1 //===-- R600ControlFlowFinalizer.cpp - Finalize Control Flow Inst----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// This pass compute turns all control flow pseudo instructions into native one
12 /// computing their address on the fly ; it also sets STACK_SIZE info.
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Support/Debug.h"
16 #include "AMDGPU.h"
17 #include "AMDGPUSubtarget.h"
18 #include "R600Defines.h"
19 #include "R600InstrInfo.h"
20 #include "R600MachineFunctionInfo.h"
21 #include "R600RegisterInfo.h"
22 #include "llvm/CodeGen/MachineFunctionPass.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/Support/raw_ostream.h"
26 
27 using namespace llvm;
28 
29 #define DEBUG_TYPE "r600cf"
30 
31 namespace {
32 
33 struct CFStack {
34 
35   enum StackItem {
36     ENTRY = 0,
37     SUB_ENTRY = 1,
38     FIRST_NON_WQM_PUSH = 2,
39     FIRST_NON_WQM_PUSH_W_FULL_ENTRY = 3
40   };
41 
42   const R600Subtarget *ST;
43   std::vector<StackItem> BranchStack;
44   std::vector<StackItem> LoopStack;
45   unsigned MaxStackSize;
46   unsigned CurrentEntries;
47   unsigned CurrentSubEntries;
48 
CFStack__anon0f917c7a0111::CFStack49   CFStack(const R600Subtarget *st, CallingConv::ID cc) : ST(st),
50       // We need to reserve a stack entry for CALL_FS in vertex shaders.
51       MaxStackSize(cc == CallingConv::AMDGPU_VS ? 1 : 0),
52       CurrentEntries(0), CurrentSubEntries(0) { }
53 
54   unsigned getLoopDepth();
55   bool branchStackContains(CFStack::StackItem);
56   bool requiresWorkAroundForInst(unsigned Opcode);
57   unsigned getSubEntrySize(CFStack::StackItem Item);
58   void updateMaxStackSize();
59   void pushBranch(unsigned Opcode, bool isWQM = false);
60   void pushLoop();
61   void popBranch();
62   void popLoop();
63 };
64 
getLoopDepth()65 unsigned CFStack::getLoopDepth() {
66   return LoopStack.size();
67 }
68 
branchStackContains(CFStack::StackItem Item)69 bool CFStack::branchStackContains(CFStack::StackItem Item) {
70   for (std::vector<CFStack::StackItem>::const_iterator I = BranchStack.begin(),
71        E = BranchStack.end(); I != E; ++I) {
72     if (*I == Item)
73       return true;
74   }
75   return false;
76 }
77 
requiresWorkAroundForInst(unsigned Opcode)78 bool CFStack::requiresWorkAroundForInst(unsigned Opcode) {
79   if (Opcode == AMDGPU::CF_ALU_PUSH_BEFORE && ST->hasCaymanISA() &&
80       getLoopDepth() > 1)
81     return true;
82 
83   if (!ST->hasCFAluBug())
84     return false;
85 
86   switch(Opcode) {
87   default: return false;
88   case AMDGPU::CF_ALU_PUSH_BEFORE:
89   case AMDGPU::CF_ALU_ELSE_AFTER:
90   case AMDGPU::CF_ALU_BREAK:
91   case AMDGPU::CF_ALU_CONTINUE:
92     if (CurrentSubEntries == 0)
93       return false;
94     if (ST->getWavefrontSize() == 64) {
95       // We are being conservative here.  We only require this work-around if
96       // CurrentSubEntries > 3 &&
97       // (CurrentSubEntries % 4 == 3 || CurrentSubEntries % 4 == 0)
98       //
99       // We have to be conservative, because we don't know for certain that
100       // our stack allocation algorithm for Evergreen/NI is correct.  Applying this
101       // work-around when CurrentSubEntries > 3 allows us to over-allocate stack
102       // resources without any problems.
