1 //===-- R600MachineScheduler.cpp - R600 Scheduler Interface -*- C++ -*-----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// \brief R600 Machine Scheduler interface
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "R600MachineScheduler.h"
16 #include "R600InstrInfo.h"
17 #include "AMDGPUSubtarget.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/Pass.h"
20 #include "llvm/IR/LegacyPassManager.h"
21 #include "llvm/Support/raw_ostream.h"
22 
23 using namespace llvm;
24 
25 #define DEBUG_TYPE "misched"
26 
initialize(ScheduleDAGMI * dag)27 void R600SchedStrategy::initialize(ScheduleDAGMI *dag) {
28   assert(dag->hasVRegLiveness() && "R600SchedStrategy needs vreg liveness");
29   DAG = static_cast<ScheduleDAGMILive*>(dag);
30   const R600Subtarget &ST = DAG->MF.getSubtarget<R600Subtarget>();
31   TII = static_cast<const R600InstrInfo*>(DAG->TII);
32   TRI = static_cast<const R600RegisterInfo*>(DAG->TRI);
33   VLIW5 = !ST.hasCaymanISA();
34   MRI = &DAG->MRI;
35   CurInstKind = IDOther;
36   CurEmitted = 0;
37   OccupedSlotsMask = 31;
38   InstKindLimit[IDAlu] = TII->getMaxAlusPerClause();
39   InstKindLimit[IDOther] = 32;
40   InstKindLimit[IDFetch] = ST.getTexVTXClauseSize();
41   AluInstCount = 0;
42   FetchInstCount = 0;
43 }
44 
MoveUnits(std::vector<SUnit * > & QSrc,std::vector<SUnit * > & QDst)45 void R600SchedStrategy::MoveUnits(std::vector<SUnit *> &QSrc,
46                                   std::vector<SUnit *> &QDst)
47 {
48   QDst.insert(QDst.end(), QSrc.begin(), QSrc.end());
49   QSrc.clear();
50 }
51 
getWFCountLimitedByGPR(unsigned GPRCount)52 static unsigned getWFCountLimitedByGPR(unsigned GPRCount) {
53   assert (GPRCount && "GPRCount cannot be 0");
54   return 248 / GPRCount;
55 }
56 
pickNode(bool & IsTopNode)57 SUnit* R600SchedStrategy::pickNode(bool &IsTopNode) {
58   SUnit *SU = nullptr;
59   NextInstKind = IDOther;
60 
61   IsTopNode = false;
62 
63   // check if we might want to switch current clause type
64   bool AllowSwitchToAlu = (CurEmitted >= InstKindLimit[CurInstKind]) ||
65       (Available[CurInstKind].empty());
66   bool AllowSwitchFromAlu = (CurEmitted >= InstKindLimit[CurInstKind]) &&
67       (!Available[IDFetch].empty() || !Available[IDOther].empty());
68 
69   if (CurInstKind == IDAlu && !Available[IDFetch].empty()) {
70     // We use the heuristic provided by AMD Accelerated Parallel Processing
71     // OpenCL Programming Guide :
72     // The approx. number of WF that allows TEX inst to hide ALU inst is :
73     // 500 (cycles for TEX) / (AluFetchRatio * 8 (cycles for ALU))
74     float ALUFetchRationEstimate =
75         (AluInstCount + AvailablesAluCount() + Pending[IDAlu].size()) /
76         (FetchInstCount + Available[IDFetch].size());
77     if (ALUFetchRationEstimate == 0) {
78       AllowSwitchFromAlu = true;
79     } else {
80       unsigned NeededWF = 62.5f / ALUFetchRationEstimate;
81       DEBUG( dbgs() << NeededWF << " approx. Wavefronts Required\n" );
82       // We assume the local GPR requirements to be "dominated" by the requirement
83       // of the TEX clause (which consumes 128 bits regs) ; ALU inst before and
84       // after TEX are indeed likely to consume or generate values from/for the
85       // TEX clause.
