1 //===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the ARM-specific support for the FastISel class. Some
11 // of the target-specific code is generated by tablegen in the file
12 // ARMGenFastISel.inc, which is #included here.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "ARM.h"
17 #include "ARMBaseRegisterInfo.h"
18 #include "ARMCallingConv.h"
19 #include "ARMConstantPoolValue.h"
20 #include "ARMISelLowering.h"
21 #include "ARMMachineFunctionInfo.h"
22 #include "ARMSubtarget.h"
23 #include "MCTargetDesc/ARMAddressingModes.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/CodeGen/FastISel.h"
26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineMemOperand.h"
31 #include "llvm/CodeGen/MachineModuleInfo.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/GetElementPtrTypeIterator.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/Module.h"
42 #include "llvm/IR/Operator.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Target/TargetInstrInfo.h"
45 #include "llvm/Target/TargetLowering.h"
46 #include "llvm/Target/TargetMachine.h"
47 #include "llvm/Target/TargetOptions.h"
48 using namespace llvm;
49
50 namespace {
51
52 // All possible address modes, plus some.
53 typedef struct Address {
54 enum {
55 RegBase,
56 FrameIndexBase
57 } BaseType;
58
59 union {
60 unsigned Reg;
61 int FI;
62 } Base;
63
64 int Offset;
65
66 // Innocuous defaults for our address.
Address__anonb1bfd3920111::Address67 Address()
68 : BaseType(RegBase), Offset(0) {
69 Base.Reg = 0;
70 }
71 } Address;
72
73 class ARMFastISel final : public FastISel {
74
75 /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
76 /// make the right decision when generating code for different targets.
77 const ARMSubtarget *Subtarget;
78 Module &M;
79 const TargetMachine &TM;
80 const TargetInstrInfo &TII;
81 const TargetLowering &TLI;
82 ARMFunctionInfo *AFI;
83
84 // Convenience variables to avoid some queries.
85 bool isThumb2;
86 LLVMContext *Context;
87
88 public:
ARMFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo)89 explicit ARMFastISel(FunctionLoweringInfo &funcInfo,
90 const TargetLibraryInfo *libInfo)
91 : FastISel(funcInfo, libInfo),
92 Subtarget(
93 &static_cast<const ARMSubtarget &>(funcInfo.MF->getSubtarget())),
94 M(const_cast<Module &>(*funcInfo.Fn->getParent())),
95 TM(funcInfo.MF->getTarget()), TII(*Subtarget->getInstrInfo()),
96 TLI(*Subtarget->getTargetLowering()) {
97 AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
98 isThumb2 = AFI->isThumbFunction();
99 Context = &funcInfo.Fn->getContext();
100 }
101
102 // Code from FastISel.cpp.
103 private:
104 unsigned fastEmitInst_r(unsigned MachineInstOpcode,
105 const TargetRegisterClass *RC,
106 unsigned Op0, bool Op0IsKill);
107 unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
108 const TargetRegisterClass *RC,
109 unsigned Op0, bool Op0IsKill,
110 unsigned Op1, bool Op1IsKill);
111 unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
112 const TargetRegisterClass *RC,
113 unsigned Op0, bool Op0IsKill,
114 uint64_t Imm);
115 unsigned fastEmitInst_rri(unsigned MachineInstOpcode,
116 const TargetRegisterClass *RC,
117 unsigned Op0, bool Op0IsKill,
118 unsigned Op1, bool Op1IsKill,
119 uint64_t Imm);
120 unsigned fastEmitInst_i(unsigned MachineInstOpcode,
121 const TargetRegisterClass *RC,
122 uint64_t Imm);
123
124 // Backend specific FastISel code.
125 private:
126 bool fastSelectInstruction(const Instruction *I) override;
127 unsigned fastMaterializeConstant(const Constant *C) override;
128 unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
129 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
130 const LoadInst *LI) override;
131 bool fastLowerArguments() override;
132 private:
133 #include "ARMGenFastISel.inc"
134
135 // Instruction selection routines.
136 private:
137 bool SelectLoad(const Instruction *I);
138 bool SelectStore(const Instruction *I);
139 bool SelectBranch(const Instruction *I);
140 bool SelectIndirectBr(const Instruction *I);
141 bool SelectCmp(const Instruction *I);
142 bool SelectFPExt(const Instruction *I);
143 bool SelectFPTrunc(const Instruction *I);
144 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
145 bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode);
146 bool SelectIToFP(const Instruction *I, bool isSigned);
147 bool SelectFPToI(const Instruction *I, bool isSigned);
148 bool SelectDiv(const Instruction *I, bool isSigned);
149 bool SelectRem(const Instruction *I, bool isSigned);
150 bool SelectCall(const Instruction *I, const char *IntrMemName);
151 bool SelectIntrinsicCall(const IntrinsicInst &I);
152 bool SelectSelect(const Instruction *I);
153 bool SelectRet(const Instruction *I);
154 bool SelectTrunc(const Instruction *I);
155 bool SelectIntExt(const Instruction *I);
156 bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy);
157
158 // Utility routines.
159 private:
160 bool isPositionIndependent() const;
161 bool isTypeLegal(Type *Ty, MVT &VT);
162 bool isLoadTypeLegal(Type *Ty, MVT &VT);
163 bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
164 bool isZExt);
165 bool ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
166 unsigned Alignment = 0, bool isZExt = true,
167 bool allocReg = true);
168 bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
169 unsigned Alignment = 0);
170 bool ARMComputeAddress(const Value *Obj, Address &Addr);
171 void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3);
172 bool ARMIsMemCpySmall(uint64_t Len);
173 bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
174 unsigned Alignment);
175 unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
176 unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT);
177 unsigned ARMMaterializeInt(const Constant *C, MVT VT);
178 unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT);
179 unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg);
180 unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg);
181 unsigned ARMSelectCallOp(bool UseReg);
182 unsigned ARMLowerPICELF(const GlobalValue *GV, unsigned Align, MVT VT);
183
getTargetLowering()184 const TargetLowering *getTargetLowering() { return &TLI; }
185
186 // Call handling routines.
187 private:
188 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC,
189 bool Return,
190 bool isVarArg);
191 bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
192 SmallVectorImpl<unsigned> &ArgRegs,
193 SmallVectorImpl<MVT> &ArgVTs,
194 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
195 SmallVectorImpl<unsigned> &RegArgs,
196 CallingConv::ID CC,
197 unsigned &NumBytes,
198 bool isVarArg);
199 unsigned getLibcallReg(const Twine &Name);
200 bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
201 const Instruction *I, CallingConv::ID CC,
202 unsigned &NumBytes, bool isVarArg);
203 bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
204
205 // OptionalDef handling routines.
206 private:
207 bool isARMNEONPred(const MachineInstr *MI);
208 bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
209 const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
210 void AddLoadStoreOperands(MVT VT, Address &Addr,
211 const MachineInstrBuilder &MIB,
212 unsigned Flags, bool useAM3);
213 };
214
215 } // end anonymous namespace
216
217 #include "ARMGenCallingConv.inc"
218
219 // DefinesOptionalPredicate - This is different from DefinesPredicate in that
220 // we don't care about implicit defs here, just places we'll need to add a
221 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
DefinesOptionalPredicate(MachineInstr * MI,bool * CPSR)222 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
223 if (!MI->hasOptionalDef())
224 return false;
225
226 // Look to see if our OptionalDef is defining CPSR or CCR.
227 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
228 const MachineOperand &MO = MI->getOperand(i);
229 if (!MO.isReg() || !MO.isDef()) continue;
230 if (MO.getReg() == ARM::CPSR)
231 *CPSR = true;
232 }
233 return true;
234 }
235
isARMNEONPred(const MachineInstr * MI)236 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
237 const MCInstrDesc &MCID = MI->getDesc();
238
239 // If we're a thumb2 or not NEON function we'll be handled via isPredicable.
240 if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
241 AFI->isThumb2Function())
242 return MI->isPredicable();
243
244 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i)
245 if (MCID.OpInfo[i].isPredicate())
246 return true;
247
248 return false;
249 }
250
251 // If the machine is predicable go ahead and add the predicate operands, if
252 // it needs default CC operands add those.
253 // TODO: If we want to support thumb1 then we'll need to deal with optional
254 // CPSR defs that need to be added before the remaining operands. See s_cc_out
255 // for descriptions why.
256 const MachineInstrBuilder &
AddOptionalDefs(const MachineInstrBuilder & MIB)257 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
258 MachineInstr *MI = &*MIB;
259
260 // Do we use a predicate? or...
261 // Are we NEON in ARM mode and have a predicate operand? If so, I know
262 // we're not predicable but add it anyways.
263 if (isARMNEONPred(MI))
264 AddDefaultPred(MIB);
265
266 // Do we optionally set a predicate? Preds is size > 0 iff the predicate
267 // defines CPSR. All other OptionalDefines in ARM are the CCR register.