103       return CurrentSubEntries > 3;
104     } else {
105       assert(ST->getWavefrontSize() == 32);
106       // We are being conservative here.  We only require the work-around if
107       // CurrentSubEntries > 7 &&
108       // (CurrentSubEntries % 8 == 7 || CurrentSubEntries % 8 == 0)
109       // See the comment on the wavefront size == 64 case for why we are
110       // being conservative.
111       return CurrentSubEntries > 7;
112     }
113   }
114 }
115 
getSubEntrySize(CFStack::StackItem Item)116 unsigned CFStack::getSubEntrySize(CFStack::StackItem Item) {
117   switch(Item) {
118   default:
119     return 0;
120   case CFStack::FIRST_NON_WQM_PUSH:
121   assert(!ST->hasCaymanISA());
122   if (ST->getGeneration() <= R600Subtarget::R700) {
123     // +1 For the push operation.
124     // +2 Extra space required.
125     return 3;
126   } else {
127     // Some documentation says that this is not necessary on Evergreen,
128     // but experimentation has show that we need to allocate 1 extra
129     // sub-entry for the first non-WQM push.
130     // +1 For the push operation.
131     // +1 Extra space required.
132     return 2;
133   }
134   case CFStack::FIRST_NON_WQM_PUSH_W_FULL_ENTRY:
135     assert(ST->getGeneration() >= R600Subtarget::EVERGREEN);
136     // +1 For the push operation.
137     // +1 Extra space required.
138     return 2;
139   case CFStack::SUB_ENTRY:
140     return 1;
141   }
142 }
143 
updateMaxStackSize()144 void CFStack::updateMaxStackSize() {
145   unsigned CurrentStackSize =
146       CurrentEntries + (alignTo(CurrentSubEntries, 4) / 4);
147   MaxStackSize = std::max(CurrentStackSize, MaxStackSize);
148 }
149 
pushBranch(unsigned Opcode,bool isWQM)150 void CFStack::pushBranch(unsigned Opcode, bool isWQM) {
151   CFStack::StackItem Item = CFStack::ENTRY;
152   switch(Opcode) {
153   case AMDGPU::CF_PUSH_EG:
154   case AMDGPU::CF_ALU_PUSH_BEFORE:
155     if (!isWQM) {
156       if (!ST->hasCaymanISA() &&
157           !branchStackContains(CFStack::FIRST_NON_WQM_PUSH))
158         Item = CFStack::FIRST_NON_WQM_PUSH;  // May not be required on Evergreen/NI
159                                              // See comment in
160                                              // CFStack::getSubEntrySize()
161       else if (CurrentEntries > 0 &&
162                ST->getGeneration() > R600Subtarget::EVERGREEN &&
163                !ST->hasCaymanISA() &&
164                !branchStackContains(CFStack::FIRST_NON_WQM_PUSH_W_FULL_ENTRY))
165         Item = CFStack::FIRST_NON_WQM_PUSH_W_FULL_ENTRY;
166       else
167         Item = CFStack::SUB_ENTRY;
168     } else
169       Item = CFStack::ENTRY;
170     break;
171   }
172   BranchStack.push_back(Item);
173   if (Item == CFStack::ENTRY)
174     CurrentEntries++;
175   else
176     CurrentSubEntries += getSubEntrySize(Item);
177   updateMaxStackSize();
178 }
179 
pushLoop()180 void CFStack::pushLoop() {
181   LoopStack.push_back(CFStack::ENTRY);
182   CurrentEntries++;
183   updateMaxStackSize();
184 }
185 
popBranch()186 void CFStack::popBranch() {
187   CFStack::StackItem Top = BranchStack.back();
188   if (Top == CFStack::ENTRY)
189     CurrentEntries--;
190   else
191     CurrentSubEntries-= getSubEntrySize(Top);
192   BranchStack.pop_back();
193 }
194 
popLoop()195 void CFStack::popLoop() {
