777def : Pat<(i32 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))), 1778 (LDURHHi GPR64sp:$Rn, simm9:$offset)>; 1779def : Pat<(i32 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))), 1780 (LDURBBi GPR64sp:$Rn, simm9:$offset)>; 1781def : Pat<(i32 (zextloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))), 1782 (LDURBBi GPR64sp:$Rn, simm9:$offset)>; 1783def : Pat<(i64 (zextloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))), 1784 (SUBREG_TO_REG (i64 0), (LDURWi GPR64sp:$Rn, simm9:$offset), sub_32)>; 1785def : Pat<(i64 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))), 1786 (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>; 1787def : Pat<(i64 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))), 1788 (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>; 1789def : Pat<(i64 (zextloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))), 1790 (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>; 1791 1792 1793//--- 1794// LDR mnemonics fall back to LDUR for negative or unaligned offsets. 1795 1796// Define new assembler match classes as we want to only match these when 1797// the don't otherwise match the scaled addressing mode for LDR/STR. Don't 1798// associate a DiagnosticType either, as we want the diagnostic for the 1799// canonical form (the scaled operand) to take precedence. 1800class SImm9OffsetOperand<int Width> : AsmOperandClass { 1801 let Name = "SImm9OffsetFB" # Width; 1802 let PredicateMethod = "isSImm9OffsetFB<" # Width # ">"; 1803 let RenderMethod = "addImmOperands"; 1804} 1805 1806def SImm9OffsetFB8Operand : SImm9OffsetOperand<8>; 1807def SImm9OffsetFB16Operand : SImm9OffsetOperand<16>; 1808def SImm9OffsetFB32Operand : SImm9OffsetOperand<32>; 1809def SImm9OffsetFB64Operand : SImm9OffsetOperand<64>; 1810def SImm9OffsetFB128Operand : SImm9OffsetOperand<128>; 1811 1812def simm9_offset_fb8 : Operand<i64> { 1813 let ParserMatchClass = SImm9OffsetFB8Operand; 1814} 1815def simm9_offset_fb16 : Operand<i64> { 1816 let ParserMatchClass = SImm9OffsetFB16Operand; 1817} 1818def simm9_offset_fb32 : Operand<i64> { 1819 let ParserMatchClass = SImm9OffsetFB32Operand; 1820} 1821def simm9_offset_fb64 : Operand<i64> { 1822 let ParserMatchClass = SImm9OffsetFB64Operand; 1823} 1824def simm9_offset_fb128 : Operand<i64> { 1825 let ParserMatchClass = SImm9OffsetFB128Operand; 1826} 1827 1828def : InstAlias<"ldr $Rt, [$Rn, $offset]", 1829 (LDURXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>; 1830def : InstAlias<"ldr $Rt, [$Rn, $offset]", 1831 (LDURWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>; 1832def : InstAlias<"ldr $Rt, [$Rn, $offset]", 1833 (LDURBi FPR8:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>; 1834def : InstAlias<"ldr $Rt, [$Rn, $offset]", 1835 (LDURHi FPR16:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>; 1836def : InstAlias<"ldr $Rt, [$Rn, $offset]", 1837 (LDURSi FPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>; 1838def : InstAlias<"ldr $Rt, [$Rn, $offset]", 1839 (LDURDi FPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>; 1840def : InstAlias<"ldr $Rt, [$Rn, $offset]", 1841 (LDURQi FPR128:$Rt, GPR64sp:$Rn, simm9_offset_fb128:$offset), 0>; 1842 1843// zextload -> i64 1844def : Pat<(i64 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))), 1845 (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>; 1846def : Pat<(i64 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))), 1847 (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>; 1848 1849// load sign-extended half-word 1850defm LDURSHW 1851 : LoadUnscaled<0b01, 0, 0b11, GPR32, "ldursh", 1852 [(set GPR32:$Rt, 1853 (sextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>; 1854defm LDURSHX 1855 : LoadUnscaled<0b01, 0, 0b10, GPR64, "ldursh", 1856 [(set GPR64:$Rt, 1857 (sextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>; 1858 1859// load sign-extended byte 1860defm LDURSBW 1861 : LoadUnscaled<0b00, 0, 0b11, GPR32, "ldursb", 1862 [(set GPR32:$Rt, 1863 (sextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>; 1864defm LDURSBX 1865 : LoadUnscaled<0b00, 0, 0b10, GPR64, "ldursb", 1866 [(set GPR64:$Rt, 1867 (sextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>; 1868 1869// load sign-extended word 1870defm LDURSW 1871 : LoadUnscaled<0b10, 0, 0b10, GPR64, "ldursw", 1872 [(set GPR64:$Rt, 1873 (sextloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>; 1874 1875// zero and sign extending aliases from generic LDR* mnemonics to LDUR*. 1876def : InstAlias<"ldrb $Rt, [$Rn, $offset]", 1877 (LDURBBi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>; 1878def : InstAlias<"ldrh $Rt, [$Rn, $offset]", 1879 (LDURHHi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>; 1880def : InstAlias<"ldrsb $Rt, [$Rn, $offset]", 1881 (LDURSBWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>; 1882def : InstAlias<"ldrsb $Rt, [$Rn, $offset]", 1883 (LDURSBXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>; 1884def : InstAlias<"ldrsh $Rt, [$Rn, $offset]", 1885 (LDURSHWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>; 1886def : InstAlias<"ldrsh $Rt, [$Rn, $offset]", 1887 (LDURSHXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>; 1888def : InstAlias<"ldrsw $Rt, [$Rn, $offset]", 1889 (LDURSWi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>; 1890 1891// Pre-fetch. 1892defm PRFUM : PrefetchUnscaled<0b11, 0, 0b10, "prfum", 1893 [(AArch64Prefetch imm:$Rt, 1894 (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>; 1895 1896//--- 1897// (unscaled immediate, unprivileged) 1898defm LDTRX : LoadUnprivileged<0b11, 0, 0b01, GPR64, "ldtr">; 1899defm LDTRW : LoadUnprivileged<0b10, 0, 0b01, GPR32, "ldtr">; 1900 1901defm LDTRH : LoadUnprivileged<0b01, 0, 0b01, GPR32, "ldtrh">; 1902defm LDTRB : LoadUnprivileged<0b00, 0, 0b01, GPR32, "ldtrb">; 1903 1904// load sign-extended half-word 1905defm LDTRSHW : LoadUnprivileged<0b01, 0, 0b11, GPR32, "ldtrsh">; 1906defm LDTRSHX : LoadUnprivileged<0b01, 0, 0b10, GPR64, "ldtrsh">; 1907 1908// load sign-extended byte 1909defm LDTRSBW : LoadUnprivileged<0b00, 0, 0b11, GPR32, "ldtrsb">; 1910defm LDTRSBX : LoadUnprivileged<0b00, 0, 0b10, GPR64, "ldtrsb">; 1911 1912// load sign-extended word 1913defm LDTRSW : LoadUnprivileged<0b10, 0, 0b10, GPR64, "ldtrsw">; 1914 1915//--- 1916// (immediate pre-indexed) 1917def LDRWpre : LoadPreIdx<0b10, 0, 0b01, GPR32, "ldr">; 1918def LDRXpre : LoadPreIdx<0b11, 0, 0b01, GPR64, "ldr">; 1919def LDRBpre : LoadPreIdx<0b00, 1, 0b01, FPR8, "ldr">; 1920def LDRHpre : LoadPreIdx<0b01, 1, 0b01, FPR16, "ldr">; 1921def LDRSpre : LoadPreIdx<0b10, 1, 0b01, FPR32, "ldr">; 1922def LDRDpre : LoadPreIdx<0b11, 1, 0b01, FPR64, "ldr">; 1923def LDRQpre : LoadPreIdx<0b00, 1, 0b11, FPR128, "ldr">; 1924 1925// load sign-extended half-word 1926def LDRSHWpre : LoadPreIdx<0b01, 0, 0b11, GPR32, "ldrsh">; 1927def LDRSHXpre : LoadPreIdx<0b01, 0, 0b10, GPR64, "ldrsh">; 1928 1929// load sign-extended byte 1930def LDRSBWpre : LoadPreIdx<0b00, 0, 0b11, GPR32, "ldrsb">; 1931def LDRSBXpre : LoadPreIdx<0b00, 0, 0b10, GPR64, "ldrsb">; 1932 1933// load zero-extended byte 1934def LDRBBpre : LoadPreIdx<0b00, 0, 0b01, GPR32, "ldrb">; 1935def LDRHHpre : LoadPreIdx<0b01, 0, 0b01, GPR32, "ldrh">; 1936 1937// load sign-extended word 1938def LDRSWpre : LoadPreIdx<0b10, 0, 0b10, GPR64, "ldrsw">; 1939 1940//--- 1941// (immediate post-indexed) 1942def LDRWpost : LoadPostIdx<0b10, 0, 0b01, GPR32, "ldr">; 1943def LDRXpost : LoadPostIdx<0b11, 0, 0b01, GPR64, "ldr">; 1944def LDRBpost : LoadPostIdx<0b00, 1, 0b01, FPR8, "ldr">; 1945def LDRHpost : LoadPostIdx<0b01, 1, 0b01, FPR16, "ldr">; 1946def LDRSpost : LoadPostIdx<0b10, 1, 0b01, FPR32, "ldr">; 1947def LDRDpost : LoadPostIdx<0b11, 1, 0b01, FPR64, "ldr">; 1948def LDRQpost : LoadPostIdx<0b00, 1, 0b11, FPR128, "ldr">; 1949 1950// load sign-extended half-word 1951def LDRSHWpost : LoadPostIdx<0b01, 0, 0b11, GPR32, "ldrsh">; 1952def LDRSHXpost : LoadPostIdx<0b01, 0, 0b10, GPR64, "ldrsh">; 1953 1954// load sign-extended byte 1955def LDRSBWpost : LoadPostIdx<0b00, 0, 0b11, GPR32, "ldrsb">; 1956def LDRSBXpost : LoadPostIdx<0b00, 0, 0b10, GPR64, "ldrsb">; 1957 1958// load zero-extended byte 1959def LDRBBpost : LoadPostIdx<0b00, 0, 0b01, GPR32, "ldrb">; 1960def LDRHHpost : LoadPostIdx<0b01, 0, 0b01, GPR32, "ldrh">; 1961 1962// load sign-extended word 1963def LDRSWpost : LoadPostIdx<0b10, 0, 0b10, GPR64, "ldrsw">; 1964 1965//===----------------------------------------------------------------------===// 1966// Store instructions. 1967//===----------------------------------------------------------------------===// 1968 1969// Pair (indexed, offset) 1970// FIXME: Use dedicated range-checked addressing mode operand here. 1971defm STPW : StorePairOffset<0b00, 0, GPR32, simm7s4, "stp">; 1972defm STPX : StorePairOffset<0b10, 0, GPR64, simm7s8, "stp">; 1973defm STPS : StorePairOffset<0b00, 1, FPR32, simm7s4, "stp">; 1974defm STPD : StorePairOffset<0b01, 1, FPR64, simm7s8, "stp">; 1975defm STPQ : StorePairOffset<0b10, 1, FPR128, simm7s16, "stp">; 1976 1977// Pair (pre-indexed) 1978def STPWpre : StorePairPreIdx<0b00, 0, GPR32, simm7s4, "stp">; 1979def STPXpre : StorePairPreIdx<0b10, 0, GPR64, simm7s8, "stp">; 1980def STPSpre : StorePairPreIdx<0b00, 1, FPR32, simm7s4, "stp">; 1981def STPDpre : StorePairPreIdx<0b01, 1, FPR64, simm7s8, "stp">; 1982def STPQpre : StorePairPreIdx<0b10, 1, FPR128, simm7s16, "stp">; 1983 1984// Pair (pre-indexed) 1985def STPWpost : StorePairPostIdx<0b00, 0, GPR32, simm7s4, "stp">; 1986def STPXpost : StorePairPostIdx<0b10, 0, GPR64, simm7s8, "stp">; 1987def STPSpost : StorePairPostIdx<0b00, 1, FPR32, simm7s4, "stp">; 1988def STPDpost : StorePairPostIdx<0b01, 1, FPR64, simm7s8, "stp">; 1989def STPQpost : StorePairPostIdx<0b10, 1, FPR128, simm7s16, "stp">; 1990 1991// Pair (no allocate) 1992defm STNPW : StorePairNoAlloc<0b00, 0, GPR32, simm7s4, "stnp">; 1993defm STNPX : StorePairNoAlloc<0b10, 0, GPR64, simm7s8, "stnp">; 1994defm STNPS : StorePairNoAlloc<0b00, 1, FPR32, simm7s4, "stnp">; 1995defm STNPD : StorePairNoAlloc<0b01, 1, FPR64, simm7s8, "stnp">; 1996defm STNPQ : StorePairNoAlloc<0b10, 1, FPR128, simm7s16, "stnp">; 1997 1998//--- 1999// (Register offset) 2000 2001// Integer 2002defm STRBB : Store8RO< 0b00, 0, 0b00, GPR32, "strb", i32, truncstorei8>; 2003defm STRHH : Store16RO<0b01, 0, 0b00, GPR32, "strh", i32, truncstorei16>; 2004defm STRW : Store32RO<0b10, 0, 0b00, GPR32, "str", i32, store>; 2005defm STRX : Store64RO<0b11, 0, 0b00, GPR64, "str", i64, store>; 2006 2007 2008// Floating-point 2009defm STRB : Store8RO< 0b00, 1, 0b00, FPR8, "str", untyped, store>; 2010defm STRH : Store16RO<0b01, 1, 0b00, FPR16, "str", f16, store>; 2011defm STRS : Store32RO<0b10, 1, 0b00, FPR32, "str", f32, store>; 2012defm STRD : Store64RO<0b11, 1, 0b00, FPR64, "str", f64, store>; 2013defm STRQ : Store128RO<0b00, 1, 0b10, FPR128, "str", f128, store>; 2014 2015multiclass TruncStoreFrom64ROPat<ROAddrMode ro, SDPatternOperator storeop, 2016 Instruction STRW, Instruction STRX> { 2017 2018 def : Pat<(storeop GPR64:$Rt, 2019 (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)), 2020 (STRW (EXTRACT_SUBREG GPR64:$Rt, sub_32), 2021 GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>; 2022 2023 def : Pat<(storeop GPR64:$Rt, 2024 (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)), 2025 (STRX (EXTRACT_SUBREG GPR64:$Rt, sub_32), 2026 GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>; 2027} 2028 2029let AddedComplexity = 10 in { 2030 // truncstore i64 2031 defm : TruncStoreFrom64ROPat<ro8, truncstorei8, STRBBroW, STRBBroX>; 2032 defm : TruncStoreFrom64ROPat<ro16, truncstorei16, STRHHroW, STRHHroX>; 2033 defm : TruncStoreFrom64ROPat<ro32, truncstorei32, STRWroW, STRWroX>; 2034} 2035 2036multiclass VecROStorePat<ROAddrMode ro, ValueType VecTy, RegisterClass FPR, 2037 Instruction STRW, Instruction STRX> { 2038 def : Pat<(store (VecTy FPR:$Rt), 2039 (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)), 2040 (STRW FPR:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>; 2041 2042 def : Pat<(store (VecTy FPR:$Rt), 2043 (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)), 2044 (STRX FPR:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>; 2045} 2046 2047let AddedComplexity = 10 in { 2048// Match all store 64 bits width whose type is compatible with FPR64 2049let Predicates = [IsLE] in { 2050 // We must use ST1 to store vectors in big-endian. 2051 defm : VecROStorePat<ro64, v2i32, FPR64, STRDroW, STRDroX>; 2052 defm : VecROStorePat<ro64, v2f32, FPR64, STRDroW, STRDroX>; 2053 defm : VecROStorePat<ro64, v4i16, FPR64, STRDroW, STRDroX>; 2054 defm : VecROStorePat<ro64, v8i8, FPR64, STRDroW, STRDroX>; 2055 defm : VecROStorePat<ro64, v4f16, FPR64, STRDroW, STRDroX>; 2056} 2057 2058defm : VecROStorePat<ro64, v1i64, FPR64, STRDroW, STRDroX>; 2059defm : VecROStorePat<ro64, v1f64, FPR64, STRDroW, STRDroX>; 2060 2061// Match all store 128 bits width whose type is compatible with FPR128 2062let Predicates = [IsLE] in { 2063 // We must use ST1 to store vectors in big-endian. 2064 defm : VecROStorePat<ro128, v2i64, FPR128, STRQroW, STRQroX>; 2065 defm : VecROStorePat<ro128, v2f64, FPR128, STRQroW, STRQroX>; 2066 defm : VecROStorePat<ro128, v4i32, FPR128, STRQroW, STRQroX>; 2067 defm : VecROStorePat<ro128, v4f32, FPR128, STRQroW, STRQroX>; 2068 defm : VecROStorePat<ro128, v8i16, FPR128, STRQroW, STRQroX>; 2069 defm : VecROStorePat<ro128, v16i8, FPR128, STRQroW, STRQroX>; 2070 defm : VecROStorePat<ro128, v8f16, FPR128, STRQroW, STRQroX>; 2071} 2072} // AddedComplexity = 10 2073 2074// Match stores from lane 0 to the appropriate subreg's store. 2075multiclass VecROStoreLane0Pat<ROAddrMode ro, SDPatternOperator storeop, 2076 ValueType VecTy, ValueType STy, 2077 SubRegIndex SubRegIdx, 2078 Instruction STRW, Instruction STRX> { 2079 2080 def : Pat<(storeop (STy (vector_extract (VecTy VecListOne128:$Vt), 0)), 2081 (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)), 2082 (STRW (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx), 2083 GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>; 2084 2085 def : Pat<(storeop (STy (vector_extract (VecTy VecListOne128:$Vt), 0)), 2086 (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)), 2087 (STRX (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx), 2088 GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>; 2089} 2090 2091let AddedComplexity = 19 in { 2092 defm : VecROStoreLane0Pat<ro16, truncstorei16, v8i16, i32, hsub, STRHroW, STRHroX>; 2093 defm : VecROStoreLane0Pat<ro16, store , v8i16, i16, hsub, STRHroW, STRHroX>; 2094 defm : VecROStoreLane0Pat<ro32, truncstorei32, v4i32, i32, ssub, STRSroW, STRSroX>; 2095 defm : VecROStoreLane0Pat<ro32, store , v4i32, i32, ssub, STRSroW, STRSroX>; 2096 defm : VecROStoreLane0Pat<ro32, store , v4f32, f32, ssub, STRSroW, STRSroX>; 2097 defm : VecROStoreLane0Pat<ro64, store , v2i64, i64, dsub, STRDroW, STRDroX>; 2098 defm : VecROStoreLane0Pat<ro64, store , v2f64, f64, dsub, STRDroW, STRDroX>; 2099} 2100 2101//--- 2102// (unsigned immediate) 2103defm STRX : StoreUI<0b11, 0, 0b00, GPR64, uimm12s8, "str", 2104 [(store GPR64:$Rt, 2105 (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))]>; 2106defm STRW : StoreUI<0b10, 0, 0b00, GPR32, uimm12s4, "str", 2107 [(store GPR32:$Rt, 2108 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))]>; 2109defm STRB : StoreUI<0b00, 1, 0b00, FPR8, uimm12s1, "str", 2110 [(store FPR8:$Rt, 2111 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))]>; 2112defm STRH : StoreUI<0b01, 1, 0b00, FPR16, uimm12s2, "str", 2113 [(store (f16 FPR16:$Rt), 2114 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))]>; 2115defm STRS : StoreUI<0b10, 1, 0b00, FPR32, uimm12s4, "str", 2116 [(store (f32 FPR32:$Rt), 2117 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))]>; 2118defm STRD : StoreUI<0b11, 1, 0b00, FPR64, uimm12s8, "str", 2119 [(store (f64 FPR64:$Rt), 2120 (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))]>; 2121defm STRQ : StoreUI<0b00, 1, 0b10, FPR128, uimm12s16, "str", []>; 2122 2123defm STRHH : StoreUI<0b01, 0, 0b00, GPR32, uimm12s2, "strh", 2124 [(truncstorei16 GPR32:$Rt, 2125 (am_indexed16 GPR64sp:$Rn, 2126 uimm12s2:$offset))]>; 2127defm STRBB : StoreUI<0b00, 0, 0b00, GPR32, uimm12s1, "strb", 2128 [(truncstorei8 GPR32:$Rt, 2129 (am_indexed8 GPR64sp:$Rn, 2130 uimm12s1:$offset))]>; 2131 2132// Match all store 64 bits width whose type is compatible with FPR64 2133let AddedComplexity = 10 in { 2134let Predicates = [IsLE] in { 2135 // We must use ST1 to store vectors in big-endian. 2136 def : Pat<(store (v2f32 FPR64:$Rt), 2137 (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)), 2138 (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>; 2139 def : Pat<(store (v8i8 FPR64:$Rt), 2140 (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)), 2141 (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>; 2142 def : Pat<(store (v4i16 FPR64:$Rt), 2143 (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)), 2144 (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>; 2145 def : Pat<(store (v2i32 FPR64:$Rt), 2146 (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)), 2147 (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>; 2148 def : Pat<(store (v4f16 FPR64:$Rt), 2149 (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)), 2150 (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>; 2151} 2152def : Pat<(store (v1f64 FPR64:$Rt), 2153 (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)), 2154 (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>; 2155def : Pat<(store (v1i64 FPR64:$Rt), 2156 (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)), 2157 (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>; 2158 2159// Match all store 128 bits width whose type is compatible with FPR128 2160let Predicates = [IsLE] in { 2161 // We must use ST1 to store vectors in big-endian. 2162 def : Pat<(store (v4f32 FPR128:$Rt), 2163 (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)), 2164 (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>; 2165 def : Pat<(store (v2f64 FPR128:$Rt), 2166 (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)), 2167 (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>; 2168 def : Pat<(store (v16i8 FPR128:$Rt), 2169 (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)), 2170 (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>; 2171 def : Pat<(store (v8i16 FPR128:$Rt), 2172 (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)), 2173 (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>; 2174 def : Pat<(store (v4i32 FPR128:$Rt), 2175 (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)), 2176 (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>; 2177 def : Pat<(store (v2i64 FPR128:$Rt), 2178 (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)), 2179 (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>; 2180 def : Pat<(store (v8f16 FPR128:$Rt), 2181 (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)), 2182 (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>; 2183} 2184def : Pat<(store (f128 FPR128:$Rt), 2185 (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)), 2186 (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>; 2187 2188// truncstore i64 2189def : Pat<(truncstorei32 GPR64:$Rt, 2190 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)), 2191 (STRWui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s4:$offset)>; 2192def : Pat<(truncstorei16 GPR64:$Rt, 2193 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)), 2194 (STRHHui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s2:$offset)>; 2195def : Pat<(truncstorei8 GPR64:$Rt, (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset)), 2196 (STRBBui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s1:$offset)>; 2197 2198} // AddedComplexity = 10 2199 2200//--- 2201// (unscaled immediate) 2202defm STURX : StoreUnscaled<0b11, 0, 0b00, GPR64, "stur", 2203 [(store GPR64:$Rt, 2204 (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>; 2205defm STURW : StoreUnscaled<0b10, 0, 0b00, GPR32, "stur", 2206 [(store GPR32:$Rt, 2207 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))]>; 2208defm STURB : StoreUnscaled<0b00, 1, 0b00, FPR8, "stur", 2209 [(store FPR8:$Rt, 2210 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))]>; 2211defm STURH : StoreUnscaled<0b01, 1, 0b00, FPR16, "stur", 2212 [(store (f16 FPR16:$Rt), 2213 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))]>; 2214defm STURS : StoreUnscaled<0b10, 1, 0b00, FPR32, "stur", 2215 [(store (f32 FPR32:$Rt), 2216 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))]>; 2217defm STURD : StoreUnscaled<0b11, 1, 0b00, FPR64, "stur", 2218 [(store (f64 FPR64:$Rt), 2219 (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>; 2220defm STURQ : StoreUnscaled<0b00, 1, 0b10, FPR128, "stur", 2221 [(store (f128 FPR128:$Rt), 2222 (am_unscaled128 GPR64sp:$Rn, simm9:$offset))]>; 2223defm STURHH : StoreUnscaled<0b01, 0, 0b00, GPR32, "sturh", 2224 [(truncstorei16 GPR32:$Rt, 2225 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))]>; 2226defm STURBB : StoreUnscaled<0b00, 0, 0b00, GPR32, "sturb", 2227 [(truncstorei8 GPR32:$Rt, 2228 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))]>; 2229 2230// Match all store 64 bits width whose type is compatible with FPR64 2231let Predicates = [IsLE] in { 2232 // We must use ST1 to store vectors in big-endian. 2233 def : Pat<(store (v2f32 FPR64:$Rt), 2234 (am_unscaled64 GPR64sp:$Rn, simm9:$offset)), 2235 (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>; 2236 def : Pat<(store (v8i8 FPR64:$Rt), 2237 (am_unscaled64 GPR64sp:$Rn, simm9:$offset)), 2238 (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>; 2239 def : Pat<(store (v4i16 FPR64:$Rt), 2240 (am_unscaled64 GPR64sp:$Rn, simm9:$offset)), 2241 (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>; 2242 def : Pat<(store (v2i32 FPR64:$Rt), 2243 (am_unscaled64 GPR64sp:$Rn, simm9:$offset)), 2244 (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>; 2245 def : Pat<(store (v4f16 FPR64:$Rt), 2246 (am_unscaled64 GPR64sp:$Rn, simm9:$offset)), 2247 (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>; 2248} 2249def : Pat<(store (v1f64 FPR64:$Rt), (am_unscaled64 GPR64sp:$Rn, simm9:$offset)), 2250 (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>; 2251def : Pat<(store (v1i64 FPR64:$Rt), (am_unscaled64 GPR64sp:$Rn, simm9:$offset)), 2252 (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>; 2253 2254// Match all store 128 bits width whose type is compatible with FPR128 2255let Predicates = [IsLE] in { 2256 // We must use ST1 to store vectors in big-endian. 2257 def : Pat<(store (v4f32 FPR128:$Rt), 2258 (am_unscaled128 GPR64sp:$Rn, simm9:$offset)), 2259 (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>; 2260 def : Pat<(store (v2f64 FPR128:$Rt), 2261 (am_unscaled128 GPR64sp:$Rn, simm9:$offset)), 2262 (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>; 2263 def : Pat<(store (v16i8 FPR128:$Rt), 2264 (am_unscaled128 GPR64sp:$Rn, simm9:$offset)), 2265 (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>; 2266 def : Pat<(store (v8i16 FPR128:$Rt), 2267 (am_unscaled128 GPR64sp:$Rn, simm9:$offset)), 2268 (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>; 2269 def : Pat<(store (v4i32 FPR128:$Rt), 2270 (am_unscaled128 GPR64sp:$Rn, simm9:$offset)), 2271 (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>; 2272 def : Pat<(store (v2i64 FPR128:$Rt), 2273 (am_unscaled128 GPR64sp:$Rn, simm9:$offset)), 2274 (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>; 2275 def : Pat<(store (v2f64 FPR128:$Rt), 2276 (am_unscaled128 GPR64sp:$Rn, simm9:$offset)), 2277 (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>; 2278 def : Pat<(store (v8f16 FPR128:$Rt), 2279 (am_unscaled128 GPR64sp:$Rn, simm9:$offset)), 2280 (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>; 2281} 2282 2283// unscaled i64 truncating stores 2284def : Pat<(truncstorei32 GPR64:$Rt, (am_unscaled32 GPR64sp:$Rn, simm9:$offset)), 2285 (STURWi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>; 2286def : Pat<(truncstorei16 GPR64:$Rt, (am_unscaled16 GPR64sp:$Rn, simm9:$offset)), 2287 (STURHHi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>; 2288def : Pat<(truncstorei8 GPR64:$Rt, (am_unscaled8 GPR64sp:$Rn, simm9:$offset)), 2289 (STURBBi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>; 2290 2291//--- 2292// STR mnemonics fall back to STUR for negative or unaligned offsets. 