268 bool CPSR = false;
269 if (DefinesOptionalPredicate(MI, &CPSR)) {
270 if (CPSR)
271 AddDefaultT1CC(MIB);
272 else
273 AddDefaultCC(MIB);
274 }
275 return MIB;
276 }
277
fastEmitInst_r(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill)278 unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
279 const TargetRegisterClass *RC,
280 unsigned Op0, bool Op0IsKill) {
281 unsigned ResultReg = createResultReg(RC);
282 const MCInstrDesc &II = TII.get(MachineInstOpcode);
283
284 // Make sure the input operand is sufficiently constrained to be legal
285 // for this instruction.
286 Op0 = constrainOperandRegClass(II, Op0, 1);
287 if (II.getNumDefs() >= 1) {
288 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
289 ResultReg).addReg(Op0, Op0IsKill * RegState::Kill));
290 } else {
291 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
292 .addReg(Op0, Op0IsKill * RegState::Kill));
293 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
294 TII.get(TargetOpcode::COPY), ResultReg)
295 .addReg(II.ImplicitDefs[0]));
296 }
297 return ResultReg;
298 }
299
fastEmitInst_rr(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill)300 unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
301 const TargetRegisterClass *RC,
302 unsigned Op0, bool Op0IsKill,
303 unsigned Op1, bool Op1IsKill) {
304 unsigned ResultReg = createResultReg(RC);
305 const MCInstrDesc &II = TII.get(MachineInstOpcode);
306
307 // Make sure the input operands are sufficiently constrained to be legal
308 // for this instruction.
309 Op0 = constrainOperandRegClass(II, Op0, 1);
310 Op1 = constrainOperandRegClass(II, Op1, 2);
311
312 if (II.getNumDefs() >= 1) {
313 AddOptionalDefs(
314 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
315 .addReg(Op0, Op0IsKill * RegState::Kill)
316 .addReg(Op1, Op1IsKill * RegState::Kill));
317 } else {
318 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
319 .addReg(Op0, Op0IsKill * RegState::Kill)
320 .addReg(Op1, Op1IsKill * RegState::Kill));
321 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
322 TII.get(TargetOpcode::COPY), ResultReg)
323 .addReg(II.ImplicitDefs[0]));
324 }
325 return ResultReg;
326 }
327
fastEmitInst_ri(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,uint64_t Imm)328 unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
329 const TargetRegisterClass *RC,
330 unsigned Op0, bool Op0IsKill,
331 uint64_t Imm) {
332 unsigned ResultReg = createResultReg(RC);
333 const MCInstrDesc &II = TII.get(MachineInstOpcode);
334
335 // Make sure the input operand is sufficiently constrained to be legal
336 // for this instruction.
337 Op0 = constrainOperandRegClass(II, Op0, 1);
338 if (II.getNumDefs() >= 1) {
339 AddOptionalDefs(
340 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
341 .addReg(Op0, Op0IsKill * RegState::Kill)
342 .addImm(Imm));
343 } else {
344 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
345 .addReg(Op0, Op0IsKill * RegState::Kill)
346 .addImm(Imm));
347 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
348 TII.get(TargetOpcode::COPY), ResultReg)
349 .addReg(II.ImplicitDefs[0]));
350 }
351 return ResultReg;
352 }
353
fastEmitInst_rri(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill,uint64_t Imm)354 unsigned ARMFastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
355 const TargetRegisterClass *RC,
356 unsigned Op0, bool Op0IsKill,
357 unsigned Op1, bool Op1IsKill,
358 uint64_t Imm) {
359 unsigned ResultReg = createResultReg(RC);
360 const MCInstrDesc &II = TII.get(MachineInstOpcode);
361
362 // Make sure the input operands are sufficiently constrained to be legal
363 // for this instruction.
364 Op0 = constrainOperandRegClass(II, Op0, 1);
365 Op1 = constrainOperandRegClass(II, Op1, 2);
366 if (II.getNumDefs() >= 1) {
367 AddOptionalDefs(
368 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
369 .addReg(Op0, Op0IsKill * RegState::Kill)
370 .addReg(Op1, Op1IsKill * RegState::Kill)
371 .addImm(Imm));
372 } else {
373 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
374 .addReg(Op0, Op0IsKill * RegState::Kill)
375 .addReg(Op1, Op1IsKill * RegState::Kill)
376 .addImm(Imm));
377 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
378 TII.get(TargetOpcode::COPY), ResultReg)
379 .addReg(II.ImplicitDefs[0]));
380 }
381 return ResultReg;
382 }
383
fastEmitInst_i(unsigned MachineInstOpcode,const TargetRegisterClass * RC,uint64_t Imm)384 unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode,
385 const TargetRegisterClass *RC,
386 uint64_t Imm) {
387 unsigned ResultReg = createResultReg(RC);
388 const MCInstrDesc &II = TII.get(MachineInstOpcode);
389
390 if (II.getNumDefs() >= 1) {
391 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
392 ResultReg).addImm(Imm));
393 } else {
394 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
395 .addImm(Imm));
396 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
397 TII.get(TargetOpcode::COPY), ResultReg)
398 .addReg(II.ImplicitDefs[0]));
399 }
400 return ResultReg;
401 }
402
403 // TODO: Don't worry about 64-bit now, but when this is fixed remove the
404 // checks from the various callers.
ARMMoveToFPReg(MVT VT,unsigned SrcReg)405 unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) {
406 if (VT == MVT::f64) return 0;
407
408 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
409 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
410 TII.get(ARM::VMOVSR), MoveReg)
411 .addReg(SrcReg));
412 return MoveReg;
413 }
414
ARMMoveToIntReg(MVT VT,unsigned SrcReg)415 unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) {
416 if (VT == MVT::i64) return 0;
417
418 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
419 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
420 TII.get(ARM::VMOVRS), MoveReg)
421 .addReg(SrcReg));
422 return MoveReg;
423 }
424
425 // For double width floating point we need to materialize two constants
426 // (the high and the low) into integer registers then use a move to get
427 // the combined constant into an FP reg.
ARMMaterializeFP(const ConstantFP * CFP,MVT VT)428 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) {
429 const APFloat Val = CFP->getValueAPF();
430 bool is64bit = VT == MVT::f64;
431
432 // This checks to see if we can use VFP3 instructions to materialize
433 // a constant, otherwise we have to go through the constant pool.
434 if (TLI.isFPImmLegal(Val, VT)) {
435 int Imm;
436 unsigned Opc;
437 if (is64bit) {
438 Imm = ARM_AM::getFP64Imm(Val);
439 Opc = ARM::FCONSTD;
440 } else {
441 Imm = ARM_AM::getFP32Imm(Val);
442 Opc = ARM::FCONSTS;
443 }
444 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
445 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
446 TII.get(Opc), DestReg).addImm(Imm));
447 return DestReg;
448 }
449
450 // Require VFP2 for loading fp constants.
451 if (!Subtarget->hasVFP2()) return false;
452
453 // MachineConstantPool wants an explicit alignment.
454 unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
455 if (Align == 0) {
456 // TODO: Figure out if this is correct.
457 Align = DL.getTypeAllocSize(CFP->getType());
458 }
459 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
460 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
461 unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
462
463 // The extra reg is for addrmode5.
464 AddOptionalDefs(
465 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
466 .addConstantPoolIndex(Idx)
467 .addReg(0));
468 return DestReg;
469 }
470
ARMMaterializeInt(const Constant * C,MVT VT)471 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) {
472
473 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
474 return 0;
475
476 // If we can do this in a single instruction without a constant pool entry
477 // do so now.
478 const ConstantInt *CI = cast<ConstantInt>(C);
479 if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
480 unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16;
481 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
482 &ARM::GPRRegClass;
483 unsigned ImmReg = createResultReg(RC);
484 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
485 TII.get(Opc), ImmReg)
486 .addImm(CI->getZExtValue()));
487 return ImmReg;
488 }
489
490 // Use MVN to emit negative constants.
491 if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) {
492 unsigned Imm = (unsigned)~(CI->getSExtValue());
493 bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
494 (ARM_AM::getSOImmVal(Imm) != -1);
495 if (UseImm) {
496 unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
497 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
498 &ARM::GPRRegClass;
499 unsigned ImmReg = createResultReg(RC);
500 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
501 TII.get(Opc), ImmReg)
502 .addImm(Imm));
503 return ImmReg;
504 }
505 }
506
507 unsigned ResultReg = 0;
508 if (Subtarget->useMovt(*FuncInfo.MF))
509 ResultReg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
510
511 if (ResultReg)
512 return ResultReg;
513
514 // Load from constant pool. For now 32-bit only.
515 if (VT != MVT::i32)
516 return 0;
517
518 // MachineConstantPool wants an explicit alignment.
519 unsigned Align = DL.getPrefTypeAlignment(C->getType());
520 if (Align == 0) {
521 // TODO: Figure out if this is correct.
522 Align = DL.getTypeAllocSize(C->getType());
523 }
524 unsigned Idx = MCP.getConstantPoolIndex(C, Align);
525 ResultReg = createResultReg(TLI.getRegClassFor(VT));
526 if (isThumb2)
527 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
528 TII.get(ARM::t2LDRpci), ResultReg)
529 .addConstantPoolIndex(Idx));
530 else {
531 // The extra immediate is for addrmode2.