86       // Available[IDFetch].size() * 2 : GPRs required in the Fetch clause
87       // We assume that fetch instructions are either TnXYZW = TEX TnXYZW (need
88       // one GPR) or TmXYZW = TnXYZW (need 2 GPR).
89       // (TODO : use RegisterPressure)
90       // If we are going too use too many GPR, we flush Fetch instruction to lower
91       // register pressure on 128 bits regs.
92       unsigned NearRegisterRequirement = 2 * Available[IDFetch].size();
93       if (NeededWF > getWFCountLimitedByGPR(NearRegisterRequirement))
94         AllowSwitchFromAlu = true;
95     }
96   }
97 
98   if (!SU && ((AllowSwitchToAlu && CurInstKind != IDAlu) ||
99       (!AllowSwitchFromAlu && CurInstKind == IDAlu))) {
100     // try to pick ALU
101     SU = pickAlu();
102     if (!SU && !PhysicalRegCopy.empty()) {
103       SU = PhysicalRegCopy.front();
104       PhysicalRegCopy.erase(PhysicalRegCopy.begin());
105     }
106     if (SU) {
107       if (CurEmitted >= InstKindLimit[IDAlu])
108         CurEmitted = 0;
109       NextInstKind = IDAlu;
110     }
111   }
112 
113   if (!SU) {
114     // try to pick FETCH
115     SU = pickOther(IDFetch);
116     if (SU)
117       NextInstKind = IDFetch;
118   }
119 
120   // try to pick other
121   if (!SU) {
122     SU = pickOther(IDOther);
123     if (SU)
124       NextInstKind = IDOther;
125   }
126 
127   DEBUG(
128       if (SU) {
129         dbgs() << " ** Pick node **\n";
130         SU->dump(DAG);
131       } else {
132         dbgs() << "NO NODE \n";
133         for (unsigned i = 0; i < DAG->SUnits.size(); i++) {
134           const SUnit &S = DAG->SUnits[i];
135           if (!S.isScheduled)
136             S.dump(DAG);
137         }
138       }
139   );
140 
141   return SU;
142 }
143 
schedNode(SUnit * SU,bool IsTopNode)144 void R600SchedStrategy::schedNode(SUnit *SU, bool IsTopNode) {
145   if (NextInstKind != CurInstKind) {
146     DEBUG(dbgs() << "Instruction Type Switch\n");
147     if (NextInstKind != IDAlu)
148       OccupedSlotsMask |= 31;
149     CurEmitted = 0;
150     CurInstKind = NextInstKind;
151   }
152 
153   if (CurInstKind == IDAlu) {
154     AluInstCount ++;
155     switch (getAluKind(SU)) {
156     case AluT_XYZW:
157       CurEmitted += 4;
158       break;
159     case AluDiscarded:
160       break;
161     default: {
162       ++CurEmitted;
163       for (MachineInstr::mop_iterator It = SU->getInstr()->operands_begin(),
164           E = SU->getInstr()->operands_end(); It != E; ++It) {
165         MachineOperand &MO = *It;
166         if (MO.isReg() && MO.getReg() == AMDGPU::ALU_LITERAL_X)
167           ++CurEmitted;
168       }
169     }
170     }
171   } else {
172     ++CurEmitted;
173   }
174 
175 
176   DEBUG(dbgs() << CurEmitted << " Instructions Emitted in this clause\n");
177 
178   if (CurInstKind != IDFetch) {
179     MoveUnits(Pending[IDFetch], Available[IDFetch]);
180   } else
181     FetchInstCount++;
182 }
183 
184 static bool
isPhysicalRegCopy(MachineInstr * MI)185 isPhysicalRegCopy(MachineInstr *MI) {
186   if (MI->getOpcode() != AMDGPU::COPY)
187     return false;
188 
189   return !TargetRegisterInfo::isVirtualRegister(MI->getOperand(1).getReg());
190 }
191 
releaseTopNode(SUnit * SU)192 void R600SchedStrategy::releaseTopNode(SUnit *SU) {