2293def : InstAlias<"str $Rt, [$Rn, $offset]", 2294 (STURXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>; 2295def : InstAlias<"str $Rt, [$Rn, $offset]", 2296 (STURWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>; 2297def : InstAlias<"str $Rt, [$Rn, $offset]", 2298 (STURBi FPR8:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>; 2299def : InstAlias<"str $Rt, [$Rn, $offset]", 2300 (STURHi FPR16:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>; 2301def : InstAlias<"str $Rt, [$Rn, $offset]", 2302 (STURSi FPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>; 2303def : InstAlias<"str $Rt, [$Rn, $offset]", 2304 (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>; 2305def : InstAlias<"str $Rt, [$Rn, $offset]", 2306 (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9_offset_fb128:$offset), 0>; 2307 2308def : InstAlias<"strb $Rt, [$Rn, $offset]", 2309 (STURBBi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>; 2310def : InstAlias<"strh $Rt, [$Rn, $offset]", 2311 (STURHHi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>; 2312 2313//--- 2314// (unscaled immediate, unprivileged) 2315defm STTRW : StoreUnprivileged<0b10, 0, 0b00, GPR32, "sttr">; 2316defm STTRX : StoreUnprivileged<0b11, 0, 0b00, GPR64, "sttr">; 2317 2318defm STTRH : StoreUnprivileged<0b01, 0, 0b00, GPR32, "sttrh">; 2319defm STTRB : StoreUnprivileged<0b00, 0, 0b00, GPR32, "sttrb">; 2320 2321//--- 2322// (immediate pre-indexed) 2323def STRWpre : StorePreIdx<0b10, 0, 0b00, GPR32, "str", pre_store, i32>; 2324def STRXpre : StorePreIdx<0b11, 0, 0b00, GPR64, "str", pre_store, i64>; 2325def STRBpre : StorePreIdx<0b00, 1, 0b00, FPR8, "str", pre_store, untyped>; 2326def STRHpre : StorePreIdx<0b01, 1, 0b00, FPR16, "str", pre_store, f16>; 2327def STRSpre : StorePreIdx<0b10, 1, 0b00, FPR32, "str", pre_store, f32>; 2328def STRDpre : StorePreIdx<0b11, 1, 0b00, FPR64, "str", pre_store, f64>; 2329def STRQpre : StorePreIdx<0b00, 1, 0b10, FPR128, "str", pre_store, f128>; 2330 2331def STRBBpre : StorePreIdx<0b00, 0, 0b00, GPR32, "strb", pre_truncsti8, i32>; 2332def STRHHpre : StorePreIdx<0b01, 0, 0b00, GPR32, "strh", pre_truncsti16, i32>; 2333 2334// truncstore i64 2335def : Pat<(pre_truncsti32 GPR64:$Rt, GPR64sp:$addr, simm9:$off), 2336 (STRWpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr, 2337 simm9:$off)>; 2338def : Pat<(pre_truncsti16 GPR64:$Rt, GPR64sp:$addr, simm9:$off), 2339 (STRHHpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr, 2340 simm9:$off)>; 2341def : Pat<(pre_truncsti8 GPR64:$Rt, GPR64sp:$addr, simm9:$off), 2342 (STRBBpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr, 2343 simm9:$off)>; 2344 2345def : Pat<(pre_store (v8i8 FPR64:$Rt), GPR64sp:$addr, simm9:$off), 2346 (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; 2347def : Pat<(pre_store (v4i16 FPR64:$Rt), GPR64sp:$addr, simm9:$off), 2348 (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; 2349def : Pat<(pre_store (v2i32 FPR64:$Rt), GPR64sp:$addr, simm9:$off), 2350 (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; 2351def : Pat<(pre_store (v2f32 FPR64:$Rt), GPR64sp:$addr, simm9:$off), 2352 (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; 2353def : Pat<(pre_store (v1i64 FPR64:$Rt), GPR64sp:$addr, simm9:$off), 2354 (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; 2355def : Pat<(pre_store (v1f64 FPR64:$Rt), GPR64sp:$addr, simm9:$off), 2356 (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; 2357def : Pat<(pre_store (v4f16 FPR64:$Rt), GPR64sp:$addr, simm9:$off), 2358 (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; 2359 2360def : Pat<(pre_store (v16i8 FPR128:$Rt), GPR64sp:$addr, simm9:$off), 2361 (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; 2362def : Pat<(pre_store (v8i16 FPR128:$Rt), GPR64sp:$addr, simm9:$off), 2363 (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; 2364def : Pat<(pre_store (v4i32 FPR128:$Rt), GPR64sp:$addr, simm9:$off), 2365 (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; 2366def : Pat<(pre_store (v4f32 FPR128:$Rt), GPR64sp:$addr, simm9:$off), 2367 (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; 2368def : Pat<(pre_store (v2i64 FPR128:$Rt), GPR64sp:$addr, simm9:$off), 2369 (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; 2370def : Pat<(pre_store (v2f64 FPR128:$Rt), GPR64sp:$addr, simm9:$off), 2371 (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; 2372def : Pat<(pre_store (v8f16 FPR128:$Rt), GPR64sp:$addr, simm9:$off), 2373 (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; 2374 2375//--- 2376// (immediate post-indexed) 2377def STRWpost : StorePostIdx<0b10, 0, 0b00, GPR32, "str", post_store, i32>; 2378def STRXpost : StorePostIdx<0b11, 0, 0b00, GPR64, "str", post_store, i64>; 2379def STRBpost : StorePostIdx<0b00, 1, 0b00, FPR8, "str", post_store, untyped>; 2380def STRHpost : StorePostIdx<0b01, 1, 0b00, FPR16, "str", post_store, f16>; 2381def STRSpost : StorePostIdx<0b10, 1, 0b00, FPR32, "str", post_store, f32>; 2382def STRDpost : StorePostIdx<0b11, 1, 0b00, FPR64, "str", post_store, f64>; 2383def STRQpost : StorePostIdx<0b00, 1, 0b10, FPR128, "str", post_store, f128>; 2384 2385def STRBBpost : StorePostIdx<0b00, 0, 0b00, GPR32, "strb", post_truncsti8, i32>; 2386def STRHHpost : StorePostIdx<0b01, 0, 0b00, GPR32, "strh", post_truncsti16, i32>; 2387 2388// truncstore i64 2389def : Pat<(post_truncsti32 GPR64:$Rt, GPR64sp:$addr, simm9:$off), 2390 (STRWpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr, 2391 simm9:$off)>; 2392def : Pat<(post_truncsti16 GPR64:$Rt, GPR64sp:$addr, simm9:$off), 2393 (STRHHpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr, 2394 simm9:$off)>; 2395def : Pat<(post_truncsti8 GPR64:$Rt, GPR64sp:$addr, simm9:$off), 2396 (STRBBpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr, 2397 simm9:$off)>; 2398 2399def : Pat<(post_store (v8i8 FPR64:$Rt), GPR64sp:$addr, simm9:$off), 2400 (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; 2401def : Pat<(post_store (v4i16 FPR64:$Rt), GPR64sp:$addr, simm9:$off), 2402 (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; 2403def : Pat<(post_store (v2i32 FPR64:$Rt), GPR64sp:$addr, simm9:$off), 2404 (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; 2405def : Pat<(post_store (v2f32 FPR64:$Rt), GPR64sp:$addr, simm9:$off), 2406 (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; 2407def : Pat<(post_store (v1i64 FPR64:$Rt), GPR64sp:$addr, simm9:$off), 2408 (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; 2409def : Pat<(post_store (v1f64 FPR64:$Rt), GPR64sp:$addr, simm9:$off), 2410 (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; 2411def : Pat<(post_store (v4f16 FPR64:$Rt), GPR64sp:$addr, simm9:$off), 2412 (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; 2413 2414def : Pat<(post_store (v16i8 FPR128:$Rt), GPR64sp:$addr, simm9:$off), 2415 (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; 2416def : Pat<(post_store (v8i16 FPR128:$Rt), GPR64sp:$addr, simm9:$off), 2417 (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; 2418def : Pat<(post_store (v4i32 FPR128:$Rt), GPR64sp:$addr, simm9:$off), 2419 (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; 2420def : Pat<(post_store (v4f32 FPR128:$Rt), GPR64sp:$addr, simm9:$off), 2421 (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; 2422def : Pat<(post_store (v2i64 FPR128:$Rt), GPR64sp:$addr, simm9:$off), 2423 (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; 2424def : Pat<(post_store (v2f64 FPR128:$Rt), GPR64sp:$addr, simm9:$off), 2425 (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; 2426def : Pat<(post_store (v8f16 FPR128:$Rt), GPR64sp:$addr, simm9:$off), 2427 (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; 2428 2429//===----------------------------------------------------------------------===// 2430// Load/store exclusive instructions. 2431//===----------------------------------------------------------------------===// 2432 2433def LDARW : LoadAcquire <0b10, 1, 1, 0, 1, GPR32, "ldar">; 2434def LDARX : LoadAcquire <0b11, 1, 1, 0, 1, GPR64, "ldar">; 2435def LDARB : LoadAcquire <0b00, 1, 1, 0, 1, GPR32, "ldarb">; 2436def LDARH : LoadAcquire <0b01, 1, 1, 0, 1, GPR32, "ldarh">; 2437 2438def LDAXRW : LoadExclusive <0b10, 0, 1, 0, 1, GPR32, "ldaxr">; 2439def LDAXRX : LoadExclusive <0b11, 0, 1, 0, 1, GPR64, "ldaxr">; 2440def LDAXRB : LoadExclusive <0b00, 0, 1, 0, 1, GPR32, "ldaxrb">; 2441def LDAXRH : LoadExclusive <0b01, 0, 1, 0, 1, GPR32, "ldaxrh">; 2442 2443def LDXRW : LoadExclusive <0b10, 0, 1, 0, 0, GPR32, "ldxr">; 2444def LDXRX : LoadExclusive <0b11, 0, 1, 0, 0, GPR64, "ldxr">; 2445def LDXRB : LoadExclusive <0b00, 0, 1, 0, 0, GPR32, "ldxrb">; 2446def LDXRH : LoadExclusive <0b01, 0, 1, 0, 0, GPR32, "ldxrh">; 2447 2448def STLRW : StoreRelease <0b10, 1, 0, 0, 1, GPR32, "stlr">; 2449def STLRX : StoreRelease <0b11, 1, 0, 0, 1, GPR64, "stlr">; 2450def STLRB : StoreRelease <0b00, 1, 0, 0, 1, GPR32, "stlrb">; 2451def STLRH : StoreRelease <0b01, 1, 0, 0, 1, GPR32, "stlrh">; 2452 2453def STLXRW : StoreExclusive<0b10, 0, 0, 0, 1, GPR32, "stlxr">; 2454def STLXRX : StoreExclusive<0b11, 0, 0, 0, 1, GPR64, "stlxr">; 2455def STLXRB : StoreExclusive<0b00, 0, 0, 0, 1, GPR32, "stlxrb">; 2456def STLXRH : StoreExclusive<0b01, 0, 0, 0, 1, GPR32, "stlxrh">; 2457 2458def STXRW : StoreExclusive<0b10, 0, 0, 0, 0, GPR32, "stxr">; 2459def STXRX : StoreExclusive<0b11, 0, 0, 0, 0, GPR64, "stxr">; 2460def STXRB : StoreExclusive<0b00, 0, 0, 0, 0, GPR32, "stxrb">; 2461def STXRH : StoreExclusive<0b01, 0, 0, 0, 0, GPR32, "stxrh">; 2462 2463def LDAXPW : LoadExclusivePair<0b10, 0, 1, 1, 1, GPR32, "ldaxp">; 2464def LDAXPX : LoadExclusivePair<0b11, 0, 1, 1, 1, GPR64, "ldaxp">; 2465 2466def LDXPW : LoadExclusivePair<0b10, 0, 1, 1, 0, GPR32, "ldxp">; 2467def LDXPX : LoadExclusivePair<0b11, 0, 1, 1, 0, GPR64, "ldxp">; 2468 2469def STLXPW : StoreExclusivePair<0b10, 0, 0, 1, 1, GPR32, "stlxp">; 2470def STLXPX : StoreExclusivePair<0b11, 0, 0, 1, 1, GPR64, "stlxp">; 2471 2472def STXPW : StoreExclusivePair<0b10, 0, 0, 1, 0, GPR32, "stxp">; 2473def STXPX : StoreExclusivePair<0b11, 0, 0, 1, 0, GPR64, "stxp">; 2474 2475let Predicates = [HasV8_1a] in { 2476 // v8.1a "Limited Order Region" extension load-acquire instructions 2477 def LDLARW : LoadAcquire <0b10, 1, 1, 0, 0, GPR32, "ldlar">; 2478 def LDLARX : LoadAcquire <0b11, 1, 1, 0, 0, GPR64, "ldlar">; 2479 def LDLARB : LoadAcquire <0b00, 1, 1, 0, 0, GPR32, "ldlarb">; 2480 def LDLARH : LoadAcquire <0b01, 1, 1, 0, 0, GPR32, "ldlarh">; 2481 2482 // v8.1a "Limited Order Region" extension store-release instructions 2483 def STLLRW : StoreRelease <0b10, 1, 0, 0, 0, GPR32, "stllr">; 2484 def STLLRX : StoreRelease <0b11, 1, 0, 0, 0, GPR64, "stllr">; 2485 def STLLRB : StoreRelease <0b00, 1, 0, 0, 0, GPR32, "stllrb">; 2486 def STLLRH : StoreRelease <0b01, 1, 0, 0, 0, GPR32, "stllrh">; 2487} 2488 2489//===----------------------------------------------------------------------===// 2490// Scaled floating point to integer conversion instructions. 2491//===----------------------------------------------------------------------===// 2492 2493defm FCVTAS : FPToIntegerUnscaled<0b00, 0b100, "fcvtas", int_aarch64_neon_fcvtas>; 2494defm FCVTAU : FPToIntegerUnscaled<0b00, 0b101, "fcvtau", int_aarch64_neon_fcvtau>; 2495defm FCVTMS : FPToIntegerUnscaled<0b10, 0b000, "fcvtms", int_aarch64_neon_fcvtms>; 2496defm FCVTMU : FPToIntegerUnscaled<0b10, 0b001, "fcvtmu", int_aarch64_neon_fcvtmu>; 2497defm FCVTNS : FPToIntegerUnscaled<0b00, 0b000, "fcvtns", int_aarch64_neon_fcvtns>; 2498defm FCVTNU : FPToIntegerUnscaled<0b00, 0b001, "fcvtnu", int_aarch64_neon_fcvtnu>; 2499defm FCVTPS : FPToIntegerUnscaled<0b01, 0b000, "fcvtps", int_aarch64_neon_fcvtps>; 2500defm FCVTPU : FPToIntegerUnscaled<0b01, 0b001, "fcvtpu", int_aarch64_neon_fcvtpu>; 2501defm FCVTZS : FPToIntegerUnscaled<0b11, 0b000, "fcvtzs", fp_to_sint>; 2502defm FCVTZU : FPToIntegerUnscaled<0b11, 0b001, "fcvtzu", fp_to_uint>; 2503defm FCVTZS : FPToIntegerScaled<0b11, 0b000, "fcvtzs", fp_to_sint>; 2504defm FCVTZU : FPToIntegerScaled<0b11, 0b001, "fcvtzu", fp_to_uint>; 2505 2506multiclass FPToIntegerIntPats<Intrinsic round, string INST> { 2507 def : Pat<(i32 (round f16:$Rn)), (!cast<Instruction>(INST # UWHr) $Rn)>; 2508 def : Pat<(i64 (round f16:$Rn)), (!cast<Instruction>(INST # UXHr) $Rn)>; 2509 def : Pat<(i32 (round f32:$Rn)), (!cast<Instruction>(INST # UWSr) $Rn)>; 2510 def : Pat<(i64 (round f32:$Rn)), (!cast<Instruction>(INST # UXSr) $Rn)>; 2511 def : Pat<(i32 (round f64:$Rn)), (!cast<Instruction>(INST # UWDr) $Rn)>; 2512 def : Pat<(i64 (round f64:$Rn)), (!cast<Instruction>(INST # UXDr) $Rn)>; 2513 2514 def : Pat<(i32 (round (fmul f16:$Rn, fixedpoint_f16_i32:$scale))), 2515 (!cast<Instruction>(INST # SWHri) $Rn, $scale)>; 2516 def : Pat<(i64 (round (fmul f16:$Rn, fixedpoint_f16_i64:$scale))), 2517 (!cast<Instruction>(INST # SXHri) $Rn, $scale)>; 2518 def : Pat<(i32 (round (fmul f32:$Rn, fixedpoint_f32_i32:$scale))), 2519 (!cast<Instruction>(INST # SWSri) $Rn, $scale)>; 2520 def : Pat<(i64 (round (fmul f32:$Rn, fixedpoint_f32_i64:$scale))), 2521 (!cast<Instruction>(INST # SXSri) $Rn, $scale)>; 2522 def : Pat<(i32 (round (fmul f64:$Rn, fixedpoint_f64_i32:$scale))), 2523 (!cast<Instruction>(INST # SWDri) $Rn, $scale)>; 2524 def : Pat<(i64 (round (fmul f64:$Rn, fixedpoint_f64_i64:$scale))), 2525 (!cast<Instruction>(INST # SXDri) $Rn, $scale)>; 2526} 2527 2528defm : FPToIntegerIntPats<int_aarch64_neon_fcvtzs, "FCVTZS">; 2529defm : FPToIntegerIntPats<int_aarch64_neon_fcvtzu, "FCVTZU">; 2530 2531multiclass FPToIntegerPats<SDNode to_int, SDNode round, string INST> { 2532 def : Pat<(i32 (to_int (round f32:$Rn))), 2533 (!cast<Instruction>(INST # UWSr) f32:$Rn)>; 2534 def : Pat<(i64 (to_int (round f32:$Rn))), 2535 (!cast<Instruction>(INST # UXSr) f32:$Rn)>; 2536 def : Pat<(i32 (to_int (round f64:$Rn))), 2537 (!cast<Instruction>(INST # UWDr) f64:$Rn)>; 2538 def : Pat<(i64 (to_int (round f64:$Rn))), 2539 (!cast<Instruction>(INST # UXDr) f64:$Rn)>; 2540} 2541 2542defm : FPToIntegerPats<fp_to_sint, fceil, "FCVTPS">; 2543defm : FPToIntegerPats<fp_to_uint, fceil, "FCVTPU">; 2544defm : FPToIntegerPats<fp_to_sint, ffloor, "FCVTMS">; 2545defm : FPToIntegerPats<fp_to_uint, ffloor, "FCVTMU">; 2546defm : FPToIntegerPats<fp_to_sint, ftrunc, "FCVTZS">; 2547defm : FPToIntegerPats<fp_to_uint, ftrunc, "FCVTZU">; 2548defm : FPToIntegerPats<fp_to_sint, frnd, "FCVTAS">; 2549defm : FPToIntegerPats<fp_to_uint, frnd, "FCVTAU">; 2550 2551//===----------------------------------------------------------------------===// 2552// Scaled integer to floating point conversion instructions. 2553//===----------------------------------------------------------------------===// 2554 2555defm SCVTF : IntegerToFP<0, "scvtf", sint_to_fp>; 2556defm UCVTF : IntegerToFP<1, "ucvtf", uint_to_fp>; 2557 2558//===----------------------------------------------------------------------===// 2559// Unscaled integer to floating point conversion instruction. 2560//===----------------------------------------------------------------------===// 2561 2562defm FMOV : UnscaledConversion<"fmov">; 2563 2564// Add pseudo ops for FMOV 0 so we can mark them as isReMaterializable 2565let isReMaterializable = 1, isCodeGenOnly = 1, isAsCheapAsAMove = 1 in { 2566def FMOVS0 : Pseudo<(outs FPR32:$Rd), (ins), [(set f32:$Rd, (fpimm0))]>, 2567 Sched<[WriteF]>; 2568def FMOVD0 : Pseudo<(outs FPR64:$Rd), (ins), [(set f64:$Rd, (fpimm0))]>, 2569 Sched<[WriteF]>; 2570} 2571 2572//===----------------------------------------------------------------------===// 2573// Floating point conversion instruction. 2574//===----------------------------------------------------------------------===// 2575 2576defm FCVT : FPConversion<"fcvt">; 2577 2578//===----------------------------------------------------------------------===// 2579// Floating point single operand instructions. 2580//===----------------------------------------------------------------------===// 2581 2582defm FABS : SingleOperandFPData<0b0001, "fabs", fabs>; 2583defm FMOV : SingleOperandFPData<0b0000, "fmov">; 2584defm FNEG : SingleOperandFPData<0b0010, "fneg", fneg>; 2585defm FRINTA : SingleOperandFPData<0b1100, "frinta", frnd>; 2586defm FRINTI : SingleOperandFPData<0b1111, "frinti", fnearbyint>; 2587defm FRINTM : SingleOperandFPData<0b1010, "frintm", ffloor>; 2588defm FRINTN : SingleOperandFPData<0b1000, "frintn", int_aarch64_neon_frintn>; 2589defm FRINTP : SingleOperandFPData<0b1001, "frintp", fceil>; 2590 2591def : Pat<(v1f64 (int_aarch64_neon_frintn (v1f64 FPR64:$Rn))), 2592 (FRINTNDr FPR64:$Rn)>; 2593 2594defm FRINTX : SingleOperandFPData<0b1110, "frintx", frint>; 2595defm FRINTZ : SingleOperandFPData<0b1011, "frintz", ftrunc>; 2596 2597let SchedRW = [WriteFDiv] in { 2598defm FSQRT : SingleOperandFPData<0b0011, "fsqrt", fsqrt>; 2599} 2600 2601//===----------------------------------------------------------------------===// 2602// Floating point two operand instructions. 2603//===----------------------------------------------------------------------===// 2604 2605defm FADD : TwoOperandFPData<0b0010, "fadd", fadd>; 2606let SchedRW = [WriteFDiv] in { 2607defm FDIV : TwoOperandFPData<0b0001, "fdiv", fdiv>; 2608} 2609defm FMAXNM : TwoOperandFPData<0b0110, "fmaxnm", fmaxnum>; 2610defm FMAX : TwoOperandFPData<0b0100, "fmax", fmaxnan>; 2611defm FMINNM : TwoOperandFPData<0b0111, "fminnm", fminnum>; 2612defm FMIN : TwoOperandFPData<0b0101, "fmin", fminnan>; 2613let SchedRW = [WriteFMul] in { 2614defm FMUL : TwoOperandFPData<0b0000, "fmul", fmul>; 2615defm FNMUL : TwoOperandFPDataNeg<0b1000, "fnmul", fmul>; 2616} 2617defm FSUB : TwoOperandFPData<0b0011, "fsub", fsub>; 2618 2619def : Pat<(v1f64 (fmaxnan (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))), 2620 (FMAXDrr FPR64:$Rn, FPR64:$Rm)>; 2621def : Pat<(v1f64 (fminnan (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))), 2622 (FMINDrr FPR64:$Rn, FPR64:$Rm)>; 2623def : Pat<(v1f64 (fmaxnum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))), 2624 (FMAXNMDrr FPR64:$Rn, FPR64:$Rm)>; 2625def : Pat<(v1f64 (fminnum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))), 2626 (FMINNMDrr FPR64:$Rn, FPR64:$Rm)>; 2627 2628//===----------------------------------------------------------------------===// 2629// Floating point three operand instructions. 2630//===----------------------------------------------------------------------===// 2631 2632defm FMADD : ThreeOperandFPData<0, 0, "fmadd", fma>; 2633defm FMSUB : ThreeOperandFPData<0, 1, "fmsub", 2634 TriOpFrag<(fma node:$LHS, (fneg node:$MHS), node:$RHS)> >; 2635defm FNMADD : ThreeOperandFPData<1, 0, "fnmadd", 2636 TriOpFrag<(fneg (fma node:$LHS, node:$MHS, node:$RHS))> >; 2637defm FNMSUB : ThreeOperandFPData<1, 1, "fnmsub", 2638 TriOpFrag<(fma node:$LHS, node:$MHS, (fneg node:$RHS))> >; 2639 2640// The following def pats catch the case where the LHS of an FMA is negated. 2641// The TriOpFrag above catches the case where the middle operand is negated. 2642 2643// N.b. FMSUB etc have the accumulator at the *end* of (outs), unlike 2644// the NEON variant. 2645def : Pat<(f32 (fma (fneg FPR32:$Rn), FPR32:$Rm, FPR32:$Ra)), 2646 (FMSUBSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>; 2647 2648def : Pat<(f64 (fma (fneg FPR64:$Rn), FPR64:$Rm, FPR64:$Ra)), 2649 (FMSUBDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>; 2650 2651// We handled -(a + b*c) for FNMADD above, now it's time for "(-a) + (-b)*c" and 2652// "(-a) + b*(-c)". 2653def : Pat<(f32 (fma (fneg FPR32:$Rn), FPR32:$Rm, (fneg FPR32:$Ra))), 2654 (FNMADDSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>; 2655 2656def : Pat<(f64 (fma (fneg FPR64:$Rn), FPR64:$Rm, (fneg FPR64:$Ra))), 2657 (FNMADDDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>; 2658 2659def : Pat<(f32 (fma FPR32:$Rn, (fneg FPR32:$Rm), (fneg FPR32:$Ra))), 2660 (FNMADDSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>; 2661 2662def : Pat<(f64 (fma FPR64:$Rn, (fneg FPR64:$Rm), (fneg FPR64:$Ra))), 2663 (FNMADDDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>; 2664 2665//===----------------------------------------------------------------------===// 2666// Floating point comparison instructions. 2667//===----------------------------------------------------------------------===// 2668 2669defm FCMPE : FPComparison<1, "fcmpe">; 2670defm FCMP : FPComparison<0, "fcmp", AArch64fcmp>; 2671 2672//===----------------------------------------------------------------------===// 2673// Floating point conditional comparison instructions. 2674//===----------------------------------------------------------------------===// 2675 2676defm FCCMPE : FPCondComparison<1, "fccmpe">; 2677defm FCCMP : FPCondComparison<0, "fccmp", AArch64fccmp>; 2678 2679//===----------------------------------------------------------------------===// 2680// Floating point conditional select instruction. 2681//===----------------------------------------------------------------------===// 2682 2683defm FCSEL : FPCondSelect<"fcsel">; 2684 2685// CSEL instructions providing f128 types need to be handled by a 2686// pseudo-instruction since the eventual code will need to introduce basic 2687// blocks and control flow. 2688def F128CSEL : Pseudo<(outs FPR128:$Rd), 2689 (ins FPR128:$Rn, FPR128:$Rm, ccode:$cond), 2690 [(set (f128 FPR128:$Rd), 2691 (AArch64csel FPR128:$Rn, FPR128:$Rm, 2692 (i32 imm:$cond), NZCV))]> { 2693 let Uses = [NZCV]; 2694 let usesCustomInserter = 1; 2695 let hasNoSchedulingInfo = 1; 2696} 2697 2698 2699//===----------------------------------------------------------------------===// 2700// Floating point immediate move. 2701//===----------------------------------------------------------------------===// 2702 2703let isReMaterializable = 1 in { 2704defm FMOV : FPMoveImmediate<"fmov">; 2705} 2706 2707//===----------------------------------------------------------------------===// 2708// Advanced SIMD two vector instructions. 2709//===----------------------------------------------------------------------===// 2710 2711defm UABDL : SIMDLongThreeVectorBHSabdl<1, 0b0111, "uabdl", 2712 int_aarch64_neon_uabd>; 2713// Match UABDL in log2-shuffle patterns. 2714def : Pat<(xor (v8i16 (AArch64vashr v8i16:$src, (i32 15))), 2715 (v8i16 (add (sub (zext (v8i8 V64:$opA)), 2716 (zext (v8i8 V64:$opB))), 2717 (AArch64vashr v8i16:$src, (i32 15))))), 2718 (UABDLv8i8_v8i16 V64:$opA, V64:$opB)>; 2719def : Pat<(xor (v8i16 (AArch64vashr v8i16:$src, (i32 15))), 2720 (v8i16 (add (sub (zext (extract_high_v16i8 V128:$opA)), 2721 (zext (extract_high_v16i8 V128:$opB))), 2722 (AArch64vashr v8i16:$src, (i32 15))))), 2723 (UABDLv16i8_v8i16 V128:$opA, V128:$opB)>; 2724def : Pat<(xor (v4i32 (AArch64vashr v4i32:$src, (i32 31))), 2725 (v4i32 (add (sub (zext (v4i16 V64:$opA)), 2726 (zext (v4i16 V64:$opB))), 2727 (AArch64vashr v4i32:$src, (i32 31))))), 2728 (UABDLv4i16_v4i32 V64:$opA, V64:$opB)>; 2729def : Pat<(xor (v4i32 (AArch64vashr v4i32:$src, (i32 31))), 2730 (v4i32 (add (sub (zext (extract_high_v8i16 V128:$opA)), 2731 (zext (extract_high_v8i16 V128:$opB))), 2732 (AArch64vashr v4i32:$src, (i32 31))))), 2733 (UABDLv8i16_v4i32 V128:$opA, V128:$opB)>; 2734def : Pat<(xor (v2i64 (AArch64vashr v2i64:$src, (i32 63))), 2735 (v2i64 (add (sub (zext (v2i32 V64:$opA)), 2736 (zext (v2i32 V64:$opB))), 2737 (AArch64vashr v2i64:$src, (i32 63))))), 2738 (UABDLv2i32_v2i64 V64:$opA, V64:$opB)>; 2739def : Pat<(xor (v2i64 (AArch64vashr v2i64:$src, (i32 63))), 2740 (v2i64 (add (sub (zext (extract_high_v4i32 V128:$opA)), 2741 (zext (extract_high_v4i32 V128:$opB))), 2742 (AArch64vashr v2i64:$src, (i32 63))))), 2743 (UABDLv4i32_v2i64 V128:$opA, V128:$opB)>; 2744 2745defm ABS : SIMDTwoVectorBHSD<0, 0b01011, "abs", int_aarch64_neon_abs>; 2746def : Pat<(xor (v8i8 (AArch64vashr V64:$src, (i32 7))), 2747 (v8i8 (add V64:$src, (AArch64vashr V64:$src, (i32 7))))), 2748 (ABSv8i8 V64:$src)>; 2749def : Pat<(xor (v4i16 (AArch64vashr V64:$src, (i32 15))), 2750 (v4i16 (add V64:$src, (AArch64vashr V64:$src, (i32 15))))), 2751 (ABSv4i16 V64:$src)>; 2752def : Pat<(xor (v2i32 (AArch64vashr V64:$src, (i32 31))), 2753 (v2i32 (add V64:$src, (AArch64vashr V64:$src, (i32 31))))), 2754 (ABSv2i32 V64:$src)>; 2755def : Pat<(xor (v16i8 (AArch64vashr V128:$src, (i32 7))), 2756 (v16i8 (add V128:$src, (AArch64vashr V128:$src, (i32 7))))), 2757 (ABSv16i8 V128:$src)>; 2758def : Pat<(xor (v8i16 (AArch64vashr V128:$src, (i32 15))), 2759 (v8i16 (add V128:$src, (AArch64vashr V128:$src, (i32 15))))), 2760 (ABSv8i16 V128:$src)>; 2761def : Pat<(xor (v4i32 (AArch64vashr V128:$src, (i32 31))), 2762 (v4i32 (add V128:$src, (AArch64vashr V128:$src, (i32 31))))), 2763 (ABSv4i32 V128:$src)>; 2764def : Pat<(xor (v2i64 (AArch64vashr V128:$src, (i32 63))), 2765 (v2i64 (add V128:$src, (AArch64vashr V128:$src, (i32 63))))), 2766 (ABSv2i64 V128:$src)>; 2767 2768defm CLS : SIMDTwoVectorBHS<0, 0b00100, "cls", int_aarch64_neon_cls>; 2769defm CLZ : SIMDTwoVectorBHS<1, 0b00100, "clz", ctlz>; 2770defm CMEQ : SIMDCmpTwoVector<0, 0b01001, "cmeq", AArch64cmeqz>; 2771defm CMGE : SIMDCmpTwoVector<1, 0b01000, "cmge", AArch64cmgez>; 2772defm CMGT : SIMDCmpTwoVector<0, 0b01000, "cmgt", AArch64cmgtz>; 2773defm CMLE : SIMDCmpTwoVector<1, 0b01001, "cmle", AArch64cmlez>; 2774defm CMLT : SIMDCmpTwoVector<0, 0b01010, "cmlt", AArch64cmltz>; 2775defm CNT : SIMDTwoVectorB<0, 0b00, 0b00101, "cnt", ctpop>; 2776defm FABS : SIMDTwoVectorFP<0, 1, 0b01111, "fabs", fabs>; 2777 2778defm FCMEQ : SIMDFPCmpTwoVector<0, 1, 0b01101, "fcmeq", AArch64fcmeqz>; 2779defm FCMGE : SIMDFPCmpTwoVector<1, 1, 0b01100, "fcmge", AArch64fcmgez>; 2780defm FCMGT : SIMDFPCmpTwoVector<0, 1, 0b01100, "fcmgt", AArch64fcmgtz>; 2781defm FCMLE : SIMDFPCmpTwoVector<1, 1, 0b01101, "fcmle", AArch64fcmlez>; 2782defm FCMLT : SIMDFPCmpTwoVector<0, 1, 0b01110, "fcmlt", AArch64fcmltz>; 2783defm FCVTAS : SIMDTwoVectorFPToInt<0,0,0b11100, "fcvtas",int_aarch64_neon_fcvtas>; 2784defm FCVTAU : SIMDTwoVectorFPToInt<1,0,0b11100, "fcvtau",int_aarch64_neon_fcvtau>; 2785defm FCVTL : SIMDFPWidenTwoVector<0, 0, 0b10111, "fcvtl">; 2786def : Pat<(v4f32 (int_aarch64_neon_vcvthf2fp (v4i16 V64:$Rn))), 2787 (FCVTLv4i16 V64:$Rn)>; 2788def : Pat<(v4f32 (int_aarch64_neon_vcvthf2fp (extract_subvector (v8i16 V128:$Rn), 2789 (i64 4)))), 2790 (FCVTLv8i16 V128:$Rn)>; 2791def : Pat<(v2f64 (fextend (v2f32 V64:$Rn))), (FCVTLv2i32 V64:$Rn)>; 2792def : Pat<(v2f64 (fextend (v2f32 (extract_subvector (v4f32 V128:$Rn), 2793 (i64 2))))), 2794 (FCVTLv4i32 V128:$Rn)>; 2795 2796def : Pat<(v4f32 (fextend (v4f16 V64:$Rn))), (FCVTLv4i16 V64:$Rn)>; 2797def : Pat<(v4f32 (fextend (v4f16 (extract_subvector (v8f16 V128:$Rn), 2798 (i64 4))))), 2799 (FCVTLv8i16 V128:$Rn)>; 2800 2801defm FCVTMS : SIMDTwoVectorFPToInt<0,0,0b11011, "fcvtms",int_aarch64_neon_fcvtms>; 2802defm FCVTMU : SIMDTwoVectorFPToInt<1,0,0b11011, "fcvtmu",int_aarch64_neon_fcvtmu>; 2803defm FCVTNS : SIMDTwoVectorFPToInt<0,0,0b11010, "fcvtns",int_aarch64_neon_fcvtns>; 2804defm FCVTNU : SIMDTwoVectorFPToInt<1,0,0b11010, "fcvtnu",int_aarch64_neon_fcvtnu>; 2805defm FCVTN : SIMDFPNarrowTwoVector<0, 0, 0b10110, "fcvtn">; 2806def : Pat<(v4i16 (int_aarch64_neon_vcvtfp2hf (v4f32 V128:$Rn))), 2807 (FCVTNv4i16 V128:$Rn)>; 2808def : Pat<(concat_vectors V64:$Rd, 2809 (v4i16 (int_aarch64_neon_vcvtfp2hf (v4f32 V128:$Rn)))), 2810 (FCVTNv8i16 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>; 2811def : Pat<(v2f32 (fround (v2f64 V128:$Rn))), (FCVTNv2i32 V128:$Rn)>; 2812def : Pat<(v4f16 (fround (v4f32 V128:$Rn))), (FCVTNv4i16 V128:$Rn)>; 2813def : Pat<(concat_vectors V64:$Rd, (v2f32 (fround (v2f64 V128:$Rn)))), 2814 (FCVTNv4i32 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>; 2815defm FCVTPS : SIMDTwoVectorFPToInt<0,1,0b11010, "fcvtps",int_aarch64_neon_fcvtps>; 2816defm FCVTPU : SIMDTwoVectorFPToInt<1,1,0b11010, "fcvtpu",int_aarch64_neon_fcvtpu>; 2817defm FCVTXN : SIMDFPInexactCvtTwoVector<1, 0, 0b10110, "fcvtxn", 2818 int_aarch64_neon_fcvtxn>; 2819defm FCVTZS : SIMDTwoVectorFPToInt<0, 1, 0b11011, "fcvtzs", fp_to_sint>; 2820defm FCVTZU : SIMDTwoVectorFPToInt<1, 1, 0b11011, "fcvtzu", fp_to_uint>; 2821 2822def : Pat<(v4i16 (int_aarch64_neon_fcvtzs v4f16:$Rn)), (FCVTZSv4f16 $Rn)>; 2823def : Pat<(v8i16 (int_aarch64_neon_fcvtzs v8f16:$Rn)), (FCVTZSv8f16 $Rn)>; 2824def : Pat<(v2i32 (int_aarch64_neon_fcvtzs v2f32:$Rn)), (FCVTZSv2f32 $Rn)>; 2825def : Pat<(v4i32 (int_aarch64_neon_fcvtzs v4f32:$Rn)), (FCVTZSv4f32 $Rn)>; 2826def : Pat<(v2i64 (int_aarch64_neon_fcvtzs v2f64:$Rn)), (FCVTZSv2f64 $Rn)>; 2827 2828def : Pat<(v4i16 (int_aarch64_neon_fcvtzu v4f16:$Rn)), (FCVTZUv4f16 $Rn)>; 2829def : Pat<(v8i16 (int_aarch64_neon_fcvtzu v8f16:$Rn)), (FCVTZUv8f16 $Rn)>; 2830def : Pat<(v2i32 (int_aarch64_neon_fcvtzu v2f32:$Rn)), (FCVTZUv2f32 $Rn)>; 2831def : Pat<(v4i32 (int_aarch64_neon_fcvtzu v4f32:$Rn)), (FCVTZUv4f32 $Rn)>; 2832def : Pat<(v2i64 (int_aarch64_neon_fcvtzu v2f64:$Rn)), (FCVTZUv2f64 $Rn)>; 2833 2834defm FNEG : SIMDTwoVectorFP<1, 1, 0b01111, "fneg", fneg>; 2835defm FRECPE : SIMDTwoVectorFP<0, 1, 0b11101, "frecpe", int_aarch64_neon_frecpe>; 2836defm FRINTA : SIMDTwoVectorFP<1, 0, 0b11000, "frinta", frnd>; 2837defm FRINTI : SIMDTwoVectorFP<1, 1, 0b11001, "frinti", fnearbyint>; 2838defm FRINTM : SIMDTwoVectorFP<0, 0, 0b11001, "frintm", ffloor>; 2839defm FRINTN : SIMDTwoVectorFP<0, 0, 0b11000, "frintn", int_aarch64_neon_frintn>; 2840defm FRINTP : SIMDTwoVectorFP<0, 1, 0b11000, "frintp", fceil>; 2841defm FRINTX : SIMDTwoVectorFP<1, 0, 0b11001, "frintx", frint>; 2842defm FRINTZ : SIMDTwoVectorFP<0, 1, 0b11001, "frintz", ftrunc>; 2843defm FRSQRTE: SIMDTwoVectorFP<1, 1, 0b11101, "frsqrte", int_aarch64_neon_frsqrte>; 2844defm FSQRT : SIMDTwoVectorFP<1, 1, 0b11111, "fsqrt", fsqrt>; 2845defm NEG : SIMDTwoVectorBHSD<1, 0b01011, "neg", 2846 UnOpFrag<(sub immAllZerosV, node:$LHS)> >; 2847defm NOT : SIMDTwoVectorB<1, 0b00, 0b00101, "not", vnot>; 2848// Aliases for MVN -> NOT. 2849def : InstAlias<"mvn{ $Vd.8b, $Vn.8b|.8b $Vd, $Vn}", 2850 (NOTv8i8 V64:$Vd, V64:$Vn)>; 2851def : InstAlias<"mvn{ $Vd.16b, $Vn.16b|.16b $Vd, $Vn}", 2852 (NOTv16i8 V128:$Vd, V128:$Vn)>; 2853 2854def : Pat<(AArch64neg (v8i8 V64:$Rn)), (NEGv8i8 V64:$Rn)>; 2855def : Pat<(AArch64neg (v16i8 V128:$Rn)), (NEGv16i8 V128:$Rn)>; 2856def : Pat<(AArch64neg (v4i16 V64:$Rn)), (NEGv4i16 V64:$Rn)>; 2857def : Pat<(AArch64neg (v8i16 V128:$Rn)), (NEGv8i16 V128:$Rn)>; 2858def : Pat<(AArch64neg (v2i32 V64:$Rn)), (NEGv2i32 V64:$Rn)>; 2859def : Pat<(AArch64neg (v4i32 V128:$Rn)), (NEGv4i32 V128:$Rn)>; 2860def : Pat<(AArch64neg (v2i64 V128:$Rn)), (NEGv2i64 V128:$Rn)>; 2861 2862def : Pat<(AArch64not (v8i8 V64:$Rn)), (NOTv8i8 V64:$Rn)>; 2863def : Pat<(AArch64not (v16i8 V128:$Rn)), (NOTv16i8 V128:$Rn)>; 2864def : Pat<(AArch64not (v4i16 V64:$Rn)), (NOTv8i8 V64:$Rn)>; 2865def : Pat<(AArch64not (v8i16 V128:$Rn)), (NOTv16i8 V128:$Rn)>; 2866def : Pat<(AArch64not (v2i32 V64:$Rn)), (NOTv8i8 V64:$Rn)>; 2867def : Pat<(AArch64not (v1i64 V64:$Rn)), (NOTv8i8 V64:$Rn)>; 2868def : Pat<(AArch64not (v4i32 V128:$Rn)), (NOTv16i8 V128:$Rn)>; 2869def : Pat<(AArch64not (v2i64 V128:$Rn)), (NOTv16i8 V128:$Rn)>; 2870 2871def : Pat<(vnot (v4i16 V64:$Rn)), (NOTv8i8 V64:$Rn)>; 2872def : Pat<(vnot (v8i16 V128:$Rn)), (NOTv16i8 V128:$Rn)>; 2873def : Pat<(vnot (v2i32 V64:$Rn)), (NOTv8i8 V64:$Rn)>; 2874def : Pat<(vnot (v4i32 V128:$Rn)), (NOTv16i8 V128:$Rn)>; 2875def : Pat<(vnot (v2i64 V128:$Rn)), (NOTv16i8 V128:$Rn)>; 2876 2877defm RBIT : SIMDTwoVectorB<1, 0b01, 0b00101, "rbit", int_aarch64_neon_rbit>; 2878defm REV16 : SIMDTwoVectorB<0, 0b00, 0b00001, "rev16", AArch64rev16>; 2879defm REV32 : SIMDTwoVectorBH<1, 0b00000, "rev32", AArch64rev32>; 2880defm REV64 : SIMDTwoVectorBHS<0, 0b00000, "rev64", AArch64rev64>; 2881defm SADALP : SIMDLongTwoVectorTied<0, 0b00110, "sadalp", 2882 BinOpFrag<(add node:$LHS, (int_aarch64_neon_saddlp node:$RHS))> >; 2883defm SADDLP : SIMDLongTwoVector<0, 0b00010, "saddlp", int_aarch64_neon_saddlp>; 2884defm SCVTF : SIMDTwoVectorIntToFP<0, 0, 0b11101, "scvtf", sint_to_fp>; 2885defm SHLL : SIMDVectorLShiftLongBySizeBHS; 2886defm SQABS : SIMDTwoVectorBHSD<0, 0b00111, "sqabs", int_aarch64_neon_sqabs>; 2887defm SQNEG : SIMDTwoVectorBHSD<1, 0b00111, "sqneg", int_aarch64_neon_sqneg>; 2888defm SQXTN : SIMDMixedTwoVector<0, 0b10100, "sqxtn", int_aarch64_neon_sqxtn>; 2889defm SQXTUN : SIMDMixedTwoVector<1, 0b10010, "sqxtun", int_aarch64_neon_sqxtun>; 2890defm SUQADD : SIMDTwoVectorBHSDTied<0, 0b00011, "suqadd",int_aarch64_neon_suqadd>; 2891defm UADALP : SIMDLongTwoVectorTied<1, 0b00110, "uadalp", 2892 BinOpFrag<(add node:$LHS, (int_aarch64_neon_uaddlp node:$RHS))> >; 2893defm UADDLP : SIMDLongTwoVector<1, 0b00010, "uaddlp", 2894 int_aarch64_neon_uaddlp>; 2895defm UCVTF : SIMDTwoVectorIntToFP<1, 0, 0b11101, "ucvtf", uint_to_fp>; 2896defm UQXTN : SIMDMixedTwoVector<1, 0b10100, "uqxtn", int_aarch64_neon_uqxtn>; 2897defm URECPE : SIMDTwoVectorS<0, 1, 0b11100, "urecpe", int_aarch64_neon_urecpe>; 2898defm URSQRTE: SIMDTwoVectorS<1, 1, 0b11100, "ursqrte", int_aarch64_neon_ursqrte>; 2899defm USQADD : SIMDTwoVectorBHSDTied<1, 0b00011, "usqadd",int_aarch64_neon_usqadd>; 2900defm XTN : SIMDMixedTwoVector<0, 0b10010, "xtn", trunc>; 2901 2902def : Pat<(v4f16 (AArch64rev32 V64:$Rn)), (REV32v4i16 V64:$Rn)>; 2903def : Pat<(v4f16 (AArch64rev64 V64:$Rn)), (REV64v4i16 V64:$Rn)>; 2904def : Pat<(v8f16 (AArch64rev32 V128:$Rn)), (REV32v8i16 V128:$Rn)>; 2905def : Pat<(v8f16 (AArch64rev64 V128:$Rn)), (REV64v8i16 V128:$Rn)>; 2906def : Pat<(v2f32 (AArch64rev64 V64:$Rn)), (REV64v2i32 V64:$Rn)>; 2907def : Pat<(v4f32 (AArch64rev64 V128:$Rn)), (REV64v4i32 V128:$Rn)>; 2908 2909// Patterns for vector long shift (by element width). These need to match all 2910// three of zext, sext and anyext so it's easier to pull the patterns out of the 2911// definition. 