532 ResultReg = constrainOperandRegClass(TII.get(ARM::LDRcp), ResultReg, 0);
533 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
534 TII.get(ARM::LDRcp), ResultReg)
535 .addConstantPoolIndex(Idx)
536 .addImm(0));
537 }
538 return ResultReg;
539 }
540
isPositionIndependent() const541 bool ARMFastISel::isPositionIndependent() const {
542 return TLI.isPositionIndependent();
543 }
544
ARMMaterializeGV(const GlobalValue * GV,MVT VT)545 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) {
546 // For now 32-bit only.
547 if (VT != MVT::i32 || GV->isThreadLocal()) return 0;
548
549 bool IsIndirect = Subtarget->isGVIndirectSymbol(GV);
550 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
551 : &ARM::GPRRegClass;
552 unsigned DestReg = createResultReg(RC);
553
554 // FastISel TLS support on non-MachO is broken, punt to SelectionDAG.
555 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
556 bool IsThreadLocal = GVar && GVar->isThreadLocal();
557 if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0;
558
559 bool IsPositionIndependent = isPositionIndependent();
560 // Use movw+movt when possible, it avoids constant pool entries.
561 // Non-darwin targets only support static movt relocations in FastISel.
562 if (Subtarget->useMovt(*FuncInfo.MF) &&
563 (Subtarget->isTargetMachO() || !IsPositionIndependent)) {
564 unsigned Opc;
565 unsigned char TF = 0;
566 if (Subtarget->isTargetMachO())
567 TF = ARMII::MO_NONLAZY;
568
569 if (IsPositionIndependent)
570 Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel;
571 else
572 Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm;
573 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
574 TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF));
575 } else {
576 // MachineConstantPool wants an explicit alignment.
577 unsigned Align = DL.getPrefTypeAlignment(GV->getType());
578 if (Align == 0) {
579 // TODO: Figure out if this is correct.
580 Align = DL.getTypeAllocSize(GV->getType());
581 }
582
583 if (Subtarget->isTargetELF() && IsPositionIndependent)
584 return ARMLowerPICELF(GV, Align, VT);
585
586 // Grab index.
587 unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
588 unsigned Id = AFI->createPICLabelUId();
589 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
590 ARMCP::CPValue,
591 PCAdj);
592 unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
593
594 // Load value.
595 MachineInstrBuilder MIB;
596 if (isThumb2) {
597 unsigned Opc = IsPositionIndependent ? ARM::t2LDRpci_pic : ARM::t2LDRpci;
598 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
599 DestReg).addConstantPoolIndex(Idx);
600 if (IsPositionIndependent)
601 MIB.addImm(Id);
602 AddOptionalDefs(MIB);
603 } else {
604 // The extra immediate is for addrmode2.
605 DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0);
606 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
607 TII.get(ARM::LDRcp), DestReg)
608 .addConstantPoolIndex(Idx)
609 .addImm(0);
610 AddOptionalDefs(MIB);
611
612 if (IsPositionIndependent) {
613 unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD;
614 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
615
616 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
617 DbgLoc, TII.get(Opc), NewDestReg)
618 .addReg(DestReg)
619 .addImm(Id);
620 AddOptionalDefs(MIB);
621 return NewDestReg;
622 }
623 }
624 }
625
626 if (IsIndirect) {
627 MachineInstrBuilder MIB;
628 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
629 if (isThumb2)
630 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
631 TII.get(ARM::t2LDRi12), NewDestReg)
632 .addReg(DestReg)
633 .addImm(0);
634 else
635 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
636 TII.get(ARM::LDRi12), NewDestReg)
637 .addReg(DestReg)
638 .addImm(0);
639 DestReg = NewDestReg;
640 AddOptionalDefs(MIB);
641 }
642
643 return DestReg;
644 }
645
fastMaterializeConstant(const Constant * C)646 unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) {
647 EVT CEVT = TLI.getValueType(DL, C->getType(), true);
648
649 // Only handle simple types.
650 if (!CEVT.isSimple()) return 0;
651 MVT VT = CEVT.getSimpleVT();
652
653 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
654 return ARMMaterializeFP(CFP, VT);
655 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
656 return ARMMaterializeGV(GV, VT);
657 else if (isa<ConstantInt>(C))
658 return ARMMaterializeInt(C, VT);
659
660 return 0;
661 }
662
663 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF);
664
fastMaterializeAlloca(const AllocaInst * AI)665 unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
666 // Don't handle dynamic allocas.
667 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
668
669 MVT VT;
670 if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
671
672 DenseMap<const AllocaInst*, int>::iterator SI =
673 FuncInfo.StaticAllocaMap.find(AI);
674
675 // This will get lowered later into the correct offsets and registers
676 // via rewriteXFrameIndex.
677 if (SI != FuncInfo.StaticAllocaMap.end()) {
678 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
679 const TargetRegisterClass* RC = TLI.getRegClassFor(VT);
680 unsigned ResultReg = createResultReg(RC);
681 ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0);
682
683 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
684 TII.get(Opc), ResultReg)
685 .addFrameIndex(SI->second)
686 .addImm(0));
687 return ResultReg;
688 }
689
690 return 0;
691 }
692
isTypeLegal(Type * Ty,MVT & VT)693 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
694 EVT evt = TLI.getValueType(DL, Ty, true);
695
696 // Only handle simple types.
697 if (evt == MVT::Other || !evt.isSimple()) return false;
698 VT = evt.getSimpleVT();
699
700 // Handle all legal types, i.e. a register that will directly hold this
701 // value.
702 return TLI.isTypeLegal(VT);
703 }
704
isLoadTypeLegal(Type * Ty,MVT & VT)705 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
706 if (isTypeLegal(Ty, VT)) return true;
707
708 // If this is a type than can be sign or zero-extended to a basic operation
709 // go ahead and accept it now.
710 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
711 return true;
712
713 return false;
714 }
715
716 // Computes the address to get to an object.
ARMComputeAddress(const Value * Obj,Address & Addr)717 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
718 // Some boilerplate from the X86 FastISel.
719 const User *U = nullptr;
720 unsigned Opcode = Instruction::UserOp1;
721 if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
722 // Don't walk into other basic blocks unless the object is an alloca from
723 // another block, otherwise it may not have a virtual register assigned.
724 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
725 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
726 Opcode = I->getOpcode();
727 U = I;
728 }
729 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
730 Opcode = C->getOpcode();
731 U = C;
732 }
733
734 if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
735 if (Ty->getAddressSpace() > 255)
736 // Fast instruction selection doesn't support the special
737 // address spaces.
738 return false;
739
740 switch (Opcode) {
741 default:
742 break;
743 case Instruction::BitCast:
744 // Look through bitcasts.
745 return ARMComputeAddress(U->getOperand(0), Addr);
746 case Instruction::IntToPtr:
747 // Look past no-op inttoptrs.
748 if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
749 TLI.getPointerTy(DL))
750 return ARMComputeAddress(U->getOperand(0), Addr);
751 break;
752 case Instruction::PtrToInt:
753 // Look past no-op ptrtoints.
754 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
755 return ARMComputeAddress(U->getOperand(0), Addr);
756 break;
757 case Instruction::GetElementPtr: {
758 Address SavedAddr = Addr;
759 int TmpOffset = Addr.Offset;
760
761 // Iterate through the GEP folding the constants into offsets where
762 // we can.
763 gep_type_iterator GTI = gep_type_begin(U);
764 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
765 i != e; ++i, ++GTI) {
766 const Value *Op = *i;
767 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
768 const StructLayout *SL = DL.getStructLayout(STy);
769 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
770 TmpOffset += SL->getElementOffset(Idx);
771 } else {
772 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
773 for (;;) {
774 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
775 // Constant-offset addressing.
776 TmpOffset += CI->getSExtValue() * S;
777 break;
778 }
779 if (canFoldAddIntoGEP(U, Op)) {
780 // A compatible add with a constant operand. Fold the constant.
781 ConstantInt *CI =
782 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
783 TmpOffset += CI->getSExtValue() * S;
784 // Iterate on the other operand.
785 Op = cast<AddOperator>(Op)->getOperand(0);
786 continue;
787 }
788 // Unsupported
789 goto unsupported_gep;
790 }
791 }
792 }
793
794 // Try to grab the base operand now.
795 Addr.Offset = TmpOffset;
796 if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
797
798 // We failed, restore everything and try the other options.
799 Addr = SavedAddr;
800
801 unsupported_gep:
802 break;
803 }
804 case Instruction::Alloca: {
805 const AllocaInst *AI = cast<AllocaInst>(Obj);
806 DenseMap<const AllocaInst*, int>::iterator SI =
807 FuncInfo.StaticAllocaMap.find(AI);
808 if (SI != FuncInfo.StaticAllocaMap.end()) {
809 Addr.BaseType = Address::FrameIndexBase;
810 Addr.Base.FI = SI->second;
811 return true;
812 }
813 break;
814 }
815 }
816
817 // Try to get this in a register if nothing else has worked.
818 if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
819 return Addr.Base.Reg != 0;
820 }
821
ARMSimplifyAddress(Address & Addr,MVT VT,bool useAM3)822 void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) {
823 bool needsLowering = false;
824 switch (VT.SimpleTy) {
825 default: llvm_unreachable("Unhandled load/store type!");
826 case MVT::i1:
827 case MVT::i8:
828 case MVT::i16:
829 case MVT::i32:
830 if (!useAM3) {
831 // Integer loads/stores handle 12-bit offsets.