196   CurrentEntries--;
197   LoopStack.pop_back();
198 }
199 
200 class R600ControlFlowFinalizer : public MachineFunctionPass {
201 
202 private:
203   typedef std::pair<MachineInstr *, std::vector<MachineInstr *> > ClauseFile;
204 
205   enum ControlFlowInstruction {
206     CF_TC,
207     CF_VC,
208     CF_CALL_FS,
209     CF_WHILE_LOOP,
210     CF_END_LOOP,
211     CF_LOOP_BREAK,
212     CF_LOOP_CONTINUE,
213     CF_JUMP,
214     CF_ELSE,
215     CF_POP,
216     CF_END
217   };
218 
219   static char ID;
220   const R600InstrInfo *TII;
221   const R600RegisterInfo *TRI;
222   unsigned MaxFetchInst;
223   const R600Subtarget *ST;
224 
IsTrivialInst(MachineInstr & MI) const225   bool IsTrivialInst(MachineInstr &MI) const {
226     switch (MI.getOpcode()) {
227     case AMDGPU::KILL:
228     case AMDGPU::RETURN:
229       return true;
230     default:
231       return false;
232     }
233   }
234 
getHWInstrDesc(ControlFlowInstruction CFI) const235   const MCInstrDesc &getHWInstrDesc(ControlFlowInstruction CFI) const {
236     unsigned Opcode = 0;
237     bool isEg = (ST->getGeneration() >= R600Subtarget::EVERGREEN);
238     switch (CFI) {
239     case CF_TC:
240       Opcode = isEg ? AMDGPU::CF_TC_EG : AMDGPU::CF_TC_R600;
241       break;
242     case CF_VC:
243       Opcode = isEg ? AMDGPU::CF_VC_EG : AMDGPU::CF_VC_R600;
244       break;
245     case CF_CALL_FS:
246       Opcode = isEg ? AMDGPU::CF_CALL_FS_EG : AMDGPU::CF_CALL_FS_R600;
247       break;
248     case CF_WHILE_LOOP:
249       Opcode = isEg ? AMDGPU::WHILE_LOOP_EG : AMDGPU::WHILE_LOOP_R600;
250       break;
251     case CF_END_LOOP:
252       Opcode = isEg ? AMDGPU::END_LOOP_EG : AMDGPU::END_LOOP_R600;
253       break;
254     case CF_LOOP_BREAK:
255       Opcode = isEg ? AMDGPU::LOOP_BREAK_EG : AMDGPU::LOOP_BREAK_R600;
256       break;
257     case CF_LOOP_CONTINUE:
258       Opcode = isEg ? AMDGPU::CF_CONTINUE_EG : AMDGPU::CF_CONTINUE_R600;
259       break;
260     case CF_JUMP:
261       Opcode = isEg ? AMDGPU::CF_JUMP_EG : AMDGPU::CF_JUMP_R600;
262       break;
263     case CF_ELSE:
264       Opcode = isEg ? AMDGPU::CF_ELSE_EG : AMDGPU::CF_ELSE_R600;
265       break;
266     case CF_POP:
267       Opcode = isEg ? AMDGPU::POP_EG : AMDGPU::POP_R600;
268       break;
269     case CF_END:
270       if (ST->hasCaymanISA()) {
271         Opcode = AMDGPU::CF_END_CM;
272         break;
273       }
274       Opcode = isEg ? AMDGPU::CF_END_EG : AMDGPU::CF_END_R600;
275       break;
276     }
277     assert (Opcode && "No opcode selected");
278     return TII->get(Opcode);
279   }
280 
isCompatibleWithClause(const MachineInstr & MI,std::set<unsigned> & DstRegs) const281   bool isCompatibleWithClause(const MachineInstr &MI,
282                               std::set<unsigned> &DstRegs) const {
283     unsigned DstMI, SrcMI;
284     for (MachineInstr::const_mop_iterator I = MI.operands_begin(),
285                                           E = MI.operands_end();
286          I != E; ++I) {
287       const MachineOperand &MO = *I;
288       if (!MO.isReg())
289         continue;
290       if (MO.isDef()) {
291         unsigned Reg = MO.getReg();
292         if (AMDGPU::R600_Reg128RegClass.contains(Reg))
293           DstMI = Reg;
294         else
295           DstMI = TRI->getMatchingSuperReg(Reg,
296               TRI->getSubRegFromChannel(TRI->getHWRegChan(Reg)),