2912multiclass SIMDVectorLShiftLongBySizeBHSPats<SDPatternOperator ext> { 2913 def : Pat<(AArch64vshl (v8i16 (ext (v8i8 V64:$Rn))), (i32 8)), 2914 (SHLLv8i8 V64:$Rn)>; 2915 def : Pat<(AArch64vshl (v8i16 (ext (extract_high_v16i8 V128:$Rn))), (i32 8)), 2916 (SHLLv16i8 V128:$Rn)>; 2917 def : Pat<(AArch64vshl (v4i32 (ext (v4i16 V64:$Rn))), (i32 16)), 2918 (SHLLv4i16 V64:$Rn)>; 2919 def : Pat<(AArch64vshl (v4i32 (ext (extract_high_v8i16 V128:$Rn))), (i32 16)), 2920 (SHLLv8i16 V128:$Rn)>; 2921 def : Pat<(AArch64vshl (v2i64 (ext (v2i32 V64:$Rn))), (i32 32)), 2922 (SHLLv2i32 V64:$Rn)>; 2923 def : Pat<(AArch64vshl (v2i64 (ext (extract_high_v4i32 V128:$Rn))), (i32 32)), 2924 (SHLLv4i32 V128:$Rn)>; 2925} 2926 2927defm : SIMDVectorLShiftLongBySizeBHSPats<anyext>; 2928defm : SIMDVectorLShiftLongBySizeBHSPats<zext>; 2929defm : SIMDVectorLShiftLongBySizeBHSPats<sext>; 2930 2931//===----------------------------------------------------------------------===// 2932// Advanced SIMD three vector instructions. 2933//===----------------------------------------------------------------------===// 2934 2935defm ADD : SIMDThreeSameVector<0, 0b10000, "add", add>; 2936defm ADDP : SIMDThreeSameVector<0, 0b10111, "addp", int_aarch64_neon_addp>; 2937defm CMEQ : SIMDThreeSameVector<1, 0b10001, "cmeq", AArch64cmeq>; 2938defm CMGE : SIMDThreeSameVector<0, 0b00111, "cmge", AArch64cmge>; 2939defm CMGT : SIMDThreeSameVector<0, 0b00110, "cmgt", AArch64cmgt>; 2940defm CMHI : SIMDThreeSameVector<1, 0b00110, "cmhi", AArch64cmhi>; 2941defm CMHS : SIMDThreeSameVector<1, 0b00111, "cmhs", AArch64cmhs>; 2942defm CMTST : SIMDThreeSameVector<0, 0b10001, "cmtst", AArch64cmtst>; 2943defm FABD : SIMDThreeSameVectorFP<1,1,0b010,"fabd", int_aarch64_neon_fabd>; 2944defm FACGE : SIMDThreeSameVectorFPCmp<1,0,0b101,"facge",int_aarch64_neon_facge>; 2945defm FACGT : SIMDThreeSameVectorFPCmp<1,1,0b101,"facgt",int_aarch64_neon_facgt>; 2946defm FADDP : SIMDThreeSameVectorFP<1,0,0b010,"faddp",int_aarch64_neon_addp>; 2947defm FADD : SIMDThreeSameVectorFP<0,0,0b010,"fadd", fadd>; 2948defm FCMEQ : SIMDThreeSameVectorFPCmp<0, 0, 0b100, "fcmeq", AArch64fcmeq>; 2949defm FCMGE : SIMDThreeSameVectorFPCmp<1, 0, 0b100, "fcmge", AArch64fcmge>; 2950defm FCMGT : SIMDThreeSameVectorFPCmp<1, 1, 0b100, "fcmgt", AArch64fcmgt>; 2951defm FDIV : SIMDThreeSameVectorFP<1,0,0b111,"fdiv", fdiv>; 2952defm FMAXNMP : SIMDThreeSameVectorFP<1,0,0b000,"fmaxnmp", int_aarch64_neon_fmaxnmp>; 2953defm FMAXNM : SIMDThreeSameVectorFP<0,0,0b000,"fmaxnm", fmaxnum>; 2954defm FMAXP : SIMDThreeSameVectorFP<1,0,0b110,"fmaxp", int_aarch64_neon_fmaxp>; 2955defm FMAX : SIMDThreeSameVectorFP<0,0,0b110,"fmax", fmaxnan>; 2956defm FMINNMP : SIMDThreeSameVectorFP<1,1,0b000,"fminnmp", int_aarch64_neon_fminnmp>; 2957defm FMINNM : SIMDThreeSameVectorFP<0,1,0b000,"fminnm", fminnum>; 2958defm FMINP : SIMDThreeSameVectorFP<1,1,0b110,"fminp", int_aarch64_neon_fminp>; 2959defm FMIN : SIMDThreeSameVectorFP<0,1,0b110,"fmin", fminnan>; 2960 2961// NOTE: The operands of the PatFrag are reordered on FMLA/FMLS because the 2962// instruction expects the addend first, while the fma intrinsic puts it last. 2963defm FMLA : SIMDThreeSameVectorFPTied<0, 0, 0b001, "fmla", 2964 TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)> >; 2965defm FMLS : SIMDThreeSameVectorFPTied<0, 1, 0b001, "fmls", 2966 TriOpFrag<(fma node:$MHS, (fneg node:$RHS), node:$LHS)> >; 2967 2968// The following def pats catch the case where the LHS of an FMA is negated. 2969// The TriOpFrag above catches the case where the middle operand is negated. 2970def : Pat<(v2f32 (fma (fneg V64:$Rn), V64:$Rm, V64:$Rd)), 2971 (FMLSv2f32 V64:$Rd, V64:$Rn, V64:$Rm)>; 2972 2973def : Pat<(v4f32 (fma (fneg V128:$Rn), V128:$Rm, V128:$Rd)), 2974 (FMLSv4f32 V128:$Rd, V128:$Rn, V128:$Rm)>; 2975 2976def : Pat<(v2f64 (fma (fneg V128:$Rn), V128:$Rm, V128:$Rd)), 2977 (FMLSv2f64 V128:$Rd, V128:$Rn, V128:$Rm)>; 2978 2979defm FMULX : SIMDThreeSameVectorFP<0,0,0b011,"fmulx", int_aarch64_neon_fmulx>; 2980defm FMUL : SIMDThreeSameVectorFP<1,0,0b011,"fmul", fmul>; 2981defm FRECPS : SIMDThreeSameVectorFP<0,0,0b111,"frecps", int_aarch64_neon_frecps>; 2982defm FRSQRTS : SIMDThreeSameVectorFP<0,1,0b111,"frsqrts", int_aarch64_neon_frsqrts>; 2983defm FSUB : SIMDThreeSameVectorFP<0,1,0b010,"fsub", fsub>; 2984defm MLA : SIMDThreeSameVectorBHSTied<0, 0b10010, "mla", 2985 TriOpFrag<(add node:$LHS, (mul node:$MHS, node:$RHS))> >; 2986defm MLS : SIMDThreeSameVectorBHSTied<1, 0b10010, "mls", 2987 TriOpFrag<(sub node:$LHS, (mul node:$MHS, node:$RHS))> >; 2988defm MUL : SIMDThreeSameVectorBHS<0, 0b10011, "mul", mul>; 2989defm PMUL : SIMDThreeSameVectorB<1, 0b10011, "pmul", int_aarch64_neon_pmul>; 2990defm SABA : SIMDThreeSameVectorBHSTied<0, 0b01111, "saba", 2991 TriOpFrag<(add node:$LHS, (int_aarch64_neon_sabd node:$MHS, node:$RHS))> >; 2992defm SABD : SIMDThreeSameVectorBHS<0,0b01110,"sabd", int_aarch64_neon_sabd>; 2993defm SHADD : SIMDThreeSameVectorBHS<0,0b00000,"shadd", int_aarch64_neon_shadd>; 2994defm SHSUB : SIMDThreeSameVectorBHS<0,0b00100,"shsub", int_aarch64_neon_shsub>; 2995defm SMAXP : SIMDThreeSameVectorBHS<0,0b10100,"smaxp", int_aarch64_neon_smaxp>; 2996defm SMAX : SIMDThreeSameVectorBHS<0,0b01100,"smax", smax>; 2997defm SMINP : SIMDThreeSameVectorBHS<0,0b10101,"sminp", int_aarch64_neon_sminp>; 2998defm SMIN : SIMDThreeSameVectorBHS<0,0b01101,"smin", smin>; 2999defm SQADD : SIMDThreeSameVector<0,0b00001,"sqadd", int_aarch64_neon_sqadd>; 3000defm SQDMULH : SIMDThreeSameVectorHS<0,0b10110,"sqdmulh",int_aarch64_neon_sqdmulh>; 3001defm SQRDMULH : SIMDThreeSameVectorHS<1,0b10110,"sqrdmulh",int_aarch64_neon_sqrdmulh>; 3002defm SQRSHL : SIMDThreeSameVector<0,0b01011,"sqrshl", int_aarch64_neon_sqrshl>; 3003defm SQSHL : SIMDThreeSameVector<0,0b01001,"sqshl", int_aarch64_neon_sqshl>; 3004defm SQSUB : SIMDThreeSameVector<0,0b00101,"sqsub", int_aarch64_neon_sqsub>; 3005defm SRHADD : SIMDThreeSameVectorBHS<0,0b00010,"srhadd",int_aarch64_neon_srhadd>; 3006defm SRSHL : SIMDThreeSameVector<0,0b01010,"srshl", int_aarch64_neon_srshl>; 3007defm SSHL : SIMDThreeSameVector<0,0b01000,"sshl", int_aarch64_neon_sshl>; 3008defm SUB : SIMDThreeSameVector<1,0b10000,"sub", sub>; 3009defm UABA : SIMDThreeSameVectorBHSTied<1, 0b01111, "uaba", 3010 TriOpFrag<(add node:$LHS, (int_aarch64_neon_uabd node:$MHS, node:$RHS))> >; 3011defm UABD : SIMDThreeSameVectorBHS<1,0b01110,"uabd", int_aarch64_neon_uabd>; 3012defm UHADD : SIMDThreeSameVectorBHS<1,0b00000,"uhadd", int_aarch64_neon_uhadd>; 3013defm UHSUB : SIMDThreeSameVectorBHS<1,0b00100,"uhsub", int_aarch64_neon_uhsub>; 3014defm UMAXP : SIMDThreeSameVectorBHS<1,0b10100,"umaxp", int_aarch64_neon_umaxp>; 3015defm UMAX : SIMDThreeSameVectorBHS<1,0b01100,"umax", umax>; 3016defm UMINP : SIMDThreeSameVectorBHS<1,0b10101,"uminp", int_aarch64_neon_uminp>; 3017defm UMIN : SIMDThreeSameVectorBHS<1,0b01101,"umin", umin>; 3018defm UQADD : SIMDThreeSameVector<1,0b00001,"uqadd", int_aarch64_neon_uqadd>; 3019defm UQRSHL : SIMDThreeSameVector<1,0b01011,"uqrshl", int_aarch64_neon_uqrshl>; 3020defm UQSHL : SIMDThreeSameVector<1,0b01001,"uqshl", int_aarch64_neon_uqshl>; 3021defm UQSUB : SIMDThreeSameVector<1,0b00101,"uqsub", int_aarch64_neon_uqsub>; 3022defm URHADD : SIMDThreeSameVectorBHS<1,0b00010,"urhadd", int_aarch64_neon_urhadd>; 3023defm URSHL : SIMDThreeSameVector<1,0b01010,"urshl", int_aarch64_neon_urshl>; 3024defm USHL : SIMDThreeSameVector<1,0b01000,"ushl", int_aarch64_neon_ushl>; 3025defm SQRDMLAH : SIMDThreeSameVectorSQRDMLxHTiedHS<1,0b10000,"sqrdmlah", 3026 int_aarch64_neon_sqadd>; 3027defm SQRDMLSH : SIMDThreeSameVectorSQRDMLxHTiedHS<1,0b10001,"sqrdmlsh", 3028 int_aarch64_neon_sqsub>; 3029 3030defm AND : SIMDLogicalThreeVector<0, 0b00, "and", and>; 3031defm BIC : SIMDLogicalThreeVector<0, 0b01, "bic", 3032 BinOpFrag<(and node:$LHS, (vnot node:$RHS))> >; 3033defm BIF : SIMDLogicalThreeVector<1, 0b11, "bif">; 3034defm BIT : SIMDLogicalThreeVectorTied<1, 0b10, "bit", AArch64bit>; 3035defm BSL : SIMDLogicalThreeVectorTied<1, 0b01, "bsl", 3036 TriOpFrag<(or (and node:$LHS, node:$MHS), (and (vnot node:$LHS), node:$RHS))>>; 3037defm EOR : SIMDLogicalThreeVector<1, 0b00, "eor", xor>; 3038defm ORN : SIMDLogicalThreeVector<0, 0b11, "orn", 3039 BinOpFrag<(or node:$LHS, (vnot node:$RHS))> >; 3040defm ORR : SIMDLogicalThreeVector<0, 0b10, "orr", or>; 3041 3042 3043def : Pat<(AArch64bsl (v8i8 V64:$Rd), V64:$Rn, V64:$Rm), 3044 (BSLv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>; 3045def : Pat<(AArch64bsl (v4i16 V64:$Rd), V64:$Rn, V64:$Rm), 3046 (BSLv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>; 3047def : Pat<(AArch64bsl (v2i32 V64:$Rd), V64:$Rn, V64:$Rm), 3048 (BSLv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>; 3049def : Pat<(AArch64bsl (v1i64 V64:$Rd), V64:$Rn, V64:$Rm), 3050 (BSLv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>; 3051 3052def : Pat<(AArch64bsl (v16i8 V128:$Rd), V128:$Rn, V128:$Rm), 3053 (BSLv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>; 3054def : Pat<(AArch64bsl (v8i16 V128:$Rd), V128:$Rn, V128:$Rm), 3055 (BSLv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>; 3056def : Pat<(AArch64bsl (v4i32 V128:$Rd), V128:$Rn, V128:$Rm), 3057 (BSLv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>; 3058def : Pat<(AArch64bsl (v2i64 V128:$Rd), V128:$Rn, V128:$Rm), 3059 (BSLv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>; 3060 3061def : InstAlias<"mov{\t$dst.16b, $src.16b|.16b\t$dst, $src}", 3062 (ORRv16i8 V128:$dst, V128:$src, V128:$src), 1>; 3063def : InstAlias<"mov{\t$dst.8h, $src.8h|.8h\t$dst, $src}", 3064 (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>; 3065def : InstAlias<"mov{\t$dst.4s, $src.4s|.4s\t$dst, $src}", 3066 (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>; 3067def : InstAlias<"mov{\t$dst.2d, $src.2d|.2d\t$dst, $src}", 3068 (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>; 3069 3070def : InstAlias<"mov{\t$dst.8b, $src.8b|.8b\t$dst, $src}", 3071 (ORRv8i8 V64:$dst, V64:$src, V64:$src), 1>; 3072def : InstAlias<"mov{\t$dst.4h, $src.4h|.4h\t$dst, $src}", 3073 (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>; 3074def : InstAlias<"mov{\t$dst.2s, $src.2s|.2s\t$dst, $src}", 3075 (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>; 3076def : InstAlias<"mov{\t$dst.1d, $src.1d|.1d\t$dst, $src}", 3077 (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>; 3078 3079def : InstAlias<"{cmls\t$dst.8b, $src1.8b, $src2.8b" # 3080 "|cmls.8b\t$dst, $src1, $src2}", 3081 (CMHSv8i8 V64:$dst, V64:$src2, V64:$src1), 0>; 3082def : InstAlias<"{cmls\t$dst.16b, $src1.16b, $src2.16b" # 3083 "|cmls.16b\t$dst, $src1, $src2}", 3084 (CMHSv16i8 V128:$dst, V128:$src2, V128:$src1), 0>; 3085def : InstAlias<"{cmls\t$dst.4h, $src1.4h, $src2.4h" # 3086 "|cmls.4h\t$dst, $src1, $src2}", 3087 (CMHSv4i16 V64:$dst, V64:$src2, V64:$src1), 0>; 3088def : InstAlias<"{cmls\t$dst.8h, $src1.8h, $src2.8h" # 3089 "|cmls.8h\t$dst, $src1, $src2}", 3090 (CMHSv8i16 V128:$dst, V128:$src2, V128:$src1), 0>; 3091def : InstAlias<"{cmls\t$dst.2s, $src1.2s, $src2.2s" # 3092 "|cmls.2s\t$dst, $src1, $src2}", 3093 (CMHSv2i32 V64:$dst, V64:$src2, V64:$src1), 0>; 3094def : InstAlias<"{cmls\t$dst.4s, $src1.4s, $src2.4s" # 3095 "|cmls.4s\t$dst, $src1, $src2}", 3096 (CMHSv4i32 V128:$dst, V128:$src2, V128:$src1), 0>; 3097def : InstAlias<"{cmls\t$dst.2d, $src1.2d, $src2.2d" # 3098 "|cmls.2d\t$dst, $src1, $src2}", 3099 (CMHSv2i64 V128:$dst, V128:$src2, V128:$src1), 0>; 3100 3101def : InstAlias<"{cmlo\t$dst.8b, $src1.8b, $src2.8b" # 3102 "|cmlo.8b\t$dst, $src1, $src2}", 3103 (CMHIv8i8 V64:$dst, V64:$src2, V64:$src1), 0>; 3104def : InstAlias<"{cmlo\t$dst.16b, $src1.16b, $src2.16b" # 3105 "|cmlo.16b\t$dst, $src1, $src2}", 3106 (CMHIv16i8 V128:$dst, V128:$src2, V128:$src1), 0>; 3107def : InstAlias<"{cmlo\t$dst.4h, $src1.4h, $src2.4h" # 3108 "|cmlo.4h\t$dst, $src1, $src2}", 3109 (CMHIv4i16 V64:$dst, V64:$src2, V64:$src1), 0>; 3110def : InstAlias<"{cmlo\t$dst.8h, $src1.8h, $src2.8h" # 3111 "|cmlo.8h\t$dst, $src1, $src2}", 3112 (CMHIv8i16 V128:$dst, V128:$src2, V128:$src1), 0>; 3113def : InstAlias<"{cmlo\t$dst.2s, $src1.2s, $src2.2s" # 3114 "|cmlo.2s\t$dst, $src1, $src2}", 3115 (CMHIv2i32 V64:$dst, V64:$src2, V64:$src1), 0>; 3116def : InstAlias<"{cmlo\t$dst.4s, $src1.4s, $src2.4s" # 3117 "|cmlo.4s\t$dst, $src1, $src2}", 3118 (CMHIv4i32 V128:$dst, V128:$src2, V128:$src1), 0>; 3119def : InstAlias<"{cmlo\t$dst.2d, $src1.2d, $src2.2d" # 3120 "|cmlo.2d\t$dst, $src1, $src2}", 3121 (CMHIv2i64 V128:$dst, V128:$src2, V128:$src1), 0>; 3122 3123def : InstAlias<"{cmle\t$dst.8b, $src1.8b, $src2.8b" # 3124 "|cmle.8b\t$dst, $src1, $src2}", 3125 (CMGEv8i8 V64:$dst, V64:$src2, V64:$src1), 0>; 3126def : InstAlias<"{cmle\t$dst.16b, $src1.16b, $src2.16b" # 3127 "|cmle.16b\t$dst, $src1, $src2}", 3128 (CMGEv16i8 V128:$dst, V128:$src2, V128:$src1), 0>; 3129def : InstAlias<"{cmle\t$dst.4h, $src1.4h, $src2.4h" # 3130 "|cmle.4h\t$dst, $src1, $src2}", 3131 (CMGEv4i16 V64:$dst, V64:$src2, V64:$src1), 0>; 3132def : InstAlias<"{cmle\t$dst.8h, $src1.8h, $src2.8h" # 3133 "|cmle.8h\t$dst, $src1, $src2}", 3134 (CMGEv8i16 V128:$dst, V128:$src2, V128:$src1), 0>; 3135def : InstAlias<"{cmle\t$dst.2s, $src1.2s, $src2.2s" # 3136 "|cmle.2s\t$dst, $src1, $src2}", 3137 (CMGEv2i32 V64:$dst, V64:$src2, V64:$src1), 0>; 3138def : InstAlias<"{cmle\t$dst.4s, $src1.4s, $src2.4s" # 3139 "|cmle.4s\t$dst, $src1, $src2}", 3140 (CMGEv4i32 V128:$dst, V128:$src2, V128:$src1), 0>; 3141def : InstAlias<"{cmle\t$dst.2d, $src1.2d, $src2.2d" # 3142 "|cmle.2d\t$dst, $src1, $src2}", 3143 (CMGEv2i64 V128:$dst, V128:$src2, V128:$src1), 0>; 3144 3145def : InstAlias<"{cmlt\t$dst.8b, $src1.8b, $src2.8b" # 3146 "|cmlt.8b\t$dst, $src1, $src2}", 3147 (CMGTv8i8 V64:$dst, V64:$src2, V64:$src1), 0>; 3148def : InstAlias<"{cmlt\t$dst.16b, $src1.16b, $src2.16b" # 3149 "|cmlt.16b\t$dst, $src1, $src2}", 3150 (CMGTv16i8 V128:$dst, V128:$src2, V128:$src1), 0>; 3151def : InstAlias<"{cmlt\t$dst.4h, $src1.4h, $src2.4h" # 3152 "|cmlt.4h\t$dst, $src1, $src2}", 3153 (CMGTv4i16 V64:$dst, V64:$src2, V64:$src1), 0>; 3154def : InstAlias<"{cmlt\t$dst.8h, $src1.8h, $src2.8h" # 3155 "|cmlt.8h\t$dst, $src1, $src2}", 3156 (CMGTv8i16 V128:$dst, V128:$src2, V128:$src1), 0>; 3157def : InstAlias<"{cmlt\t$dst.2s, $src1.2s, $src2.2s" # 3158 "|cmlt.2s\t$dst, $src1, $src2}", 3159 (CMGTv2i32 V64:$dst, V64:$src2, V64:$src1), 0>; 3160def : InstAlias<"{cmlt\t$dst.4s, $src1.4s, $src2.4s" # 3161 "|cmlt.4s\t$dst, $src1, $src2}", 3162 (CMGTv4i32 V128:$dst, V128:$src2, V128:$src1), 0>; 3163def : InstAlias<"{cmlt\t$dst.2d, $src1.2d, $src2.2d" # 3164 "|cmlt.2d\t$dst, $src1, $src2}", 3165 (CMGTv2i64 V128:$dst, V128:$src2, V128:$src1), 0>; 3166 3167let Predicates = [HasNEON, HasFullFP16] in { 3168def : InstAlias<"{fcmle\t$dst.4h, $src1.4h, $src2.4h" # 3169 "|fcmle.4h\t$dst, $src1, $src2}", 3170 (FCMGEv4f16 V64:$dst, V64:$src2, V64:$src1), 0>; 3171def : InstAlias<"{fcmle\t$dst.8h, $src1.8h, $src2.8h" # 3172 "|fcmle.8h\t$dst, $src1, $src2}", 3173 (FCMGEv8f16 V128:$dst, V128:$src2, V128:$src1), 0>; 3174} 3175def : InstAlias<"{fcmle\t$dst.2s, $src1.2s, $src2.2s" # 3176 "|fcmle.2s\t$dst, $src1, $src2}", 3177 (FCMGEv2f32 V64:$dst, V64:$src2, V64:$src1), 0>; 3178def : InstAlias<"{fcmle\t$dst.4s, $src1.4s, $src2.4s" # 3179 "|fcmle.4s\t$dst, $src1, $src2}", 3180 (FCMGEv4f32 V128:$dst, V128:$src2, V128:$src1), 0>; 3181def : InstAlias<"{fcmle\t$dst.2d, $src1.2d, $src2.2d" # 3182 "|fcmle.2d\t$dst, $src1, $src2}", 3183 (FCMGEv2f64 V128:$dst, V128:$src2, V128:$src1), 0>; 3184 3185let Predicates = [HasNEON, HasFullFP16] in { 3186def : InstAlias<"{fcmlt\t$dst.4h, $src1.4h, $src2.4h" # 3187 "|fcmlt.4h\t$dst, $src1, $src2}", 3188 (FCMGTv4f16 V64:$dst, V64:$src2, V64:$src1), 0>; 3189def : InstAlias<"{fcmlt\t$dst.8h, $src1.8h, $src2.8h" # 3190 "|fcmlt.8h\t$dst, $src1, $src2}", 3191 (FCMGTv8f16 V128:$dst, V128:$src2, V128:$src1), 0>; 3192} 3193def : InstAlias<"{fcmlt\t$dst.2s, $src1.2s, $src2.2s" # 3194 "|fcmlt.2s\t$dst, $src1, $src2}", 3195 (FCMGTv2f32 V64:$dst, V64:$src2, V64:$src1), 0>; 3196def : InstAlias<"{fcmlt\t$dst.4s, $src1.4s, $src2.4s" # 3197 "|fcmlt.4s\t$dst, $src1, $src2}", 3198 (FCMGTv4f32 V128:$dst, V128:$src2, V128:$src1), 0>; 3199def : InstAlias<"{fcmlt\t$dst.2d, $src1.2d, $src2.2d" # 3200 "|fcmlt.2d\t$dst, $src1, $src2}", 3201 (FCMGTv2f64 V128:$dst, V128:$src2, V128:$src1), 0>; 3202 3203let Predicates = [HasNEON, HasFullFP16] in { 3204def : InstAlias<"{facle\t$dst.4h, $src1.4h, $src2.4h" # 3205 "|facle.4h\t$dst, $src1, $src2}", 3206 (FACGEv4f16 V64:$dst, V64:$src2, V64:$src1), 0>; 3207def : InstAlias<"{facle\t$dst.8h, $src1.8h, $src2.8h" # 3208 "|facle.8h\t$dst, $src1, $src2}", 3209 (FACGEv8f16 V128:$dst, V128:$src2, V128:$src1), 0>; 3210} 3211def : InstAlias<"{facle\t$dst.2s, $src1.2s, $src2.2s" # 3212 "|facle.2s\t$dst, $src1, $src2}", 3213 (FACGEv2f32 V64:$dst, V64:$src2, V64:$src1), 0>; 3214def : InstAlias<"{facle\t$dst.4s, $src1.4s, $src2.4s" # 3215 "|facle.4s\t$dst, $src1, $src2}", 3216 (FACGEv4f32 V128:$dst, V128:$src2, V128:$src1), 0>; 3217def : InstAlias<"{facle\t$dst.2d, $src1.2d, $src2.2d" # 3218 "|facle.2d\t$dst, $src1, $src2}", 3219 (FACGEv2f64 V128:$dst, V128:$src2, V128:$src1), 0>; 3220 3221let Predicates = [HasNEON, HasFullFP16] in { 3222def : InstAlias<"{faclt\t$dst.4h, $src1.4h, $src2.4h" # 3223 "|faclt.4h\t$dst, $src1, $src2}", 3224 (FACGTv4f16 V64:$dst, V64:$src2, V64:$src1), 0>; 3225def : InstAlias<"{faclt\t$dst.8h, $src1.8h, $src2.8h" # 3226 "|faclt.8h\t$dst, $src1, $src2}", 3227 (FACGTv8f16 V128:$dst, V128:$src2, V128:$src1), 0>; 3228} 3229def : InstAlias<"{faclt\t$dst.2s, $src1.2s, $src2.2s" # 3230 "|faclt.2s\t$dst, $src1, $src2}", 3231 (FACGTv2f32 V64:$dst, V64:$src2, V64:$src1), 0>; 3232def : InstAlias<"{faclt\t$dst.4s, $src1.4s, $src2.4s" # 3233 "|faclt.4s\t$dst, $src1, $src2}", 3234 (FACGTv4f32 V128:$dst, V128:$src2, V128:$src1), 0>; 3235def : InstAlias<"{faclt\t$dst.2d, $src1.2d, $src2.2d" # 3236 "|faclt.2d\t$dst, $src1, $src2}", 3237 (FACGTv2f64 V128:$dst, V128:$src2, V128:$src1), 0>; 3238 3239//===----------------------------------------------------------------------===// 3240// Advanced SIMD three scalar instructions. 3241//===----------------------------------------------------------------------===// 3242 3243defm ADD : SIMDThreeScalarD<0, 0b10000, "add", add>; 3244defm CMEQ : SIMDThreeScalarD<1, 0b10001, "cmeq", AArch64cmeq>; 3245defm CMGE : SIMDThreeScalarD<0, 0b00111, "cmge", AArch64cmge>; 3246defm CMGT : SIMDThreeScalarD<0, 0b00110, "cmgt", AArch64cmgt>; 3247defm CMHI : SIMDThreeScalarD<1, 0b00110, "cmhi", AArch64cmhi>; 3248defm CMHS : SIMDThreeScalarD<1, 0b00111, "cmhs", AArch64cmhs>; 3249defm CMTST : SIMDThreeScalarD<0, 0b10001, "cmtst", AArch64cmtst>; 3250defm FABD : SIMDFPThreeScalar<1, 1, 0b010, "fabd", int_aarch64_sisd_fabd>; 3251def : Pat<(v1f64 (int_aarch64_neon_fabd (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))), 3252 (FABD64 FPR64:$Rn, FPR64:$Rm)>; 3253defm FACGE : SIMDThreeScalarFPCmp<1, 0, 0b101, "facge", 3254 int_aarch64_neon_facge>; 3255defm FACGT : SIMDThreeScalarFPCmp<1, 1, 0b101, "facgt", 3256 int_aarch64_neon_facgt>; 3257defm FCMEQ : SIMDThreeScalarFPCmp<0, 0, 0b100, "fcmeq", AArch64fcmeq>; 3258defm FCMGE : SIMDThreeScalarFPCmp<1, 0, 0b100, "fcmge", AArch64fcmge>; 3259defm FCMGT : SIMDThreeScalarFPCmp<1, 1, 0b100, "fcmgt", AArch64fcmgt>; 3260defm FMULX : SIMDFPThreeScalar<0, 0, 0b011, "fmulx", int_aarch64_neon_fmulx>; 3261defm FRECPS : SIMDFPThreeScalar<0, 0, 0b111, "frecps", int_aarch64_neon_frecps>; 3262defm FRSQRTS : SIMDFPThreeScalar<0, 1, 0b111, "frsqrts", int_aarch64_neon_frsqrts>; 3263defm SQADD : SIMDThreeScalarBHSD<0, 0b00001, "sqadd", int_aarch64_neon_sqadd>; 3264defm SQDMULH : SIMDThreeScalarHS< 0, 0b10110, "sqdmulh", int_aarch64_neon_sqdmulh>; 3265defm SQRDMULH : SIMDThreeScalarHS< 1, 0b10110, "sqrdmulh", int_aarch64_neon_sqrdmulh>; 3266defm SQRSHL : SIMDThreeScalarBHSD<0, 0b01011, "sqrshl",int_aarch64_neon_sqrshl>; 3267defm SQSHL : SIMDThreeScalarBHSD<0, 0b01001, "sqshl", int_aarch64_neon_sqshl>; 3268defm SQSUB : SIMDThreeScalarBHSD<0, 0b00101, "sqsub", int_aarch64_neon_sqsub>; 3269defm SRSHL : SIMDThreeScalarD< 0, 0b01010, "srshl", int_aarch64_neon_srshl>; 3270defm SSHL : SIMDThreeScalarD< 0, 0b01000, "sshl", int_aarch64_neon_sshl>; 3271defm SUB : SIMDThreeScalarD< 1, 0b10000, "sub", sub>; 3272defm UQADD : SIMDThreeScalarBHSD<1, 0b00001, "uqadd", int_aarch64_neon_uqadd>; 3273defm UQRSHL : SIMDThreeScalarBHSD<1, 0b01011, "uqrshl",int_aarch64_neon_uqrshl>; 3274defm UQSHL : SIMDThreeScalarBHSD<1, 0b01001, "uqshl", int_aarch64_neon_uqshl>; 3275defm UQSUB : SIMDThreeScalarBHSD<1, 0b00101, "uqsub", int_aarch64_neon_uqsub>; 3276defm URSHL : SIMDThreeScalarD< 1, 0b01010, "urshl", int_aarch64_neon_urshl>; 3277defm USHL : SIMDThreeScalarD< 1, 0b01000, "ushl", int_aarch64_neon_ushl>; 3278let Predicates = [HasV8_1a] in { 3279 defm SQRDMLAH : SIMDThreeScalarHSTied<1, 0, 0b10000, "sqrdmlah">; 3280 defm SQRDMLSH : SIMDThreeScalarHSTied<1, 0, 0b10001, "sqrdmlsh">; 3281 def : Pat<(i32 (int_aarch64_neon_sqadd 3282 (i32 FPR32:$Rd), 3283 (i32 (int_aarch64_neon_sqrdmulh (i32 FPR32:$Rn), 3284 (i32 FPR32:$Rm))))), 3285 (SQRDMLAHv1i32 FPR32:$Rd, FPR32:$Rn, FPR32:$Rm)>; 3286 def : Pat<(i32 (int_aarch64_neon_sqsub 3287 (i32 FPR32:$Rd), 3288 (i32 (int_aarch64_neon_sqrdmulh (i32 FPR32:$Rn), 3289 (i32 FPR32:$Rm))))), 3290 (SQRDMLSHv1i32 FPR32:$Rd, FPR32:$Rn, FPR32:$Rm)>; 3291} 3292 3293def : InstAlias<"cmls $dst, $src1, $src2", 3294 (CMHSv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>; 3295def : InstAlias<"cmle $dst, $src1, $src2", 3296 (CMGEv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>; 3297def : InstAlias<"cmlo $dst, $src1, $src2", 3298 (CMHIv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>; 3299def : InstAlias<"cmlt $dst, $src1, $src2", 3300 (CMGTv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>; 3301def : InstAlias<"fcmle $dst, $src1, $src2", 3302 (FCMGE32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>; 3303def : InstAlias<"fcmle $dst, $src1, $src2", 3304 (FCMGE64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>; 3305def : InstAlias<"fcmlt $dst, $src1, $src2", 3306 (FCMGT32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>; 3307def : InstAlias<"fcmlt $dst, $src1, $src2", 3308 (FCMGT64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>; 3309def : InstAlias<"facle $dst, $src1, $src2", 3310 (FACGE32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>; 3311def : InstAlias<"facle $dst, $src1, $src2", 3312 (FACGE64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>; 3313def : InstAlias<"faclt $dst, $src1, $src2", 3314 (FACGT32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>; 3315def : InstAlias<"faclt $dst, $src1, $src2", 3316 (FACGT64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>; 3317 3318//===----------------------------------------------------------------------===// 3319// Advanced SIMD three scalar instructions (mixed operands). 3320//===----------------------------------------------------------------------===// 3321defm SQDMULL : SIMDThreeScalarMixedHS<0, 0b11010, "sqdmull", 3322 int_aarch64_neon_sqdmulls_scalar>; 3323defm SQDMLAL : SIMDThreeScalarMixedTiedHS<0, 0b10010, "sqdmlal">; 3324defm SQDMLSL : SIMDThreeScalarMixedTiedHS<0, 0b10110, "sqdmlsl">; 3325 3326def : Pat<(i64 (int_aarch64_neon_sqadd (i64 FPR64:$Rd), 3327 (i64 (int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn), 3328 (i32 FPR32:$Rm))))), 3329 (SQDMLALi32 FPR64:$Rd, FPR32:$Rn, FPR32:$Rm)>; 3330def : Pat<(i64 (int_aarch64_neon_sqsub (i64 FPR64:$Rd), 3331 (i64 (int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn), 3332 (i32 FPR32:$Rm))))), 3333 (SQDMLSLi32 FPR64:$Rd, FPR32:$Rn, FPR32:$Rm)>; 3334 3335//===----------------------------------------------------------------------===// 3336// Advanced SIMD two scalar instructions. 