193   DEBUG(dbgs() << "Top Releasing ";SU->dump(DAG););
194 }
195 
releaseBottomNode(SUnit * SU)196 void R600SchedStrategy::releaseBottomNode(SUnit *SU) {
197   DEBUG(dbgs() << "Bottom Releasing ";SU->dump(DAG););
198   if (isPhysicalRegCopy(SU->getInstr())) {
199     PhysicalRegCopy.push_back(SU);
200     return;
201   }
202 
203   int IK = getInstKind(SU);
204 
205   // There is no export clause, we can schedule one as soon as its ready
206   if (IK == IDOther)
207     Available[IDOther].push_back(SU);
208   else
209     Pending[IK].push_back(SU);
210 
211 }
212 
regBelongsToClass(unsigned Reg,const TargetRegisterClass * RC) const213 bool R600SchedStrategy::regBelongsToClass(unsigned Reg,
214                                           const TargetRegisterClass *RC) const {
215   if (!TargetRegisterInfo::isVirtualRegister(Reg)) {
216     return RC->contains(Reg);
217   } else {
218     return MRI->getRegClass(Reg) == RC;
219   }
220 }
221 
getAluKind(SUnit * SU) const222 R600SchedStrategy::AluKind R600SchedStrategy::getAluKind(SUnit *SU) const {
223   MachineInstr *MI = SU->getInstr();
224 
225   if (TII->isTransOnly(*MI))
226     return AluTrans;
227 
228   switch (MI->getOpcode()) {
229   case AMDGPU::PRED_X:
230     return AluPredX;
231   case AMDGPU::INTERP_PAIR_XY:
232   case AMDGPU::INTERP_PAIR_ZW:
233   case AMDGPU::INTERP_VEC_LOAD:
234   case AMDGPU::DOT_4:
235     return AluT_XYZW;
236   case AMDGPU::COPY:
237     if (MI->getOperand(1).isUndef()) {
238       // MI will become a KILL, don't considers it in scheduling
239       return AluDiscarded;
240     }
241   default:
242     break;
243   }
244 
245   // Does the instruction take a whole IG ?
246   // XXX: Is it possible to add a helper function in R600InstrInfo that can
247   // be used here and in R600PacketizerList::isSoloInstruction() ?
248   if(TII->isVector(*MI) ||
249      TII->isCubeOp(MI->getOpcode()) ||
250      TII->isReductionOp(MI->getOpcode()) ||
251      MI->getOpcode() == AMDGPU::GROUP_BARRIER) {
252     return AluT_XYZW;
253   }
254 
255   if (TII->isLDSInstr(MI->getOpcode())) {
256     return AluT_X;
257   }
258 
259   // Is the result already assigned to a channel ?
260   unsigned DestSubReg = MI->getOperand(0).getSubReg();
261   switch (DestSubReg) {
262   case AMDGPU::sub0:
263     return AluT_X;
264   case AMDGPU::sub1:
265     return AluT_Y;
266   case AMDGPU::sub2:
267     return AluT_Z;
268   case AMDGPU::sub3:
269     return AluT_W;
270   default:
271     break;
272   }
273 
274   // Is the result already member of a X/Y/Z/W class ?
275   unsigned DestReg = MI->getOperand(0).getReg();
276   if (regBelongsToClass(DestReg, &AMDGPU::R600_TReg32_XRegClass) ||
277       regBelongsToClass(DestReg, &AMDGPU::R600_AddrRegClass))
278     return AluT_X;
279   if (regBelongsToClass(DestReg, &AMDGPU::R600_TReg32_YRegClass))
280     return AluT_Y;
281   if (regBelongsToClass(DestReg, &AMDGPU::R600_TReg32_ZRegClass))
282     return AluT_Z;
283   if (regBelongsToClass(DestReg, &AMDGPU::R600_TReg32_WRegClass))
284     return AluT_W;
285   if (regBelongsToClass(DestReg, &AMDGPU::R600_Reg128RegClass))
286     return AluT_XYZW;
287 
288   // LDS src registers cannot be used in the Trans slot.