297               &AMDGPU::R600_Reg128RegClass);
298       }
299       if (MO.isUse()) {
300         unsigned Reg = MO.getReg();
301         if (AMDGPU::R600_Reg128RegClass.contains(Reg))
302           SrcMI = Reg;
303         else
304           SrcMI = TRI->getMatchingSuperReg(Reg,
305               TRI->getSubRegFromChannel(TRI->getHWRegChan(Reg)),
306               &AMDGPU::R600_Reg128RegClass);
307       }
308     }
309     if ((DstRegs.find(SrcMI) == DstRegs.end())) {
310       DstRegs.insert(DstMI);
311       return true;
312     } else
313       return false;
314   }
315 
316   ClauseFile
MakeFetchClause(MachineBasicBlock & MBB,MachineBasicBlock::iterator & I) const317   MakeFetchClause(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I)
318       const {
319     MachineBasicBlock::iterator ClauseHead = I;
320     std::vector<MachineInstr *> ClauseContent;
321     unsigned AluInstCount = 0;
322     bool IsTex = TII->usesTextureCache(*ClauseHead);
323     std::set<unsigned> DstRegs;
324     for (MachineBasicBlock::iterator E = MBB.end(); I != E; ++I) {
325       if (IsTrivialInst(*I))
326         continue;
327       if (AluInstCount >= MaxFetchInst)
328         break;
329       if ((IsTex && !TII->usesTextureCache(*I)) ||
330           (!IsTex && !TII->usesVertexCache(*I)))
331         break;
332       if (!isCompatibleWithClause(*I, DstRegs))
333         break;
334       AluInstCount ++;
335       ClauseContent.push_back(&*I);
336     }
337     MachineInstr *MIb = BuildMI(MBB, ClauseHead, MBB.findDebugLoc(ClauseHead),
338         getHWInstrDesc(IsTex?CF_TC:CF_VC))
339         .addImm(0) // ADDR
340         .addImm(AluInstCount - 1); // COUNT
341     return ClauseFile(MIb, std::move(ClauseContent));
342   }
343 
getLiteral(MachineInstr & MI,std::vector<MachineOperand * > & Lits) const344   void getLiteral(MachineInstr &MI, std::vector<MachineOperand *> &Lits) const {
345     static const unsigned LiteralRegs[] = {
346       AMDGPU::ALU_LITERAL_X,
347       AMDGPU::ALU_LITERAL_Y,
348       AMDGPU::ALU_LITERAL_Z,
349       AMDGPU::ALU_LITERAL_W
350     };
351     const SmallVector<std::pair<MachineOperand *, int64_t>, 3> Srcs =
352         TII->getSrcs(MI);
353     for (const auto &Src:Srcs) {
354       if (Src.first->getReg() != AMDGPU::ALU_LITERAL_X)
355         continue;
356       int64_t Imm = Src.second;
357       std::vector<MachineOperand*>::iterator It =
358           std::find_if(Lits.begin(), Lits.end(),
359                     [&](MachineOperand* val)
360                         { return val->isImm() && (val->getImm() == Imm);});
361 
362       // Get corresponding Operand
363       MachineOperand &Operand = MI.getOperand(
364           TII->getOperandIdx(MI.getOpcode(), AMDGPU::OpName::literal));
365 
366       if (It != Lits.end()) {
367         // Reuse existing literal reg
368         unsigned Index = It - Lits.begin();
369         Src.first->setReg(LiteralRegs[Index]);
370       } else {
371         // Allocate new literal reg
372         assert(Lits.size() < 4 && "Too many literals in Instruction Group");
373         Src.first->setReg(LiteralRegs[Lits.size()]);
374         Lits.push_back(&Operand);
375       }
376     }
377   }
378 
insertLiterals(MachineBasicBlock::iterator InsertPos,const std::vector<unsigned> & Literals) const379   MachineBasicBlock::iterator insertLiterals(