3337//===----------------------------------------------------------------------===// 3338 3339defm ABS : SIMDTwoScalarD< 0, 0b01011, "abs", int_aarch64_neon_abs>; 3340defm CMEQ : SIMDCmpTwoScalarD< 0, 0b01001, "cmeq", AArch64cmeqz>; 3341defm CMGE : SIMDCmpTwoScalarD< 1, 0b01000, "cmge", AArch64cmgez>; 3342defm CMGT : SIMDCmpTwoScalarD< 0, 0b01000, "cmgt", AArch64cmgtz>; 3343defm CMLE : SIMDCmpTwoScalarD< 1, 0b01001, "cmle", AArch64cmlez>; 3344defm CMLT : SIMDCmpTwoScalarD< 0, 0b01010, "cmlt", AArch64cmltz>; 3345defm FCMEQ : SIMDFPCmpTwoScalar<0, 1, 0b01101, "fcmeq", AArch64fcmeqz>; 3346defm FCMGE : SIMDFPCmpTwoScalar<1, 1, 0b01100, "fcmge", AArch64fcmgez>; 3347defm FCMGT : SIMDFPCmpTwoScalar<0, 1, 0b01100, "fcmgt", AArch64fcmgtz>; 3348defm FCMLE : SIMDFPCmpTwoScalar<1, 1, 0b01101, "fcmle", AArch64fcmlez>; 3349defm FCMLT : SIMDFPCmpTwoScalar<0, 1, 0b01110, "fcmlt", AArch64fcmltz>; 3350defm FCVTAS : SIMDFPTwoScalar< 0, 0, 0b11100, "fcvtas">; 3351defm FCVTAU : SIMDFPTwoScalar< 1, 0, 0b11100, "fcvtau">; 3352defm FCVTMS : SIMDFPTwoScalar< 0, 0, 0b11011, "fcvtms">; 3353defm FCVTMU : SIMDFPTwoScalar< 1, 0, 0b11011, "fcvtmu">; 3354defm FCVTNS : SIMDFPTwoScalar< 0, 0, 0b11010, "fcvtns">; 3355defm FCVTNU : SIMDFPTwoScalar< 1, 0, 0b11010, "fcvtnu">; 3356defm FCVTPS : SIMDFPTwoScalar< 0, 1, 0b11010, "fcvtps">; 3357defm FCVTPU : SIMDFPTwoScalar< 1, 1, 0b11010, "fcvtpu">; 3358def FCVTXNv1i64 : SIMDInexactCvtTwoScalar<0b10110, "fcvtxn">; 3359defm FCVTZS : SIMDFPTwoScalar< 0, 1, 0b11011, "fcvtzs">; 3360defm FCVTZU : SIMDFPTwoScalar< 1, 1, 0b11011, "fcvtzu">; 3361defm FRECPE : SIMDFPTwoScalar< 0, 1, 0b11101, "frecpe">; 3362defm FRECPX : SIMDFPTwoScalar< 0, 1, 0b11111, "frecpx">; 3363defm FRSQRTE : SIMDFPTwoScalar< 1, 1, 0b11101, "frsqrte">; 3364defm NEG : SIMDTwoScalarD< 1, 0b01011, "neg", 3365 UnOpFrag<(sub immAllZerosV, node:$LHS)> >; 3366defm SCVTF : SIMDFPTwoScalarCVT< 0, 0, 0b11101, "scvtf", AArch64sitof>; 3367defm SQABS : SIMDTwoScalarBHSD< 0, 0b00111, "sqabs", int_aarch64_neon_sqabs>; 3368defm SQNEG : SIMDTwoScalarBHSD< 1, 0b00111, "sqneg", int_aarch64_neon_sqneg>; 3369defm SQXTN : SIMDTwoScalarMixedBHS< 0, 0b10100, "sqxtn", int_aarch64_neon_scalar_sqxtn>; 3370defm SQXTUN : SIMDTwoScalarMixedBHS< 1, 0b10010, "sqxtun", int_aarch64_neon_scalar_sqxtun>; 3371defm SUQADD : SIMDTwoScalarBHSDTied< 0, 0b00011, "suqadd", 3372 int_aarch64_neon_suqadd>; 3373defm UCVTF : SIMDFPTwoScalarCVT< 1, 0, 0b11101, "ucvtf", AArch64uitof>; 3374defm UQXTN : SIMDTwoScalarMixedBHS<1, 0b10100, "uqxtn", int_aarch64_neon_scalar_uqxtn>; 3375defm USQADD : SIMDTwoScalarBHSDTied< 1, 0b00011, "usqadd", 3376 int_aarch64_neon_usqadd>; 3377 3378def : Pat<(AArch64neg (v1i64 V64:$Rn)), (NEGv1i64 V64:$Rn)>; 3379 3380def : Pat<(v1i64 (int_aarch64_neon_fcvtas (v1f64 FPR64:$Rn))), 3381 (FCVTASv1i64 FPR64:$Rn)>; 3382def : Pat<(v1i64 (int_aarch64_neon_fcvtau (v1f64 FPR64:$Rn))), 3383 (FCVTAUv1i64 FPR64:$Rn)>; 3384def : Pat<(v1i64 (int_aarch64_neon_fcvtms (v1f64 FPR64:$Rn))), 3385 (FCVTMSv1i64 FPR64:$Rn)>; 3386def : Pat<(v1i64 (int_aarch64_neon_fcvtmu (v1f64 FPR64:$Rn))), 3387 (FCVTMUv1i64 FPR64:$Rn)>; 3388def : Pat<(v1i64 (int_aarch64_neon_fcvtns (v1f64 FPR64:$Rn))), 3389 (FCVTNSv1i64 FPR64:$Rn)>; 3390def : Pat<(v1i64 (int_aarch64_neon_fcvtnu (v1f64 FPR64:$Rn))), 3391 (FCVTNUv1i64 FPR64:$Rn)>; 3392def : Pat<(v1i64 (int_aarch64_neon_fcvtps (v1f64 FPR64:$Rn))), 3393 (FCVTPSv1i64 FPR64:$Rn)>; 3394def : Pat<(v1i64 (int_aarch64_neon_fcvtpu (v1f64 FPR64:$Rn))), 3395 (FCVTPUv1i64 FPR64:$Rn)>; 3396 3397def : Pat<(f32 (int_aarch64_neon_frecpe (f32 FPR32:$Rn))), 3398 (FRECPEv1i32 FPR32:$Rn)>; 3399def : Pat<(f64 (int_aarch64_neon_frecpe (f64 FPR64:$Rn))), 3400 (FRECPEv1i64 FPR64:$Rn)>; 3401def : Pat<(v1f64 (int_aarch64_neon_frecpe (v1f64 FPR64:$Rn))), 3402 (FRECPEv1i64 FPR64:$Rn)>; 3403 3404def : Pat<(f32 (AArch64frecpe (f32 FPR32:$Rn))), 3405 (FRECPEv1i32 FPR32:$Rn)>; 3406def : Pat<(v2f32 (AArch64frecpe (v2f32 V64:$Rn))), 3407 (FRECPEv2f32 V64:$Rn)>; 3408def : Pat<(v4f32 (AArch64frecpe (v4f32 FPR128:$Rn))), 3409 (FRECPEv4f32 FPR128:$Rn)>; 3410def : Pat<(f64 (AArch64frecpe (f64 FPR64:$Rn))), 3411 (FRECPEv1i64 FPR64:$Rn)>; 3412def : Pat<(v1f64 (AArch64frecpe (v1f64 FPR64:$Rn))), 3413 (FRECPEv1i64 FPR64:$Rn)>; 3414def : Pat<(v2f64 (AArch64frecpe (v2f64 FPR128:$Rn))), 3415 (FRECPEv2f64 FPR128:$Rn)>; 3416 3417def : Pat<(f32 (int_aarch64_neon_frecpx (f32 FPR32:$Rn))), 3418 (FRECPXv1i32 FPR32:$Rn)>; 3419def : Pat<(f64 (int_aarch64_neon_frecpx (f64 FPR64:$Rn))), 3420 (FRECPXv1i64 FPR64:$Rn)>; 3421 3422def : Pat<(f32 (int_aarch64_neon_frsqrte (f32 FPR32:$Rn))), 3423 (FRSQRTEv1i32 FPR32:$Rn)>; 3424def : Pat<(f64 (int_aarch64_neon_frsqrte (f64 FPR64:$Rn))), 3425 (FRSQRTEv1i64 FPR64:$Rn)>; 3426def : Pat<(v1f64 (int_aarch64_neon_frsqrte (v1f64 FPR64:$Rn))), 3427 (FRSQRTEv1i64 FPR64:$Rn)>; 3428 3429def : Pat<(f32 (AArch64frsqrte (f32 FPR32:$Rn))), 3430 (FRSQRTEv1i32 FPR32:$Rn)>; 3431def : Pat<(v2f32 (AArch64frsqrte (v2f32 V64:$Rn))), 3432 (FRSQRTEv2f32 V64:$Rn)>; 3433def : Pat<(v4f32 (AArch64frsqrte (v4f32 FPR128:$Rn))), 3434 (FRSQRTEv4f32 FPR128:$Rn)>; 3435def : Pat<(f64 (AArch64frsqrte (f64 FPR64:$Rn))), 3436 (FRSQRTEv1i64 FPR64:$Rn)>; 3437def : Pat<(v1f64 (AArch64frsqrte (v1f64 FPR64:$Rn))), 3438 (FRSQRTEv1i64 FPR64:$Rn)>; 3439def : Pat<(v2f64 (AArch64frsqrte (v2f64 FPR128:$Rn))), 3440 (FRSQRTEv2f64 FPR128:$Rn)>; 3441 3442// If an integer is about to be converted to a floating point value, 3443// just load it on the floating point unit. 3444// Here are the patterns for 8 and 16-bits to float. 3445// 8-bits -> float. 3446multiclass UIntToFPROLoadPat<ValueType DstTy, ValueType SrcTy, 3447 SDPatternOperator loadop, Instruction UCVTF, 3448 ROAddrMode ro, Instruction LDRW, Instruction LDRX, 3449 SubRegIndex sub> { 3450 def : Pat<(DstTy (uint_to_fp (SrcTy 3451 (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, 3452 ro.Wext:$extend))))), 3453 (UCVTF (INSERT_SUBREG (DstTy (IMPLICIT_DEF)), 3454 (LDRW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend), 3455 sub))>; 3456 3457 def : Pat<(DstTy (uint_to_fp (SrcTy 3458 (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, 3459 ro.Wext:$extend))))), 3460 (UCVTF (INSERT_SUBREG (DstTy (IMPLICIT_DEF)), 3461 (LDRX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend), 3462 sub))>; 3463} 3464 3465defm : UIntToFPROLoadPat<f32, i32, zextloadi8, 3466 UCVTFv1i32, ro8, LDRBroW, LDRBroX, bsub>; 3467def : Pat <(f32 (uint_to_fp (i32 3468 (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))), 3469 (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)), 3470 (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub))>; 3471def : Pat <(f32 (uint_to_fp (i32 3472 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))))), 3473 (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)), 3474 (LDURBi GPR64sp:$Rn, simm9:$offset), bsub))>; 3475// 16-bits -> float. 3476defm : UIntToFPROLoadPat<f32, i32, zextloadi16, 3477 UCVTFv1i32, ro16, LDRHroW, LDRHroX, hsub>; 3478def : Pat <(f32 (uint_to_fp (i32 3479 (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))), 3480 (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)), 3481 (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub))>; 3482def : Pat <(f32 (uint_to_fp (i32 3483 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))))), 3484 (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)), 3485 (LDURHi GPR64sp:$Rn, simm9:$offset), hsub))>; 3486// 32-bits are handled in target specific dag combine: 3487// performIntToFpCombine. 3488// 64-bits integer to 32-bits floating point, not possible with 3489// UCVTF on floating point registers (both source and destination 3490// must have the same size). 3491 3492// Here are the patterns for 8, 16, 32, and 64-bits to double. 3493// 8-bits -> double. 3494defm : UIntToFPROLoadPat<f64, i32, zextloadi8, 3495 UCVTFv1i64, ro8, LDRBroW, LDRBroX, bsub>; 3496def : Pat <(f64 (uint_to_fp (i32 3497 (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))), 3498 (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)), 3499 (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub))>; 3500def : Pat <(f64 (uint_to_fp (i32 3501 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))))), 3502 (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)), 3503 (LDURBi GPR64sp:$Rn, simm9:$offset), bsub))>; 3504// 16-bits -> double. 3505defm : UIntToFPROLoadPat<f64, i32, zextloadi16, 3506 UCVTFv1i64, ro16, LDRHroW, LDRHroX, hsub>; 3507def : Pat <(f64 (uint_to_fp (i32 3508 (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))), 3509 (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)), 3510 (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub))>; 3511def : Pat <(f64 (uint_to_fp (i32 3512 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))))), 3513 (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)), 3514 (LDURHi GPR64sp:$Rn, simm9:$offset), hsub))>; 3515// 32-bits -> double. 3516defm : UIntToFPROLoadPat<f64, i32, load, 3517 UCVTFv1i64, ro32, LDRSroW, LDRSroX, ssub>; 3518def : Pat <(f64 (uint_to_fp (i32 3519 (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))), 3520 (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)), 3521 (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub))>; 3522def : Pat <(f64 (uint_to_fp (i32 3523 (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset))))), 3524 (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)), 3525 (LDURSi GPR64sp:$Rn, simm9:$offset), ssub))>; 3526// 64-bits -> double are handled in target specific dag combine: 3527// performIntToFpCombine. 3528 3529//===----------------------------------------------------------------------===// 3530// Advanced SIMD three different-sized vector instructions. 3531//===----------------------------------------------------------------------===// 3532 3533defm ADDHN : SIMDNarrowThreeVectorBHS<0,0b0100,"addhn", int_aarch64_neon_addhn>; 3534defm SUBHN : SIMDNarrowThreeVectorBHS<0,0b0110,"subhn", int_aarch64_neon_subhn>; 3535defm RADDHN : SIMDNarrowThreeVectorBHS<1,0b0100,"raddhn",int_aarch64_neon_raddhn>; 3536defm RSUBHN : SIMDNarrowThreeVectorBHS<1,0b0110,"rsubhn",int_aarch64_neon_rsubhn>; 3537defm PMULL : SIMDDifferentThreeVectorBD<0,0b1110,"pmull",int_aarch64_neon_pmull>; 3538defm SABAL : SIMDLongThreeVectorTiedBHSabal<0,0b0101,"sabal", 3539 int_aarch64_neon_sabd>; 3540defm SABDL : SIMDLongThreeVectorBHSabdl<0, 0b0111, "sabdl", 3541 int_aarch64_neon_sabd>; 3542defm SADDL : SIMDLongThreeVectorBHS< 0, 0b0000, "saddl", 3543 BinOpFrag<(add (sext node:$LHS), (sext node:$RHS))>>; 3544defm SADDW : SIMDWideThreeVectorBHS< 0, 0b0001, "saddw", 3545 BinOpFrag<(add node:$LHS, (sext node:$RHS))>>; 3546defm SMLAL : SIMDLongThreeVectorTiedBHS<0, 0b1000, "smlal", 3547 TriOpFrag<(add node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>; 3548defm SMLSL : SIMDLongThreeVectorTiedBHS<0, 0b1010, "smlsl", 3549 TriOpFrag<(sub node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>; 3550defm SMULL : SIMDLongThreeVectorBHS<0, 0b1100, "smull", int_aarch64_neon_smull>; 3551defm SQDMLAL : SIMDLongThreeVectorSQDMLXTiedHS<0, 0b1001, "sqdmlal", 3552 int_aarch64_neon_sqadd>; 3553defm SQDMLSL : SIMDLongThreeVectorSQDMLXTiedHS<0, 0b1011, "sqdmlsl", 3554 int_aarch64_neon_sqsub>; 3555defm SQDMULL : SIMDLongThreeVectorHS<0, 0b1101, "sqdmull", 3556 int_aarch64_neon_sqdmull>; 3557defm SSUBL : SIMDLongThreeVectorBHS<0, 0b0010, "ssubl", 3558 BinOpFrag<(sub (sext node:$LHS), (sext node:$RHS))>>; 3559defm SSUBW : SIMDWideThreeVectorBHS<0, 0b0011, "ssubw", 3560 BinOpFrag<(sub node:$LHS, (sext node:$RHS))>>; 3561defm UABAL : SIMDLongThreeVectorTiedBHSabal<1, 0b0101, "uabal", 3562 int_aarch64_neon_uabd>; 3563defm UADDL : SIMDLongThreeVectorBHS<1, 0b0000, "uaddl", 3564 BinOpFrag<(add (zext node:$LHS), (zext node:$RHS))>>; 3565defm UADDW : SIMDWideThreeVectorBHS<1, 0b0001, "uaddw", 3566 BinOpFrag<(add node:$LHS, (zext node:$RHS))>>; 3567defm UMLAL : SIMDLongThreeVectorTiedBHS<1, 0b1000, "umlal", 3568 TriOpFrag<(add node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>; 3569defm UMLSL : SIMDLongThreeVectorTiedBHS<1, 0b1010, "umlsl", 3570 TriOpFrag<(sub node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>; 3571defm UMULL : SIMDLongThreeVectorBHS<1, 0b1100, "umull", int_aarch64_neon_umull>; 3572defm USUBL : SIMDLongThreeVectorBHS<1, 0b0010, "usubl", 3573 BinOpFrag<(sub (zext node:$LHS), (zext node:$RHS))>>; 3574defm USUBW : SIMDWideThreeVectorBHS< 1, 0b0011, "usubw", 3575 BinOpFrag<(sub node:$LHS, (zext node:$RHS))>>; 3576 3577// Additional patterns for SMULL and UMULL 3578multiclass Neon_mul_widen_patterns<SDPatternOperator opnode, 3579 Instruction INST8B, Instruction INST4H, Instruction INST2S> { 3580 def : Pat<(v8i16 (opnode (v8i8 V64:$Rn), (v8i8 V64:$Rm))), 3581 (INST8B V64:$Rn, V64:$Rm)>; 3582 def : Pat<(v4i32 (opnode (v4i16 V64:$Rn), (v4i16 V64:$Rm))), 3583 (INST4H V64:$Rn, V64:$Rm)>; 3584 def : Pat<(v2i64 (opnode (v2i32 V64:$Rn), (v2i32 V64:$Rm))), 3585 (INST2S V64:$Rn, V64:$Rm)>; 3586} 3587 3588defm : Neon_mul_widen_patterns<AArch64smull, SMULLv8i8_v8i16, 3589 SMULLv4i16_v4i32, SMULLv2i32_v2i64>; 3590defm : Neon_mul_widen_patterns<AArch64umull, UMULLv8i8_v8i16, 3591 UMULLv4i16_v4i32, UMULLv2i32_v2i64>; 3592 3593// Additional patterns for SMLAL/SMLSL and UMLAL/UMLSL 3594multiclass Neon_mulacc_widen_patterns<SDPatternOperator opnode, 3595 Instruction INST8B, Instruction INST4H, Instruction INST2S> { 3596 def : Pat<(v8i16 (opnode (v8i16 V128:$Rd), (v8i8 V64:$Rn), (v8i8 V64:$Rm))), 3597 (INST8B V128:$Rd, V64:$Rn, V64:$Rm)>; 3598 def : Pat<(v4i32 (opnode (v4i32 V128:$Rd), (v4i16 V64:$Rn), (v4i16 V64:$Rm))), 3599 (INST4H V128:$Rd, V64:$Rn, V64:$Rm)>; 3600 def : Pat<(v2i64 (opnode (v2i64 V128:$Rd), (v2i32 V64:$Rn), (v2i32 V64:$Rm))), 3601 (INST2S V128:$Rd, V64:$Rn, V64:$Rm)>; 3602} 3603 3604defm : Neon_mulacc_widen_patterns< 3605 TriOpFrag<(add node:$LHS, (AArch64smull node:$MHS, node:$RHS))>, 3606 SMLALv8i8_v8i16, SMLALv4i16_v4i32, SMLALv2i32_v2i64>; 3607defm : Neon_mulacc_widen_patterns< 3608 TriOpFrag<(add node:$LHS, (AArch64umull node:$MHS, node:$RHS))>, 3609 UMLALv8i8_v8i16, UMLALv4i16_v4i32, UMLALv2i32_v2i64>; 3610defm : Neon_mulacc_widen_patterns< 3611 TriOpFrag<(sub node:$LHS, (AArch64smull node:$MHS, node:$RHS))>, 3612 SMLSLv8i8_v8i16, SMLSLv4i16_v4i32, SMLSLv2i32_v2i64>; 3613defm : Neon_mulacc_widen_patterns< 3614 TriOpFrag<(sub node:$LHS, (AArch64umull node:$MHS, node:$RHS))>, 3615 UMLSLv8i8_v8i16, UMLSLv4i16_v4i32, UMLSLv2i32_v2i64>; 3616 3617// Patterns for 64-bit pmull 3618def : Pat<(int_aarch64_neon_pmull64 V64:$Rn, V64:$Rm), 3619 (PMULLv1i64 V64:$Rn, V64:$Rm)>; 3620def : Pat<(int_aarch64_neon_pmull64 (extractelt (v2i64 V128:$Rn), (i64 1)), 3621 (extractelt (v2i64 V128:$Rm), (i64 1))), 3622 (PMULLv2i64 V128:$Rn, V128:$Rm)>; 3623 3624// CodeGen patterns for addhn and subhn instructions, which can actually be 3625// written in LLVM IR without too much difficulty. 3626 3627// ADDHN 3628def : Pat<(v8i8 (trunc (v8i16 (AArch64vlshr (add V128:$Rn, V128:$Rm), (i32 8))))), 3629 (ADDHNv8i16_v8i8 V128:$Rn, V128:$Rm)>; 3630def : Pat<(v4i16 (trunc (v4i32 (AArch64vlshr (add V128:$Rn, V128:$Rm), 3631 (i32 16))))), 3632 (ADDHNv4i32_v4i16 V128:$Rn, V128:$Rm)>; 3633def : Pat<(v2i32 (trunc (v2i64 (AArch64vlshr (add V128:$Rn, V128:$Rm), 3634 (i32 32))))), 3635 (ADDHNv2i64_v2i32 V128:$Rn, V128:$Rm)>; 3636def : Pat<(concat_vectors (v8i8 V64:$Rd), 3637 (trunc (v8i16 (AArch64vlshr (add V128:$Rn, V128:$Rm), 3638 (i32 8))))), 3639 (ADDHNv8i16_v16i8 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub), 3640 V128:$Rn, V128:$Rm)>; 3641def : Pat<(concat_vectors (v4i16 V64:$Rd), 3642 (trunc (v4i32 (AArch64vlshr (add V128:$Rn, V128:$Rm), 3643 (i32 16))))), 3644 (ADDHNv4i32_v8i16 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub), 3645 V128:$Rn, V128:$Rm)>; 3646def : Pat<(concat_vectors (v2i32 V64:$Rd), 3647 (trunc (v2i64 (AArch64vlshr (add V128:$Rn, V128:$Rm), 3648 (i32 32))))), 3649 (ADDHNv2i64_v4i32 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub), 3650 V128:$Rn, V128:$Rm)>; 3651 3652// SUBHN 3653def : Pat<(v8i8 (trunc (v8i16 (AArch64vlshr (sub V128:$Rn, V128:$Rm), (i32 8))))), 3654 (SUBHNv8i16_v8i8 V128:$Rn, V128:$Rm)>; 3655def : Pat<(v4i16 (trunc (v4i32 (AArch64vlshr (sub V128:$Rn, V128:$Rm), 3656 (i32 16))))), 3657 (SUBHNv4i32_v4i16 V128:$Rn, V128:$Rm)>; 3658def : Pat<(v2i32 (trunc (v2i64 (AArch64vlshr (sub V128:$Rn, V128:$Rm), 3659 (i32 32))))), 3660 (SUBHNv2i64_v2i32 V128:$Rn, V128:$Rm)>; 3661def : Pat<(concat_vectors (v8i8 V64:$Rd), 3662 (trunc (v8i16 (AArch64vlshr (sub V128:$Rn, V128:$Rm), 3663 (i32 8))))), 3664 (SUBHNv8i16_v16i8 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub), 3665 V128:$Rn, V128:$Rm)>; 3666def : Pat<(concat_vectors (v4i16 V64:$Rd), 3667 (trunc (v4i32 (AArch64vlshr (sub V128:$Rn, V128:$Rm), 3668 (i32 16))))), 3669 (SUBHNv4i32_v8i16 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub), 3670 V128:$Rn, V128:$Rm)>; 3671def : Pat<(concat_vectors (v2i32 V64:$Rd), 3672 (trunc (v2i64 (AArch64vlshr (sub V128:$Rn, V128:$Rm), 3673 (i32 32))))), 3674 (SUBHNv2i64_v4i32 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub), 3675 V128:$Rn, V128:$Rm)>; 3676 3677//---------------------------------------------------------------------------- 3678// AdvSIMD bitwise extract from vector instruction. 3679//---------------------------------------------------------------------------- 3680 3681defm EXT : SIMDBitwiseExtract<"ext">; 3682 3683def : Pat<(v4i16 (AArch64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))), 3684 (EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>; 3685def : Pat<(v8i16 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))), 3686 (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>; 3687def : Pat<(v2i32 (AArch64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))), 3688 (EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>; 3689def : Pat<(v2f32 (AArch64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))), 3690 (EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>; 3691def : Pat<(v4i32 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))), 3692 (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>; 3693def : Pat<(v4f32 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))), 3694 (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>; 3695def : Pat<(v2i64 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))), 3696 (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>; 3697def : Pat<(v2f64 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))), 3698 (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>; 3699def : Pat<(v4f16 (AArch64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))), 3700 (EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>; 3701def : Pat<(v8f16 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))), 3702 (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>; 3703 3704// We use EXT to handle extract_subvector to copy the upper 64-bits of a 3705// 128-bit vector. 3706def : Pat<(v8i8 (extract_subvector V128:$Rn, (i64 8))), 3707 (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>; 3708def : Pat<(v4i16 (extract_subvector V128:$Rn, (i64 4))), 3709 (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>; 3710def : Pat<(v2i32 (extract_subvector V128:$Rn, (i64 2))), 3711 (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>; 3712def : Pat<(v1i64 (extract_subvector V128:$Rn, (i64 1))), 3713 (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>; 3714def : Pat<(v4f16 (extract_subvector V128:$Rn, (i64 4))), 3715 (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>; 3716def : Pat<(v2f32 (extract_subvector V128:$Rn, (i64 2))), 3717 (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>; 3718def : Pat<(v1f64 (extract_subvector V128:$Rn, (i64 1))), 3719 (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>; 3720 3721 3722//---------------------------------------------------------------------------- 3723// AdvSIMD zip vector 3724//---------------------------------------------------------------------------- 3725 3726defm TRN1 : SIMDZipVector<0b010, "trn1", AArch64trn1>; 3727defm TRN2 : SIMDZipVector<0b110, "trn2", AArch64trn2>; 3728defm UZP1 : SIMDZipVector<0b001, "uzp1", AArch64uzp1>; 3729defm UZP2 : SIMDZipVector<0b101, "uzp2", AArch64uzp2>; 3730defm ZIP1 : SIMDZipVector<0b011, "zip1", AArch64zip1>; 3731defm ZIP2 : SIMDZipVector<0b111, "zip2", AArch64zip2>; 3732 3733//---------------------------------------------------------------------------- 3734// AdvSIMD TBL/TBX instructions 3735//---------------------------------------------------------------------------- 3736 3737defm TBL : SIMDTableLookup< 0, "tbl">; 3738defm TBX : SIMDTableLookupTied<1, "tbx">; 3739 3740def : Pat<(v8i8 (int_aarch64_neon_tbl1 (v16i8 VecListOne128:$Rn), (v8i8 V64:$Ri))), 3741 (TBLv8i8One VecListOne128:$Rn, V64:$Ri)>; 3742def : Pat<(v16i8 (int_aarch64_neon_tbl1 (v16i8 V128:$Ri), (v16i8 V128:$Rn))), 3743 (TBLv16i8One V128:$Ri, V128:$Rn)>; 3744 3745def : Pat<(v8i8 (int_aarch64_neon_tbx1 (v8i8 V64:$Rd), 3746 (v16i8 VecListOne128:$Rn), (v8i8 V64:$Ri))), 3747 (TBXv8i8One V64:$Rd, VecListOne128:$Rn, V64:$Ri)>; 3748def : Pat<(v16i8 (int_aarch64_neon_tbx1 (v16i8 V128:$Rd), 3749 (v16i8 V128:$Ri), (v16i8 V128:$Rn))), 3750 (TBXv16i8One V128:$Rd, V128:$Ri, V128:$Rn)>; 3751 3752 3753//---------------------------------------------------------------------------- 3754// AdvSIMD scalar CPY instruction 3755//---------------------------------------------------------------------------- 3756 3757defm CPY : SIMDScalarCPY<"cpy">; 3758 3759//---------------------------------------------------------------------------- 3760// AdvSIMD scalar pairwise instructions 3761//---------------------------------------------------------------------------- 3762 3763defm ADDP : SIMDPairwiseScalarD<0, 0b11011, "addp">; 3764defm FADDP : SIMDFPPairwiseScalar<0, 0b01101, "faddp">; 3765defm FMAXNMP : SIMDFPPairwiseScalar<0, 0b01100, "fmaxnmp">; 3766defm FMAXP : SIMDFPPairwiseScalar<0, 0b01111, "fmaxp">; 3767defm FMINNMP : SIMDFPPairwiseScalar<1, 0b01100, "fminnmp">; 3768defm FMINP : SIMDFPPairwiseScalar<1, 0b01111, "fminp">; 3769def : Pat<(v2i64 (AArch64saddv V128:$Rn)), 3770 (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), (ADDPv2i64p V128:$Rn), dsub)>; 3771def : Pat<(v2i64 (AArch64uaddv V128:$Rn)), 3772 (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), (ADDPv2i64p V128:$Rn), dsub)>; 3773def : Pat<(f32 (int_aarch64_neon_faddv (v2f32 V64:$Rn))), 3774 (FADDPv2i32p V64:$Rn)>; 3775def : Pat<(f32 (int_aarch64_neon_faddv (v4f32 V128:$Rn))), 3776 (FADDPv2i32p (EXTRACT_SUBREG (FADDPv4f32 V128:$Rn, V128:$Rn), dsub))>; 3777def : Pat<(f64 (int_aarch64_neon_faddv (v2f64 V128:$Rn))), 3778 (FADDPv2i64p V128:$Rn)>; 3779def : Pat<(f32 (int_aarch64_neon_fmaxnmv (v2f32 V64:$Rn))), 3780 (FMAXNMPv2i32p V64:$Rn)>; 3781def : Pat<(f64 (int_aarch64_neon_fmaxnmv (v2f64 V128:$Rn))), 3782 (FMAXNMPv2i64p V128:$Rn)>; 3783def : Pat<(f32 (int_aarch64_neon_fmaxv (v2f32 V64:$Rn))), 3784 (FMAXPv2i32p V64:$Rn)>; 3785def : Pat<(f64 (int_aarch64_neon_fmaxv (v2f64 V128:$Rn))), 3786 (FMAXPv2i64p V128:$Rn)>; 3787def : Pat<(f32 (int_aarch64_neon_fminnmv (v2f32 V64:$Rn))), 3788 (FMINNMPv2i32p V64:$Rn)>; 3789def : Pat<(f64 (int_aarch64_neon_fminnmv (v2f64 V128:$Rn))), 3790 (FMINNMPv2i64p V128:$Rn)>; 3791def : Pat<(f32 (int_aarch64_neon_fminv (v2f32 V64:$Rn))), 3792 (FMINPv2i32p V64:$Rn)>; 3793def : Pat<(f64 (int_aarch64_neon_fminv (v2f64 V128:$Rn))), 3794 (FMINPv2i64p V128:$Rn)>; 3795 3796//---------------------------------------------------------------------------- 3797// AdvSIMD INS/DUP instructions 3798//---------------------------------------------------------------------------- 3799 3800def DUPv8i8gpr : SIMDDupFromMain<0, {?,?,?,?,1}, ".8b", v8i8, V64, GPR32>; 3801def DUPv16i8gpr : SIMDDupFromMain<1, {?,?,?,?,1}, ".16b", v16i8, V128, GPR32>; 3802def DUPv4i16gpr : SIMDDupFromMain<0, {?,?,?,1,0}, ".4h", v4i16, V64, GPR32>; 3803def DUPv8i16gpr : SIMDDupFromMain<1, {?,?,?,1,0}, ".8h", v8i16, V128, GPR32>; 3804def DUPv2i32gpr : SIMDDupFromMain<0, {?,?,1,0,0}, ".2s", v2i32, V64, GPR32>; 3805def DUPv4i32gpr : SIMDDupFromMain<1, {?,?,1,0,0}, ".4s", v4i32, V128, GPR32>; 3806def DUPv2i64gpr : SIMDDupFromMain<1, {?,1,0,0,0}, ".2d", v2i64, V128, GPR64>; 3807 3808def DUPv2i64lane : SIMDDup64FromElement; 3809def DUPv2i32lane : SIMDDup32FromElement<0, ".2s", v2i32, V64>; 3810def DUPv4i32lane : SIMDDup32FromElement<1, ".4s", v4i32, V128>; 3811def DUPv4i16lane : SIMDDup16FromElement<0, ".4h", v4i16, V64>; 3812def DUPv8i16lane : SIMDDup16FromElement<1, ".8h", v8i16, V128>; 3813def DUPv8i8lane : SIMDDup8FromElement <0, ".8b", v8i8, V64>; 3814def DUPv16i8lane : SIMDDup8FromElement <1, ".16b", v16i8, V128>; 3815 3816def : Pat<(v2f32 (AArch64dup (f32 FPR32:$Rn))), 3817 (v2f32 (DUPv2i32lane 3818 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rn, ssub), 3819 (i64 0)))>; 3820def : Pat<(v4f32 (AArch64dup (f32 FPR32:$Rn))), 3821 (v4f32 (DUPv4i32lane 3822 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rn, ssub), 3823 (i64 0)))>; 3824def : Pat<(v2f64 (AArch64dup (f64 FPR64:$Rn))), 3825 (v2f64 (DUPv2i64lane 3826 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$Rn, dsub), 3827 (i64 0)))>; 3828def : Pat<(v4f16 (AArch64dup (f16 FPR16:$Rn))), 3829 (v4f16 (DUPv4i16lane 3830 (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub), 3831 (i64 0)))>; 3832def : Pat<(v8f16 (AArch64dup (f16 FPR16:$Rn))), 3833 (v8f16 (DUPv8i16lane 3834 (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub), 3835 (i64 0)))>; 3836 3837def : Pat<(v4f16 (AArch64duplane16 (v8f16 V128:$Rn), VectorIndexH:$imm)), 3838 (DUPv4i16lane V128:$Rn, VectorIndexH:$imm)>; 3839def : Pat<(v8f16 (AArch64duplane16 (v8f16 V128:$Rn), VectorIndexH:$imm)), 3840 (DUPv8i16lane V128:$Rn, VectorIndexH:$imm)>; 3841 3842def : Pat<(v2f32 (AArch64duplane32 (v4f32 V128:$Rn), VectorIndexS:$imm)), 3843 (DUPv2i32lane V128:$Rn, VectorIndexS:$imm)>; 3844def : Pat<(v4f32 (AArch64duplane32 (v4f32 V128:$Rn), VectorIndexS:$imm)), 3845 (DUPv4i32lane V128:$Rn, VectorIndexS:$imm)>; 3846def : Pat<(v2f64 (AArch64duplane64 (v2f64 V128:$Rn), VectorIndexD:$imm)), 3847 (DUPv2i64lane V128:$Rn, VectorIndexD:$imm)>; 3848 3849// If there's an (AArch64dup (vector_extract ...) ...), we can use a duplane 3850// instruction even if the types don't match: we just have to remap the lane 3851// carefully. N.b. this trick only applies to truncations. 