289   if (TII->readsLDSSrcReg(*MI))
290     return AluT_XYZW;
291 
292   return AluAny;
293 }
294 
getInstKind(SUnit * SU)295 int R600SchedStrategy::getInstKind(SUnit* SU) {
296   int Opcode = SU->getInstr()->getOpcode();
297 
298   if (TII->usesTextureCache(Opcode) || TII->usesVertexCache(Opcode))
299     return IDFetch;
300 
301   if (TII->isALUInstr(Opcode)) {
302     return IDAlu;
303   }
304 
305   switch (Opcode) {
306   case AMDGPU::PRED_X:
307   case AMDGPU::COPY:
308   case AMDGPU::CONST_COPY:
309   case AMDGPU::INTERP_PAIR_XY:
310   case AMDGPU::INTERP_PAIR_ZW:
311   case AMDGPU::INTERP_VEC_LOAD:
312   case AMDGPU::DOT_4:
313     return IDAlu;
314   default:
315     return IDOther;
316   }
317 }
318 
PopInst(std::vector<SUnit * > & Q,bool AnyALU)319 SUnit *R600SchedStrategy::PopInst(std::vector<SUnit *> &Q, bool AnyALU) {
320   if (Q.empty())
321     return nullptr;
322   for (std::vector<SUnit *>::reverse_iterator It = Q.rbegin(), E = Q.rend();
323       It != E; ++It) {
324     SUnit *SU = *It;
325     InstructionsGroupCandidate.push_back(SU->getInstr());
326     if (TII->fitsConstReadLimitations(InstructionsGroupCandidate) &&
327         (!AnyALU || !TII->isVectorOnly(*SU->getInstr()))) {
328       InstructionsGroupCandidate.pop_back();
329       Q.erase((It + 1).base());
330       return SU;
331     } else {
332       InstructionsGroupCandidate.pop_back();
333     }
334   }
335   return nullptr;
336 }
337 
LoadAlu()338 void R600SchedStrategy::LoadAlu() {
339   std::vector<SUnit *> &QSrc = Pending[IDAlu];
340   for (unsigned i = 0, e = QSrc.size(); i < e; ++i) {
341     AluKind AK = getAluKind(QSrc[i]);
342     AvailableAlus[AK].push_back(QSrc[i]);
343   }
344   QSrc.clear();
345 }
346 
PrepareNextSlot()347 void R600SchedStrategy::PrepareNextSlot() {
348   DEBUG(dbgs() << "New Slot\n");
349   assert (OccupedSlotsMask && "Slot wasn't filled");
350   OccupedSlotsMask = 0;
351 //  if (HwGen == R600Subtarget::NORTHERN_ISLANDS)
352 //    OccupedSlotsMask |= 16;
353   InstructionsGroupCandidate.clear();
354   LoadAlu();
355 }
356 
AssignSlot(MachineInstr * MI,unsigned Slot)357 void R600SchedStrategy::AssignSlot(MachineInstr* MI, unsigned Slot) {
358   int DstIndex = TII->getOperandIdx(MI->getOpcode(), AMDGPU::OpName::dst);
359   if (DstIndex == -1) {
360     return;
361   }
362   unsigned DestReg = MI->getOperand(DstIndex).getReg();
363   // PressureRegister crashes if an operand is def and used in the same inst
364   // and we try to constraint its regclass
365   for (MachineInstr::mop_iterator It = MI->operands_begin(),
366       E = MI->operands_end(); It != E; ++It) {
367     MachineOperand &MO = *It;
368     if (MO.isReg() && !MO.isDef() &&
369         MO.getReg() == DestReg)
370       return;
371   }
372   // Constrains the regclass of DestReg to assign it to Slot
373   switch (Slot) {
374   case 0:
375     MRI->constrainRegClass(DestReg, &AMDGPU::R600_TReg32_XRegClass);
376     break;
377   case 1:
378     MRI->constrainRegClass(DestReg, &AMDGPU::R600_TReg32_YRegClass);
379     break;
380   case 2:
381     MRI->constrainRegClass(DestReg, &AMDGPU::R600_TReg32_ZRegClass);