832 needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
833 // Handle negative offsets.
834 if (needsLowering && isThumb2)
835 needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 &&
836 Addr.Offset > -256);
837 } else {
838 // ARM halfword load/stores and signed byte loads use +/-imm8 offsets.
839 needsLowering = (Addr.Offset > 255 || Addr.Offset < -255);
840 }
841 break;
842 case MVT::f32:
843 case MVT::f64:
844 // Floating point operands handle 8-bit offsets.
845 needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
846 break;
847 }
848
849 // If this is a stack pointer and the offset needs to be simplified then
850 // put the alloca address into a register, set the base type back to
851 // register and continue. This should almost never happen.
852 if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
853 const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
854 : &ARM::GPRRegClass;
855 unsigned ResultReg = createResultReg(RC);
856 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
857 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
858 TII.get(Opc), ResultReg)
859 .addFrameIndex(Addr.Base.FI)
860 .addImm(0));
861 Addr.Base.Reg = ResultReg;
862 Addr.BaseType = Address::RegBase;
863 }
864
865 // Since the offset is too large for the load/store instruction
866 // get the reg+offset into a register.
867 if (needsLowering) {
868 Addr.Base.Reg = fastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
869 /*Op0IsKill*/false, Addr.Offset, MVT::i32);
870 Addr.Offset = 0;
871 }
872 }
873
AddLoadStoreOperands(MVT VT,Address & Addr,const MachineInstrBuilder & MIB,unsigned Flags,bool useAM3)874 void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr,
875 const MachineInstrBuilder &MIB,
876 unsigned Flags, bool useAM3) {
877 // addrmode5 output depends on the selection dag addressing dividing the
878 // offset by 4 that it then later multiplies. Do this here as well.
879 if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64)
880 Addr.Offset /= 4;
881
882 // Frame base works a bit differently. Handle it separately.
883 if (Addr.BaseType == Address::FrameIndexBase) {
884 int FI = Addr.Base.FI;
885 int Offset = Addr.Offset;
886 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
887 MachinePointerInfo::getFixedStack(*FuncInfo.MF, FI, Offset), Flags,
888 MFI.getObjectSize(FI), MFI.getObjectAlignment(FI));
889 // Now add the rest of the operands.
890 MIB.addFrameIndex(FI);
891
892 // ARM halfword load/stores and signed byte loads need an additional
893 // operand.
894 if (useAM3) {
895 int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
896 MIB.addReg(0);
897 MIB.addImm(Imm);
898 } else {
899 MIB.addImm(Addr.Offset);
900 }
901 MIB.addMemOperand(MMO);
902 } else {
903 // Now add the rest of the operands.
904 MIB.addReg(Addr.Base.Reg);
905
906 // ARM halfword load/stores and signed byte loads need an additional
907 // operand.
908 if (useAM3) {
909 int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
910 MIB.addReg(0);
911 MIB.addImm(Imm);
912 } else {
913 MIB.addImm(Addr.Offset);
914 }
915 }
916 AddOptionalDefs(MIB);
917 }
918
ARMEmitLoad(MVT VT,unsigned & ResultReg,Address & Addr,unsigned Alignment,bool isZExt,bool allocReg)919 bool ARMFastISel::ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
920 unsigned Alignment, bool isZExt, bool allocReg) {
921 unsigned Opc;
922 bool useAM3 = false;
923 bool needVMOV = false;
924 const TargetRegisterClass *RC;
925 switch (VT.SimpleTy) {
926 // This is mostly going to be Neon/vector support.
927 default: return false;
928 case MVT::i1:
929 case MVT::i8:
930 if (isThumb2) {
931 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
932 Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8;
933 else
934 Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12;
935 } else {
936 if (isZExt) {
937 Opc = ARM::LDRBi12;
938 } else {
939 Opc = ARM::LDRSB;
940 useAM3 = true;
941 }
942 }
943 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
944 break;
945 case MVT::i16:
946 if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
947 return false;
948
949 if (isThumb2) {
950 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
951 Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8;
952 else
953 Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12;
954 } else {
955 Opc = isZExt ? ARM::LDRH : ARM::LDRSH;
956 useAM3 = true;
957 }
958 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
959 break;
960 case MVT::i32:
961 if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
962 return false;
963
964 if (isThumb2) {
965 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
966 Opc = ARM::t2LDRi8;
967 else
968 Opc = ARM::t2LDRi12;
969 } else {
970 Opc = ARM::LDRi12;
971 }
972 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
973 break;
974 case MVT::f32:
975 if (!Subtarget->hasVFP2()) return false;
976 // Unaligned loads need special handling. Floats require word-alignment.
977 if (Alignment && Alignment < 4) {
978 needVMOV = true;
979 VT = MVT::i32;
980 Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
981 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
982 } else {
983 Opc = ARM::VLDRS;
984 RC = TLI.getRegClassFor(VT);
985 }
986 break;
987 case MVT::f64:
988 if (!Subtarget->hasVFP2()) return false;
989 // FIXME: Unaligned loads need special handling. Doublewords require
990 // word-alignment.
991 if (Alignment && Alignment < 4)
992 return false;
993
994 Opc = ARM::VLDRD;
995 RC = TLI.getRegClassFor(VT);
996 break;
997 }
998 // Simplify this down to something we can handle.
999 ARMSimplifyAddress(Addr, VT, useAM3);
1000
1001 // Create the base instruction, then add the operands.
1002 if (allocReg)
1003 ResultReg = createResultReg(RC);
1004 assert (ResultReg > 255 && "Expected an allocated virtual register.");
1005 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1006 TII.get(Opc), ResultReg);
1007 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3);
1008
1009 // If we had an unaligned load of a float we've converted it to an regular
1010 // load. Now we must move from the GRP to the FP register.
1011 if (needVMOV) {
1012 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1013 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1014 TII.get(ARM::VMOVSR), MoveReg)
1015 .addReg(ResultReg));
1016 ResultReg = MoveReg;
1017 }
1018 return true;
1019 }
1020
SelectLoad(const Instruction * I)1021 bool ARMFastISel::SelectLoad(const Instruction *I) {
1022 // Atomic loads need special handling.
1023 if (cast<LoadInst>(I)->isAtomic())
1024 return false;
1025
1026 const Value *SV = I->getOperand(0);
1027 if (TLI.supportSwiftError()) {
1028 // Swifterror values can come from either a function parameter with
1029 // swifterror attribute or an alloca with swifterror attribute.
1030 if (const Argument *Arg = dyn_cast<Argument>(SV)) {
1031 if (Arg->hasSwiftErrorAttr())
1032 return false;
1033 }
1034
1035 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
1036 if (Alloca->isSwiftError())
1037 return false;
1038 }
1039 }
1040
1041 // Verify we have a legal type before going any further.
1042 MVT VT;
1043 if (!isLoadTypeLegal(I->getType(), VT))
1044 return false;
1045
1046 // See if we can handle this address.
1047 Address Addr;
1048 if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
1049
1050 unsigned ResultReg;
1051 if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
1052 return false;
1053 updateValueMap(I, ResultReg);
1054 return true;
1055 }
1056
ARMEmitStore(MVT VT,unsigned SrcReg,Address & Addr,unsigned Alignment)1057 bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
1058 unsigned Alignment) {
1059 unsigned StrOpc;
1060 bool useAM3 = false;
1061 switch (VT.SimpleTy) {
1062 // This is mostly going to be Neon/vector support.
1063 default: return false;
1064 case MVT::i1: {
1065 unsigned Res = createResultReg(isThumb2 ? &ARM::tGPRRegClass
1066 : &ARM::GPRRegClass);
1067 unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
1068 SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1);
1069 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1070 TII.get(Opc), Res)
1071 .addReg(SrcReg).addImm(1));
1072 SrcReg = Res;
1073 } // Fallthrough here.
1074 case MVT::i8:
1075 if (isThumb2) {
1076 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1077 StrOpc = ARM::t2STRBi8;
1078 else
1079 StrOpc = ARM::t2STRBi12;
1080 } else {
1081 StrOpc = ARM::STRBi12;
1082 }
1083 break;
1084 case MVT::i16:
1085 if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
1086 return false;
1087
1088 if (isThumb2) {
1089 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1090 StrOpc = ARM::t2STRHi8;
1091 else
1092 StrOpc = ARM::t2STRHi12;
1093 } else {
1094 StrOpc = ARM::STRH;
1095 useAM3 = true;
1096 }
1097 break;
1098 case MVT::i32:
1099 if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
1100 return false;
1101
1102 if (isThumb2) {
1103 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1104 StrOpc = ARM::t2STRi8;
1105 else
1106 StrOpc = ARM::t2STRi12;
1107 } else {
1108 StrOpc = ARM::STRi12;
1109 }
1110 break;
1111 case MVT::f32:
1112 if (!Subtarget->hasVFP2()) return false;
1113 // Unaligned stores need special handling. Floats require word-alignment.