3852def VecIndex_x2 : SDNodeXForm<imm, [{ 3853 return CurDAG->getTargetConstant(2 * N->getZExtValue(), SDLoc(N), MVT::i64); 3854}]>; 3855def VecIndex_x4 : SDNodeXForm<imm, [{ 3856 return CurDAG->getTargetConstant(4 * N->getZExtValue(), SDLoc(N), MVT::i64); 3857}]>; 3858def VecIndex_x8 : SDNodeXForm<imm, [{ 3859 return CurDAG->getTargetConstant(8 * N->getZExtValue(), SDLoc(N), MVT::i64); 3860}]>; 3861 3862multiclass DUPWithTruncPats<ValueType ResVT, ValueType Src64VT, 3863 ValueType Src128VT, ValueType ScalVT, 3864 Instruction DUP, SDNodeXForm IdxXFORM> { 3865 def : Pat<(ResVT (AArch64dup (ScalVT (vector_extract (Src128VT V128:$Rn), 3866 imm:$idx)))), 3867 (DUP V128:$Rn, (IdxXFORM imm:$idx))>; 3868 3869 def : Pat<(ResVT (AArch64dup (ScalVT (vector_extract (Src64VT V64:$Rn), 3870 imm:$idx)))), 3871 (DUP (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), (IdxXFORM imm:$idx))>; 3872} 3873 3874defm : DUPWithTruncPats<v8i8, v4i16, v8i16, i32, DUPv8i8lane, VecIndex_x2>; 3875defm : DUPWithTruncPats<v8i8, v2i32, v4i32, i32, DUPv8i8lane, VecIndex_x4>; 3876defm : DUPWithTruncPats<v4i16, v2i32, v4i32, i32, DUPv4i16lane, VecIndex_x2>; 3877 3878defm : DUPWithTruncPats<v16i8, v4i16, v8i16, i32, DUPv16i8lane, VecIndex_x2>; 3879defm : DUPWithTruncPats<v16i8, v2i32, v4i32, i32, DUPv16i8lane, VecIndex_x4>; 3880defm : DUPWithTruncPats<v8i16, v2i32, v4i32, i32, DUPv8i16lane, VecIndex_x2>; 3881 3882multiclass DUPWithTrunci64Pats<ValueType ResVT, Instruction DUP, 3883 SDNodeXForm IdxXFORM> { 3884 def : Pat<(ResVT (AArch64dup (i32 (trunc (extractelt (v2i64 V128:$Rn), 3885 imm:$idx))))), 3886 (DUP V128:$Rn, (IdxXFORM imm:$idx))>; 3887 3888 def : Pat<(ResVT (AArch64dup (i32 (trunc (extractelt (v1i64 V64:$Rn), 3889 imm:$idx))))), 3890 (DUP (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), (IdxXFORM imm:$idx))>; 3891} 3892 3893defm : DUPWithTrunci64Pats<v8i8, DUPv8i8lane, VecIndex_x8>; 3894defm : DUPWithTrunci64Pats<v4i16, DUPv4i16lane, VecIndex_x4>; 3895defm : DUPWithTrunci64Pats<v2i32, DUPv2i32lane, VecIndex_x2>; 3896 3897defm : DUPWithTrunci64Pats<v16i8, DUPv16i8lane, VecIndex_x8>; 3898defm : DUPWithTrunci64Pats<v8i16, DUPv8i16lane, VecIndex_x4>; 3899defm : DUPWithTrunci64Pats<v4i32, DUPv4i32lane, VecIndex_x2>; 3900 3901// SMOV and UMOV definitions, with some extra patterns for convenience 3902defm SMOV : SMov; 3903defm UMOV : UMov; 3904 3905def : Pat<(sext_inreg (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), i8), 3906 (i32 (SMOVvi8to32 V128:$Rn, VectorIndexB:$idx))>; 3907def : Pat<(sext_inreg (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), i8), 3908 (i64 (SMOVvi8to64 V128:$Rn, VectorIndexB:$idx))>; 3909def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16), 3910 (i32 (SMOVvi16to32 V128:$Rn, VectorIndexH:$idx))>; 3911def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16), 3912 (i64 (SMOVvi16to64 V128:$Rn, VectorIndexH:$idx))>; 3913def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16), 3914 (i32 (SMOVvi16to32 V128:$Rn, VectorIndexH:$idx))>; 3915def : Pat<(sext (i32 (vector_extract (v4i32 V128:$Rn), VectorIndexS:$idx))), 3916 (i64 (SMOVvi32to64 V128:$Rn, VectorIndexS:$idx))>; 3917 3918def : Pat<(sext_inreg (i64 (anyext (i32 (vector_extract (v16i8 V128:$Rn), 3919 VectorIndexB:$idx)))), i8), 3920 (i64 (SMOVvi8to64 V128:$Rn, VectorIndexB:$idx))>; 3921def : Pat<(sext_inreg (i64 (anyext (i32 (vector_extract (v8i16 V128:$Rn), 3922 VectorIndexH:$idx)))), i16), 3923 (i64 (SMOVvi16to64 V128:$Rn, VectorIndexH:$idx))>; 3924 3925// Extracting i8 or i16 elements will have the zero-extend transformed to 3926// an 'and' mask by type legalization since neither i8 nor i16 are legal types 3927// for AArch64. Match these patterns here since UMOV already zeroes out the high 3928// bits of the destination register. 3929def : Pat<(and (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), 3930 (i32 0xff)), 3931 (i32 (UMOVvi8 V128:$Rn, VectorIndexB:$idx))>; 3932def : Pat<(and (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx), 3933 (i32 0xffff)), 3934 (i32 (UMOVvi16 V128:$Rn, VectorIndexH:$idx))>; 3935 3936defm INS : SIMDIns; 3937 3938def : Pat<(v16i8 (scalar_to_vector GPR32:$Rn)), 3939 (SUBREG_TO_REG (i32 0), 3940 (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>; 3941def : Pat<(v8i8 (scalar_to_vector GPR32:$Rn)), 3942 (SUBREG_TO_REG (i32 0), 3943 (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>; 3944 3945def : Pat<(v8i16 (scalar_to_vector GPR32:$Rn)), 3946 (SUBREG_TO_REG (i32 0), 3947 (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>; 3948def : Pat<(v4i16 (scalar_to_vector GPR32:$Rn)), 3949 (SUBREG_TO_REG (i32 0), 3950 (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>; 3951 3952def : Pat<(v2i32 (scalar_to_vector (i32 FPR32:$Rn))), 3953 (v2i32 (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)), 3954 (i32 FPR32:$Rn), ssub))>; 3955def : Pat<(v4i32 (scalar_to_vector (i32 FPR32:$Rn))), 3956 (v4i32 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), 3957 (i32 FPR32:$Rn), ssub))>; 3958def : Pat<(v2i64 (scalar_to_vector (i64 FPR64:$Rn))), 3959 (v2i64 (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), 3960 (i64 FPR64:$Rn), dsub))>; 3961 3962def : Pat<(v4f16 (scalar_to_vector (f16 FPR16:$Rn))), 3963 (INSERT_SUBREG (v4f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>; 3964def : Pat<(v8f16 (scalar_to_vector (f16 FPR16:$Rn))), 3965 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>; 3966 3967def : Pat<(v4f32 (scalar_to_vector (f32 FPR32:$Rn))), 3968 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rn, ssub)>; 3969def : Pat<(v2f32 (scalar_to_vector (f32 FPR32:$Rn))), 3970 (INSERT_SUBREG (v2f32 (IMPLICIT_DEF)), FPR32:$Rn, ssub)>; 3971def : Pat<(v2f64 (scalar_to_vector (f64 FPR64:$Rn))), 3972 (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$Rn, dsub)>; 3973 3974def : Pat<(v4f16 (vector_insert (v4f16 V64:$Rn), 3975 (f16 FPR16:$Rm), (i64 VectorIndexS:$imm))), 3976 (EXTRACT_SUBREG 3977 (INSvi16lane 3978 (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), V64:$Rn, dsub)), 3979 VectorIndexS:$imm, 3980 (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)), 3981 (i64 0)), 3982 dsub)>; 3983 3984def : Pat<(v8f16 (vector_insert (v8f16 V128:$Rn), 3985 (f16 FPR16:$Rm), (i64 VectorIndexH:$imm))), 3986 (INSvi16lane 3987 V128:$Rn, VectorIndexH:$imm, 3988 (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)), 3989 (i64 0))>; 3990 3991def : Pat<(v2f32 (vector_insert (v2f32 V64:$Rn), 3992 (f32 FPR32:$Rm), (i64 VectorIndexS:$imm))), 3993 (EXTRACT_SUBREG 3994 (INSvi32lane 3995 (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), V64:$Rn, dsub)), 3996 VectorIndexS:$imm, 3997 (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rm, ssub)), 3998 (i64 0)), 3999 dsub)>; 4000def : Pat<(v4f32 (vector_insert (v4f32 V128:$Rn), 4001 (f32 FPR32:$Rm), (i64 VectorIndexS:$imm))), 4002 (INSvi32lane 4003 V128:$Rn, VectorIndexS:$imm, 4004 (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rm, ssub)), 4005 (i64 0))>; 4006def : Pat<(v2f64 (vector_insert (v2f64 V128:$Rn), 4007 (f64 FPR64:$Rm), (i64 VectorIndexD:$imm))), 4008 (INSvi64lane 4009 V128:$Rn, VectorIndexD:$imm, 4010 (v2f64 (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$Rm, dsub)), 4011 (i64 0))>; 4012 4013// Copy an element at a constant index in one vector into a constant indexed 4014// element of another. 4015// FIXME refactor to a shared class/dev parameterized on vector type, vector 4016// index type and INS extension 4017def : Pat<(v16i8 (int_aarch64_neon_vcopy_lane 4018 (v16i8 V128:$Vd), VectorIndexB:$idx, (v16i8 V128:$Vs), 4019 VectorIndexB:$idx2)), 4020 (v16i8 (INSvi8lane 4021 V128:$Vd, VectorIndexB:$idx, V128:$Vs, VectorIndexB:$idx2) 4022 )>; 4023def : Pat<(v8i16 (int_aarch64_neon_vcopy_lane 4024 (v8i16 V128:$Vd), VectorIndexH:$idx, (v8i16 V128:$Vs), 4025 VectorIndexH:$idx2)), 4026 (v8i16 (INSvi16lane 4027 V128:$Vd, VectorIndexH:$idx, V128:$Vs, VectorIndexH:$idx2) 4028 )>; 4029def : Pat<(v4i32 (int_aarch64_neon_vcopy_lane 4030 (v4i32 V128:$Vd), VectorIndexS:$idx, (v4i32 V128:$Vs), 4031 VectorIndexS:$idx2)), 4032 (v4i32 (INSvi32lane 4033 V128:$Vd, VectorIndexS:$idx, V128:$Vs, VectorIndexS:$idx2) 4034 )>; 4035def : Pat<(v2i64 (int_aarch64_neon_vcopy_lane 4036 (v2i64 V128:$Vd), VectorIndexD:$idx, (v2i64 V128:$Vs), 4037 VectorIndexD:$idx2)), 4038 (v2i64 (INSvi64lane 4039 V128:$Vd, VectorIndexD:$idx, V128:$Vs, VectorIndexD:$idx2) 4040 )>; 4041 4042multiclass Neon_INS_elt_pattern<ValueType VT128, ValueType VT64, 4043 ValueType VTScal, Instruction INS> { 4044 def : Pat<(VT128 (vector_insert V128:$src, 4045 (VTScal (vector_extract (VT128 V128:$Rn), imm:$Immn)), 4046 imm:$Immd)), 4047 (INS V128:$src, imm:$Immd, V128:$Rn, imm:$Immn)>; 4048 4049 def : Pat<(VT128 (vector_insert V128:$src, 4050 (VTScal (vector_extract (VT64 V64:$Rn), imm:$Immn)), 4051 imm:$Immd)), 4052 (INS V128:$src, imm:$Immd, 4053 (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), imm:$Immn)>; 4054 4055 def : Pat<(VT64 (vector_insert V64:$src, 4056 (VTScal (vector_extract (VT128 V128:$Rn), imm:$Immn)), 4057 imm:$Immd)), 4058 (EXTRACT_SUBREG (INS (SUBREG_TO_REG (i64 0), V64:$src, dsub), 4059 imm:$Immd, V128:$Rn, imm:$Immn), 4060 dsub)>; 4061 4062 def : Pat<(VT64 (vector_insert V64:$src, 4063 (VTScal (vector_extract (VT64 V64:$Rn), imm:$Immn)), 4064 imm:$Immd)), 4065 (EXTRACT_SUBREG 4066 (INS (SUBREG_TO_REG (i64 0), V64:$src, dsub), imm:$Immd, 4067 (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), imm:$Immn), 4068 dsub)>; 4069} 4070 4071defm : Neon_INS_elt_pattern<v8f16, v4f16, f16, INSvi16lane>; 4072defm : Neon_INS_elt_pattern<v4f32, v2f32, f32, INSvi32lane>; 4073defm : Neon_INS_elt_pattern<v2f64, v1f64, f64, INSvi64lane>; 4074 4075 4076// Floating point vector extractions are codegen'd as either a sequence of 4077// subregister extractions, or a MOV (aka CPY here, alias for DUP) if 4078// the lane number is anything other than zero. 4079def : Pat<(vector_extract (v2f64 V128:$Rn), 0), 4080 (f64 (EXTRACT_SUBREG V128:$Rn, dsub))>; 4081def : Pat<(vector_extract (v4f32 V128:$Rn), 0), 4082 (f32 (EXTRACT_SUBREG V128:$Rn, ssub))>; 4083def : Pat<(vector_extract (v8f16 V128:$Rn), 0), 4084 (f16 (EXTRACT_SUBREG V128:$Rn, hsub))>; 4085 4086def : Pat<(vector_extract (v2f64 V128:$Rn), VectorIndexD:$idx), 4087 (f64 (CPYi64 V128:$Rn, VectorIndexD:$idx))>; 4088def : Pat<(vector_extract (v4f32 V128:$Rn), VectorIndexS:$idx), 4089 (f32 (CPYi32 V128:$Rn, VectorIndexS:$idx))>; 4090def : Pat<(vector_extract (v8f16 V128:$Rn), VectorIndexH:$idx), 4091 (f16 (CPYi16 V128:$Rn, VectorIndexH:$idx))>; 4092 4093// All concat_vectors operations are canonicalised to act on i64 vectors for 4094// AArch64. In the general case we need an instruction, which had just as well be 4095// INS. 4096class ConcatPat<ValueType DstTy, ValueType SrcTy> 4097 : Pat<(DstTy (concat_vectors (SrcTy V64:$Rd), V64:$Rn)), 4098 (INSvi64lane (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), 1, 4099 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rn, dsub), 0)>; 4100 4101def : ConcatPat<v2i64, v1i64>; 4102def : ConcatPat<v2f64, v1f64>; 4103def : ConcatPat<v4i32, v2i32>; 4104def : ConcatPat<v4f32, v2f32>; 4105def : ConcatPat<v8i16, v4i16>; 4106def : ConcatPat<v8f16, v4f16>; 4107def : ConcatPat<v16i8, v8i8>; 4108 4109// If the high lanes are undef, though, we can just ignore them: 4110class ConcatUndefPat<ValueType DstTy, ValueType SrcTy> 4111 : Pat<(DstTy (concat_vectors (SrcTy V64:$Rn), undef)), 4112 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rn, dsub)>; 4113 4114def : ConcatUndefPat<v2i64, v1i64>; 4115def : ConcatUndefPat<v2f64, v1f64>; 4116def : ConcatUndefPat<v4i32, v2i32>; 4117def : ConcatUndefPat<v4f32, v2f32>; 4118def : ConcatUndefPat<v8i16, v4i16>; 4119def : ConcatUndefPat<v16i8, v8i8>; 4120 4121//---------------------------------------------------------------------------- 4122// AdvSIMD across lanes instructions 4123//---------------------------------------------------------------------------- 4124 4125defm ADDV : SIMDAcrossLanesBHS<0, 0b11011, "addv">; 4126defm SMAXV : SIMDAcrossLanesBHS<0, 0b01010, "smaxv">; 4127defm SMINV : SIMDAcrossLanesBHS<0, 0b11010, "sminv">; 4128defm UMAXV : SIMDAcrossLanesBHS<1, 0b01010, "umaxv">; 4129defm UMINV : SIMDAcrossLanesBHS<1, 0b11010, "uminv">; 4130defm SADDLV : SIMDAcrossLanesHSD<0, 0b00011, "saddlv">; 4131defm UADDLV : SIMDAcrossLanesHSD<1, 0b00011, "uaddlv">; 4132defm FMAXNMV : SIMDFPAcrossLanes<0b01100, 0, "fmaxnmv", int_aarch64_neon_fmaxnmv>; 4133defm FMAXV : SIMDFPAcrossLanes<0b01111, 0, "fmaxv", int_aarch64_neon_fmaxv>; 4134defm FMINNMV : SIMDFPAcrossLanes<0b01100, 1, "fminnmv", int_aarch64_neon_fminnmv>; 4135defm FMINV : SIMDFPAcrossLanes<0b01111, 1, "fminv", int_aarch64_neon_fminv>; 4136 4137// Patterns for across-vector intrinsics, that have a node equivalent, that 4138// returns a vector (with only the low lane defined) instead of a scalar. 4139// In effect, opNode is the same as (scalar_to_vector (IntNode)). 4140multiclass SIMDAcrossLanesIntrinsic<string baseOpc, 4141 SDPatternOperator opNode> { 4142// If a lane instruction caught the vector_extract around opNode, we can 4143// directly match the latter to the instruction. 4144def : Pat<(v8i8 (opNode V64:$Rn)), 4145 (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)), 4146 (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub)>; 4147def : Pat<(v16i8 (opNode V128:$Rn)), 4148 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 4149 (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub)>; 4150def : Pat<(v4i16 (opNode V64:$Rn)), 4151 (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)), 4152 (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub)>; 4153def : Pat<(v8i16 (opNode V128:$Rn)), 4154 (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), 4155 (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub)>; 4156def : Pat<(v4i32 (opNode V128:$Rn)), 4157 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), 4158 (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), ssub)>; 4159 4160 4161// If none did, fallback to the explicit patterns, consuming the vector_extract. 4162def : Pat<(i32 (vector_extract (insert_subvector undef, (v8i8 (opNode V64:$Rn)), 4163 (i32 0)), (i64 0))), 4164 (EXTRACT_SUBREG (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)), 4165 (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), 4166 bsub), ssub)>; 4167def : Pat<(i32 (vector_extract (v16i8 (opNode V128:$Rn)), (i64 0))), 4168 (EXTRACT_SUBREG (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 4169 (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), 4170 bsub), ssub)>; 4171def : Pat<(i32 (vector_extract (insert_subvector undef, 4172 (v4i16 (opNode V64:$Rn)), (i32 0)), (i64 0))), 4173 (EXTRACT_SUBREG (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)), 4174 (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), 4175 hsub), ssub)>; 4176def : Pat<(i32 (vector_extract (v8i16 (opNode V128:$Rn)), (i64 0))), 4177 (EXTRACT_SUBREG (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), 4178 (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), 4179 hsub), ssub)>; 4180def : Pat<(i32 (vector_extract (v4i32 (opNode V128:$Rn)), (i64 0))), 4181 (EXTRACT_SUBREG (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), 4182 (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), 4183 ssub), ssub)>; 4184 4185} 4186 4187multiclass SIMDAcrossLanesSignedIntrinsic<string baseOpc, 4188 SDPatternOperator opNode> 4189 : SIMDAcrossLanesIntrinsic<baseOpc, opNode> { 4190// If there is a sign extension after this intrinsic, consume it as smov already 4191// performed it 4192def : Pat<(i32 (sext_inreg (i32 (vector_extract (insert_subvector undef, 4193 (opNode (v8i8 V64:$Rn)), (i32 0)), (i64 0))), i8)), 4194 (i32 (SMOVvi8to32 4195 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 4196 (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub), 4197 (i64 0)))>; 4198def : Pat<(i32 (sext_inreg (i32 (vector_extract 4199 (opNode (v16i8 V128:$Rn)), (i64 0))), i8)), 4200 (i32 (SMOVvi8to32 4201 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 4202 (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub), 4203 (i64 0)))>; 4204def : Pat<(i32 (sext_inreg (i32 (vector_extract (insert_subvector undef, 4205 (opNode (v4i16 V64:$Rn)), (i32 0)), (i64 0))), i16)), 4206 (i32 (SMOVvi16to32 4207 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 4208 (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub), 4209 (i64 0)))>; 4210def : Pat<(i32 (sext_inreg (i32 (vector_extract 4211 (opNode (v8i16 V128:$Rn)), (i64 0))), i16)), 4212 (i32 (SMOVvi16to32 4213 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 4214 (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub), 4215 (i64 0)))>; 4216} 4217 4218multiclass SIMDAcrossLanesUnsignedIntrinsic<string baseOpc, 4219 SDPatternOperator opNode> 4220 : SIMDAcrossLanesIntrinsic<baseOpc, opNode> { 4221// If there is a masking operation keeping only what has been actually 4222// generated, consume it. 4223def : Pat<(i32 (and (i32 (vector_extract (insert_subvector undef, 4224 (opNode (v8i8 V64:$Rn)), (i32 0)), (i64 0))), maski8_or_more)), 4225 (i32 (EXTRACT_SUBREG 4226 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 4227 (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub), 4228 ssub))>; 4229def : Pat<(i32 (and (i32 (vector_extract (opNode (v16i8 V128:$Rn)), (i64 0))), 4230 maski8_or_more)), 4231 (i32 (EXTRACT_SUBREG 4232 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 4233 (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub), 4234 ssub))>; 4235def : Pat<(i32 (and (i32 (vector_extract (insert_subvector undef, 4236 (opNode (v4i16 V64:$Rn)), (i32 0)), (i64 0))), maski16_or_more)), 4237 (i32 (EXTRACT_SUBREG 4238 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 4239 (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub), 4240 ssub))>; 4241def : Pat<(i32 (and (i32 (vector_extract (opNode (v8i16 V128:$Rn)), (i64 0))), 4242 maski16_or_more)), 4243 (i32 (EXTRACT_SUBREG 4244 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 4245 (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub), 4246 ssub))>; 4247} 4248 4249defm : SIMDAcrossLanesSignedIntrinsic<"ADDV", AArch64saddv>; 4250// vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm 4251def : Pat<(v2i32 (AArch64saddv (v2i32 V64:$Rn))), 4252 (ADDPv2i32 V64:$Rn, V64:$Rn)>; 4253 4254defm : SIMDAcrossLanesUnsignedIntrinsic<"ADDV", AArch64uaddv>; 4255// vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm 4256def : Pat<(v2i32 (AArch64uaddv (v2i32 V64:$Rn))), 4257 (ADDPv2i32 V64:$Rn, V64:$Rn)>; 4258 4259defm : SIMDAcrossLanesSignedIntrinsic<"SMAXV", AArch64smaxv>; 4260def : Pat<(v2i32 (AArch64smaxv (v2i32 V64:$Rn))), 4261 (SMAXPv2i32 V64:$Rn, V64:$Rn)>; 4262 4263defm : SIMDAcrossLanesSignedIntrinsic<"SMINV", AArch64sminv>; 4264def : Pat<(v2i32 (AArch64sminv (v2i32 V64:$Rn))), 4265 (SMINPv2i32 V64:$Rn, V64:$Rn)>; 4266 4267defm : SIMDAcrossLanesUnsignedIntrinsic<"UMAXV", AArch64umaxv>; 4268def : Pat<(v2i32 (AArch64umaxv (v2i32 V64:$Rn))), 4269 (UMAXPv2i32 V64:$Rn, V64:$Rn)>; 4270 4271defm : SIMDAcrossLanesUnsignedIntrinsic<"UMINV", AArch64uminv>; 4272def : Pat<(v2i32 (AArch64uminv (v2i32 V64:$Rn))), 4273 (UMINPv2i32 V64:$Rn, V64:$Rn)>; 4274 4275multiclass SIMDAcrossLanesSignedLongIntrinsic<string baseOpc, Intrinsic intOp> { 4276 def : Pat<(i32 (intOp (v8i8 V64:$Rn))), 4277 (i32 (SMOVvi16to32 4278 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 4279 (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), hsub), 4280 (i64 0)))>; 4281def : Pat<(i32 (intOp (v16i8 V128:$Rn))), 4282 (i32 (SMOVvi16to32 4283 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 4284 (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), hsub), 4285 (i64 0)))>; 4286 4287def : Pat<(i32 (intOp (v4i16 V64:$Rn))), 4288 (i32 (EXTRACT_SUBREG 4289 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 4290 (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), ssub), 4291 ssub))>; 4292def : Pat<(i32 (intOp (v8i16 V128:$Rn))), 4293 (i32 (EXTRACT_SUBREG 4294 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 4295 (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), ssub), 4296 ssub))>; 4297 4298def : Pat<(i64 (intOp (v4i32 V128:$Rn))), 4299 (i64 (EXTRACT_SUBREG 4300 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 4301 (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), dsub), 4302 dsub))>; 4303} 4304 4305multiclass SIMDAcrossLanesUnsignedLongIntrinsic<string baseOpc, 4306 Intrinsic intOp> { 4307 def : Pat<(i32 (intOp (v8i8 V64:$Rn))), 4308 (i32 (EXTRACT_SUBREG 4309 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 4310 (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), hsub), 4311 ssub))>; 4312def : Pat<(i32 (intOp (v16i8 V128:$Rn))), 4313 (i32 (EXTRACT_SUBREG 4314 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 4315 (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), hsub), 4316 ssub))>; 4317 4318def : Pat<(i32 (intOp (v4i16 V64:$Rn))), 4319 (i32 (EXTRACT_SUBREG 4320 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 4321 (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), ssub), 4322 ssub))>; 4323def : Pat<(i32 (intOp (v8i16 V128:$Rn))), 4324 (i32 (EXTRACT_SUBREG 4325 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 4326 (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), ssub), 4327 ssub))>; 4328 4329def : Pat<(i64 (intOp (v4i32 V128:$Rn))), 4330 (i64 (EXTRACT_SUBREG 4331 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 4332 (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), dsub), 4333 dsub))>; 4334} 4335 4336defm : SIMDAcrossLanesSignedLongIntrinsic<"SADDLV", int_aarch64_neon_saddlv>; 4337defm : SIMDAcrossLanesUnsignedLongIntrinsic<"UADDLV", int_aarch64_neon_uaddlv>; 4338 4339// The vaddlv_s32 intrinsic gets mapped to SADDLP. 4340def : Pat<(i64 (int_aarch64_neon_saddlv (v2i32 V64:$Rn))), 4341 (i64 (EXTRACT_SUBREG 4342 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 4343 (SADDLPv2i32_v1i64 V64:$Rn), dsub), 4344 dsub))>; 4345// The vaddlv_u32 intrinsic gets mapped to UADDLP. 4346def : Pat<(i64 (int_aarch64_neon_uaddlv (v2i32 V64:$Rn))), 4347 (i64 (EXTRACT_SUBREG 4348 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 4349 (UADDLPv2i32_v1i64 V64:$Rn), dsub), 4350 dsub))>; 4351 4352//------------------------------------------------------------------------------ 4353// AdvSIMD modified immediate instructions 4354//------------------------------------------------------------------------------ 4355 4356// AdvSIMD BIC 4357defm BIC : SIMDModifiedImmVectorShiftTied<1, 0b11, 0b01, "bic", AArch64bici>; 4358// AdvSIMD ORR 4359defm ORR : SIMDModifiedImmVectorShiftTied<0, 0b11, 0b01, "orr", AArch64orri>; 4360 4361def : InstAlias<"bic $Vd.4h, $imm", (BICv4i16 V64:$Vd, imm0_255:$imm, 0)>; 4362def : InstAlias<"bic $Vd.8h, $imm", (BICv8i16 V128:$Vd, imm0_255:$imm, 0)>; 4363def : InstAlias<"bic $Vd.2s, $imm", (BICv2i32 V64:$Vd, imm0_255:$imm, 0)>; 4364def : InstAlias<"bic $Vd.4s, $imm", (BICv4i32 V128:$Vd, imm0_255:$imm, 0)>; 4365 4366def : InstAlias<"bic.4h $Vd, $imm", (BICv4i16 V64:$Vd, imm0_255:$imm, 0), 0>; 4367def : InstAlias<"bic.8h $Vd, $imm", (BICv8i16 V128:$Vd, imm0_255:$imm, 0), 0>; 4368def : InstAlias<"bic.2s $Vd, $imm", (BICv2i32 V64:$Vd, imm0_255:$imm, 0), 0>; 4369def : InstAlias<"bic.4s $Vd, $imm", (BICv4i32 V128:$Vd, imm0_255:$imm, 0), 0>; 4370 4371def : InstAlias<"orr $Vd.4h, $imm", (ORRv4i16 V64:$Vd, imm0_255:$imm, 0)>; 4372def : InstAlias<"orr $Vd.8h, $imm", (ORRv8i16 V128:$Vd, imm0_255:$imm, 0)>; 4373def : InstAlias<"orr $Vd.2s, $imm", (ORRv2i32 V64:$Vd, imm0_255:$imm, 0)>; 4374def : InstAlias<"orr $Vd.4s, $imm", (ORRv4i32 V128:$Vd, imm0_255:$imm, 0)>; 4375 4376def : InstAlias<"orr.4h $Vd, $imm", (ORRv4i16 V64:$Vd, imm0_255:$imm, 0), 0>; 4377def : InstAlias<"orr.8h $Vd, $imm", (ORRv8i16 V128:$Vd, imm0_255:$imm, 0), 0>; 4378def : InstAlias<"orr.2s $Vd, $imm", (ORRv2i32 V64:$Vd, imm0_255:$imm, 0), 0>; 4379def : InstAlias<"orr.4s $Vd, $imm", (ORRv4i32 V128:$Vd, imm0_255:$imm, 0), 0>; 4380 4381// AdvSIMD FMOV 4382def FMOVv2f64_ns : SIMDModifiedImmVectorNoShift<1, 1, 0, 0b1111, V128, fpimm8, 4383 "fmov", ".2d", 4384 [(set (v2f64 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>; 4385def FMOVv2f32_ns : SIMDModifiedImmVectorNoShift<0, 0, 0, 0b1111, V64, fpimm8, 4386 "fmov", ".2s", 4387 [(set (v2f32 V64:$Rd), (AArch64fmov imm0_255:$imm8))]>; 4388def FMOVv4f32_ns : SIMDModifiedImmVectorNoShift<1, 0, 0, 0b1111, V128, fpimm8, 4389 "fmov", ".4s", 4390 [(set (v4f32 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>; 4391let Predicates = [HasNEON, HasFullFP16] in { 4392def FMOVv4f16_ns : SIMDModifiedImmVectorNoShift<0, 0, 1, 0b1111, V64, fpimm8, 4393 "fmov", ".4h", 4394 [(set (v4f16 V64:$Rd), (AArch64fmov imm0_255:$imm8))]>; 4395def FMOVv8f16_ns : SIMDModifiedImmVectorNoShift<1, 0, 1, 0b1111, V128, fpimm8, 4396 "fmov", ".8h", 4397 [(set (v8f16 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>; 4398} // Predicates = [HasNEON, HasFullFP16] 4399 4400// AdvSIMD MOVI 4401 4402// EDIT byte mask: scalar 4403let isReMaterializable = 1, isAsCheapAsAMove = 1 in 4404def MOVID : SIMDModifiedImmScalarNoShift<0, 1, 0b1110, "movi", 4405 [(set FPR64:$Rd, simdimmtype10:$imm8)]>; 4406// The movi_edit node has the immediate value already encoded, so we use 4407// a plain imm0_255 here. 4408def : Pat<(f64 (AArch64movi_edit imm0_255:$shift)), 4409 (MOVID imm0_255:$shift)>; 4410 4411def : Pat<(v1i64 immAllZerosV), (MOVID (i32 0))>; 4412def : Pat<(v2i32 immAllZerosV), (MOVID (i32 0))>; 4413def : Pat<(v4i16 immAllZerosV), (MOVID (i32 0))>; 4414def : Pat<(v8i8 immAllZerosV), (MOVID (i32 0))>; 4415 4416def : Pat<(v1i64 immAllOnesV), (MOVID (i32 255))>; 4417def : Pat<(v2i32 immAllOnesV), (MOVID (i32 255))>; 4418def : Pat<(v4i16 immAllOnesV), (MOVID (i32 255))>; 4419def : Pat<(v8i8 immAllOnesV), (MOVID (i32 255))>; 4420 4421// EDIT byte mask: 2d 4422 4423// The movi_edit node has the immediate value already encoded, so we use 4424// a plain imm0_255 in the pattern 4425let isReMaterializable = 1, isAsCheapAsAMove = 1 in 4426def MOVIv2d_ns : SIMDModifiedImmVectorNoShift<1, 1, 0, 0b1110, V128, 4427 simdimmtype10, 4428 "movi", ".2d", 4429 [(set (v2i64 V128:$Rd), (AArch64movi_edit imm0_255:$imm8))]>; 4430 4431def : Pat<(v2i64 immAllZerosV), (MOVIv2d_ns (i32 0))>; 4432def : Pat<(v4i32 immAllZerosV), (MOVIv2d_ns (i32 0))>; 4433def : Pat<(v8i16 immAllZerosV), (MOVIv2d_ns (i32 0))>; 4434def : Pat<(v16i8 immAllZerosV), (MOVIv2d_ns (i32 0))>; 4435 4436def : Pat<(v2i64 immAllOnesV), (MOVIv2d_ns (i32 255))>; 4437def : Pat<(v4i32 immAllOnesV), (MOVIv2d_ns (i32 255))>; 4438def : Pat<(v8i16 immAllOnesV), (MOVIv2d_ns (i32 255))>; 4439def : Pat<(v16i8 immAllOnesV), (MOVIv2d_ns (i32 255))>; 4440 4441def : Pat<(v2f64 (AArch64dup (f64 fpimm0))), (MOVIv2d_ns (i32 0))>; 4442def : Pat<(v4f32 (AArch64dup (f32 fpimm0))), (MOVIv2d_ns (i32 0))>; 4443 4444// EDIT per word & halfword: 2s, 4h, 4s, & 8h 4445defm MOVI : SIMDModifiedImmVectorShift<0, 0b10, 0b00, "movi">; 4446 4447def : InstAlias<"movi $Vd.4h, $imm", (MOVIv4i16 V64:$Vd, imm0_255:$imm, 0), 0>; 4448def : InstAlias<"movi $Vd.8h, $imm", (MOVIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>; 4449def : InstAlias<"movi $Vd.2s, $imm", (MOVIv2i32 V64:$Vd, imm0_255:$imm, 0), 0>; 4450def : InstAlias<"movi $Vd.4s, $imm", (MOVIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>; 4451 4452def : InstAlias<"movi.4h $Vd, $imm", (MOVIv4i16 V64:$Vd, imm0_255:$imm, 0), 0>; 4453def : InstAlias<"movi.8h $Vd, $imm", (MOVIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>; 4454def : InstAlias<"movi.2s $Vd, $imm", (MOVIv2i32 V64:$Vd, imm0_255:$imm, 0), 0>; 4455def : InstAlias<"movi.4s $Vd, $imm", (MOVIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>; 4456 4457def : Pat<(v2i32 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))), 4458 (MOVIv2i32 imm0_255:$imm8, imm:$shift)>; 4459def : Pat<(v4i32 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))), 4460 (MOVIv4i32 imm0_255:$imm8, imm:$shift)>; 4461def : Pat<(v4i16 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))), 4462 (MOVIv4i16 imm0_255:$imm8, imm:$shift)>; 4463def : Pat<(v8i16 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))), 4464 (MOVIv8i16 imm0_255:$imm8, imm:$shift)>; 4465 4466// EDIT per word: 2s & 4s with MSL shifter 4467def MOVIv2s_msl : SIMDModifiedImmMoveMSL<0, 0, {1,1,0,?}, V64, "movi", ".2s", 4468 [(set (v2i32 V64:$Rd), 4469 (AArch64movi_msl imm0_255:$imm8, (i32 imm:$shift)))]>; 4470def MOVIv4s_msl : SIMDModifiedImmMoveMSL<1, 0, {1,1,0,?