380       MachineBasicBlock::iterator InsertPos,
381       const std::vector<unsigned> &Literals) const {
382     MachineBasicBlock *MBB = InsertPos->getParent();
383     for (unsigned i = 0, e = Literals.size(); i < e; i+=2) {
384       unsigned LiteralPair0 = Literals[i];
385       unsigned LiteralPair1 = (i + 1 < e)?Literals[i + 1]:0;
386       InsertPos = BuildMI(MBB, InsertPos->getDebugLoc(),
387           TII->get(AMDGPU::LITERALS))
388           .addImm(LiteralPair0)
389           .addImm(LiteralPair1);
390     }
391     return InsertPos;
392   }
393 
394   ClauseFile
MakeALUClause(MachineBasicBlock & MBB,MachineBasicBlock::iterator & I) const395   MakeALUClause(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I)
396       const {
397     MachineInstr &ClauseHead = *I;
398     std::vector<MachineInstr *> ClauseContent;
399     I++;
400     for (MachineBasicBlock::instr_iterator E = MBB.instr_end(); I != E;) {
401       if (IsTrivialInst(*I)) {
402         ++I;
403         continue;
404       }
405       if (!I->isBundle() && !TII->isALUInstr(I->getOpcode()))
406         break;
407       std::vector<MachineOperand *>Literals;
408       if (I->isBundle()) {
409         MachineInstr &DeleteMI = *I;
410         MachineBasicBlock::instr_iterator BI = I.getInstrIterator();
411         while (++BI != E && BI->isBundledWithPred()) {
412           BI->unbundleFromPred();
413           for (MachineOperand &MO : BI->operands()) {
414             if (MO.isReg() && MO.isInternalRead())
415               MO.setIsInternalRead(false);
416           }
417           getLiteral(*BI, Literals);
418           ClauseContent.push_back(&*BI);
419         }
420         I = BI;
421         DeleteMI.eraseFromParent();
422       } else {
423         getLiteral(*I, Literals);
424         ClauseContent.push_back(&*I);
425         I++;
426       }
427       for (unsigned i = 0, e = Literals.size(); i < e; i += 2) {
428         MachineInstrBuilder MILit = BuildMI(MBB, I, I->getDebugLoc(),
429             TII->get(AMDGPU::LITERALS));
430         if (Literals[i]->isImm()) {
431             MILit.addImm(Literals[i]->getImm());
432         } else {
433             MILit.addGlobalAddress(Literals[i]->getGlobal(),
434                                    Literals[i]->getOffset());
435         }
436         if (i + 1 < e) {
437           if (Literals[i + 1]->isImm()) {
438             MILit.addImm(Literals[i + 1]->getImm());
439           } else {
440             MILit.addGlobalAddress(Literals[i + 1]->getGlobal(),
441                                    Literals[i + 1]->getOffset());
442           }
443         } else
444           MILit.addImm(0);
445         ClauseContent.push_back(MILit);
446       }
447     }
448     assert(ClauseContent.size() < 128 && "ALU clause is too big");
449     ClauseHead.getOperand(7).setImm(ClauseContent.size() - 1);
450     return ClauseFile(&ClauseHead, std::move(ClauseContent));
451   }
452 
453   void
EmitFetchClause(MachineBasicBlock::iterator InsertPos,ClauseFile & Clause,unsigned & CfCount)454   EmitFetchClause(MachineBasicBlock::iterator InsertPos, ClauseFile &Clause,
455       unsigned &CfCount) {
456     CounterPropagateAddr(*Clause.first, CfCount);
457     MachineBasicBlock *BB = Clause.first->getParent();