382     break;
383   case 3:
384     MRI->constrainRegClass(DestReg, &AMDGPU::R600_TReg32_WRegClass);
385     break;
386   }
387 }
388 
AttemptFillSlot(unsigned Slot,bool AnyAlu)389 SUnit *R600SchedStrategy::AttemptFillSlot(unsigned Slot, bool AnyAlu) {
390   static const AluKind IndexToID[] = {AluT_X, AluT_Y, AluT_Z, AluT_W};
391   SUnit *SlotedSU = PopInst(AvailableAlus[IndexToID[Slot]], AnyAlu);
392   if (SlotedSU)
393     return SlotedSU;
394   SUnit *UnslotedSU = PopInst(AvailableAlus[AluAny], AnyAlu);
395   if (UnslotedSU)
396     AssignSlot(UnslotedSU->getInstr(), Slot);
397   return UnslotedSU;
398 }
399 
AvailablesAluCount() const400 unsigned R600SchedStrategy::AvailablesAluCount() const {
401   return AvailableAlus[AluAny].size() + AvailableAlus[AluT_XYZW].size() +
402       AvailableAlus[AluT_X].size() + AvailableAlus[AluT_Y].size() +
403       AvailableAlus[AluT_Z].size() + AvailableAlus[AluT_W].size() +
404       AvailableAlus[AluTrans].size() + AvailableAlus[AluDiscarded].size() +
405       AvailableAlus[AluPredX].size();
406 }
407 
pickAlu()408 SUnit* R600SchedStrategy::pickAlu() {
409   while (AvailablesAluCount() || !Pending[IDAlu].empty()) {
410     if (!OccupedSlotsMask) {
411       // Bottom up scheduling : predX must comes first
412       if (!AvailableAlus[AluPredX].empty()) {
413         OccupedSlotsMask |= 31;
414         return PopInst(AvailableAlus[AluPredX], false);
415       }
416       // Flush physical reg copies (RA will discard them)
417       if (!AvailableAlus[AluDiscarded].empty()) {
418         OccupedSlotsMask |= 31;
419         return PopInst(AvailableAlus[AluDiscarded], false);
420       }
421       // If there is a T_XYZW alu available, use it
422       if (!AvailableAlus[AluT_XYZW].empty()) {
423         OccupedSlotsMask |= 15;
424         return PopInst(AvailableAlus[AluT_XYZW], false);
425       }
426     }
427     bool TransSlotOccuped = OccupedSlotsMask & 16;
428     if (!TransSlotOccuped && VLIW5) {
429       if (!AvailableAlus[AluTrans].empty()) {
430         OccupedSlotsMask |= 16;
431         return PopInst(AvailableAlus[AluTrans], false);
432       }
433       SUnit *SU = AttemptFillSlot(3, true);
434       if (SU) {
435         OccupedSlotsMask |= 16;
436         return SU;
437       }
438     }
439     for (int Chan = 3; Chan > -1; --Chan) {
440       bool isOccupied = OccupedSlotsMask & (1 << Chan);
441       if (!isOccupied) {
442         SUnit *SU = AttemptFillSlot(Chan, false);
443         if (SU) {
444           OccupedSlotsMask |= (1 << Chan);
445           InstructionsGroupCandidate.push_back(SU->getInstr());
446           return SU;
447         }
448       }
449     }
450     PrepareNextSlot();
451   }
452   return nullptr;
453 }
454 
pickOther(int QID)455 SUnit* R600SchedStrategy::pickOther(int QID) {
456   SUnit *SU = nullptr;
457   std::vector<SUnit *> &AQ = Available[QID];
458 
459   if (AQ.empty()) {
460     MoveUnits(Pending[QID], AQ);
461   }
462   if (!AQ.empty()) {
463     SU = AQ.back();
464     AQ.resize(AQ.size() - 1);
465   }
466   return SU;
467 }
468