}, V128, "movi", ".4s", 4471 [(set (v4i32 V128:$Rd), 4472 (AArch64movi_msl imm0_255:$imm8, (i32 imm:$shift)))]>; 4473 4474// Per byte: 8b & 16b 4475def MOVIv8b_ns : SIMDModifiedImmVectorNoShift<0, 0, 0, 0b1110, V64, imm0_255, 4476 "movi", ".8b", 4477 [(set (v8i8 V64:$Rd), (AArch64movi imm0_255:$imm8))]>; 4478def MOVIv16b_ns : SIMDModifiedImmVectorNoShift<1, 0, 0, 0b1110, V128, imm0_255, 4479 "movi", ".16b", 4480 [(set (v16i8 V128:$Rd), (AArch64movi imm0_255:$imm8))]>; 4481 4482// AdvSIMD MVNI 4483 4484// EDIT per word & halfword: 2s, 4h, 4s, & 8h 4485defm MVNI : SIMDModifiedImmVectorShift<1, 0b10, 0b00, "mvni">; 4486 4487def : InstAlias<"mvni $Vd.4h, $imm", (MVNIv4i16 V64:$Vd, imm0_255:$imm, 0), 0>; 4488def : InstAlias<"mvni $Vd.8h, $imm", (MVNIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>; 4489def : InstAlias<"mvni $Vd.2s, $imm", (MVNIv2i32 V64:$Vd, imm0_255:$imm, 0), 0>; 4490def : InstAlias<"mvni $Vd.4s, $imm", (MVNIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>; 4491 4492def : InstAlias<"mvni.4h $Vd, $imm", (MVNIv4i16 V64:$Vd, imm0_255:$imm, 0), 0>; 4493def : InstAlias<"mvni.8h $Vd, $imm", (MVNIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>; 4494def : InstAlias<"mvni.2s $Vd, $imm", (MVNIv2i32 V64:$Vd, imm0_255:$imm, 0), 0>; 4495def : InstAlias<"mvni.4s $Vd, $imm", (MVNIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>; 4496 4497def : Pat<(v2i32 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))), 4498 (MVNIv2i32 imm0_255:$imm8, imm:$shift)>; 4499def : Pat<(v4i32 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))), 4500 (MVNIv4i32 imm0_255:$imm8, imm:$shift)>; 4501def : Pat<(v4i16 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))), 4502 (MVNIv4i16 imm0_255:$imm8, imm:$shift)>; 4503def : Pat<(v8i16 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))), 4504 (MVNIv8i16 imm0_255:$imm8, imm:$shift)>; 4505 4506// EDIT per word: 2s & 4s with MSL shifter 4507def MVNIv2s_msl : SIMDModifiedImmMoveMSL<0, 1, {1,1,0,?}, V64, "mvni", ".2s", 4508 [(set (v2i32 V64:$Rd), 4509 (AArch64mvni_msl imm0_255:$imm8, (i32 imm:$shift)))]>; 4510def MVNIv4s_msl : SIMDModifiedImmMoveMSL<1, 1, {1,1,0,?}, V128, "mvni", ".4s", 4511 [(set (v4i32 V128:$Rd), 4512 (AArch64mvni_msl imm0_255:$imm8, (i32 imm:$shift)))]>; 4513 4514//---------------------------------------------------------------------------- 4515// AdvSIMD indexed element 4516//---------------------------------------------------------------------------- 4517 4518let hasSideEffects = 0 in { 4519 defm FMLA : SIMDFPIndexedTied<0, 0b0001, "fmla">; 4520 defm FMLS : SIMDFPIndexedTied<0, 0b0101, "fmls">; 4521} 4522 4523// NOTE: Operands are reordered in the FMLA/FMLS PatFrags because the 4524// instruction expects the addend first, while the intrinsic expects it last. 4525 4526// On the other hand, there are quite a few valid combinatorial options due to 4527// the commutativity of multiplication and the fact that (-x) * y = x * (-y). 4528defm : SIMDFPIndexedTiedPatterns<"FMLA", 4529 TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)>>; 4530defm : SIMDFPIndexedTiedPatterns<"FMLA", 4531 TriOpFrag<(fma node:$MHS, node:$RHS, node:$LHS)>>; 4532 4533defm : SIMDFPIndexedTiedPatterns<"FMLS", 4534 TriOpFrag<(fma node:$MHS, (fneg node:$RHS), node:$LHS)> >; 4535defm : SIMDFPIndexedTiedPatterns<"FMLS", 4536 TriOpFrag<(fma node:$RHS, (fneg node:$MHS), node:$LHS)> >; 4537defm : SIMDFPIndexedTiedPatterns<"FMLS", 4538 TriOpFrag<(fma (fneg node:$RHS), node:$MHS, node:$LHS)> >; 4539defm : SIMDFPIndexedTiedPatterns<"FMLS", 4540 TriOpFrag<(fma (fneg node:$MHS), node:$RHS, node:$LHS)> >; 4541 4542multiclass FMLSIndexedAfterNegPatterns<SDPatternOperator OpNode> { 4543 // 3 variants for the .2s version: DUPLANE from 128-bit, DUPLANE from 64-bit 4544 // and DUP scalar. 4545 def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn), 4546 (AArch64duplane32 (v4f32 (fneg V128:$Rm)), 4547 VectorIndexS:$idx))), 4548 (FMLSv2i32_indexed V64:$Rd, V64:$Rn, V128:$Rm, VectorIndexS:$idx)>; 4549 def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn), 4550 (v2f32 (AArch64duplane32 4551 (v4f32 (insert_subvector undef, 4552 (v2f32 (fneg V64:$Rm)), 4553 (i32 0))), 4554 VectorIndexS:$idx)))), 4555 (FMLSv2i32_indexed V64:$Rd, V64:$Rn, 4556 (SUBREG_TO_REG (i32 0), V64:$Rm, dsub), 4557 VectorIndexS:$idx)>; 4558 def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn), 4559 (AArch64dup (f32 (fneg FPR32Op:$Rm))))), 4560 (FMLSv2i32_indexed V64:$Rd, V64:$Rn, 4561 (SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>; 4562 4563 // 3 variants for the .4s version: DUPLANE from 128-bit, DUPLANE from 64-bit 4564 // and DUP scalar. 4565 def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn), 4566 (AArch64duplane32 (v4f32 (fneg V128:$Rm)), 4567 VectorIndexS:$idx))), 4568 (FMLSv4i32_indexed V128:$Rd, V128:$Rn, V128:$Rm, 4569 VectorIndexS:$idx)>; 4570 def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn), 4571 (v4f32 (AArch64duplane32 4572 (v4f32 (insert_subvector undef, 4573 (v2f32 (fneg V64:$Rm)), 4574 (i32 0))), 4575 VectorIndexS:$idx)))), 4576 (FMLSv4i32_indexed V128:$Rd, V128:$Rn, 4577 (SUBREG_TO_REG (i32 0), V64:$Rm, dsub), 4578 VectorIndexS:$idx)>; 4579 def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn), 4580 (AArch64dup (f32 (fneg FPR32Op:$Rm))))), 4581 (FMLSv4i32_indexed V128:$Rd, V128:$Rn, 4582 (SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>; 4583 4584 // 2 variants for the .2d version: DUPLANE from 128-bit, and DUP scalar 4585 // (DUPLANE from 64-bit would be trivial). 4586 def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn), 4587 (AArch64duplane64 (v2f64 (fneg V128:$Rm)), 4588 VectorIndexD:$idx))), 4589 (FMLSv2i64_indexed 4590 V128:$Rd, V128:$Rn, V128:$Rm, VectorIndexS:$idx)>; 4591 def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn), 4592 (AArch64dup (f64 (fneg FPR64Op:$Rm))))), 4593 (FMLSv2i64_indexed V128:$Rd, V128:$Rn, 4594 (SUBREG_TO_REG (i32 0), FPR64Op:$Rm, dsub), (i64 0))>; 4595 4596 // 2 variants for 32-bit scalar version: extract from .2s or from .4s 4597 def : Pat<(f32 (OpNode (f32 FPR32:$Rd), (f32 FPR32:$Rn), 4598 (vector_extract (v4f32 (fneg V128:$Rm)), 4599 VectorIndexS:$idx))), 4600 (FMLSv1i32_indexed FPR32:$Rd, FPR32:$Rn, 4601 V128:$Rm, VectorIndexS:$idx)>; 4602 def : Pat<(f32 (OpNode (f32 FPR32:$Rd), (f32 FPR32:$Rn), 4603 (vector_extract (v4f32 (insert_subvector undef, 4604 (v2f32 (fneg V64:$Rm)), 4605 (i32 0))), 4606 VectorIndexS:$idx))), 4607 (FMLSv1i32_indexed FPR32:$Rd, FPR32:$Rn, 4608 (SUBREG_TO_REG (i32 0), V64:$Rm, dsub), VectorIndexS:$idx)>; 4609 4610 // 1 variant for 64-bit scalar version: extract from .1d or from .2d 4611 def : Pat<(f64 (OpNode (f64 FPR64:$Rd), (f64 FPR64:$Rn), 4612 (vector_extract (v2f64 (fneg V128:$Rm)), 4613 VectorIndexS:$idx))), 4614 (FMLSv1i64_indexed FPR64:$Rd, FPR64:$Rn, 4615 V128:$Rm, VectorIndexS:$idx)>; 4616} 4617 4618defm : FMLSIndexedAfterNegPatterns< 4619 TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)> >; 4620defm : FMLSIndexedAfterNegPatterns< 4621 TriOpFrag<(fma node:$MHS, node:$RHS, node:$LHS)> >; 4622 4623defm FMULX : SIMDFPIndexed<1, 0b1001, "fmulx", int_aarch64_neon_fmulx>; 4624defm FMUL : SIMDFPIndexed<0, 0b1001, "fmul", fmul>; 4625 4626def : Pat<(v2f32 (fmul V64:$Rn, (AArch64dup (f32 FPR32:$Rm)))), 4627 (FMULv2i32_indexed V64:$Rn, 4628 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rm, ssub), 4629 (i64 0))>; 4630def : Pat<(v4f32 (fmul V128:$Rn, (AArch64dup (f32 FPR32:$Rm)))), 4631 (FMULv4i32_indexed V128:$Rn, 4632 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rm, ssub), 4633 (i64 0))>; 4634def : Pat<(v2f64 (fmul V128:$Rn, (AArch64dup (f64 FPR64:$Rm)))), 4635 (FMULv2i64_indexed V128:$Rn, 4636 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$Rm, dsub), 4637 (i64 0))>; 4638 4639defm SQDMULH : SIMDIndexedHS<0, 0b1100, "sqdmulh", int_aarch64_neon_sqdmulh>; 4640defm SQRDMULH : SIMDIndexedHS<0, 0b1101, "sqrdmulh", int_aarch64_neon_sqrdmulh>; 4641defm MLA : SIMDVectorIndexedHSTied<1, 0b0000, "mla", 4642 TriOpFrag<(add node:$LHS, (mul node:$MHS, node:$RHS))>>; 4643defm MLS : SIMDVectorIndexedHSTied<1, 0b0100, "mls", 4644 TriOpFrag<(sub node:$LHS, (mul node:$MHS, node:$RHS))>>; 4645defm MUL : SIMDVectorIndexedHS<0, 0b1000, "mul", mul>; 4646defm SMLAL : SIMDVectorIndexedLongSDTied<0, 0b0010, "smlal", 4647 TriOpFrag<(add node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>; 4648defm SMLSL : SIMDVectorIndexedLongSDTied<0, 0b0110, "smlsl", 4649 TriOpFrag<(sub node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>; 4650defm SMULL : SIMDVectorIndexedLongSD<0, 0b1010, "smull", 4651 int_aarch64_neon_smull>; 4652defm SQDMLAL : SIMDIndexedLongSQDMLXSDTied<0, 0b0011, "sqdmlal", 4653 int_aarch64_neon_sqadd>; 4654defm SQDMLSL : SIMDIndexedLongSQDMLXSDTied<0, 0b0111, "sqdmlsl", 4655 int_aarch64_neon_sqsub>; 4656defm SQRDMLAH : SIMDIndexedSQRDMLxHSDTied<1, 0b1101, "sqrdmlah", 4657 int_aarch64_neon_sqadd>; 4658defm SQRDMLSH : SIMDIndexedSQRDMLxHSDTied<1, 0b1111, "sqrdmlsh", 4659 int_aarch64_neon_sqsub>; 4660defm SQDMULL : SIMDIndexedLongSD<0, 0b1011, "sqdmull", int_aarch64_neon_sqdmull>; 4661defm UMLAL : SIMDVectorIndexedLongSDTied<1, 0b0010, "umlal", 4662 TriOpFrag<(add node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>; 4663defm UMLSL : SIMDVectorIndexedLongSDTied<1, 0b0110, "umlsl", 4664 TriOpFrag<(sub node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>; 4665defm UMULL : SIMDVectorIndexedLongSD<1, 0b1010, "umull", 4666 int_aarch64_neon_umull>; 4667 4668// A scalar sqdmull with the second operand being a vector lane can be 4669// handled directly with the indexed instruction encoding. 4670def : Pat<(int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn), 4671 (vector_extract (v4i32 V128:$Vm), 4672 VectorIndexS:$idx)), 4673 (SQDMULLv1i64_indexed FPR32:$Rn, V128:$Vm, VectorIndexS:$idx)>; 4674 4675//---------------------------------------------------------------------------- 4676// AdvSIMD scalar shift instructions 4677//---------------------------------------------------------------------------- 4678defm FCVTZS : SIMDFPScalarRShift<0, 0b11111, "fcvtzs">; 4679defm FCVTZU : SIMDFPScalarRShift<1, 0b11111, "fcvtzu">; 4680defm SCVTF : SIMDFPScalarRShift<0, 0b11100, "scvtf">; 4681defm UCVTF : SIMDFPScalarRShift<1, 0b11100, "ucvtf">; 4682// Codegen patterns for the above. We don't put these directly on the 4683// instructions because TableGen's type inference can't handle the truth. 4684// Having the same base pattern for fp <--> int totally freaks it out. 4685def : Pat<(int_aarch64_neon_vcvtfp2fxs FPR32:$Rn, vecshiftR32:$imm), 4686 (FCVTZSs FPR32:$Rn, vecshiftR32:$imm)>; 4687def : Pat<(int_aarch64_neon_vcvtfp2fxu FPR32:$Rn, vecshiftR32:$imm), 4688 (FCVTZUs FPR32:$Rn, vecshiftR32:$imm)>; 4689def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxs (f64 FPR64:$Rn), vecshiftR64:$imm)), 4690 (FCVTZSd FPR64:$Rn, vecshiftR64:$imm)>; 4691def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxu (f64 FPR64:$Rn), vecshiftR64:$imm)), 4692 (FCVTZUd FPR64:$Rn, vecshiftR64:$imm)>; 4693def : Pat<(v1i64 (int_aarch64_neon_vcvtfp2fxs (v1f64 FPR64:$Rn), 4694 vecshiftR64:$imm)), 4695 (FCVTZSd FPR64:$Rn, vecshiftR64:$imm)>; 4696def : Pat<(v1i64 (int_aarch64_neon_vcvtfp2fxu (v1f64 FPR64:$Rn), 4697 vecshiftR64:$imm)), 4698 (FCVTZUd FPR64:$Rn, vecshiftR64:$imm)>; 4699def : Pat<(int_aarch64_neon_vcvtfxs2fp FPR32:$Rn, vecshiftR32:$imm), 4700 (SCVTFs FPR32:$Rn, vecshiftR32:$imm)>; 4701def : Pat<(int_aarch64_neon_vcvtfxu2fp FPR32:$Rn, vecshiftR32:$imm), 4702 (UCVTFs FPR32:$Rn, vecshiftR32:$imm)>; 4703def : Pat<(f64 (int_aarch64_neon_vcvtfxs2fp (i64 FPR64:$Rn), vecshiftR64:$imm)), 4704 (SCVTFd FPR64:$Rn, vecshiftR64:$imm)>; 4705def : Pat<(f64 (int_aarch64_neon_vcvtfxu2fp (i64 FPR64:$Rn), vecshiftR64:$imm)), 4706 (UCVTFd FPR64:$Rn, vecshiftR64:$imm)>; 4707def : Pat<(v1f64 (int_aarch64_neon_vcvtfxs2fp (v1i64 FPR64:$Rn), 4708 vecshiftR64:$imm)), 4709 (SCVTFd FPR64:$Rn, vecshiftR64:$imm)>; 4710def : Pat<(v1f64 (int_aarch64_neon_vcvtfxu2fp (v1i64 FPR64:$Rn), 4711 vecshiftR64:$imm)), 4712 (UCVTFd FPR64:$Rn, vecshiftR64:$imm)>; 4713 4714defm SHL : SIMDScalarLShiftD< 0, 0b01010, "shl", AArch64vshl>; 4715defm SLI : SIMDScalarLShiftDTied<1, 0b01010, "sli">; 4716defm SQRSHRN : SIMDScalarRShiftBHS< 0, 0b10011, "sqrshrn", 4717 int_aarch64_neon_sqrshrn>; 4718defm SQRSHRUN : SIMDScalarRShiftBHS< 1, 0b10001, "sqrshrun", 4719 int_aarch64_neon_sqrshrun>; 4720defm SQSHLU : SIMDScalarLShiftBHSD<1, 0b01100, "sqshlu", AArch64sqshlui>; 4721defm SQSHL : SIMDScalarLShiftBHSD<0, 0b01110, "sqshl", AArch64sqshli>; 4722defm SQSHRN : SIMDScalarRShiftBHS< 0, 0b10010, "sqshrn", 4723 int_aarch64_neon_sqshrn>; 4724defm SQSHRUN : SIMDScalarRShiftBHS< 1, 0b10000, "sqshrun", 4725 int_aarch64_neon_sqshrun>; 4726defm SRI : SIMDScalarRShiftDTied< 1, 0b01000, "sri">; 4727defm SRSHR : SIMDScalarRShiftD< 0, 0b00100, "srshr", AArch64srshri>; 4728defm SRSRA : SIMDScalarRShiftDTied< 0, 0b00110, "srsra", 4729 TriOpFrag<(add node:$LHS, 4730 (AArch64srshri node:$MHS, node:$RHS))>>; 4731defm SSHR : SIMDScalarRShiftD< 0, 0b00000, "sshr", AArch64vashr>; 4732defm SSRA : SIMDScalarRShiftDTied< 0, 0b00010, "ssra", 4733 TriOpFrag<(add node:$LHS, 4734 (AArch64vashr node:$MHS, node:$RHS))>>; 4735defm UQRSHRN : SIMDScalarRShiftBHS< 1, 0b10011, "uqrshrn", 4736 int_aarch64_neon_uqrshrn>; 4737defm UQSHL : SIMDScalarLShiftBHSD<1, 0b01110, "uqshl", AArch64uqshli>; 4738defm UQSHRN : SIMDScalarRShiftBHS< 1, 0b10010, "uqshrn", 4739 int_aarch64_neon_uqshrn>; 4740defm URSHR : SIMDScalarRShiftD< 1, 0b00100, "urshr", AArch64urshri>; 4741defm URSRA : SIMDScalarRShiftDTied< 1, 0b00110, "ursra", 4742 TriOpFrag<(add node:$LHS, 4743 (AArch64urshri node:$MHS, node:$RHS))>>; 4744defm USHR : SIMDScalarRShiftD< 1, 0b00000, "ushr", AArch64vlshr>; 4745defm USRA : SIMDScalarRShiftDTied< 1, 0b00010, "usra", 4746 TriOpFrag<(add node:$LHS, 4747 (AArch64vlshr node:$MHS, node:$RHS))>>; 4748 4749//---------------------------------------------------------------------------- 4750// AdvSIMD vector shift instructions 4751//---------------------------------------------------------------------------- 4752defm FCVTZS:SIMDVectorRShiftSD<0, 0b11111, "fcvtzs", int_aarch64_neon_vcvtfp2fxs>; 4753defm FCVTZU:SIMDVectorRShiftSD<1, 0b11111, "fcvtzu", int_aarch64_neon_vcvtfp2fxu>; 4754defm SCVTF: SIMDVectorRShiftToFP<0, 0b11100, "scvtf", 4755 int_aarch64_neon_vcvtfxs2fp>; 4756defm RSHRN : SIMDVectorRShiftNarrowBHS<0, 0b10001, "rshrn", 4757 int_aarch64_neon_rshrn>; 4758defm SHL : SIMDVectorLShiftBHSD<0, 0b01010, "shl", AArch64vshl>; 4759defm SHRN : SIMDVectorRShiftNarrowBHS<0, 0b10000, "shrn", 4760 BinOpFrag<(trunc (AArch64vashr node:$LHS, node:$RHS))>>; 4761defm SLI : SIMDVectorLShiftBHSDTied<1, 0b01010, "sli", int_aarch64_neon_vsli>; 4762def : Pat<(v1i64 (int_aarch64_neon_vsli (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn), 4763 (i32 vecshiftL64:$imm))), 4764 (SLId FPR64:$Rd, FPR64:$Rn, vecshiftL64:$imm)>; 4765defm SQRSHRN : SIMDVectorRShiftNarrowBHS<0, 0b10011, "sqrshrn", 4766 int_aarch64_neon_sqrshrn>; 4767defm SQRSHRUN: SIMDVectorRShiftNarrowBHS<1, 0b10001, "sqrshrun", 4768 int_aarch64_neon_sqrshrun>; 4769defm SQSHLU : SIMDVectorLShiftBHSD<1, 0b01100, "sqshlu", AArch64sqshlui>; 4770defm SQSHL : SIMDVectorLShiftBHSD<0, 0b01110, "sqshl", AArch64sqshli>; 4771defm SQSHRN : SIMDVectorRShiftNarrowBHS<0, 0b10010, "sqshrn", 4772 int_aarch64_neon_sqshrn>; 4773defm SQSHRUN : SIMDVectorRShiftNarrowBHS<1, 0b10000, "sqshrun", 4774 int_aarch64_neon_sqshrun>; 4775defm SRI : SIMDVectorRShiftBHSDTied<1, 0b01000, "sri", int_aarch64_neon_vsri>; 4776def : Pat<(v1i64 (int_aarch64_neon_vsri (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn), 4777 (i32 vecshiftR64:$imm))), 4778 (SRId FPR64:$Rd, FPR64:$Rn, vecshiftR64:$imm)>; 4779defm SRSHR : SIMDVectorRShiftBHSD<0, 0b00100, "srshr", AArch64srshri>; 4780defm SRSRA : SIMDVectorRShiftBHSDTied<0, 0b00110, "srsra", 4781 TriOpFrag<(add node:$LHS, 4782 (AArch64srshri node:$MHS, node:$RHS))> >; 4783defm SSHLL : SIMDVectorLShiftLongBHSD<0, 0b10100, "sshll", 4784 BinOpFrag<(AArch64vshl (sext node:$LHS), node:$RHS)>>; 4785 4786defm SSHR : SIMDVectorRShiftBHSD<0, 0b00000, "sshr", AArch64vashr>; 4787defm SSRA : SIMDVectorRShiftBHSDTied<0, 0b00010, "ssra", 4788 TriOpFrag<(add node:$LHS, (AArch64vashr node:$MHS, node:$RHS))>>; 4789defm UCVTF : SIMDVectorRShiftToFP<1, 0b11100, "ucvtf", 4790 int_aarch64_neon_vcvtfxu2fp>; 4791defm UQRSHRN : SIMDVectorRShiftNarrowBHS<1, 0b10011, "uqrshrn", 4792 int_aarch64_neon_uqrshrn>; 4793defm UQSHL : SIMDVectorLShiftBHSD<1, 0b01110, "uqshl", AArch64uqshli>; 4794defm UQSHRN : SIMDVectorRShiftNarrowBHS<1, 0b10010, "uqshrn", 4795 int_aarch64_neon_uqshrn>; 4796defm URSHR : SIMDVectorRShiftBHSD<1, 0b00100, "urshr", AArch64urshri>; 4797defm URSRA : SIMDVectorRShiftBHSDTied<1, 0b00110, "ursra", 4798 TriOpFrag<(add node:$LHS, 4799 (AArch64urshri node:$MHS, node:$RHS))> >; 4800defm USHLL : SIMDVectorLShiftLongBHSD<1, 0b10100, "ushll", 4801 BinOpFrag<(AArch64vshl (zext node:$LHS), node:$RHS)>>; 4802defm USHR : SIMDVectorRShiftBHSD<1, 0b00000, "ushr", AArch64vlshr>; 4803defm USRA : SIMDVectorRShiftBHSDTied<1, 0b00010, "usra", 4804 TriOpFrag<(add node:$LHS, (AArch64vlshr node:$MHS, node:$RHS))> >; 4805 4806// SHRN patterns for when a logical right shift was used instead of arithmetic 4807// (the immediate guarantees no sign bits actually end up in the result so it 4808// doesn't matter). 4809def : Pat<(v8i8 (trunc (AArch64vlshr (v8i16 V128:$Rn), vecshiftR16Narrow:$imm))), 4810 (SHRNv8i8_shift V128:$Rn, vecshiftR16Narrow:$imm)>; 4811def : Pat<(v4i16 (trunc (AArch64vlshr (v4i32 V128:$Rn), vecshiftR32Narrow:$imm))), 4812 (SHRNv4i16_shift V128:$Rn, vecshiftR32Narrow:$imm)>; 4813def : Pat<(v2i32 (trunc (AArch64vlshr (v2i64 V128:$Rn), vecshiftR64Narrow:$imm))), 4814 (SHRNv2i32_shift V128:$Rn, vecshiftR64Narrow:$imm)>; 4815 4816def : Pat<(v16i8 (concat_vectors (v8i8 V64:$Rd), 4817 (trunc (AArch64vlshr (v8i16 V128:$Rn), 4818 vecshiftR16Narrow:$imm)))), 4819 (SHRNv16i8_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), 4820 V128:$Rn, vecshiftR16Narrow:$imm)>; 4821def : Pat<(v8i16 (concat_vectors (v4i16 V64:$Rd), 4822 (trunc (AArch64vlshr (v4i32 V128:$Rn), 4823 vecshiftR32Narrow:$imm)))), 4824 (SHRNv8i16_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), 4825 V128:$Rn, vecshiftR32Narrow:$imm)>; 4826def : Pat<(v4i32 (concat_vectors (v2i32 V64:$Rd), 4827 (trunc (AArch64vlshr (v2i64 V128:$Rn), 4828 vecshiftR64Narrow:$imm)))), 4829 (SHRNv4i32_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), 4830 V128:$Rn, vecshiftR32Narrow:$imm)>; 4831 4832// Vector sign and zero extensions are implemented with SSHLL and USSHLL. 4833// Anyexts are implemented as zexts. 4834def : Pat<(v8i16 (sext (v8i8 V64:$Rn))), (SSHLLv8i8_shift V64:$Rn, (i32 0))>; 4835def : Pat<(v8i16 (zext (v8i8 V64:$Rn))), (USHLLv8i8_shift V64:$Rn, (i32 0))>; 4836def : Pat<(v8i16 (anyext (v8i8 V64:$Rn))), (USHLLv8i8_shift V64:$Rn, (i32 0))>; 4837def : Pat<(v4i32 (sext (v4i16 V64:$Rn))), (SSHLLv4i16_shift V64:$Rn, (i32 0))>; 4838def : Pat<(v4i32 (zext (v4i16 V64:$Rn))), (USHLLv4i16_shift V64:$Rn, (i32 0))>; 4839def : Pat<(v4i32 (anyext (v4i16 V64:$Rn))), (USHLLv4i16_shift V64:$Rn, (i32 0))>; 4840def : Pat<(v2i64 (sext (v2i32 V64:$Rn))), (SSHLLv2i32_shift V64:$Rn, (i32 0))>; 4841def : Pat<(v2i64 (zext (v2i32 V64:$Rn))), (USHLLv2i32_shift V64:$Rn, (i32 0))>; 4842def : Pat<(v2i64 (anyext (v2i32 V64:$Rn))), (USHLLv2i32_shift V64:$Rn, (i32 0))>; 4843// Also match an extend from the upper half of a 128 bit source register. 4844def : Pat<(v8i16 (anyext (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))), 4845 (USHLLv16i8_shift V128:$Rn, (i32 0))>; 4846def : Pat<(v8i16 (zext (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))), 4847 (USHLLv16i8_shift V128:$Rn, (i32 0))>; 4848def : Pat<(v8i16 (sext (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))), 4849 (SSHLLv16i8_shift V128:$Rn, (i32 0))>; 4850def : Pat<(v4i32 (anyext (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))), 4851 (USHLLv8i16_shift V128:$Rn, (i32 0))>; 4852def : Pat<(v4i32 (zext (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))), 4853 (USHLLv8i16_shift V128:$Rn, (i32 0))>; 4854def : Pat<(v4i32 (sext (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))), 4855 (SSHLLv8i16_shift V128:$Rn, (i32 0))>; 4856def : Pat<(v2i64 (anyext (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))), 4857 (USHLLv4i32_shift V128:$Rn, (i32 0))>; 4858def : Pat<(v2i64 (zext (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))), 4859 (USHLLv4i32_shift V128:$Rn, (i32 0))>; 4860def : Pat<(v2i64 (sext (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))), 4861 (SSHLLv4i32_shift V128:$Rn, (i32 0))>; 4862 4863// Vector shift sxtl aliases 4864def : InstAlias<"sxtl.8h $dst, $src1", 4865 (SSHLLv8i8_shift V128:$dst, V64:$src1, 0)>; 4866def : InstAlias<"sxtl $dst.8h, $src1.8b", 4867 (SSHLLv8i8_shift V128:$dst, V64:$src1, 0)>; 4868def : InstAlias<"sxtl.4s $dst, $src1", 4869 (SSHLLv4i16_shift V128:$dst, V64:$src1, 0)>; 4870def : InstAlias<"sxtl $dst.4s, $src1.4h", 4871 (SSHLLv4i16_shift V128:$dst, V64:$src1, 0)>; 4872def : InstAlias<"sxtl.2d $dst, $src1", 4873 (SSHLLv2i32_shift V128:$dst, V64:$src1, 0)>; 4874def : InstAlias<"sxtl $dst.2d, $src1.2s", 4875 (SSHLLv2i32_shift V128:$dst, V64:$src1, 0)>; 4876 4877// Vector shift sxtl2 aliases 4878def : InstAlias<"sxtl2.8h $dst, $src1", 4879 (SSHLLv16i8_shift V128:$dst, V128:$src1, 0)>; 4880def : InstAlias<"sxtl2 $dst.8h, $src1.16b", 4881 (SSHLLv16i8_shift V128:$dst, V128:$src1, 0)>; 4882def : InstAlias<"sxtl2.4s $dst, $src1", 4883 (SSHLLv8i16_shift V128:$dst, V128:$src1, 0)>; 4884def : InstAlias<"sxtl2 $dst.4s, $src1.8h", 4885 (SSHLLv8i16_shift V128:$dst, V128:$src1, 0)>; 4886def : InstAlias<"sxtl2.2d $dst, $src1", 4887 (SSHLLv4i32_shift V128:$dst, V128:$src1, 0)>; 4888def : InstAlias<"sxtl2 $dst.2d, $src1.4s", 4889 (SSHLLv4i32_shift V128:$dst, V128:$src1, 0)>; 4890 4891// Vector shift uxtl aliases 4892def : InstAlias<"uxtl.8h $dst, $src1", 4893 (USHLLv8i8_shift V128:$dst, V64:$src1, 0)>; 4894def : InstAlias<"uxtl $dst.8h, $src1.8b", 4895 (USHLLv8i8_shift V128:$dst, V64:$src1, 0)>; 4896def : InstAlias<"uxtl.4s $dst, $src1", 4897 (USHLLv4i16_shift V128:$dst, V64:$src1, 0)>; 4898def : InstAlias<"uxtl $dst.4s, $src1.4h", 4899 (USHLLv4i16_shift V128:$dst, V64:$src1, 0)>; 4900def : InstAlias<"uxtl.2d $dst, $src1", 4901 (USHLLv2i32_shift V128:$dst, V64:$src1, 0)>; 4902def : InstAlias<"uxtl $dst.2d, $src1.2s", 4903 (USHLLv2i32_shift V128:$dst, V64:$src1, 0)>; 4904 4905// Vector shift uxtl2 aliases 4906def : InstAlias<"uxtl2.8h $dst, $src1", 4907 (USHLLv16i8_shift V128:$dst, V128:$src1, 0)>; 4908def : InstAlias<"uxtl2 $dst.8h, $src1.16b", 4909 (USHLLv16i8_shift V128:$dst, V128:$src1, 0)>; 4910def : InstAlias<"uxtl2.4s $dst, $src1", 4911 (USHLLv8i16_shift V128:$dst, V128:$src1, 0)>; 4912def : InstAlias<"uxtl2 $dst.4s, $src1.8h", 4913 (USHLLv8i16_shift V128:$dst, V128:$src1, 0)>; 4914def : InstAlias<"uxtl2.2d $dst, $src1", 4915 (USHLLv4i32_shift V128:$dst, V128:$src1, 0)>; 4916def : InstAlias<"uxtl2 $dst.2d, $src1.4s", 4917 (USHLLv4i32_shift V128:$dst, V128:$src1, 0)>; 4918 4919// If an integer is about to be converted to a floating point value, 4920// just load it on the floating point unit. 4921// These patterns are more complex because floating point loads do not 4922// support sign extension. 4923// The sign extension has to be explicitly added and is only supported for 4924// one step: byte-to-half, half-to-word, word-to-doubleword. 4925// SCVTF GPR -> FPR is 9 cycles. 4926// SCVTF FPR -> FPR is 4 cyclces. 4927// (sign extension with lengthen) SXTL FPR -> FPR is 2 cycles. 4928// Therefore, we can do 2 sign extensions and one SCVTF FPR -> FPR 4929// and still being faster. 4930// However, this is not good for code size. 4931// 8-bits -> float. 2 sizes step-up. 4932class SExtLoadi8CVTf32Pat<dag addrmode, dag INST> 4933 : Pat<(f32 (sint_to_fp (i32 (sextloadi8 addrmode)))), 4934 (SCVTFv1i32 (f32 (EXTRACT_SUBREG 4935 (SSHLLv4i16_shift 4936 (f64 4937 (EXTRACT_SUBREG 4938 (SSHLLv8i8_shift 4939 (INSERT_SUBREG (f64 (IMPLICIT_DEF)), 4940 INST, 4941 bsub), 4942 0), 4943 dsub)), 4944 0), 4945 ssub)))>, 4946 Requires<[NotForCodeSize, UseAlternateSExtLoadCVTF32]>; 4947 4948def : SExtLoadi8CVTf32Pat<(ro8.Wpat GPR64sp:$Rn, GPR32:$Rm, ro8.Wext:$ext), 4949 (LDRBroW GPR64sp:$Rn, GPR32:$Rm, ro8.Wext:$ext)>; 4950def : SExtLoadi8CVTf32Pat<(ro8.Xpat GPR64sp:$Rn, GPR64:$Rm, ro8.Xext:$ext), 4951 (LDRBroX GPR64sp:$Rn, GPR64:$Rm, ro8.Xext:$ext)>; 4952def : SExtLoadi8CVTf32Pat<(am_indexed8 GPR64sp:$Rn, uimm12s1:$offset), 4953 (LDRBui GPR64sp:$Rn, uimm12s1:$offset)>; 4954def : SExtLoadi8CVTf32Pat<(am_unscaled8 GPR64sp:$Rn, simm9:$offset), 4955 (LDURBi GPR64sp:$Rn, simm9:$offset)>; 4956 4957// 16-bits -> float. 1 size step-up. 4958class SExtLoadi16CVTf32Pat<dag addrmode, dag INST> 4959 : Pat<(f32 (sint_to_fp (i32 (sextloadi16 addrmode)))), 4960 (SCVTFv1i32 (f32 (EXTRACT_SUBREG 4961 (SSHLLv4i16_shift 4962 (INSERT_SUBREG (f64 (IMPLICIT_DEF)), 4963 INST, 4964 hsub), 4965 0), 4966 ssub)))>, Requires<[NotForCodeSize]>; 4967 4968def : SExtLoadi16CVTf32Pat<(ro16.Wpat GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext), 4969 (LDRHroW GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext)>; 4970def : SExtLoadi16CVTf32Pat<(ro16.Xpat GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext), 4971 (LDRHroX GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext)>; 4972def : SExtLoadi16CVTf32Pat<(am_indexed16 GPR64sp:$Rn, uimm12s2:$offset), 4973 (LDRHui GPR64sp:$Rn, uimm12s2:$offset)>; 4974def : SExtLoadi16CVTf32Pat<(am_unscaled16 GPR64sp:$Rn, simm9:$offset), 4975 (LDURHi GPR64sp:$Rn, simm9:$offset)>; 4976 4977// 32-bits to 32-bits are handled in target specific dag combine: 4978// performIntToFpCombine. 4979// 64-bits integer to 32-bits floating point, not possible with 4980// SCVTF on floating point registers (both source and destination 4981// must have the same size). 4982 4983// Here are the patterns for 8, 16, 32, and 64-bits to double. 4984// 8-bits -> double. 3 size step-up: give up. 4985// 16-bits -> double. 2 size step. 4986class SExtLoadi16CVTf64Pat<dag addrmode, dag INST> 4987 : Pat <(f64 (sint_to_fp (i32 (sextloadi16 addrmode)))), 4988 (SCVTFv1i64 (f64 (EXTRACT_SUBREG 4989 (SSHLLv2i32_shift 4990 (f64 4991 (EXTRACT_SUBREG 4992 (SSHLLv4i16_shift 4993 (INSERT_SUBREG (f64 (IMPLICIT_DEF)), 4994 INST, 4995 hsub), 4996 0), 4997 dsub)), 4998 0), 4999 dsub)))>, 5000 Requires<[NotForCodeSize, UseAlternateSExtLoadCVTF32]>; 5001 5002def : SExtLoadi16CVTf64Pat<(ro16.Wpat GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext), 5003 (LDRHroW GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext)>; 5004def : SExtLoadi16CVTf64Pat<(ro16.Xpat GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext), 5005 (LDRHroX GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext)>; 5006def : SExtLoadi16CVTf64Pat<(am_indexed16 GPR64sp:$Rn, uimm12s2:$offset), 5007 (LDRHui GPR64sp:$Rn, uimm12s2:$offset)>; 5008def : SExtLoadi16CVTf64Pat<(am_unscaled16 GPR64sp:$Rn, simm9:$offset), 5009 (LDURHi GPR64sp:$Rn, simm9:$offset)>; 5010// 32-bits -> double. 