458     BuildMI(BB, InsertPos->getDebugLoc(), TII->get(AMDGPU::FETCH_CLAUSE))
459         .addImm(CfCount);
460     for (unsigned i = 0, e = Clause.second.size(); i < e; ++i) {
461       BB->splice(InsertPos, BB, Clause.second[i]);
462     }
463     CfCount += 2 * Clause.second.size();
464   }
465 
466   void
EmitALUClause(MachineBasicBlock::iterator InsertPos,ClauseFile & Clause,unsigned & CfCount)467   EmitALUClause(MachineBasicBlock::iterator InsertPos, ClauseFile &Clause,
468       unsigned &CfCount) {
469     Clause.first->getOperand(0).setImm(0);
470     CounterPropagateAddr(*Clause.first, CfCount);
471     MachineBasicBlock *BB = Clause.first->getParent();
472     BuildMI(BB, InsertPos->getDebugLoc(), TII->get(AMDGPU::ALU_CLAUSE))
473         .addImm(CfCount);
474     for (unsigned i = 0, e = Clause.second.size(); i < e; ++i) {
475       BB->splice(InsertPos, BB, Clause.second[i]);
476     }
477     CfCount += Clause.second.size();
478   }
479 
CounterPropagateAddr(MachineInstr & MI,unsigned Addr) const480   void CounterPropagateAddr(MachineInstr &MI, unsigned Addr) const {
481     MI.getOperand(0).setImm(Addr + MI.getOperand(0).getImm());
482   }
CounterPropagateAddr(const std::set<MachineInstr * > & MIs,unsigned Addr) const483   void CounterPropagateAddr(const std::set<MachineInstr *> &MIs,
484                             unsigned Addr) const {
485     for (MachineInstr *MI : MIs) {
486       CounterPropagateAddr(*MI, Addr);
487     }
488   }
489 
490 public:
R600ControlFlowFinalizer(TargetMachine & tm)491   R600ControlFlowFinalizer(TargetMachine &tm)
492       : MachineFunctionPass(ID), TII(nullptr), TRI(nullptr), ST(nullptr) {}
493 
runOnMachineFunction(MachineFunction & MF)494   bool runOnMachineFunction(MachineFunction &MF) override {
495     ST = &MF.getSubtarget<R600Subtarget>();
496     MaxFetchInst = ST->getTexVTXClauseSize();
497     TII = ST->getInstrInfo();
498     TRI = ST->getRegisterInfo();
499 
500     R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
501 
502     CFStack CFStack(ST, MF.getFunction()->getCallingConv());
503     for (MachineFunction::iterator MB = MF.begin(), ME = MF.end(); MB != ME;
504         ++MB) {
505       MachineBasicBlock &MBB = *MB;
506       unsigned CfCount = 0;
507       std::vector<std::pair<unsigned, std::set<MachineInstr *> > > LoopStack;
508       std::vector<MachineInstr * > IfThenElseStack;
509       if (MF.getFunction()->getCallingConv() == CallingConv::AMDGPU_VS) {
510         BuildMI(MBB, MBB.begin(), MBB.findDebugLoc(MBB.begin()),
511             getHWInstrDesc(CF_CALL_FS));
512         CfCount++;
513       }
514       std::vector<ClauseFile> FetchClauses, AluClauses;
515       std::vector<MachineInstr *> LastAlu(1);
516       std::vector<MachineInstr *> ToPopAfter;
517 
518       for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
519           I != E;) {
520         if (TII->usesTextureCache(*I) || TII->usesVertexCache(*I)) {
521           DEBUG(dbgs() << CfCount << ":"; I->dump(););
522           FetchClauses.push_back(MakeFetchClause(MBB, I));
523           CfCount++;
524           LastAlu.back() = nullptr;
525           continue;
526         }
527 
528         MachineBasicBlock::iterator MI = I;
529         if (MI->getOpcode() != AMDGPU::ENDIF)
530           LastAlu.back() = nullptr;
531         if (MI->getOpcode() == AMDGPU::CF_ALU)