1114 if (Alignment && Alignment < 4) {
1115 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32));
1116 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1117 TII.get(ARM::VMOVRS), MoveReg)
1118 .addReg(SrcReg));
1119 SrcReg = MoveReg;
1120 VT = MVT::i32;
1121 StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12;
1122 } else {
1123 StrOpc = ARM::VSTRS;
1124 }
1125 break;
1126 case MVT::f64:
1127 if (!Subtarget->hasVFP2()) return false;
1128 // FIXME: Unaligned stores need special handling. Doublewords require
1129 // word-alignment.
1130 if (Alignment && Alignment < 4)
1131 return false;
1132
1133 StrOpc = ARM::VSTRD;
1134 break;
1135 }
1136 // Simplify this down to something we can handle.
1137 ARMSimplifyAddress(Addr, VT, useAM3);
1138
1139 // Create the base instruction, then add the operands.
1140 SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0);
1141 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1142 TII.get(StrOpc))
1143 .addReg(SrcReg);
1144 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3);
1145 return true;
1146 }
1147
SelectStore(const Instruction * I)1148 bool ARMFastISel::SelectStore(const Instruction *I) {
1149 Value *Op0 = I->getOperand(0);
1150 unsigned SrcReg = 0;
1151
1152 // Atomic stores need special handling.
1153 if (cast<StoreInst>(I)->isAtomic())
1154 return false;
1155
1156 const Value *PtrV = I->getOperand(1);
1157 if (TLI.supportSwiftError()) {
1158 // Swifterror values can come from either a function parameter with
1159 // swifterror attribute or an alloca with swifterror attribute.
1160 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
1161 if (Arg->hasSwiftErrorAttr())
1162 return false;
1163 }
1164
1165 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
1166 if (Alloca->isSwiftError())
1167 return false;
1168 }
1169 }
1170
1171 // Verify we have a legal type before going any further.
1172 MVT VT;
1173 if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
1174 return false;
1175
1176 // Get the value to be stored into a register.
1177 SrcReg = getRegForValue(Op0);
1178 if (SrcReg == 0) return false;
1179
1180 // See if we can handle this address.
1181 Address Addr;
1182 if (!ARMComputeAddress(I->getOperand(1), Addr))
1183 return false;
1184
1185 if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
1186 return false;
1187 return true;
1188 }
1189
getComparePred(CmpInst::Predicate Pred)1190 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
1191 switch (Pred) {
1192 // Needs two compares...
1193 case CmpInst::FCMP_ONE:
1194 case CmpInst::FCMP_UEQ:
1195 default:
1196 // AL is our "false" for now. The other two need more compares.
1197 return ARMCC::AL;
1198 case CmpInst::ICMP_EQ:
1199 case CmpInst::FCMP_OEQ:
1200 return ARMCC::EQ;
1201 case CmpInst::ICMP_SGT:
1202 case CmpInst::FCMP_OGT:
1203 return ARMCC::GT;
1204 case CmpInst::ICMP_SGE:
1205 case CmpInst::FCMP_OGE:
1206 return ARMCC::GE;
1207 case CmpInst::ICMP_UGT:
1208 case CmpInst::FCMP_UGT:
1209 return ARMCC::HI;
1210 case CmpInst::FCMP_OLT:
1211 return ARMCC::MI;
1212 case CmpInst::ICMP_ULE:
1213 case CmpInst::FCMP_OLE:
1214 return ARMCC::LS;
1215 case CmpInst::FCMP_ORD:
1216 return ARMCC::VC;
1217 case CmpInst::FCMP_UNO:
1218 return ARMCC::VS;
1219 case CmpInst::FCMP_UGE:
1220 return ARMCC::PL;
1221 case CmpInst::ICMP_SLT:
1222 case CmpInst::FCMP_ULT:
1223 return ARMCC::LT;
1224 case CmpInst::ICMP_SLE:
1225 case CmpInst::FCMP_ULE:
1226 return ARMCC::LE;
1227 case CmpInst::FCMP_UNE:
1228 case CmpInst::ICMP_NE:
1229 return ARMCC::NE;
1230 case CmpInst::ICMP_UGE:
1231 return ARMCC::HS;
1232 case CmpInst::ICMP_ULT:
1233 return ARMCC::LO;
1234 }
1235 }
1236
SelectBranch(const Instruction * I)1237 bool ARMFastISel::SelectBranch(const Instruction *I) {
1238 const BranchInst *BI = cast<BranchInst>(I);
1239 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1240 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1241
1242 // Simple branch support.
1243
1244 // If we can, avoid recomputing the compare - redoing it could lead to wonky
1245 // behavior.
1246 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1247 if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
1248
1249 // Get the compare predicate.
1250 // Try to take advantage of fallthrough opportunities.
1251 CmpInst::Predicate Predicate = CI->getPredicate();
1252 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1253 std::swap(TBB, FBB);
1254 Predicate = CmpInst::getInversePredicate(Predicate);
1255 }
1256
1257 ARMCC::CondCodes ARMPred = getComparePred(Predicate);
1258
1259 // We may not handle every CC for now.
1260 if (ARMPred == ARMCC::AL) return false;
1261
1262 // Emit the compare.
1263 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1264 return false;
1265
1266 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1267 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1268 .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1269 finishCondBranch(BI->getParent(), TBB, FBB);
1270 return true;
1271 }
1272 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1273 MVT SourceVT;
1274 if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1275 (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
1276 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1277 unsigned OpReg = getRegForValue(TI->getOperand(0));
1278 OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0);
1279 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1280 TII.get(TstOpc))
1281 .addReg(OpReg).addImm(1));
1282
1283 unsigned CCMode = ARMCC::NE;
1284 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1285 std::swap(TBB, FBB);
1286 CCMode = ARMCC::EQ;
1287 }
1288
1289 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1290 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1291 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1292
1293 finishCondBranch(BI->getParent(), TBB, FBB);
1294 return true;
1295 }
1296 } else if (const ConstantInt *CI =
1297 dyn_cast<ConstantInt>(BI->getCondition())) {
1298 uint64_t Imm = CI->getZExtValue();
1299 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
1300 fastEmitBranch(Target, DbgLoc);
1301 return true;
1302 }
1303
1304 unsigned CmpReg = getRegForValue(BI->getCondition());
1305 if (CmpReg == 0) return false;
1306
1307 // We've been divorced from our compare! Our block was split, and
1308 // now our compare lives in a predecessor block. We musn't
1309 // re-compare here, as the children of the compare aren't guaranteed
1310 // live across the block boundary (we *could* check for this).
1311 // Regardless, the compare has been done in the predecessor block,
1312 // and it left a value for us in a virtual register. Ergo, we test
1313 // the one-bit value left in the virtual register.
1314 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1315 CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0);
1316 AddOptionalDefs(
1317 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc))
1318 .addReg(CmpReg)
1319 .addImm(1));
1320
1321 unsigned CCMode = ARMCC::NE;
1322 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1323 std::swap(TBB, FBB);
1324 CCMode = ARMCC::EQ;
1325 }
1326
1327 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1328 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1329 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1330 finishCondBranch(BI->getParent(), TBB, FBB);
1331 return true;
1332 }
1333
SelectIndirectBr(const Instruction * I)1334 bool ARMFastISel::SelectIndirectBr(const Instruction *I) {
1335 unsigned AddrReg = getRegForValue(I->getOperand(0));
1336 if (AddrReg == 0) return false;
1337
1338 unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX;
1339 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1340 TII.get(Opc)).addReg(AddrReg));
1341
1342 const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1343 for (const BasicBlock *SuccBB : IB->successors())
1344 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]);
1345
1346 return true;
1347 }
1348
ARMEmitCmp(const Value * Src1Value,const Value * Src2Value,bool isZExt)1349 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
1350 bool isZExt) {
1351 Type *Ty = Src1Value->getType();
1352 EVT SrcEVT = TLI.getValueType(DL, Ty, true);
1353 if (!SrcEVT.isSimple()) return false;
1354 MVT SrcVT = SrcEVT.getSimpleVT();
1355
1356 bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy());
1357 if (isFloat && !Subtarget->hasVFP2())
1358 return false;
1359
1360 // Check to see if the 2nd operand is a constant that we can encode directly
1361 // in the compare.
1362 int Imm = 0;
1363 bool UseImm = false;
1364 bool isNegativeImm = false;
1365 // FIXME: At -O0 we don't have anything that canonicalizes operand order.
1366 // Thus, Src1Value may be a ConstantInt, but we're missing it.
1367 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
1368 if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 ||
1369 SrcVT == MVT::i1) {
1370 const APInt &CIVal = ConstInt->getValue();
1371 Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue();
1372 // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather
1373 // then a cmn, because there is no way to represent 2147483648 as a
1374 // signed 32-bit int.
1375 if (Imm < 0 && Imm != (int)0x80000000) {
1376 isNegativeImm = true;
1377 Imm = -Imm;
1378 }
1379 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1380 (ARM_AM::getSOImmVal(Imm) != -1);
1381 }
1382 } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
1383 if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
1384 if (ConstFP->isZero() && !ConstFP->isNegative())
1385 UseImm = true;
1386 }
1387
1388 unsigned CmpOpc;
1389 bool isICmp = true;
1390 bool needsExt = false;
1391 switch (SrcVT.SimpleTy) {
1392 default: return false;
1393 // TODO: Verify compares.