1 size step-up. 5011class SExtLoadi32CVTf64Pat<dag addrmode, dag INST> 5012 : Pat <(f64 (sint_to_fp (i32 (load addrmode)))), 5013 (SCVTFv1i64 (f64 (EXTRACT_SUBREG 5014 (SSHLLv2i32_shift 5015 (INSERT_SUBREG (f64 (IMPLICIT_DEF)), 5016 INST, 5017 ssub), 5018 0), 5019 dsub)))>, Requires<[NotForCodeSize]>; 5020 5021def : SExtLoadi32CVTf64Pat<(ro32.Wpat GPR64sp:$Rn, GPR32:$Rm, ro32.Wext:$ext), 5022 (LDRSroW GPR64sp:$Rn, GPR32:$Rm, ro32.Wext:$ext)>; 5023def : SExtLoadi32CVTf64Pat<(ro32.Xpat GPR64sp:$Rn, GPR64:$Rm, ro32.Xext:$ext), 5024 (LDRSroX GPR64sp:$Rn, GPR64:$Rm, ro32.Xext:$ext)>; 5025def : SExtLoadi32CVTf64Pat<(am_indexed32 GPR64sp:$Rn, uimm12s4:$offset), 5026 (LDRSui GPR64sp:$Rn, uimm12s4:$offset)>; 5027def : SExtLoadi32CVTf64Pat<(am_unscaled32 GPR64sp:$Rn, simm9:$offset), 5028 (LDURSi GPR64sp:$Rn, simm9:$offset)>; 5029 5030// 64-bits -> double are handled in target specific dag combine: 5031// performIntToFpCombine. 5032 5033 5034//---------------------------------------------------------------------------- 5035// AdvSIMD Load-Store Structure 5036//---------------------------------------------------------------------------- 5037defm LD1 : SIMDLd1Multiple<"ld1">; 5038defm LD2 : SIMDLd2Multiple<"ld2">; 5039defm LD3 : SIMDLd3Multiple<"ld3">; 5040defm LD4 : SIMDLd4Multiple<"ld4">; 5041 5042defm ST1 : SIMDSt1Multiple<"st1">; 5043defm ST2 : SIMDSt2Multiple<"st2">; 5044defm ST3 : SIMDSt3Multiple<"st3">; 5045defm ST4 : SIMDSt4Multiple<"st4">; 5046 5047class Ld1Pat<ValueType ty, Instruction INST> 5048 : Pat<(ty (load GPR64sp:$Rn)), (INST GPR64sp:$Rn)>; 5049 5050def : Ld1Pat<v16i8, LD1Onev16b>; 5051def : Ld1Pat<v8i16, LD1Onev8h>; 5052def : Ld1Pat<v4i32, LD1Onev4s>; 5053def : Ld1Pat<v2i64, LD1Onev2d>; 5054def : Ld1Pat<v8i8, LD1Onev8b>; 5055def : Ld1Pat<v4i16, LD1Onev4h>; 5056def : Ld1Pat<v2i32, LD1Onev2s>; 5057def : Ld1Pat<v1i64, LD1Onev1d>; 5058 5059class St1Pat<ValueType ty, Instruction INST> 5060 : Pat<(store ty:$Vt, GPR64sp:$Rn), 5061 (INST ty:$Vt, GPR64sp:$Rn)>; 5062 5063def : St1Pat<v16i8, ST1Onev16b>; 5064def : St1Pat<v8i16, ST1Onev8h>; 5065def : St1Pat<v4i32, ST1Onev4s>; 5066def : St1Pat<v2i64, ST1Onev2d>; 5067def : St1Pat<v8i8, ST1Onev8b>; 5068def : St1Pat<v4i16, ST1Onev4h>; 5069def : St1Pat<v2i32, ST1Onev2s>; 5070def : St1Pat<v1i64, ST1Onev1d>; 5071 5072//--- 5073// Single-element 5074//--- 5075 5076defm LD1R : SIMDLdR<0, 0b110, 0, "ld1r", "One", 1, 2, 4, 8>; 5077defm LD2R : SIMDLdR<1, 0b110, 0, "ld2r", "Two", 2, 4, 8, 16>; 5078defm LD3R : SIMDLdR<0, 0b111, 0, "ld3r", "Three", 3, 6, 12, 24>; 5079defm LD4R : SIMDLdR<1, 0b111, 0, "ld4r", "Four", 4, 8, 16, 32>; 5080let mayLoad = 1, hasSideEffects = 0 in { 5081defm LD1 : SIMDLdSingleBTied<0, 0b000, "ld1", VecListOneb, GPR64pi1>; 5082defm LD1 : SIMDLdSingleHTied<0, 0b010, 0, "ld1", VecListOneh, GPR64pi2>; 5083defm LD1 : SIMDLdSingleSTied<0, 0b100, 0b00, "ld1", VecListOnes, GPR64pi4>; 5084defm LD1 : SIMDLdSingleDTied<0, 0b100, 0b01, "ld1", VecListOned, GPR64pi8>; 5085defm LD2 : SIMDLdSingleBTied<1, 0b000, "ld2", VecListTwob, GPR64pi2>; 5086defm LD2 : SIMDLdSingleHTied<1, 0b010, 0, "ld2", VecListTwoh, GPR64pi4>; 5087defm LD2 : SIMDLdSingleSTied<1, 0b100, 0b00, "ld2", VecListTwos, GPR64pi8>; 5088defm LD2 : SIMDLdSingleDTied<1, 0b100, 0b01, "ld2", VecListTwod, GPR64pi16>; 5089defm LD3 : SIMDLdSingleBTied<0, 0b001, "ld3", VecListThreeb, GPR64pi3>; 5090defm LD3 : SIMDLdSingleHTied<0, 0b011, 0, "ld3", VecListThreeh, GPR64pi6>; 5091defm LD3 : SIMDLdSingleSTied<0, 0b101, 0b00, "ld3", VecListThrees, GPR64pi12>; 5092defm LD3 : SIMDLdSingleDTied<0, 0b101, 0b01, "ld3", VecListThreed, GPR64pi24>; 5093defm LD4 : SIMDLdSingleBTied<1, 0b001, "ld4", VecListFourb, GPR64pi4>; 5094defm LD4 : SIMDLdSingleHTied<1, 0b011, 0, "ld4", VecListFourh, GPR64pi8>; 5095defm LD4 : SIMDLdSingleSTied<1, 0b101, 0b00, "ld4", VecListFours, GPR64pi16>; 5096defm LD4 : SIMDLdSingleDTied<1, 0b101, 0b01, "ld4", VecListFourd, GPR64pi32>; 5097} 5098 5099def : Pat<(v8i8 (AArch64dup (i32 (extloadi8 GPR64sp:$Rn)))), 5100 (LD1Rv8b GPR64sp:$Rn)>; 5101def : Pat<(v16i8 (AArch64dup (i32 (extloadi8 GPR64sp:$Rn)))), 5102 (LD1Rv16b GPR64sp:$Rn)>; 5103def : Pat<(v4i16 (AArch64dup (i32 (extloadi16 GPR64sp:$Rn)))), 5104 (LD1Rv4h GPR64sp:$Rn)>; 5105def : Pat<(v8i16 (AArch64dup (i32 (extloadi16 GPR64sp:$Rn)))), 5106 (LD1Rv8h GPR64sp:$Rn)>; 5107def : Pat<(v2i32 (AArch64dup (i32 (load GPR64sp:$Rn)))), 5108 (LD1Rv2s GPR64sp:$Rn)>; 5109def : Pat<(v4i32 (AArch64dup (i32 (load GPR64sp:$Rn)))), 5110 (LD1Rv4s GPR64sp:$Rn)>; 5111def : Pat<(v2i64 (AArch64dup (i64 (load GPR64sp:$Rn)))), 5112 (LD1Rv2d GPR64sp:$Rn)>; 5113def : Pat<(v1i64 (AArch64dup (i64 (load GPR64sp:$Rn)))), 5114 (LD1Rv1d GPR64sp:$Rn)>; 5115// Grab the floating point version too 5116def : Pat<(v2f32 (AArch64dup (f32 (load GPR64sp:$Rn)))), 5117 (LD1Rv2s GPR64sp:$Rn)>; 5118def : Pat<(v4f32 (AArch64dup (f32 (load GPR64sp:$Rn)))), 5119 (LD1Rv4s GPR64sp:$Rn)>; 5120def : Pat<(v2f64 (AArch64dup (f64 (load GPR64sp:$Rn)))), 5121 (LD1Rv2d GPR64sp:$Rn)>; 5122def : Pat<(v1f64 (AArch64dup (f64 (load GPR64sp:$Rn)))), 5123 (LD1Rv1d GPR64sp:$Rn)>; 5124def : Pat<(v4f16 (AArch64dup (f16 (load GPR64sp:$Rn)))), 5125 (LD1Rv4h GPR64sp:$Rn)>; 5126def : Pat<(v8f16 (AArch64dup (f16 (load GPR64sp:$Rn)))), 5127 (LD1Rv8h GPR64sp:$Rn)>; 5128 5129class Ld1Lane128Pat<SDPatternOperator scalar_load, Operand VecIndex, 5130 ValueType VTy, ValueType STy, Instruction LD1> 5131 : Pat<(vector_insert (VTy VecListOne128:$Rd), 5132 (STy (scalar_load GPR64sp:$Rn)), VecIndex:$idx), 5133 (LD1 VecListOne128:$Rd, VecIndex:$idx, GPR64sp:$Rn)>; 5134 5135def : Ld1Lane128Pat<extloadi8, VectorIndexB, v16i8, i32, LD1i8>; 5136def : Ld1Lane128Pat<extloadi16, VectorIndexH, v8i16, i32, LD1i16>; 5137def : Ld1Lane128Pat<load, VectorIndexS, v4i32, i32, LD1i32>; 5138def : Ld1Lane128Pat<load, VectorIndexS, v4f32, f32, LD1i32>; 5139def : Ld1Lane128Pat<load, VectorIndexD, v2i64, i64, LD1i64>; 5140def : Ld1Lane128Pat<load, VectorIndexD, v2f64, f64, LD1i64>; 5141def : Ld1Lane128Pat<load, VectorIndexH, v8f16, f16, LD1i16>; 5142 5143class Ld1Lane64Pat<SDPatternOperator scalar_load, Operand VecIndex, 5144 ValueType VTy, ValueType STy, Instruction LD1> 5145 : Pat<(vector_insert (VTy VecListOne64:$Rd), 5146 (STy (scalar_load GPR64sp:$Rn)), VecIndex:$idx), 5147 (EXTRACT_SUBREG 5148 (LD1 (SUBREG_TO_REG (i32 0), VecListOne64:$Rd, dsub), 5149 VecIndex:$idx, GPR64sp:$Rn), 5150 dsub)>; 5151 5152def : Ld1Lane64Pat<extloadi8, VectorIndexB, v8i8, i32, LD1i8>; 5153def : Ld1Lane64Pat<extloadi16, VectorIndexH, v4i16, i32, LD1i16>; 5154def : Ld1Lane64Pat<load, VectorIndexS, v2i32, i32, LD1i32>; 5155def : Ld1Lane64Pat<load, VectorIndexS, v2f32, f32, LD1i32>; 5156def : Ld1Lane64Pat<load, VectorIndexH, v4f16, f16, LD1i16>; 5157 5158 5159defm LD1 : SIMDLdSt1SingleAliases<"ld1">; 5160defm LD2 : SIMDLdSt2SingleAliases<"ld2">; 5161defm LD3 : SIMDLdSt3SingleAliases<"ld3">; 5162defm LD4 : SIMDLdSt4SingleAliases<"ld4">; 5163 5164// Stores 5165defm ST1 : SIMDStSingleB<0, 0b000, "st1", VecListOneb, GPR64pi1>; 5166defm ST1 : SIMDStSingleH<0, 0b010, 0, "st1", VecListOneh, GPR64pi2>; 5167defm ST1 : SIMDStSingleS<0, 0b100, 0b00, "st1", VecListOnes, GPR64pi4>; 5168defm ST1 : SIMDStSingleD<0, 0b100, 0b01, "st1", VecListOned, GPR64pi8>; 5169 5170let AddedComplexity = 19 in 5171class St1Lane128Pat<SDPatternOperator scalar_store, Operand VecIndex, 5172 ValueType VTy, ValueType STy, Instruction ST1> 5173 : Pat<(scalar_store 5174 (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)), 5175 GPR64sp:$Rn), 5176 (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn)>; 5177 5178def : St1Lane128Pat<truncstorei8, VectorIndexB, v16i8, i32, ST1i8>; 5179def : St1Lane128Pat<truncstorei16, VectorIndexH, v8i16, i32, ST1i16>; 5180def : St1Lane128Pat<store, VectorIndexS, v4i32, i32, ST1i32>; 5181def : St1Lane128Pat<store, VectorIndexS, v4f32, f32, ST1i32>; 5182def : St1Lane128Pat<store, VectorIndexD, v2i64, i64, ST1i64>; 5183def : St1Lane128Pat<store, VectorIndexD, v2f64, f64, ST1i64>; 5184def : St1Lane128Pat<store, VectorIndexH, v8f16, f16, ST1i16>; 5185 5186let AddedComplexity = 19 in 5187class St1Lane64Pat<SDPatternOperator scalar_store, Operand VecIndex, 5188 ValueType VTy, ValueType STy, Instruction ST1> 5189 : Pat<(scalar_store 5190 (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)), 5191 GPR64sp:$Rn), 5192 (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub), 5193 VecIndex:$idx, GPR64sp:$Rn)>; 5194 5195def : St1Lane64Pat<truncstorei8, VectorIndexB, v8i8, i32, ST1i8>; 5196def : St1Lane64Pat<truncstorei16, VectorIndexH, v4i16, i32, ST1i16>; 5197def : St1Lane64Pat<store, VectorIndexS, v2i32, i32, ST1i32>; 5198def : St1Lane64Pat<store, VectorIndexS, v2f32, f32, ST1i32>; 5199def : St1Lane64Pat<store, VectorIndexH, v4f16, f16, ST1i16>; 5200 5201multiclass St1LanePost64Pat<SDPatternOperator scalar_store, Operand VecIndex, 5202 ValueType VTy, ValueType STy, Instruction ST1, 5203 int offset> { 5204 def : Pat<(scalar_store 5205 (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)), 5206 GPR64sp:$Rn, offset), 5207 (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub), 5208 VecIndex:$idx, GPR64sp:$Rn, XZR)>; 5209 5210 def : Pat<(scalar_store 5211 (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)), 5212 GPR64sp:$Rn, GPR64:$Rm), 5213 (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub), 5214 VecIndex:$idx, GPR64sp:$Rn, $Rm)>; 5215} 5216 5217defm : St1LanePost64Pat<post_truncsti8, VectorIndexB, v8i8, i32, ST1i8_POST, 1>; 5218defm : St1LanePost64Pat<post_truncsti16, VectorIndexH, v4i16, i32, ST1i16_POST, 5219 2>; 5220defm : St1LanePost64Pat<post_store, VectorIndexS, v2i32, i32, ST1i32_POST, 4>; 5221defm : St1LanePost64Pat<post_store, VectorIndexS, v2f32, f32, ST1i32_POST, 4>; 5222defm : St1LanePost64Pat<post_store, VectorIndexD, v1i64, i64, ST1i64_POST, 8>; 5223defm : St1LanePost64Pat<post_store, VectorIndexD, v1f64, f64, ST1i64_POST, 8>; 5224defm : St1LanePost64Pat<post_store, VectorIndexH, v4f16, f16, ST1i16_POST, 2>; 5225 5226multiclass St1LanePost128Pat<SDPatternOperator scalar_store, Operand VecIndex, 5227 ValueType VTy, ValueType STy, Instruction ST1, 5228 int offset> { 5229 def : Pat<(scalar_store 5230 (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)), 5231 GPR64sp:$Rn, offset), 5232 (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn, XZR)>; 5233 5234 def : Pat<(scalar_store 5235 (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)), 5236 GPR64sp:$Rn, GPR64:$Rm), 5237 (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn, $Rm)>; 5238} 5239 5240defm : St1LanePost128Pat<post_truncsti8, VectorIndexB, v16i8, i32, ST1i8_POST, 5241 1>; 5242defm : St1LanePost128Pat<post_truncsti16, VectorIndexH, v8i16, i32, ST1i16_POST, 5243 2>; 5244defm : St1LanePost128Pat<post_store, VectorIndexS, v4i32, i32, ST1i32_POST, 4>; 5245defm : St1LanePost128Pat<post_store, VectorIndexS, v4f32, f32, ST1i32_POST, 4>; 5246defm : St1LanePost128Pat<post_store, VectorIndexD, v2i64, i64, ST1i64_POST, 8>; 5247defm : St1LanePost128Pat<post_store, VectorIndexD, v2f64, f64, ST1i64_POST, 8>; 5248defm : St1LanePost128Pat<post_store, VectorIndexH, v8f16, f16, ST1i16_POST, 2>; 5249 5250let mayStore = 1, hasSideEffects = 0 in { 5251defm ST2 : SIMDStSingleB<1, 0b000, "st2", VecListTwob, GPR64pi2>; 5252defm ST2 : SIMDStSingleH<1, 0b010, 0, "st2", VecListTwoh, GPR64pi4>; 5253defm ST2 : SIMDStSingleS<1, 0b100, 0b00, "st2", VecListTwos, GPR64pi8>; 5254defm ST2 : SIMDStSingleD<1, 0b100, 0b01, "st2", VecListTwod, GPR64pi16>; 5255defm ST3 : SIMDStSingleB<0, 0b001, "st3", VecListThreeb, GPR64pi3>; 5256defm ST3 : SIMDStSingleH<0, 0b011, 0, "st3", VecListThreeh, GPR64pi6>; 5257defm ST3 : SIMDStSingleS<0, 0b101, 0b00, "st3", VecListThrees, GPR64pi12>; 5258defm ST3 : SIMDStSingleD<0, 0b101, 0b01, "st3", VecListThreed, GPR64pi24>; 5259defm ST4 : SIMDStSingleB<1, 0b001, "st4", VecListFourb, GPR64pi4>; 5260defm ST4 : SIMDStSingleH<1, 0b011, 0, "st4", VecListFourh, GPR64pi8>; 5261defm ST4 : SIMDStSingleS<1, 0b101, 0b00, "st4", VecListFours, GPR64pi16>; 5262defm ST4 : SIMDStSingleD<1, 0b101, 0b01, "st4", VecListFourd, GPR64pi32>; 5263} 5264 5265defm ST1 : SIMDLdSt1SingleAliases<"st1">; 5266defm ST2 : SIMDLdSt2SingleAliases<"st2">; 5267defm ST3 : SIMDLdSt3SingleAliases<"st3">; 5268defm ST4 : SIMDLdSt4SingleAliases<"st4">; 5269 5270//---------------------------------------------------------------------------- 5271// Crypto extensions 5272//---------------------------------------------------------------------------- 5273 5274def AESErr : AESTiedInst<0b0100, "aese", int_aarch64_crypto_aese>; 5275def AESDrr : AESTiedInst<0b0101, "aesd", int_aarch64_crypto_aesd>; 5276def AESMCrr : AESInst< 0b0110, "aesmc", int_aarch64_crypto_aesmc>; 5277def AESIMCrr : AESInst< 0b0111, "aesimc", int_aarch64_crypto_aesimc>; 5278 5279def SHA1Crrr : SHATiedInstQSV<0b000, "sha1c", int_aarch64_crypto_sha1c>; 5280def SHA1Prrr : SHATiedInstQSV<0b001, "sha1p", int_aarch64_crypto_sha1p>; 5281def SHA1Mrrr : SHATiedInstQSV<0b010, "sha1m", int_aarch64_crypto_sha1m>; 5282def SHA1SU0rrr : SHATiedInstVVV<0b011, "sha1su0", int_aarch64_crypto_sha1su0>; 5283def SHA256Hrrr : SHATiedInstQQV<0b100, "sha256h", int_aarch64_crypto_sha256h>; 5284def SHA256H2rrr : SHATiedInstQQV<0b101, "sha256h2",int_aarch64_crypto_sha256h2>; 5285def SHA256SU1rrr :SHATiedInstVVV<0b110, "sha256su1",int_aarch64_crypto_sha256su1>; 5286 5287def SHA1Hrr : SHAInstSS< 0b0000, "sha1h", int_aarch64_crypto_sha1h>; 5288def SHA1SU1rr : SHATiedInstVV<0b0001, "sha1su1", int_aarch64_crypto_sha1su1>; 5289def SHA256SU0rr : SHATiedInstVV<0b0010, "sha256su0",int_aarch64_crypto_sha256su0>; 5290 5291//---------------------------------------------------------------------------- 5292// Compiler-pseudos 5293//---------------------------------------------------------------------------- 5294// FIXME: Like for X86, these should go in their own separate .td file. 5295 5296// Any instruction that defines a 32-bit result leaves the high half of the 5297// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may 5298// be copying from a truncate. But any other 32-bit operation will zero-extend 5299// up to 64 bits. 5300// FIXME: X86 also checks for CMOV here. Do we need something similar? 5301def def32 : PatLeaf<(i32 GPR32:$src), [{ 5302 return N->getOpcode() != ISD::TRUNCATE && 5303 N->getOpcode() != TargetOpcode::EXTRACT_SUBREG && 5304 N->getOpcode() != ISD::CopyFromReg; 5305}]>; 5306 5307// In the case of a 32-bit def that is known to implicitly zero-extend, 5308// we can use a SUBREG_TO_REG. 5309def : Pat<(i64 (zext def32:$src)), (SUBREG_TO_REG (i64 0), GPR32:$src, sub_32)>; 5310 5311// For an anyext, we don't care what the high bits are, so we can perform an 5312// INSERT_SUBREF into an IMPLICIT_DEF. 5313def : Pat<(i64 (anyext GPR32:$src)), 5314 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32)>; 5315 5316// When we need to explicitly zero-extend, we use a 32-bit MOV instruction and 5317// then assert the extension has happened. 5318def : Pat<(i64 (zext GPR32:$src)), 5319 (SUBREG_TO_REG (i32 0), (ORRWrs WZR, GPR32:$src, 0), sub_32)>; 5320 5321// To sign extend, we use a signed bitfield move instruction (SBFM) on the 5322// containing super-reg. 5323def : Pat<(i64 (sext GPR32:$src)), 5324 (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32), 0, 31)>; 5325def : Pat<(i64 (sext_inreg GPR64:$src, i32)), (SBFMXri GPR64:$src, 0, 31)>; 5326def : Pat<(i64 (sext_inreg GPR64:$src, i16)), (SBFMXri GPR64:$src, 0, 15)>; 5327def : Pat<(i64 (sext_inreg GPR64:$src, i8)), (SBFMXri GPR64:$src, 0, 7)>; 5328def : Pat<(i64 (sext_inreg GPR64:$src, i1)), (SBFMXri GPR64:$src, 0, 0)>; 5329def : Pat<(i32 (sext_inreg GPR32:$src, i16)), (SBFMWri GPR32:$src, 0, 15)>; 5330def : Pat<(i32 (sext_inreg GPR32:$src, i8)), (SBFMWri GPR32:$src, 0, 7)>; 5331def : Pat<(i32 (sext_inreg GPR32:$src, i1)), (SBFMWri GPR32:$src, 0, 0)>; 5332 5333def : Pat<(shl (sext_inreg GPR32:$Rn, i8), (i64 imm0_31:$imm)), 5334 (SBFMWri GPR32:$Rn, (i64 (i32shift_a imm0_31:$imm)), 5335 (i64 (i32shift_sext_i8 imm0_31:$imm)))>; 5336def : Pat<(shl (sext_inreg GPR64:$Rn, i8), (i64 imm0_63:$imm)), 5337 (SBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)), 5338 (i64 (i64shift_sext_i8 imm0_63:$imm)))>; 5339 5340def : Pat<(shl (sext_inreg GPR32:$Rn, i16), (i64 imm0_31:$imm)), 5341 (SBFMWri GPR32:$Rn, (i64 (i32shift_a imm0_31:$imm)), 5342 (i64 (i32shift_sext_i16 imm0_31:$imm)))>; 5343def : Pat<(shl (sext_inreg GPR64:$Rn, i16), (i64 imm0_63:$imm)), 5344 (SBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)), 5345 (i64 (i64shift_sext_i16 imm0_63:$imm)))>; 5346 5347def : Pat<(shl (i64 (sext GPR32:$Rn)), (i64 imm0_63:$imm)), 5348 (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$Rn, sub_32), 5349 (i64 (i64shift_a imm0_63:$imm)), 5350 (i64 (i64shift_sext_i32 imm0_63:$imm)))>; 5351 5352// sra patterns have an AddedComplexity of 10, so make sure we have a higher 5353// AddedComplexity for the following patterns since we want to match sext + sra 5354// patterns before we attempt to match a single sra node. 5355let AddedComplexity = 20 in { 5356// We support all sext + sra combinations which preserve at least one bit of the 5357// original value which is to be sign extended. E.g. we support shifts up to 5358// bitwidth-1 bits. 5359def : Pat<(sra (sext_inreg GPR32:$Rn, i8), (i64 imm0_7:$imm)), 5360 (SBFMWri GPR32:$Rn, (i64 imm0_7:$imm), 7)>; 5361def : Pat<(sra (sext_inreg GPR64:$Rn, i8), (i64 imm0_7:$imm)), 5362 (SBFMXri GPR64:$Rn, (i64 imm0_7:$imm), 7)>; 5363 5364def : Pat<(sra (sext_inreg GPR32:$Rn, i16), (i64 imm0_15:$imm)), 5365 (SBFMWri GPR32:$Rn, (i64 imm0_15:$imm), 15)>; 5366def : Pat<(sra (sext_inreg GPR64:$Rn, i16), (i64 imm0_15:$imm)), 5367 (SBFMXri GPR64:$Rn, (i64 imm0_15:$imm), 15)>; 5368 5369def : Pat<(sra (i64 (sext GPR32:$Rn)), (i64 imm0_31:$imm)), 5370 (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$Rn, sub_32), 5371 (i64 imm0_31:$imm), 31)>; 5372} // AddedComplexity = 20 5373 5374// To truncate, we can simply extract from a subregister. 5375def : Pat<(i32 (trunc GPR64sp:$src)), 5376 (i32 (EXTRACT_SUBREG GPR64sp:$src, sub_32))>; 5377 5378// __builtin_trap() uses the BRK instruction on AArch64. 5379def : Pat<(trap), (BRK 1)>; 5380 5381// Conversions within AdvSIMD types in the same register size are free. 5382// But because we need a consistent lane ordering, in big endian many 5383// conversions require one or more REV instructions. 5384// 5385// Consider a simple memory load followed by a bitconvert then a store. 5386// v0 = load v2i32 5387// v1 = BITCAST v2i32 v0 to v4i16 5388// store v4i16 v2 5389// 5390// In big endian mode every memory access has an implicit byte swap. LDR and 5391// STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that 5392// is, they treat the vector as a sequence of elements to be byte-swapped. 5393// The two pairs of instructions are fundamentally incompatible. We've decided 5394// to use LD1/ST1 only to simplify compiler implementation. 5395// 5396// LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes 5397// the original code sequence: 5398// v0 = load v2i32 5399// v1 = REV v2i32 (implicit) 5400// v2 = BITCAST v2i32 v1 to v4i16 5401// v3 = REV v4i16 v2 (implicit) 5402// store v4i16 v3 5403// 5404// But this is now broken - the value stored is different to the value loaded 5405// due to lane reordering. To fix this, on every BITCAST we must perform two 5406// other REVs: 5407// v0 = load v2i32 5408// v1 = REV v2i32 (implicit) 5409// v2 = REV v2i32 5410// v3 = BITCAST v2i32 v2 to v4i16 5411// v4 = REV v4i16 5412// v5 = REV v4i16 v4 (implicit) 5413// store v4i16 v5 5414// 5415// This means an extra two instructions, but actually in most cases the two REV 5416// instructions can be combined into one. For example: 5417// (REV64_2s (REV64_4h X)) === (REV32_4h X) 5418// 5419// There is also no 128-bit REV instruction. This must be synthesized with an 5420// EXT instruction. 5421// 5422// Most bitconverts require some sort of conversion. The only exceptions are: 5423// a) Identity conversions - vNfX <-> vNiX 5424// b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX 5425// 5426 5427// Natural vector casts (64 bit) 5428def : Pat<(v8i8 (AArch64NvCast (v2i32 FPR64:$src))), (v8i8 FPR64:$src)>; 5429def : Pat<(v4i16 (AArch64NvCast (v2i32 FPR64:$src))), (v4i16 FPR64:$src)>; 5430def : Pat<(v4f16 (AArch64NvCast (v2i32 FPR64:$src))), (v4f16 FPR64:$src)>; 5431def : Pat<(v2i32 (AArch64NvCast (v2i32 FPR64:$src))), (v2i32 FPR64:$src)>; 5432def : Pat<(v2f32 (AArch64NvCast (v2i32 FPR64:$src))), (v2f32 FPR64:$src)>; 5433def : Pat<(v1i64 (AArch64NvCast (v2i32 FPR64:$src))), (v1i64 FPR64:$src)>; 5434 5435def : Pat<(v8i8 (AArch64NvCast (v4i16 FPR64:$src))), (v8i8 FPR64:$src)>; 5436def : Pat<(v4i16 (AArch64NvCast (v4i16 FPR64:$src))), (v4i16 FPR64:$src)>; 5437def : Pat<(v4f16 (AArch64NvCast (v4i16 FPR64:$src))), (v4f16 FPR64:$src)>; 5438def : Pat<(v2i32 (AArch64NvCast (v4i16 FPR64:$src))), (v2i32 FPR64:$src)>; 5439def : Pat<(v1i64 (AArch64NvCast (v4i16 FPR64:$src))), (v1i64 FPR64:$src)>; 5440 5441def : Pat<(v8i8 (AArch64NvCast (v8i8 FPR64:$src))), (v8i8 FPR64:$src)>; 5442def : Pat<(v4i16 (AArch64NvCast (v8i8 FPR64:$src))), (v4i16 FPR64:$src)>; 5443def : Pat<(v4f16 (AArch64NvCast (v8i8 FPR64:$src))), (v4f16 FPR64:$src)>; 5444def : Pat<(v2i32 (AArch64NvCast (v8i8 FPR64:$src))), (v2i32 FPR64:$src)>; 5445def : Pat<(v1i64 (AArch64NvCast (v8i8 FPR64:$src))), (v1i64 FPR64:$src)>; 5446 5447def : Pat<(v8i8 (AArch64NvCast (f64 FPR64:$src))), (v8i8 FPR64:$src)>; 5448def : Pat<(v4i16 (AArch64NvCast (f64 FPR64:$src))), (v4i16 FPR64:$src)>; 5449def : Pat<(v4f16 (AArch64NvCast (f64 FPR64:$src))), (v4f16 FPR64:$src)>; 5450def : Pat<(v2i32 (AArch64NvCast (f64 FPR64:$src))), (v2i32 FPR64:$src)>; 5451def : Pat<(v2f32 (AArch64NvCast (f64 FPR64:$src))), (v2f32 FPR64:$src)>; 5452def : Pat<(v1i64 (AArch64NvCast (f64 FPR64:$src))), (v1i64 FPR64:$src)>; 5453def : Pat<(v1f64 (AArch64NvCast (f64 FPR64:$src))), (v1f64 FPR64:$src)>; 5454 5455def : Pat<(v8i8 (AArch64NvCast (v2f32 FPR64:$src))), (v8i8 FPR64:$src)>; 5456def : Pat<(v4i16 (AArch64NvCast (v2f32 FPR64:$src))), (v4i16 FPR64:$src)>; 5457def : Pat<(v2i32 (AArch64NvCast (v2f32 FPR64:$src))), (v2i32 FPR64:$src)>; 5458def : Pat<(v2f32 (AArch64NvCast (v2f32 FPR64:$src))), (v2f32 FPR64:$src)>; 5459def : Pat<(v1i64 (AArch64NvCast (v2f32 FPR64:$src))), (v1i64 FPR64:$src)>; 5460 5461// Natural vector casts (128 bit) 5462def : Pat<(v16i8 (AArch64NvCast (v4i32 FPR128:$src))), (v16i8 FPR128:$src)>; 5463def : Pat<(v8i16 (AArch64NvCast (v4i32 FPR128:$src))), (v8i16 FPR128:$src)>; 5464def : Pat<(v8f16 (AArch64NvCast (v4i32 FPR128:$src))), (v8f16 FPR128:$src)>; 5465def : Pat<(v4i32 (AArch64NvCast (v4i32 FPR128:$src))), (v4i32 FPR128:$src)>; 5466def : Pat<(v4f32 (AArch64NvCast (v4i32 FPR128:$src))), (v4f32 FPR128:$src)>; 5467def : Pat<(v2i64 (AArch64NvCast (v4i32 FPR128:$src))), (v2i64 FPR128:$src)>; 5468def : Pat<(v2f64 (AArch64NvCast (v4i32 FPR128:$src))), (v2f64 FPR128:$src)>; 5469 5470def : Pat<(v16i8 (AArch64NvCast (v8i16 FPR128:$src))), (v16i8 FPR128:$src)>; 5471def : Pat<(v8i16 (AArch64NvCast (v8i16 FPR128:$src))), (v8i16 FPR128:$src)>; 5472def : Pat<(v8f16 (AArch64NvCast (v8i16 FPR128:$src))), (v8f16 FPR128:$src)>; 5473def : Pat<(v4i32 (AArch64NvCast (v8i16 FPR128:$src))), (v4i32 FPR128:$src)>; 5474def : Pat<(v2i64 (AArch64NvCast (v8i16 FPR128:$src))), (v2i64 FPR128:$src)>; 5475def : Pat<(v4f32 (AArch64NvCast (v8i16 FPR128:$src))), (v4f32 FPR128:$src)>; 5476def : Pat<(v2f64 (AArch64NvCast (v8i16 FPR128:$src))), (v2f64 FPR128:$src)>; 5477 5478def : Pat<(v16i8 (AArch64NvCast (v16i8 FPR128:$src))), (v16i8 FPR128:$src)>; 5479def : Pat<(v8i16 (AArch64NvCast (v16i8 FPR128:$src))), (v8i16 FPR128:$src)>; 5480def : Pat<(v8f16 (AArch64NvCast (v16i8 FPR128:$src))), (v8f16 FPR128:$src)>; 5481def : Pat<(v4i32 (AArch64NvCast (v16i8 FPR128:$src))), (v4i32 FPR128:$src)>; 5482def : Pat<(v2i64 (AArch64NvCast (v16i8 FPR128:$src))), (v2i64 FPR128:$src)>; 5483def : Pat<(v4f32 (AArch64NvCast (v16i8 FPR128:$src))), (v4f32 FPR128:$src)>; 5484def : Pat<(v2f64 (AArch64NvCast (v16i8 FPR128:$src))), (v2f64 FPR128:$src)>; 5485 5486def : Pat<(v16i8 (AArch64NvCast (v2i64 FPR128:$src))), (v16i8 FPR128:$src)>; 5487def : Pat<(v8i16 (AArch64NvCast (v2i64 FPR128:$src))), (v8i16 FPR128:$src)>; 5488def : Pat<(v8f16 (AArch64NvCast (v2i64 FPR128:$src))), (v8f16 FPR128:$src)>; 5489def : Pat<(v4i32 (AArch64NvCast (v2i64 FPR128:$src))), (v4i32 FPR128:$src)>; 5490def : Pat<(v2i64 (AArch64NvCast (v2i64 FPR128:$src))), (v2i64 FPR128:$src)>; 5491def : Pat<(v4f32 (AArch64NvCast (v2i64 FPR128:$src))), (v4f32 FPR128:$src)>; 5492def : Pat<(v2f64 (AArch64NvCast (v2i64 FPR128:$src))), (v2f64 FPR128:$src)>; 5493 5494def : Pat<(v16i8 (AArch64NvCast (v4f32 FPR128:$src))), (v16i8 FPR128:$src)>; 5495def : Pat<(v8i16 (AArch64NvCast (v4f32 FPR128:$src))), (v8i16 FPR128:$src)>; 5496def : Pat<(v4i32 (AArch64NvCast (v4f32 FPR128:$src))), (v4i32 FPR128:$src)>; 5497def : Pat<(v4f32 (AArch64NvCast (v4f32 FPR128:$src))), (v4f32 FPR128:$src)>; 5498def : Pat<(v2i64 (AArch64NvCast (v4f32 FPR128:$src))), (v2i64 FPR128:$src)>; 5499def : Pat<(v8f16 (AArch64NvCast (v4f32 FPR128:$src))), (v8f16 FPR128:$src)>; 5500def : Pat<(v2f64 (AArch64NvCast (v4f32 FPR128:$src))), (v2f64 FPR128:$src)>; 5501 5502def : Pat<(v16i8 (AArch64NvCast (v2f64 FPR128:$src))), (v16i8 FPR128:$src)>; 5503def : Pat<(v8i16 (AArch64NvCast (v2f64 FPR128:$src))), (v8i16 FPR128:$src)>; 5504def : Pat<(v4i32 (AArch64NvCast (v2f64 FPR128:$src))), (v4i32 FPR128:$src)>; 5505def : Pat<(v2i64 (AArch64NvCast (v2f64 FPR128:$src))), (v2i64 FPR128:$src)>; 5506def : Pat<(v2f64 (AArch64NvCast (v2f64 FPR128:$src))), (v2f64 FPR128:$src)>; 5507def : Pat<(v8f16 (AArch64NvCast (v2f64 FPR128:$src))), (v8f16 FPR128:$src)>; 5508def : Pat<(v4f32 (AArch64NvCast (v2f64 FPR128:$src))), (v4f32 FPR128:$src)>; 5509 5510let Predicates = [IsLE] in { 5511def : Pat<(v8i8 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; 5512def : Pat<(v4i16 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; 5513def : Pat<(v2i32 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; 5514def : Pat<(v4f16 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; 5515def : Pat<(v2f32 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; 5516 5517def : Pat<(i64 (bitconvert (v8i8 V64:$Vn))), 5518 (COPY_TO_REGCLASS V64:$Vn, GPR64)>; 5519def : Pat<(i64 (bitconvert (v4i16 V64:$Vn))), 5520 (COPY_TO_REGCLASS V64:$Vn, GPR64)>; 5521def : Pat<(i64 (bitconvert (v2i32 V64:$Vn))), 5522 (COPY_TO_REGCLASS V64:$Vn, GPR64)>; 5523def : Pat<(i64 (bitconvert (v4f16 V64:$Vn))), 5524 (COPY_TO_REGCLASS V64:$Vn, GPR64)>; 5525def : Pat<(i64 (bitconvert (v2f32 V64:$Vn))), 5526 (COPY_TO_REGCLASS V64:$Vn, GPR64)>; 5527def : Pat<(i64 (bitconvert (v1f64 V64:$Vn))), 5528 (COPY_TO_REGCLASS V64:$Vn, GPR64)>; 5529} 5530let Predicates = [IsBE] in { 5531def : Pat<(v8i8 (bitconvert GPR64:$Xn)), 5532 (REV64v8i8 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>; 5533def : Pat<(v4i16 (bitconvert GPR64:$Xn)), 5534 (REV64v4i16 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>; 5535def : Pat<(v2i32 (bitconvert GPR64:$Xn)), 5536 (REV64v2i32 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>; 5537def : Pat<(v4f16 (bitconvert GPR64:$Xn)), 5538 (REV64v4i16 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>; 5539def : Pat<(v2f32 (bitconvert GPR64:$Xn)), 5540 (REV64v2i32 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>; 5541 5542def : Pat<(i64 (bitconvert (v8i8 V64:$Vn))), 5543 (REV64v8i8 (COPY_TO_REGCLASS V64:$Vn, GPR64))>; 5544def : Pat<(i64 (bitconvert (v4i16 V64:$Vn))), 5545 (REV64v4i16 (COPY_TO_REGCLASS