532           LastAlu.back() = &*MI;
533         I++;
534         bool RequiresWorkAround =
535             CFStack.requiresWorkAroundForInst(MI->getOpcode());
536         switch (MI->getOpcode()) {
537         case AMDGPU::CF_ALU_PUSH_BEFORE:
538           if (RequiresWorkAround) {
539             DEBUG(dbgs() << "Applying bug work-around for ALU_PUSH_BEFORE\n");
540             BuildMI(MBB, MI, MBB.findDebugLoc(MI), TII->get(AMDGPU::CF_PUSH_EG))
541                 .addImm(CfCount + 1)
542                 .addImm(1);
543             MI->setDesc(TII->get(AMDGPU::CF_ALU));
544             CfCount++;
545             CFStack.pushBranch(AMDGPU::CF_PUSH_EG);
546           } else
547             CFStack.pushBranch(AMDGPU::CF_ALU_PUSH_BEFORE);
548 
549         case AMDGPU::CF_ALU:
550           I = MI;
551           AluClauses.push_back(MakeALUClause(MBB, I));
552           DEBUG(dbgs() << CfCount << ":"; MI->dump(););
553           CfCount++;
554           break;
555         case AMDGPU::WHILELOOP: {
556           CFStack.pushLoop();
557           MachineInstr *MIb = BuildMI(MBB, MI, MBB.findDebugLoc(MI),
558               getHWInstrDesc(CF_WHILE_LOOP))
559               .addImm(1);
560           std::pair<unsigned, std::set<MachineInstr *> > Pair(CfCount,
561               std::set<MachineInstr *>());
562           Pair.second.insert(MIb);
563           LoopStack.push_back(std::move(Pair));
564           MI->eraseFromParent();
565           CfCount++;
566           break;
567         }
568         case AMDGPU::ENDLOOP: {
569           CFStack.popLoop();
570           std::pair<unsigned, std::set<MachineInstr *> > Pair =
571               std::move(LoopStack.back());
572           LoopStack.pop_back();
573           CounterPropagateAddr(Pair.second, CfCount);
574           BuildMI(MBB, MI, MBB.findDebugLoc(MI), getHWInstrDesc(CF_END_LOOP))
575               .addImm(Pair.first + 1);
576           MI->eraseFromParent();
577           CfCount++;
578           break;
579         }
580         case AMDGPU::IF_PREDICATE_SET: {
581           LastAlu.push_back(nullptr);
582           MachineInstr *MIb = BuildMI(MBB, MI, MBB.findDebugLoc(MI),
583               getHWInstrDesc(CF_JUMP))
584               .addImm(0)
585               .addImm(0);
586           IfThenElseStack.push_back(MIb);
587           DEBUG(dbgs() << CfCount << ":"; MIb->dump(););
588           MI->eraseFromParent();
589           CfCount++;
590           break;
591         }
592         case AMDGPU::ELSE: {
593           MachineInstr * JumpInst = IfThenElseStack.back();
594           IfThenElseStack.pop_back();
595           CounterPropagateAddr(*JumpInst, CfCount);
596           MachineInstr *MIb = BuildMI(MBB, MI, MBB.findDebugLoc(MI),
597               getHWInstrDesc(CF_ELSE))
598               .addImm(0)
599               .addImm(0);
600           DEBUG(dbgs() << CfCount << ":"; MIb->dump(););
601           IfThenElseStack.push_back(MIb);
602           MI->eraseFromParent();
603           CfCount++;
604           break;
605         }
606         case AMDGPU::ENDIF: {
607           CFStack.popBranch();
608           if (LastAlu.back()) {
609             ToPopAfter.push_back(LastAlu.back());
610           } else {
611             MachineInstr *MIb = BuildMI(MBB, MI, MBB.findDebugLoc(MI),
612                 getHWInstrDesc(CF_POP))