1394 case MVT::f32:
1395 isICmp = false;
1396 CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES;
1397 break;
1398 case MVT::f64:
1399 isICmp = false;
1400 CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED;
1401 break;
1402 case MVT::i1:
1403 case MVT::i8:
1404 case MVT::i16:
1405 needsExt = true;
1406 // Intentional fall-through.
1407 case MVT::i32:
1408 if (isThumb2) {
1409 if (!UseImm)
1410 CmpOpc = ARM::t2CMPrr;
1411 else
1412 CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri;
1413 } else {
1414 if (!UseImm)
1415 CmpOpc = ARM::CMPrr;
1416 else
1417 CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri;
1418 }
1419 break;
1420 }
1421
1422 unsigned SrcReg1 = getRegForValue(Src1Value);
1423 if (SrcReg1 == 0) return false;
1424
1425 unsigned SrcReg2 = 0;
1426 if (!UseImm) {
1427 SrcReg2 = getRegForValue(Src2Value);
1428 if (SrcReg2 == 0) return false;
1429 }
1430
1431 // We have i1, i8, or i16, we need to either zero extend or sign extend.
1432 if (needsExt) {
1433 SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
1434 if (SrcReg1 == 0) return false;
1435 if (!UseImm) {
1436 SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
1437 if (SrcReg2 == 0) return false;
1438 }
1439 }
1440
1441 const MCInstrDesc &II = TII.get(CmpOpc);
1442 SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0);
1443 if (!UseImm) {
1444 SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1);
1445 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1446 .addReg(SrcReg1).addReg(SrcReg2));
1447 } else {
1448 MachineInstrBuilder MIB;
1449 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1450 .addReg(SrcReg1);
1451
1452 // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0.
1453 if (isICmp)
1454 MIB.addImm(Imm);
1455 AddOptionalDefs(MIB);
1456 }
1457
1458 // For floating point we need to move the result to a comparison register
1459 // that we can then use for branches.
1460 if (Ty->isFloatTy() || Ty->isDoubleTy())
1461 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1462 TII.get(ARM::FMSTAT)));
1463 return true;
1464 }
1465
SelectCmp(const Instruction * I)1466 bool ARMFastISel::SelectCmp(const Instruction *I) {
1467 const CmpInst *CI = cast<CmpInst>(I);
1468
1469 // Get the compare predicate.
1470 ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1471
1472 // We may not handle every CC for now.
1473 if (ARMPred == ARMCC::AL) return false;
1474
1475 // Emit the compare.
1476 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1477 return false;
1478
1479 // Now set a register based on the comparison. Explicitly set the predicates
1480 // here.
1481 unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1482 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
1483 : &ARM::GPRRegClass;
1484 unsigned DestReg = createResultReg(RC);
1485 Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1486 unsigned ZeroReg = fastMaterializeConstant(Zero);
1487 // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR.
1488 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), DestReg)
1489 .addReg(ZeroReg).addImm(1)
1490 .addImm(ARMPred).addReg(ARM::CPSR);
1491
1492 updateValueMap(I, DestReg);
1493 return true;
1494 }
1495
SelectFPExt(const Instruction * I)1496 bool ARMFastISel::SelectFPExt(const Instruction *I) {
1497 // Make sure we have VFP and that we're extending float to double.
1498 if (!Subtarget->hasVFP2()) return false;
1499
1500 Value *V = I->getOperand(0);
1501 if (!I->getType()->isDoubleTy() ||
1502 !V->getType()->isFloatTy()) return false;
1503
1504 unsigned Op = getRegForValue(V);
1505 if (Op == 0) return false;
1506
1507 unsigned Result = createResultReg(&ARM::DPRRegClass);
1508 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1509 TII.get(ARM::VCVTDS), Result)
1510 .addReg(Op));
1511 updateValueMap(I, Result);
1512 return true;
1513 }
1514
SelectFPTrunc(const Instruction * I)1515 bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1516 // Make sure we have VFP and that we're truncating double to float.
1517 if (!Subtarget->hasVFP2()) return false;
1518
1519 Value *V = I->getOperand(0);
1520 if (!(I->getType()->isFloatTy() &&
1521 V->getType()->isDoubleTy())) return false;
1522
1523 unsigned Op = getRegForValue(V);
1524 if (Op == 0) return false;
1525
1526 unsigned Result = createResultReg(&ARM::SPRRegClass);
1527 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1528 TII.get(ARM::VCVTSD), Result)
1529 .addReg(Op));
1530 updateValueMap(I, Result);
1531 return true;
1532 }
1533
SelectIToFP(const Instruction * I,bool isSigned)1534 bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) {
1535 // Make sure we have VFP.
1536 if (!Subtarget->hasVFP2()) return false;
1537
1538 MVT DstVT;
1539 Type *Ty = I->getType();
1540 if (!isTypeLegal(Ty, DstVT))
1541 return false;
1542
1543 Value *Src = I->getOperand(0);
1544 EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true);
1545 if (!SrcEVT.isSimple())
1546 return false;
1547 MVT SrcVT = SrcEVT.getSimpleVT();
1548 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1549 return false;
1550
1551 unsigned SrcReg = getRegForValue(Src);
1552 if (SrcReg == 0) return false;
1553
1554 // Handle sign-extension.
1555 if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
1556 SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32,
1557 /*isZExt*/!isSigned);
1558 if (SrcReg == 0) return false;
1559 }
1560
1561 // The conversion routine works on fp-reg to fp-reg and the operand above
1562 // was an integer, move it to the fp registers if possible.
1563 unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
1564 if (FP == 0) return false;
1565
1566 unsigned Opc;
1567 if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS;
1568 else if (Ty->isDoubleTy()) Opc = isSigned ? ARM::VSITOD : ARM::VUITOD;
1569 else return false;
1570
1571 unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1572 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1573 TII.get(Opc), ResultReg).addReg(FP));
1574 updateValueMap(I, ResultReg);
1575 return true;
1576 }
1577
SelectFPToI(const Instruction * I,bool isSigned)1578 bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) {
1579 // Make sure we have VFP.
1580 if (!Subtarget->hasVFP2()) return false;
1581
1582 MVT DstVT;
1583 Type *RetTy = I->getType();
1584 if (!isTypeLegal(RetTy, DstVT))
1585 return false;
1586
1587 unsigned Op = getRegForValue(I->getOperand(0));
1588 if (Op == 0) return false;
1589
1590 unsigned Opc;
1591 Type *OpTy = I->getOperand(0)->getType();
1592 if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS;
1593 else if (OpTy->isDoubleTy()) Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD;
1594 else return false;
1595
1596 // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg.
1597 unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1598 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1599 TII.get(Opc), ResultReg).addReg(Op));
1600
1601 // This result needs to be in an integer register, but the conversion only
1602 // takes place in fp-regs.
1603 unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1604 if (IntReg == 0) return false;
1605
1606 updateValueMap(I, IntReg);
1607 return true;
1608 }
1609
SelectSelect(const Instruction * I)1610 bool ARMFastISel::SelectSelect(const Instruction *I) {
1611 MVT VT;
1612 if (!isTypeLegal(I->getType(), VT))
1613 return false;
1614
1615 // Things need to be register sized for register moves.
1616 if (VT != MVT::i32) return false;
1617
1618 unsigned CondReg = getRegForValue(I->getOperand(0));
1619 if (CondReg == 0) return false;
1620 unsigned Op1Reg = getRegForValue(I->getOperand(1));
1621 if (Op1Reg == 0) return false;
1622
1623 // Check to see if we can use an immediate in the conditional move.
1624 int Imm = 0;
1625 bool UseImm = false;
1626 bool isNegativeImm = false;
1627 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) {
1628 assert (VT == MVT::i32 && "Expecting an i32.");
1629 Imm = (int)ConstInt->getValue().getZExtValue();
1630 if (Imm < 0) {
1631 isNegativeImm = true;
1632 Imm = ~Imm;
1633 }
1634 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1635 (ARM_AM::getSOImmVal(Imm) != -1);
1636 }
1637
1638 unsigned Op2Reg = 0;
1639 if (!UseImm) {
1640 Op2Reg = getRegForValue(I->getOperand(2));
1641 if (Op2Reg == 0) return false;
1642 }
1643
1644 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1645 CondReg = constrainOperandRegClass(TII.get(TstOpc), CondReg, 0);
1646 AddOptionalDefs(
1647 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc))
1648 .addReg(CondReg)
1649 .addImm(1));
1650
1651 unsigned MovCCOpc;
1652 const TargetRegisterClass *RC;
1653 if (!UseImm) {
1654 RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
1655 MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr;
1656 } else {
1657 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass;
1658 if (!isNegativeImm)
1659 MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1660 else
1661 MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi;
1662 }
1663 unsigned ResultReg = createResultReg(RC);
1664 if (!UseImm) {
1665 Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1);
1666 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2);
1667 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
1668 ResultReg)
1669 .addReg(Op2Reg)
1670 .addReg(Op1Reg)
1671 .addImm(ARMCC::NE)
1672 .addReg(ARM::CPSR);
1673 } else {
1674 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1);
1675 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
1676 ResultReg)
1677 .addReg(Op1Reg)
1678 .addImm(Imm)
1679 .addImm(ARMCC::EQ)
1680 .addReg(ARM::CPSR);
1681 }
1682 updateValueMap(I, ResultReg);
1683 return true;
1684 }
1685
SelectDiv(const Instruction * I,bool isSigned)1686 bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) {
1687 MVT VT;
1688 Type *Ty = I->getType();
1689 if (!isTypeLegal(Ty, VT))
1690 return false;
1691
1692 // If we have integer div support we should have selected this automagically.