V64:$Vn, GPR64))>; 5546def : Pat<(i64 (bitconvert (v2i32 V64:$Vn))), 5547 (REV64v2i32 (COPY_TO_REGCLASS V64:$Vn, GPR64))>; 5548def : Pat<(i64 (bitconvert (v4f16 V64:$Vn))), 5549 (REV64v4i16 (COPY_TO_REGCLASS V64:$Vn, GPR64))>; 5550def : Pat<(i64 (bitconvert (v2f32 V64:$Vn))), 5551 (REV64v2i32 (COPY_TO_REGCLASS V64:$Vn, GPR64))>; 5552} 5553def : Pat<(v1i64 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; 5554def : Pat<(v1f64 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; 5555def : Pat<(i64 (bitconvert (v1i64 V64:$Vn))), 5556 (COPY_TO_REGCLASS V64:$Vn, GPR64)>; 5557def : Pat<(v1i64 (scalar_to_vector GPR64:$Xn)), 5558 (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; 5559def : Pat<(v1f64 (scalar_to_vector GPR64:$Xn)), 5560 (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; 5561def : Pat<(v1f64 (scalar_to_vector (f64 FPR64:$Xn))), (v1f64 FPR64:$Xn)>; 5562 5563def : Pat<(f32 (bitconvert (i32 GPR32:$Xn))), 5564 (COPY_TO_REGCLASS GPR32:$Xn, FPR32)>; 5565def : Pat<(i32 (bitconvert (f32 FPR32:$Xn))), 5566 (COPY_TO_REGCLASS FPR32:$Xn, GPR32)>; 5567def : Pat<(f64 (bitconvert (i64 GPR64:$Xn))), 5568 (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; 5569def : Pat<(i64 (bitconvert (f64 FPR64:$Xn))), 5570 (COPY_TO_REGCLASS FPR64:$Xn, GPR64)>; 5571def : Pat<(i64 (bitconvert (v1f64 V64:$Vn))), 5572 (COPY_TO_REGCLASS V64:$Vn, GPR64)>; 5573 5574let Predicates = [IsLE] in { 5575def : Pat<(v1i64 (bitconvert (v2i32 FPR64:$src))), (v1i64 FPR64:$src)>; 5576def : Pat<(v1i64 (bitconvert (v4i16 FPR64:$src))), (v1i64 FPR64:$src)>; 5577def : Pat<(v1i64 (bitconvert (v8i8 FPR64:$src))), (v1i64 FPR64:$src)>; 5578def : Pat<(v1i64 (bitconvert (v4f16 FPR64:$src))), (v1i64 FPR64:$src)>; 5579def : Pat<(v1i64 (bitconvert (v2f32 FPR64:$src))), (v1i64 FPR64:$src)>; 5580} 5581let Predicates = [IsBE] in { 5582def : Pat<(v1i64 (bitconvert (v2i32 FPR64:$src))), 5583 (v1i64 (REV64v2i32 FPR64:$src))>; 5584def : Pat<(v1i64 (bitconvert (v4i16 FPR64:$src))), 5585 (v1i64 (REV64v4i16 FPR64:$src))>; 5586def : Pat<(v1i64 (bitconvert (v8i8 FPR64:$src))), 5587 (v1i64 (REV64v8i8 FPR64:$src))>; 5588def : Pat<(v1i64 (bitconvert (v4f16 FPR64:$src))), 5589 (v1i64 (REV64v4i16 FPR64:$src))>; 5590def : Pat<(v1i64 (bitconvert (v2f32 FPR64:$src))), 5591 (v1i64 (REV64v2i32 FPR64:$src))>; 5592} 5593def : Pat<(v1i64 (bitconvert (v1f64 FPR64:$src))), (v1i64 FPR64:$src)>; 5594def : Pat<(v1i64 (bitconvert (f64 FPR64:$src))), (v1i64 FPR64:$src)>; 5595 5596let Predicates = [IsLE] in { 5597def : Pat<(v2i32 (bitconvert (v1i64 FPR64:$src))), (v2i32 FPR64:$src)>; 5598def : Pat<(v2i32 (bitconvert (v4i16 FPR64:$src))), (v2i32 FPR64:$src)>; 5599def : Pat<(v2i32 (bitconvert (v8i8 FPR64:$src))), (v2i32 FPR64:$src)>; 5600def : Pat<(v2i32 (bitconvert (f64 FPR64:$src))), (v2i32 FPR64:$src)>; 5601def : Pat<(v2i32 (bitconvert (v1f64 FPR64:$src))), (v2i32 FPR64:$src)>; 5602def : Pat<(v2i32 (bitconvert (v4f16 FPR64:$src))), (v2i32 FPR64:$src)>; 5603} 5604let Predicates = [IsBE] in { 5605def : Pat<(v2i32 (bitconvert (v1i64 FPR64:$src))), 5606 (v2i32 (REV64v2i32 FPR64:$src))>; 5607def : Pat<(v2i32 (bitconvert (v4i16 FPR64:$src))), 5608 (v2i32 (REV32v4i16 FPR64:$src))>; 5609def : Pat<(v2i32 (bitconvert (v8i8 FPR64:$src))), 5610 (v2i32 (REV32v8i8 FPR64:$src))>; 5611def : Pat<(v2i32 (bitconvert (f64 FPR64:$src))), 5612 (v2i32 (REV64v2i32 FPR64:$src))>; 5613def : Pat<(v2i32 (bitconvert (v1f64 FPR64:$src))), 5614 (v2i32 (REV64v2i32 FPR64:$src))>; 5615def : Pat<(v2i32 (bitconvert (v4f16 FPR64:$src))), 5616 (v2i32 (REV64v4i16 FPR64:$src))>; 5617} 5618def : Pat<(v2i32 (bitconvert (v2f32 FPR64:$src))), (v2i32 FPR64:$src)>; 5619 5620let Predicates = [IsLE] in { 5621def : Pat<(v4i16 (bitconvert (v1i64 FPR64:$src))), (v4i16 FPR64:$src)>; 5622def : Pat<(v4i16 (bitconvert (v2i32 FPR64:$src))), (v4i16 FPR64:$src)>; 5623def : Pat<(v4i16 (bitconvert (v8i8 FPR64:$src))), (v4i16 FPR64:$src)>; 5624def : Pat<(v4i16 (bitconvert (f64 FPR64:$src))), (v4i16 FPR64:$src)>; 5625def : Pat<(v4i16 (bitconvert (v4f16 FPR64:$src))), (v4i16 FPR64:$src)>; 5626def : Pat<(v4i16 (bitconvert (v2f32 FPR64:$src))), (v4i16 FPR64:$src)>; 5627def : Pat<(v4i16 (bitconvert (v1f64 FPR64:$src))), (v4i16 FPR64:$src)>; 5628} 5629let Predicates = [IsBE] in { 5630def : Pat<(v4i16 (bitconvert (v1i64 FPR64:$src))), 5631 (v4i16 (REV64v4i16 FPR64:$src))>; 5632def : Pat<(v4i16 (bitconvert (v2i32 FPR64:$src))), 5633 (v4i16 (REV32v4i16 FPR64:$src))>; 5634def : Pat<(v4i16 (bitconvert (v8i8 FPR64:$src))), 5635 (v4i16 (REV16v8i8 FPR64:$src))>; 5636def : Pat<(v4i16 (bitconvert (f64 FPR64:$src))), 5637 (v4i16 (REV64v4i16 FPR64:$src))>; 5638def : Pat<(v4i16 (bitconvert (v4f16 FPR64:$src))), 5639 (v4i16 (REV32v4i16 FPR64:$src))>; 5640def : Pat<(v4i16 (bitconvert (v2f32 FPR64:$src))), 5641 (v4i16 (REV32v4i16 FPR64:$src))>; 5642def : Pat<(v4i16 (bitconvert (v1f64 FPR64:$src))), 5643 (v4i16 (REV64v4i16 FPR64:$src))>; 5644} 5645 5646let Predicates = [IsLE] in { 5647def : Pat<(v4f16 (bitconvert (v1i64 FPR64:$src))), (v4f16 FPR64:$src)>; 5648def : Pat<(v4f16 (bitconvert (v2i32 FPR64:$src))), (v4f16 FPR64:$src)>; 5649def : Pat<(v4f16 (bitconvert (v4i16 FPR64:$src))), (v4f16 FPR64:$src)>; 5650def : Pat<(v4f16 (bitconvert (v8i8 FPR64:$src))), (v4f16 FPR64:$src)>; 5651def : Pat<(v4f16 (bitconvert (f64 FPR64:$src))), (v4f16 FPR64:$src)>; 5652def : Pat<(v4f16 (bitconvert (v2f32 FPR64:$src))), (v4f16 FPR64:$src)>; 5653def : Pat<(v4f16 (bitconvert (v1f64 FPR64:$src))), (v4f16 FPR64:$src)>; 5654} 5655let Predicates = [IsBE] in { 5656def : Pat<(v4f16 (bitconvert (v1i64 FPR64:$src))), 5657 (v4f16 (REV64v4i16 FPR64:$src))>; 5658def : Pat<(v4f16 (bitconvert (v2i32 FPR64:$src))), 5659 (v4f16 (REV64v4i16 FPR64:$src))>; 5660def : Pat<(v4f16 (bitconvert (v4i16 FPR64:$src))), 5661 (v4f16 (REV64v4i16 FPR64:$src))>; 5662def : Pat<(v4f16 (bitconvert (v8i8 FPR64:$src))), 5663 (v4f16 (REV16v8i8 FPR64:$src))>; 5664def : Pat<(v4f16 (bitconvert (f64 FPR64:$src))), 5665 (v4f16 (REV64v4i16 FPR64:$src))>; 5666def : Pat<(v4f16 (bitconvert (v2f32 FPR64:$src))), 5667 (v4f16 (REV64v4i16 FPR64:$src))>; 5668def : Pat<(v4f16 (bitconvert (v1f64 FPR64:$src))), 5669 (v4f16 (REV64v4i16 FPR64:$src))>; 5670} 5671 5672 5673 5674let Predicates = [IsLE] in { 5675def : Pat<(v8i8 (bitconvert (v1i64 FPR64:$src))), (v8i8 FPR64:$src)>; 5676def : Pat<(v8i8 (bitconvert (v2i32 FPR64:$src))), (v8i8 FPR64:$src)>; 5677def : Pat<(v8i8 (bitconvert (v4i16 FPR64:$src))), (v8i8 FPR64:$src)>; 5678def : Pat<(v8i8 (bitconvert (f64 FPR64:$src))), (v8i8 FPR64:$src)>; 5679def : Pat<(v8i8 (bitconvert (v2f32 FPR64:$src))), (v8i8 FPR64:$src)>; 5680def : Pat<(v8i8 (bitconvert (v1f64 FPR64:$src))), (v8i8 FPR64:$src)>; 5681def : Pat<(v8i8 (bitconvert (v4f16 FPR64:$src))), (v8i8 FPR64:$src)>; 5682} 5683let Predicates = [IsBE] in { 5684def : Pat<(v8i8 (bitconvert (v1i64 FPR64:$src))), 5685 (v8i8 (REV64v8i8 FPR64:$src))>; 5686def : Pat<(v8i8 (bitconvert (v2i32 FPR64:$src))), 5687 (v8i8 (REV32v8i8 FPR64:$src))>; 5688def : Pat<(v8i8 (bitconvert (v4i16 FPR64:$src))), 5689 (v8i8 (REV16v8i8 FPR64:$src))>; 5690def : Pat<(v8i8 (bitconvert (f64 FPR64:$src))), 5691 (v8i8 (REV64v8i8 FPR64:$src))>; 5692def : Pat<(v8i8 (bitconvert (v2f32 FPR64:$src))), 5693 (v8i8 (REV32v8i8 FPR64:$src))>; 5694def : Pat<(v8i8 (bitconvert (v1f64 FPR64:$src))), 5695 (v8i8 (REV64v8i8 FPR64:$src))>; 5696def : Pat<(v8i8 (bitconvert (v4f16 FPR64:$src))), 5697 (v8i8 (REV16v8i8 FPR64:$src))>; 5698} 5699 5700let Predicates = [IsLE] in { 5701def : Pat<(f64 (bitconvert (v2i32 FPR64:$src))), (f64 FPR64:$src)>; 5702def : Pat<(f64 (bitconvert (v4i16 FPR64:$src))), (f64 FPR64:$src)>; 5703def : Pat<(f64 (bitconvert (v2f32 FPR64:$src))), (f64 FPR64:$src)>; 5704def : Pat<(f64 (bitconvert (v8i8 FPR64:$src))), (f64 FPR64:$src)>; 5705def : Pat<(f64 (bitconvert (v4f16 FPR64:$src))), (f64 FPR64:$src)>; 5706} 5707let Predicates = [IsBE] in { 5708def : Pat<(f64 (bitconvert (v2i32 FPR64:$src))), 5709 (f64 (REV64v2i32 FPR64:$src))>; 5710def : Pat<(f64 (bitconvert (v4i16 FPR64:$src))), 5711 (f64 (REV64v4i16 FPR64:$src))>; 5712def : Pat<(f64 (bitconvert (v2f32 FPR64:$src))), 5713 (f64 (REV64v2i32 FPR64:$src))>; 5714def : Pat<(f64 (bitconvert (v8i8 FPR64:$src))), 5715 (f64 (REV64v8i8 FPR64:$src))>; 5716def : Pat<(f64 (bitconvert (v4f16 FPR64:$src))), 5717 (f64 (REV64v4i16 FPR64:$src))>; 5718} 5719def : Pat<(f64 (bitconvert (v1i64 FPR64:$src))), (f64 FPR64:$src)>; 5720def : Pat<(f64 (bitconvert (v1f64 FPR64:$src))), (f64 FPR64:$src)>; 5721 5722let Predicates = [IsLE] in { 5723def : Pat<(v1f64 (bitconvert (v2i32 FPR64:$src))), (v1f64 FPR64:$src)>; 5724def : Pat<(v1f64 (bitconvert (v4i16 FPR64:$src))), (v1f64 FPR64:$src)>; 5725def : Pat<(v1f64 (bitconvert (v8i8 FPR64:$src))), (v1f64 FPR64:$src)>; 5726def : Pat<(v1f64 (bitconvert (v2f32 FPR64:$src))), (v1f64 FPR64:$src)>; 5727def : Pat<(v1f64 (bitconvert (v4f16 FPR64:$src))), (v1f64 FPR64:$src)>; 5728} 5729let Predicates = [IsBE] in { 5730def : Pat<(v1f64 (bitconvert (v2i32 FPR64:$src))), 5731 (v1f64 (REV64v2i32 FPR64:$src))>; 5732def : Pat<(v1f64 (bitconvert (v4i16 FPR64:$src))), 5733 (v1f64 (REV64v4i16 FPR64:$src))>; 5734def : Pat<(v1f64 (bitconvert (v8i8 FPR64:$src))), 5735 (v1f64 (REV64v8i8 FPR64:$src))>; 5736def : Pat<(v1f64 (bitconvert (v2f32 FPR64:$src))), 5737 (v1f64 (REV64v2i32 FPR64:$src))>; 5738def : Pat<(v1f64 (bitconvert (v4f16 FPR64:$src))), 5739 (v1f64 (REV64v4i16 FPR64:$src))>; 5740} 5741def : Pat<(v1f64 (bitconvert (v1i64 FPR64:$src))), (v1f64 FPR64:$src)>; 5742def : Pat<(v1f64 (bitconvert (f64 FPR64:$src))), (v1f64 FPR64:$src)>; 5743 5744let Predicates = [IsLE] in { 5745def : Pat<(v2f32 (bitconvert (v1i64 FPR64:$src))), (v2f32 FPR64:$src)>; 5746def : Pat<(v2f32 (bitconvert (v4i16 FPR64:$src))), (v2f32 FPR64:$src)>; 5747def : Pat<(v2f32 (bitconvert (v8i8 FPR64:$src))), (v2f32 FPR64:$src)>; 5748def : Pat<(v2f32 (bitconvert (v1f64 FPR64:$src))), (v2f32 FPR64:$src)>; 5749def : Pat<(v2f32 (bitconvert (f64 FPR64:$src))), (v2f32 FPR64:$src)>; 5750def : Pat<(v2f32 (bitconvert (v4f16 FPR64:$src))), (v2f32 FPR64:$src)>; 5751} 5752let Predicates = [IsBE] in { 5753def : Pat<(v2f32 (bitconvert (v1i64 FPR64:$src))), 5754 (v2f32 (REV64v2i32 FPR64:$src))>; 5755def : Pat<(v2f32 (bitconvert (v4i16 FPR64:$src))), 5756 (v2f32 (REV32v4i16 FPR64:$src))>; 5757def : Pat<(v2f32 (bitconvert (v8i8 FPR64:$src))), 5758 (v2f32 (REV32v8i8 FPR64:$src))>; 5759def : Pat<(v2f32 (bitconvert (v1f64 FPR64:$src))), 5760 (v2f32 (REV64v2i32 FPR64:$src))>; 5761def : Pat<(v2f32 (bitconvert (f64 FPR64:$src))), 5762 (v2f32 (REV64v2i32 FPR64:$src))>; 5763def : Pat<(v2f32 (bitconvert (v4f16 FPR64:$src))), 5764 (v2f32 (REV64v4i16 FPR64:$src))>; 5765} 5766def : Pat<(v2f32 (bitconvert (v2i32 FPR64:$src))), (v2f32 FPR64:$src)>; 5767 5768let Predicates = [IsLE] in { 5769def : Pat<(f128 (bitconvert (v2i64 FPR128:$src))), (f128 FPR128:$src)>; 5770def : Pat<(f128 (bitconvert (v4i32 FPR128:$src))), (f128 FPR128:$src)>; 5771def : Pat<(f128 (bitconvert (v8i16 FPR128:$src))), (f128 FPR128:$src)>; 5772def : Pat<(f128 (bitconvert (v2f64 FPR128:$src))), (f128 FPR128:$src)>; 5773def : Pat<(f128 (bitconvert (v4f32 FPR128:$src))), (f128 FPR128:$src)>; 5774def : Pat<(f128 (bitconvert (v8f16 FPR128:$src))), (f128 FPR128:$src)>; 5775def : Pat<(f128 (bitconvert (v16i8 FPR128:$src))), (f128 FPR128:$src)>; 5776} 5777let Predicates = [IsBE] in { 5778def : Pat<(f128 (bitconvert (v2i64 FPR128:$src))), 5779 (f128 (EXTv16i8 FPR128:$src, FPR128:$src, (i32 8)))>; 5780def : Pat<(f128 (bitconvert (v4i32 FPR128:$src))), 5781 (f128 (EXTv16i8 (REV64v4i32 FPR128:$src), 5782 (REV64v4i32 FPR128:$src), (i32 8)))>; 5783def : Pat<(f128 (bitconvert (v8i16 FPR128:$src))), 5784 (f128 (EXTv16i8 (REV64v8i16 FPR128:$src), 5785 (REV64v8i16 FPR128:$src), (i32 8)))>; 5786def : Pat<(f128 (bitconvert (v8f16 FPR128:$src))), 5787 (f128 (EXTv16i8 (REV64v8i16 FPR128:$src), 5788 (REV64v8i16 FPR128:$src), (i32 8)))>; 5789def : Pat<(f128 (bitconvert (v2f64 FPR128:$src))), 5790 (f128 (EXTv16i8 FPR128:$src, FPR128:$src, (i32 8)))>; 5791def : Pat<(f128 (bitconvert (v4f32 FPR128:$src))), 5792 (f128 (EXTv16i8 (REV64v4i32 FPR128:$src), 5793 (REV64v4i32 FPR128:$src), (i32 8)))>; 5794def : Pat<(f128 (bitconvert (v16i8 FPR128:$src))), 5795 (f128 (EXTv16i8 (REV64v16i8 FPR128:$src), 5796 (REV64v16i8 FPR128:$src), (i32 8)))>; 5797} 5798 5799let Predicates = [IsLE] in { 5800def : Pat<(v2f64 (bitconvert (f128 FPR128:$src))), (v2f64 FPR128:$src)>; 5801def : Pat<(v2f64 (bitconvert (v4i32 FPR128:$src))), (v2f64 FPR128:$src)>; 5802def : Pat<(v2f64 (bitconvert (v8i16 FPR128:$src))), (v2f64 FPR128:$src)>; 5803def : Pat<(v2f64 (bitconvert (v8f16 FPR128:$src))), (v2f64 FPR128:$src)>; 5804def : Pat<(v2f64 (bitconvert (v16i8 FPR128:$src))), (v2f64 FPR128:$src)>; 5805def : Pat<(v2f64 (bitconvert (v4f32 FPR128:$src))), (v2f64 FPR128:$src)>; 5806} 5807let Predicates = [IsBE] in { 5808def : Pat<(v2f64 (bitconvert (f128 FPR128:$src))), 5809 (v2f64 (EXTv16i8 FPR128:$src, 5810 FPR128:$src, (i32 8)))>; 5811def : Pat<(v2f64 (bitconvert (v4i32 FPR128:$src))), 5812 (v2f64 (REV64v4i32 FPR128:$src))>; 5813def : Pat<(v2f64 (bitconvert (v8i16 FPR128:$src))), 5814 (v2f64 (REV64v8i16 FPR128:$src))>; 5815def : Pat<(v2f64 (bitconvert (v8f16 FPR128:$src))), 5816 (v2f64 (REV64v8i16 FPR128:$src))>; 5817def : Pat<(v2f64 (bitconvert (v16i8 FPR128:$src))), 5818 (v2f64 (REV64v16i8 FPR128:$src))>; 5819def : Pat<(v2f64 (bitconvert (v4f32 FPR128:$src))), 5820 (v2f64 (REV64v4i32 FPR128:$src))>; 5821} 5822def : Pat<(v2f64 (bitconvert (v2i64 FPR128:$src))), (v2f64 FPR128:$src)>; 5823 5824let Predicates = [IsLE] in { 5825def : Pat<(v4f32 (bitconvert (f128 FPR128:$src))), (v4f32 FPR128:$src)>; 5826def : Pat<(v4f32 (bitconvert (v8i16 FPR128:$src))), (v4f32 FPR128:$src)>; 5827def : Pat<(v4f32 (bitconvert (v8f16 FPR128:$src))), (v4f32 FPR128:$src)>; 5828def : Pat<(v4f32 (bitconvert (v16i8 FPR128:$src))), (v4f32 FPR128:$src)>; 5829def : Pat<(v4f32 (bitconvert (v2i64 FPR128:$src))), (v4f32 FPR128:$src)>; 5830def : Pat<(v4f32 (bitconvert (v2f64 FPR128:$src))), (v4f32 FPR128:$src)>; 5831} 5832let Predicates = [IsBE] in { 5833def : Pat<(v4f32 (bitconvert (f128 FPR128:$src))), 5834 (v4f32 (EXTv16i8 (REV64v4i32 FPR128:$src), 5835 (REV64v4i32 FPR128:$src), (i32 8)))>; 5836def : Pat<(v4f32 (bitconvert (v8i16 FPR128:$src))), 5837 (v4f32 (REV32v8i16 FPR128:$src))>; 5838def : Pat<(v4f32 (bitconvert (v8f16 FPR128:$src))), 5839 (v4f32 (REV32v8i16 FPR128:$src))>; 5840def : Pat<(v4f32 (bitconvert (v16i8 FPR128:$src))), 5841 (v4f32 (REV32v16i8 FPR128:$src))>; 5842def : Pat<(v4f32 (bitconvert (v2i64 FPR128:$src))), 5843 (v4f32 (REV64v4i32 FPR128:$src))>; 5844def : Pat<(v4f32 (bitconvert (v2f64 FPR128:$src))), 5845 (v4f32 (REV64v4i32 FPR128:$src))>; 5846} 5847def : Pat<(v4f32 (bitconvert (v4i32 FPR128:$src))), (v4f32 FPR128:$src)>; 5848 5849let Predicates = [IsLE] in { 5850def : Pat<(v2i64 (bitconvert (f128 FPR128:$src))), (v2i64 FPR128:$src)>; 5851def : Pat<(v2i64 (bitconvert (v4i32 FPR128:$src))), (v2i64 FPR128:$src)>; 5852def : Pat<(v2i64 (bitconvert (v8i16 FPR128:$src))), (v2i64 FPR128:$src)>; 5853def : Pat<(v2i64 (bitconvert (v16i8 FPR128:$src))), (v2i64 FPR128:$src)>; 5854def : Pat<(v2i64 (bitconvert (v4f32 FPR128:$src))), (v2i64 FPR128:$src)>; 5855def : Pat<(v2i64 (bitconvert (v8f16 FPR128:$src))), (v2i64 FPR128:$src)>; 5856} 5857let Predicates = [IsBE] in { 5858def : Pat<(v2i64 (bitconvert (f128 FPR128:$src))), 5859 (v2i64 (EXTv16i8 FPR128:$src, 5860 FPR128:$src, (i32 8)))>; 5861def : Pat<(v2i64 (bitconvert (v4i32 FPR128:$src))), 5862 (v2i64 (REV64v4i32 FPR128:$src))>; 5863def : Pat<(v2i64 (bitconvert (v8i16 FPR128:$src))), 5864 (v2i64 (REV64v8i16 FPR128:$src))>; 5865def : Pat<(v2i64 (bitconvert (v16i8 FPR128:$src))), 5866 (v2i64 (REV64v16i8 FPR128:$src))>; 5867def : Pat<(v2i64 (bitconvert (v4f32 FPR128:$src))), 5868 (v2i64 (REV64v4i32 FPR128:$src))>; 5869def : Pat<(v2i64 (bitconvert (v8f16 FPR128:$src))), 5870 (v2i64 (REV64v8i16 FPR128:$src))>; 5871} 5872def : Pat<(v2i64 (bitconvert (v2f64 FPR128:$src))), (v2i64 FPR128:$src)>; 5873 5874let Predicates = [IsLE] in { 5875def : Pat<(v4i32 (bitconvert (f128 FPR128:$src))), (v4i32 FPR128:$src)>; 5876def : Pat<(v4i32 (bitconvert (v2i64 FPR128:$src))), (v4i32 FPR128:$src)>; 5877def : Pat<(v4i32 (bitconvert (v8i16 FPR128:$src))), (v4i32 FPR128:$src)>; 5878def : Pat<(v4i32 (bitconvert (v16i8 FPR128:$src))), (v4i32 FPR128:$src)>; 5879def : Pat<(v4i32 (bitconvert (v2f64 FPR128:$src))), (v4i32 FPR128:$src)>; 5880def : Pat<(v4i32 (bitconvert (v8f16 FPR128:$src))), (v4i32 FPR128:$src)>; 5881} 5882let Predicates = [IsBE] in { 5883def : Pat<(v4i32 (bitconvert (f128 FPR128:$src))), 5884 (v4i32 (EXTv16i8 (REV64v4i32 FPR128:$src), 5885 (REV64v4i32 FPR128:$src), 5886 (i32 8)))>; 5887def : Pat<(v4i32 (bitconvert (v2i64 FPR128:$src))), 5888 (v4i32 (REV64v4i32 FPR128:$src))>; 5889def : Pat<(v4i32 (bitconvert (v8i16 FPR128:$src))), 5890 (v4i32 (REV32v8i16 FPR128:$src))>; 5891def : Pat<(v4i32 (bitconvert (v16i8 FPR128:$src))), 5892 (v4i32 (REV32v16i8 FPR128:$src))>; 5893def : Pat<(v4i32 (bitconvert (v2f64 FPR128:$src))), 5894 (v4i32 (REV64v4i32 FPR128:$src))>; 5895def : Pat<(v4i32 (bitconvert (v8f16 FPR128:$src))), 5896 (v4i32 (REV32v8i16 FPR128:$src))>; 5897} 5898def : Pat<(v4i32 (bitconvert (v4f32 FPR128:$src))), (v4i32 FPR128:$src)>; 5899 5900let Predicates = [IsLE] in { 5901def : Pat<(v8i16 (bitconvert (f128 FPR128:$src))), (v8i16 FPR128:$src)>; 5902def : Pat<(v8i16 (bitconvert (v2i64 FPR128:$src))), (v8i16 FPR128:$src)>; 5903def : Pat<(v8i16 (bitconvert (v4i32 FPR128:$src))), (v8i16 FPR128:$src)>; 5904def : Pat<(v8i16 (bitconvert (v16i8 FPR128:$src))), (v8i16 FPR128:$src)>; 5905def : Pat<(v8i16 (bitconvert (v2f64 FPR128:$src))), (v8i16 FPR128:$src)>; 5906def : Pat<(v8i16 (bitconvert (v4f32 FPR128:$src))), (v8i16 FPR128:$src)>; 5907def : Pat<(v8i16 (bitconvert (v8f16 FPR128:$src))), (v8i16 FPR128:$src)>; 5908} 5909let Predicates = [IsBE] in { 5910def : Pat<(v8i16 (bitconvert (f128 FPR128:$src))), 5911 (v8i16 (EXTv16i8 (REV64v8i16 FPR128:$src), 5912 (REV64v8i16 FPR128:$src), 5913 (i32 8)))>; 5914def : Pat<(v8i16 (bitconvert (v2i64 FPR128:$src))), 5915 (v8i16 (REV64v8i16 FPR128:$src))>; 5916def : Pat<(v8i16 (bitconvert (v4i32 FPR128:$src))), 5917 (v8i16 (REV32v8i16 FPR128:$src))>; 5918def : Pat<(v8i16 (bitconvert (v16i8 FPR128:$src))), 5919 (v8i16 (REV16v16i8 FPR128:$src))>; 5920def : Pat<(v8i16 (bitconvert (v2f64 FPR128:$src))), 5921 (v8i16 (REV64v8i16 FPR128:$src))>; 5922def : Pat<(v8i16 (bitconvert (v4f32 FPR128:$src))), 5923 (v8i16 (REV32v8i16 FPR128:$src))>; 5924def : Pat<(v8i16 (bitconvert (v8f16 FPR128:$src))), 5925 (v8i16 (REV32v8i16 FPR128:$src))>; 5926} 5927 5928let Predicates = [IsLE] in { 5929def : Pat<(v8f16 (bitconvert (f128 FPR128:$src))), (v8f16 FPR128:$src)>; 5930def : Pat<(v8f16 (bitconvert (v2i64 FPR128:$src))), (v8f16 FPR128:$src)>; 5931def : Pat<(v8f16 (bitconvert (v4i32 FPR128:$src))), (v8f16 FPR128:$src)>; 5932def : Pat<(v8f16 (bitconvert (v8i16 FPR128:$src))), (v8f16 FPR128:$src)>; 5933def : Pat<(v8f16 (bitconvert (v16i8 FPR128:$src))), (v8f16 FPR128:$src)>; 5934def : Pat<(v8f16 (bitconvert (v2f64 FPR128:$src))), (v8f16 FPR128:$src)>; 5935def : Pat<(v8f16 (bitconvert (v4f32 FPR128:$src))), (v8f16 FPR128:$src)>; 5936} 5937let Predicates = [IsBE] in { 5938def : Pat<(v8f16 (bitconvert (f128 FPR128:$src))), 5939 (v8f16 (EXTv16i8 (REV64v8i16 FPR128:$src), 5940 (REV64v8i16 FPR128:$src), 5941 (i32 8)))>; 5942def : Pat<(v8f16 (bitconvert (v2i64 FPR128:$src))), 5943 (v8f16 (REV64v8i16 FPR128:$src))>; 5944def : Pat<(v8f16 (bitconvert (v4i32 FPR128:$src))), 5945 (v8f16 (REV32v8i16 FPR128:$src))>; 5946def : Pat<(v8f16 (bitconvert (v8i16 FPR128:$src))), 5947 (v8f16 (REV64v8i16 FPR128:$src))>; 5948def : Pat<(v8f16 (bitconvert (v16i8 FPR128:$src))), 5949 (v8f16 (REV16v16i8 FPR128:$src))>; 5950def : Pat<(v8f16 (bitconvert (v2f64 FPR128:$src))), 5951 (v8f16 (REV64v8i16 FPR128:$src))>; 5952def : Pat<(v8f16 (bitconvert (v4f32 FPR128:$src))), 5953 (v8f16 (REV32v8i16 FPR128:$src))>; 5954} 5955 5956let Predicates = [IsLE] in { 5957def : Pat<(v16i8 (bitconvert (f128 FPR128:$src))), (v16i8 FPR128:$src)>; 5958def : Pat<(v16i8 (bitconvert (v2i64 FPR128:$src))), (v16i8 FPR128:$src)>; 5959def : Pat<(v16i8 (bitconvert (v4i32 FPR128:$src))), (v16i8 FPR128:$src)>; 5960def : Pat<(v16i8 (bitconvert (v8i16 FPR128:$src))), (v16i8 FPR128:$src)>; 5961def : Pat<(v16i8 (bitconvert (v2f64 FPR128:$src))), (v16i8 FPR128:$src)>; 5962def : Pat<(v16i8 (bitconvert (v4f32 FPR128:$src))), (v16i8 FPR128:$src)>; 5963def : Pat<(v16i8 (bitconvert (v8f16 FPR128:$src))), (v16i8 FPR128:$src)>; 5964} 5965let Predicates = [IsBE] in { 5966def : Pat<(v16i8 (bitconvert (f128 FPR128:$src))), 5967 (v16i8 (EXTv16i8 (REV64v16i8 FPR128:$src), 5968 (REV64v16i8 FPR128:$src), 5969 (i32 8)))>; 5970def : Pat<(v16i8 (bitconvert (v2i64 FPR128:$src))), 5971 (v16i8 (REV64v16i8 FPR128:$src))>; 5972def : Pat<(v16i8 (bitconvert (v4i32 FPR128:$src))), 5973 (v16i8 (REV32v16i8 FPR128:$src))>; 5974def : Pat<(v16i8 (bitconvert (v8i16 FPR128:$src))), 5975 (v16i8 (REV16v16i8 FPR128:$src))>; 5976def : Pat<(v16i8 (bitconvert (v2f64 FPR128:$src))), 5977 (v16i8 (REV64v16i8 FPR128:$src))>; 5978def : Pat<(v16i8 (bitconvert (v4f32 FPR128:$src))), 5979 (v16i8 (REV32v16i8 FPR128:$src))>; 5980def : Pat<(v16i8 (bitconvert (v8f16 FPR128:$src))), 5981 (v16i8 (REV16v16i8 FPR128:$src))>; 5982} 5983 5984def : Pat<(v4i16 (extract_subvector V128:$Rn, (i64 0))), 5985 (EXTRACT_SUBREG V128:$Rn, dsub)>; 5986def : Pat<(v8i8 (extract_subvector V128:$Rn, (i64 0))), 5987 (EXTRACT_SUBREG V128:$Rn, dsub)>; 5988def : Pat<(v2f32 (extract_subvector V128:$Rn, (i64 0))), 5989 (EXTRACT_SUBREG V128:$Rn, dsub)>; 5990def : Pat<(v4f16 (extract_subvector V128:$Rn, (i64 0))), 5991 (EXTRACT_SUBREG V128:$Rn, dsub)>; 5992def : Pat<(v2i32 (extract_subvector V128:$Rn, (i64 0))), 5993 (EXTRACT_SUBREG V128:$Rn, dsub)>; 5994def : Pat<(v1i64 (extract_subvector V128:$Rn, (i64 0))), 5995 (EXTRACT_SUBREG V128:$Rn, dsub)>; 5996def : Pat<(v1f64 (extract_subvector V128:$Rn, (i64 0))), 5997 (EXTRACT_SUBREG V128:$Rn, dsub)>; 5998 5999def : Pat<(v8i8 (extract_subvector (v16i8 FPR128:$Rn), (i64 1))), 6000 (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>; 6001def : Pat<(v4i16 (extract_subvector (v8i16 FPR128:$Rn), (i64 1))), 6002 (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>; 6003def : Pat<(v2i32 (extract_subvector (v4i32 FPR128:$Rn), (i64 1))), 6004 (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>; 6005def : Pat<(v1i64 (extract_subvector (v2i64 FPR128:$Rn), (i64 1))), 6006 (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>; 6007 6008// A 64-bit subvector insert to the first 128-bit vector position 6009// is a subregister copy that needs no instruction. 6010def : Pat<(insert_subvector undef, (v1i64 FPR64:$src), (i32 0)), 6011 (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), FPR64:$src, dsub)>; 6012def : Pat<(insert_subvector undef, (v1f64 FPR64:$src), (i32 0)), 6013 (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$src, dsub)>; 6014def : Pat<(insert_subvector undef, (v2i32 FPR64:$src), (i32 0)), 6015 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$src, dsub)>; 6016def : Pat<(insert_subvector undef, (v2f32 FPR64:$src), (i32 0)), 6017 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR64:$src, dsub)>; 6018def : Pat<(insert_subvector undef, (v4i16 FPR64:$src), (i32 0)), 6019 (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR64:$src, dsub)>; 6020def : Pat<(insert_subvector undef, (v4f16 FPR64:$src), (i32 0)), 6021 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR64:$src, dsub)>; 6022def : Pat<(insert_subvector undef, (v8i8 FPR64:$src), (i32 0)), 6023 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), FPR64:$src, dsub)>; 6024 6025// Use pair-wise add instructions when summing up the lanes for v2f64, v2i64 6026// or v2f32. 6027def : Pat<(i64 (add (vector_extract (v2i64 FPR128:$Rn), (i64 0)), 6028 (vector_extract (v2i64 FPR128:$Rn), (i64 1)))), 6029 (i64 (ADDPv2i64p (v2i64 FPR128:$Rn)))>; 6030def : Pat<(f64 (fadd (vector_extract (v2f64 FPR128:$Rn), (i64 0)), 6031 (vector_extract (v2f64 FPR128:$Rn), (i64 1)))), 6032 (f64 (FADDPv2i64p (v2f64 FPR128:$Rn)))>; 6033 // vector_extract on 64-bit vectors gets promoted to a 128 bit vector, 6034 // so we match on v4f32 here, not v2f32. This will also catch adding 6035 // the low two lanes of a true v4f32 vector. 6036def : Pat<(fadd (vector_extract (v4f32 FPR128:$Rn), (i64 0)), 6037 (vector_extract (v4f32 FPR128:$Rn), (i64 1))), 6038 (f32 (FADDPv2i32p (EXTRACT_SUBREG FPR128:$Rn, dsub)))>; 6039 6040// Scalar 64-bit shifts in FPR64 registers. 6041def : Pat<(i64 (int_aarch64_neon_sshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))), 6042 (SSHLv1i64 FPR64:$Rn, FPR64:$Rm)>; 6043def : Pat<(i64 (int_aarch64_neon_ushl (i64 FPR64:$Rn), (i64 FPR64:$Rm))), 6044 (USHLv1i64 FPR64:$Rn, FPR64:$Rm)>; 6045def : Pat<(i64 (int_aarch64_neon_srshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))), 6046 (SRSHLv1i64 FPR64:$Rn, FPR64:$Rm)>; 6047def : Pat<(i64 (int_aarch64_neon_urshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))), 6048 (URSHLv1i64 FPR64:$Rn, FPR64:$Rm)>; 6049 6050// Patterns for nontemporal/no-allocate stores. 6051// We have to resort to tricks to turn a single-input store into a store pair, 6052// because there is no single-input nontemporal store, only STNP. 6053let Predicates = [IsLE] in { 6054let AddedComplexity = 15 in { 6055class NTStore128Pat<ValueType VT> : 6056 Pat<(nontemporalstore (VT FPR128:$Rt), 6057 (am_indexed7s64 GPR64sp:$Rn, simm7s8:$offset)), 6058 (STNPDi (EXTRACT_SUBREG FPR128:$Rt, dsub), 6059 (CPYi64 FPR128:$Rt, (i64 1)), 6060 GPR64sp:$Rn, simm7s8:$offset)>; 6061 6062def : NTStore128Pat<v2i64>; 6063def : NTStore128Pat<v4i32>; 6064def : NTStore128Pat<v8i16>; 6065def : NTStore128Pat<v16i8>; 6066 6067class NTStore64Pat<ValueType VT> : 6068 Pat<(nontemporalstore (VT FPR64:$Rt), 6069 (am_indexed7s32 GPR64sp:$Rn, simm7s4:$offset)), 6070 (STNPSi (EXTRACT_SUBREG FPR64:$Rt, ssub), 6071 (CPYi32 (SUBREG_TO_REG (i64 0), FPR64:$Rt, dsub), (i64 1)), 6072 GPR64sp:$Rn, simm7s4:$offset)>; 6073 6074// FIXME: Shouldn't v1f64 loads/stores be promoted to v1i64? 6075def : NTStore64Pat<v1f64>; 6076def : NTStore64Pat<v1i64>; 6077def : NTStore64Pat<v2i32>; 6078def : NTStore64Pat<v4i16>; 6079def : NTStore64Pat<v8i8>; 6080 6081def : Pat<(nontemporalstore GPR64:$Rt, 6082 (am_indexed7s32 GPR64sp:$Rn, simm7s4:$offset)), 6083 (STNPWi (EXTRACT_SUBREG GPR64:$Rt, sub_32), 6084 (EXTRACT_SUBREG (UBFMXri GPR64:$Rt, 32, 63), sub_32), 6085 GPR64sp:$Rn, simm7s4:$offset)>; 6086} // AddedComplexity=10 6087} // Predicates = [IsLE] 6088 6089// Tail call return handling. These are all compiler pseudo-instructions, 6090// so no encoding information or anything like that. 6091let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [SP] in { 6092 def TCRETURNdi : Pseudo<(outs), (ins i64imm:$dst, i32imm:$FPDiff), []>, 6093 Sched<[WriteBrReg]>; 6094 def TCRETURNri : Pseudo<(outs), (ins tcGPR64:$dst, i32imm:$FPDiff), []>, 6095 Sched<[WriteBrReg]>; 6096} 6097 6098def : Pat<(AArch64tcret tcGPR64:$dst, (i32 timm:$FPDiff)), 6099 (TCRETURNri tcGPR64:$dst, imm:$FPDiff)>; 6100def : Pat<(AArch64tcret tglobaladdr:$dst, (i32 timm:$FPDiff)), 6101 (TCRETURNdi texternalsym:$dst, imm:$FPDiff)>; 6102def : Pat<(AArch64tcret texternalsym:$dst, (i32 timm:$FPDiff)), 6103 (TCRETURNdi texternalsym:$dst, imm:$FPDiff)>; 6104 6105include "AArch64InstrAtomics.td" 6106