613                 .addImm(CfCount + 1)
614                 .addImm(1);
615             (void)MIb;
616             DEBUG(dbgs() << CfCount << ":"; MIb->dump(););
617             CfCount++;
618           }
619 
620           MachineInstr *IfOrElseInst = IfThenElseStack.back();
621           IfThenElseStack.pop_back();
622           CounterPropagateAddr(*IfOrElseInst, CfCount);
623           IfOrElseInst->getOperand(1).setImm(1);
624           LastAlu.pop_back();
625           MI->eraseFromParent();
626           break;
627         }
628         case AMDGPU::BREAK: {
629           CfCount ++;
630           MachineInstr *MIb = BuildMI(MBB, MI, MBB.findDebugLoc(MI),
631               getHWInstrDesc(CF_LOOP_BREAK))
632               .addImm(0);
633           LoopStack.back().second.insert(MIb);
634           MI->eraseFromParent();
635           break;
636         }
637         case AMDGPU::CONTINUE: {
638           MachineInstr *MIb = BuildMI(MBB, MI, MBB.findDebugLoc(MI),
639               getHWInstrDesc(CF_LOOP_CONTINUE))
640               .addImm(0);
641           LoopStack.back().second.insert(MIb);
642           MI->eraseFromParent();
643           CfCount++;
644           break;
645         }
646         case AMDGPU::RETURN: {
647           BuildMI(MBB, MI, MBB.findDebugLoc(MI), getHWInstrDesc(CF_END));
648           CfCount++;
649           if (CfCount % 2) {
650             BuildMI(MBB, I, MBB.findDebugLoc(MI), TII->get(AMDGPU::PAD));
651             CfCount++;
652           }
653           MI->eraseFromParent();
654           for (unsigned i = 0, e = FetchClauses.size(); i < e; i++)
655             EmitFetchClause(I, FetchClauses[i], CfCount);
656           for (unsigned i = 0, e = AluClauses.size(); i < e; i++)
657             EmitALUClause(I, AluClauses[i], CfCount);
658           break;
659         }
660         default:
661           if (TII->isExport(MI->getOpcode())) {
662             DEBUG(dbgs() << CfCount << ":"; MI->dump(););
663             CfCount++;
664           }
665           break;
666         }
667       }
668       for (unsigned i = 0, e = ToPopAfter.size(); i < e; ++i) {
669         MachineInstr *Alu = ToPopAfter[i];
670         BuildMI(MBB, Alu, MBB.findDebugLoc((MachineBasicBlock::iterator)Alu),
671             TII->get(AMDGPU::CF_ALU_POP_AFTER))
672             .addImm(Alu->getOperand(0).getImm())
673             .addImm(Alu->getOperand(1).getImm())
674             .addImm(Alu->getOperand(2).getImm())
675             .addImm(Alu->getOperand(3).getImm())
676             .addImm(Alu->getOperand(4).getImm())
677             .addImm(Alu->getOperand(5).getImm())
678             .addImm(Alu->getOperand(6).getImm())
679             .addImm(Alu->getOperand(7).getImm())
680             .addImm(Alu->getOperand(8).getImm());
681         Alu->eraseFromParent();
682       }
683       MFI->StackSize = CFStack.MaxStackSize;
684     }
685 
686     return false;
687   }
688 
getPassName() const689   const char *getPassName() const override {
690     return "R600 Control Flow Finalizer Pass";
691   }
692 };
693 
694 char R600ControlFlowFinalizer::ID = 0;
695 
696 } // end anonymous namespace
697 
698 
createR600ControlFlowFinalizer(TargetMachine & TM)699 llvm::FunctionPass *llvm::createR600ControlFlowFinalizer(TargetMachine &TM) {
700   return new R600ControlFlowFinalizer(TM);
701 }
702