1693 // In case we have a real miss go ahead and return false and we'll pick
1694 // it up later.
1695 if (Subtarget->hasDivide()) return false;
1696
1697 // Otherwise emit a libcall.
1698 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1699 if (VT == MVT::i8)
1700 LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8;
1701 else if (VT == MVT::i16)
1702 LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16;
1703 else if (VT == MVT::i32)
1704 LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32;
1705 else if (VT == MVT::i64)
1706 LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64;
1707 else if (VT == MVT::i128)
1708 LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128;
1709 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1710
1711 return ARMEmitLibcall(I, LC);
1712 }
1713
SelectRem(const Instruction * I,bool isSigned)1714 bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) {
1715 MVT VT;
1716 Type *Ty = I->getType();
1717 if (!isTypeLegal(Ty, VT))
1718 return false;
1719
1720 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1721 if (VT == MVT::i8)
1722 LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8;
1723 else if (VT == MVT::i16)
1724 LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16;
1725 else if (VT == MVT::i32)
1726 LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32;
1727 else if (VT == MVT::i64)
1728 LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64;
1729 else if (VT == MVT::i128)
1730 LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128;
1731 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1732
1733 return ARMEmitLibcall(I, LC);
1734 }
1735
SelectBinaryIntOp(const Instruction * I,unsigned ISDOpcode)1736 bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1737 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1738
1739 // We can get here in the case when we have a binary operation on a non-legal
1740 // type and the target independent selector doesn't know how to handle it.
1741 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1742 return false;
1743
1744 unsigned Opc;
1745 switch (ISDOpcode) {
1746 default: return false;
1747 case ISD::ADD:
1748 Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr;
1749 break;
1750 case ISD::OR:
1751 Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr;
1752 break;
1753 case ISD::SUB:
1754 Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr;
1755 break;
1756 }
1757
1758 unsigned SrcReg1 = getRegForValue(I->getOperand(0));
1759 if (SrcReg1 == 0) return false;
1760
1761 // TODO: Often the 2nd operand is an immediate, which can be encoded directly
1762 // in the instruction, rather then materializing the value in a register.
1763 unsigned SrcReg2 = getRegForValue(I->getOperand(1));
1764 if (SrcReg2 == 0) return false;
1765
1766 unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
1767 SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1);
1768 SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2);
1769 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1770 TII.get(Opc), ResultReg)
1771 .addReg(SrcReg1).addReg(SrcReg2));
1772 updateValueMap(I, ResultReg);
1773 return true;
1774 }
1775
SelectBinaryFPOp(const Instruction * I,unsigned ISDOpcode)1776 bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) {
1777 EVT FPVT = TLI.getValueType(DL, I->getType(), true);
1778 if (!FPVT.isSimple()) return false;
1779 MVT VT = FPVT.getSimpleVT();
1780
1781 // FIXME: Support vector types where possible.
1782 if (VT.isVector())
1783 return false;
1784
1785 // We can get here in the case when we want to use NEON for our fp
1786 // operations, but can't figure out how to. Just use the vfp instructions
1787 // if we have them.
1788 // FIXME: It'd be nice to use NEON instructions.
1789 Type *Ty = I->getType();
1790 bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1791 if (isFloat && !Subtarget->hasVFP2())
1792 return false;
1793
1794 unsigned Opc;
1795 bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1796 switch (ISDOpcode) {
1797 default: return false;
1798 case ISD::FADD:
1799 Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1800 break;
1801 case ISD::FSUB:
1802 Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1803 break;
1804 case ISD::FMUL:
1805 Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1806 break;
1807 }
1808 unsigned Op1 = getRegForValue(I->getOperand(0));
1809 if (Op1 == 0) return false;
1810
1811 unsigned Op2 = getRegForValue(I->getOperand(1));
1812 if (Op2 == 0) return false;
1813
1814 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
1815 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1816 TII.get(Opc), ResultReg)
1817 .addReg(Op1).addReg(Op2));
1818 updateValueMap(I, ResultReg);
1819 return true;
1820 }
1821
1822 // Call Handling Code
1823
1824 // This is largely taken directly from CCAssignFnForNode
1825 // TODO: We may not support all of this.
CCAssignFnForCall(CallingConv::ID CC,bool Return,bool isVarArg)1826 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC,
1827 bool Return,
1828 bool isVarArg) {
1829 switch (CC) {
1830 default:
1831 llvm_unreachable("Unsupported calling convention");
1832 case CallingConv::Fast:
1833 if (Subtarget->hasVFP2() && !isVarArg) {
1834 if (!Subtarget->isAAPCS_ABI())
1835 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1836 // For AAPCS ABI targets, just use VFP variant of the calling convention.
1837 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1838 }
1839 // Fallthrough
1840 case CallingConv::C:
1841 case CallingConv::CXX_FAST_TLS:
1842 // Use target triple & subtarget features to do actual dispatch.
1843 if (Subtarget->isAAPCS_ABI()) {
1844 if (Subtarget->hasVFP2() &&
1845 TM.Options.FloatABIType == FloatABI::Hard && !isVarArg)
1846 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1847 else
1848 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1849 } else {
1850 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1851 }
1852 case CallingConv::ARM_AAPCS_VFP:
1853 case CallingConv::Swift:
1854 if (!isVarArg)
1855 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1856 // Fall through to soft float variant, variadic functions don't
1857 // use hard floating point ABI.
1858 case CallingConv::ARM_AAPCS:
1859 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1860 case CallingConv::ARM_APCS:
1861 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1862 case CallingConv::GHC:
1863 if (Return)
1864 llvm_unreachable("Can't return in GHC call convention");
1865 else
1866 return CC_ARM_APCS_GHC;
1867 }
1868 }
1869
ProcessCallArgs(SmallVectorImpl<Value * > & Args,SmallVectorImpl<unsigned> & ArgRegs,SmallVectorImpl<MVT> & ArgVTs,SmallVectorImpl<ISD::ArgFlagsTy> & ArgFlags,SmallVectorImpl<unsigned> & RegArgs,CallingConv::ID CC,unsigned & NumBytes,bool isVarArg)1870 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1871 SmallVectorImpl<unsigned> &ArgRegs,
1872 SmallVectorImpl<MVT> &ArgVTs,
1873 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1874 SmallVectorImpl<unsigned> &RegArgs,
1875 CallingConv::ID CC,
1876 unsigned &NumBytes,
1877 bool isVarArg) {
1878 SmallVector<CCValAssign, 16> ArgLocs;
1879 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context);
1880 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags,
1881 CCAssignFnForCall(CC, false, isVarArg));
1882
1883 // Check that we can handle all of the arguments. If we can't, then bail out
1884 // now before we add code to the MBB.
1885 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1886 CCValAssign &VA = ArgLocs[i];
1887 MVT ArgVT = ArgVTs[VA.getValNo()];
1888
1889 // We don't handle NEON/vector parameters yet.
1890 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1891 return false;
1892
1893 // Now copy/store arg to correct locations.
1894 if (VA.isRegLoc() && !VA.needsCustom()) {
1895 continue;
1896 } else if (VA.needsCustom()) {
1897 // TODO: We need custom lowering for vector (v2f64) args.
1898 if (VA.getLocVT() != MVT::f64 ||
1899 // TODO: Only handle register args for now.
1900 !VA.isRegLoc() || !ArgLocs[++i].isRegLoc())
1901 return false;
1902 } else {
1903 switch (ArgVT.SimpleTy) {
1904 default:
1905 return false;
1906 case MVT::i1:
1907 case MVT::i8:
1908 case MVT::i16:
1909 case MVT::i32:
1910 break;
1911 case MVT::f32:
1912 if (!Subtarget->hasVFP2())
1913 return false;
1914 break;
1915 case MVT::f64:
1916 if (!Subtarget->hasVFP2())
1917 return false;
1918 break;
1919 }
1920 }
1921 }
1922
1923 // At the point, we are able to handle the call's arguments in fast isel.
1924
1925 // Get a count of how many bytes are to be pushed on the stack.
1926 NumBytes = CCInfo.getNextStackOffset();
1927
1928 // Issue CALLSEQ_START
1929 unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
1930 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1931 TII.get(AdjStackDown))
1932 .addImm(NumBytes));
1933
1934 // Process the args.
1935 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1936 CCValAssign &VA = ArgLocs[i];
1937 const Value *ArgVal = Args[VA.getValNo()];
1938 unsigned Arg = ArgRegs[VA.getValNo()];
1939 MVT ArgVT = ArgVTs[VA.getValNo()];
1940
1941 assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) &&
1942 "We don't handle NEON/vector parameters yet.");
1943
1944 // Handle arg promotion, etc.
1945 switch (VA.getLocInfo()) {
1946 case CCValAssign::Full: break;
1947 case CCValAssign::SExt: {
1948 MVT DestVT = VA.getLocVT();
1949 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false);
1950 assert (Arg != 0 && "Failed to emit a sext");
1951 ArgVT = DestVT;
1952 break;
1953 }
1954 case CCValAssign::AExt:
1955 // Intentional fall-through. Handle AExt and ZExt.
1956 case CCValAssign::ZExt: {
1957 MVT DestVT = VA.getLocVT();
1958 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true);
1959 assert (Arg != 0 && "Failed to emit a zext");
1960 ArgVT = DestVT;
1961 break;
1962 }
1963 case CCValAssign::BCvt: {
1964 unsigned BC = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
1965 /*TODO: Kill=*/false);
1966 assert(BC != 0 && "Failed to emit a bitcast!");
1967 Arg = BC;
1968 ArgVT = VA.getLocVT();
1969 break;
1970 }
1971 default: llvm_unreachable("Unknown arg promotion!");
1972 }
1973
1974 // Now copy/store arg to correct locations.
1975 if (VA.isRegLoc() && !VA.needsCustom()) {
1976 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1977 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg);
1978 RegArgs.push_back(VA.getLocReg());
1979 } else if (VA.needsCustom()) {
1980 // TODO: We need custom lowering for vector (v2f64) args.
1981 assert(VA.getLocVT() == MVT::f64 &&
1982 "Custom lowering for v2f64 args not available");
1983
1984 CCValAssign &NextVA = ArgLocs[++i];
1985
1986 assert(VA.isRegLoc() && NextVA.isRegLoc() &&
1987 "We only handle register args!");
1988
1989 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1990 TII.get(ARM::VMOVRRD), VA.getLocReg())
1991 .addReg(NextVA.getLocReg(), RegState::Define)
1992 .addReg(Arg));
1993 RegArgs.push_back(VA.getLocReg());
1994 RegArgs.push_back(NextVA.getLocReg());
1995 } else {
1996 assert(VA.isMemLoc());
1997 // Need to store on the stack.
1998
1999 // Don't emit stores for undef values.
2000 if (isa<UndefValue>(ArgVal))
2001 continue;
2002
2003 Address Addr;
2004 Addr.BaseType = Address::RegBase;
2005 Addr.Base.Reg = ARM::SP;
2006 Addr.Offset = VA.getLocMemOffset();
2007
2008 bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet;
2009 assert(EmitRet && "Could not emit a store for argument!");
2010 }
2011 }
2012
2013 return true;
2014 }
2015
FinishCall(MVT RetVT,SmallVectorImpl<unsigned> & UsedRegs,const Instruction * I,CallingConv::ID CC,unsigned & NumBytes,bool isVarArg)2016 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
2017 const Instruction *I, CallingConv::ID CC,
2018 unsigned &NumBytes, bool isVarArg) {
2019 // Issue CALLSEQ_END
2020 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
2021 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2022 TII.get(AdjStackUp))
2023 .addImm(NumBytes).addImm(0));
2024
2025 // Now the return value.
2026 if (RetVT != MVT::isVoid) {
2027 SmallVector<CCValAssign, 16> RVLocs;
2028 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
2029 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2030
2031 // Copy all of the result registers out of their specified physreg.
2032 if (RVLocs.size() == 2 && RetVT == MVT::f64) {
2033 // For this move we copy into two registers and then move into the
2034 // double fp reg we want.
2035 MVT DestVT = RVLocs[0].getValVT();
2036 const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
2037 unsigned ResultReg = createResultReg(DstRC);
2038 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2039 TII.get(ARM::VMOVDRR), ResultReg)
2040 .addReg(RVLocs[0].getLocReg())
2041 .addReg(RVLocs[1].getLocReg()));
2042
2043 UsedRegs.push_back(RVLocs[0].getLocReg());
2044 UsedRegs.push_back(RVLocs[1].getLocReg());
2045
2046 // Finally update the result.
2047 updateValueMap(I, ResultReg);
2048 } else {
2049 assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
2050 MVT CopyVT = RVLocs[0].getValVT();
2051
2052 // Special handling for extended integers.
2053 if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
2054 CopyVT = MVT::i32;
2055
2056 const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
2057
2058 unsigned ResultReg = createResultReg(DstRC);
2059 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2060 TII.get(TargetOpcode::COPY),
2061 ResultReg).addReg(RVLocs[0].getLocReg());
2062 UsedRegs.push_back(RVLocs[0].getLocReg());
2063
2064 // Finally update the result.
2065 updateValueMap(I, ResultReg);
2066 }
2067 }
2068
2069 return true;
2070 }
2071
SelectRet(const Instruction * I)2072 bool ARMFastISel::SelectRet(const Instruction *I) {
2073 const ReturnInst *Ret = cast<ReturnInst>(I);
2074 const Function &F = *I->getParent()->getParent();
2075
2076 if (!FuncInfo.CanLowerReturn)
2077 return false;
2078
2079 if (TLI.supportSwiftError() &&
2080 F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
2081 return false;
2082
2083 if (TLI.supportSplitCSR(FuncInfo.MF))
2084 return false;
2085
2086 // Build a list of return value registers.
2087 SmallVector<unsigned, 4> RetRegs;
2088
2089 CallingConv::ID CC = F.getCallingConv();
2090 if (Ret->getNumOperands() > 0) {
2091 SmallVector<ISD::OutputArg, 4> Outs;
2092 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
2093
2094 // Analyze operands of the call, assigning locations to each operand.
2095 SmallVector<CCValAssign, 16> ValLocs;
2096 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
2097 CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */,
2098 F.isVarArg()));
2099
2100 const Value *RV = Ret->getOperand(0);
2101 unsigned Reg = getRegForValue(RV);
2102 if (Reg == 0)
2103 return false;
2104
2105 // Only handle a single return value for now.
2106 if (ValLocs.size() != 1)
2107 return false;
2108
2109 CCValAssign &VA = ValLocs[0];
2110
2111 // Don't bother handling odd stuff for now.
2112 if (VA.getLocInfo() != CCValAssign::Full)
2113 return false;
2114 // Only handle register returns for now.
2115 if (!VA.isRegLoc())
2116 return false;
2117
2118 unsigned SrcReg = Reg + VA.getValNo();
2119 EVT RVEVT = TLI.getValueType(DL, RV->getType());
2120 if (!RVEVT.isSimple()) return false;
2121 MVT RVVT = RVEVT.getSimpleVT();
2122 MVT DestVT = VA.getValVT();
2123 // Special handling for extended integers.
2124 if (RVVT != DestVT) {
2125 if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
2126 return false;
2127
2128 assert(DestVT == MVT::i32 && "ARM should always ext to i32");
2129
2130 // Perform extension if flagged as either zext or sext. Otherwise, do
2131 // nothing.
2132 if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
2133 SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt());
2134 if (SrcReg == 0) return false;
2135 }
2136 }
2137
2138 // Make the copy.
2139 unsigned DstReg = VA.getLocReg();
2140 const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
2141 // Avoid a cross-class copy. This is very unlikely.
2142 if (!SrcRC->contains(DstReg))
2143 return false;
2144 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2145 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
2146
2147 // Add register to return instruction.
2148 RetRegs.push_back(VA.getLocReg());
2149 }
2150
2151 unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET;
2152 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2153 TII.get(RetOpc));
2154 AddOptionalDefs(MIB);
2155 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
2156 MIB.addReg(RetRegs[i], RegState::Implicit);
2157 return true;
2158 }
2159
ARMSelectCallOp(bool UseReg)2160 unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) {
2161 if (UseReg)
2162 return isThumb2 ? ARM::tBLXr : ARM::BLX;
2163 else
2164 return isThumb2 ? ARM::tBL : ARM::BL;
2165 }
2166
getLibcallReg(const Twine & Name)2167 unsigned ARMFastISel::getLibcallReg(const Twine &Name) {
2168 // Manually compute the global's type to avoid building it when unnecessary.
2169 Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0);
2170 EVT LCREVT = TLI.getValueType(DL, GVTy);
2171 if (!LCREVT.isSimple()) return 0;
2172
2173 GlobalValue *GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false,
2174 GlobalValue::ExternalLinkage, nullptr,
2175 Name);
2176 assert(GV->getType() == GVTy && "We miscomputed the type for the global!");
2177 return ARMMaterializeGV(GV, LCREVT.getSimpleVT());
2178 }
2179
2180 // A quick function that will emit a call for a named libcall in F with the
2181 // vector of passed arguments for the Instruction in I. We can assume that we
2182 // can emit a call for any libcall we can produce. This is an abridged version
2183 // of the full call infrastructure since we won't need to worry about things
2184 // like computed function pointers or strange arguments at call sites.
2185 // TODO: Try to unify this and the normal call bits for ARM, then try to unify
2186 // with X86.
ARMEmitLibcall(const Instruction * I,RTLIB::Libcall Call)2187 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
2188 CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
2189
2190 // Handle *simple* calls for now.
2191 Type *RetTy = I->getType();
2192 MVT RetVT;
2193 if (RetTy->isVoidTy())
2194 RetVT = MVT::isVoid;
2195 else if (!isTypeLegal(RetTy, RetVT))
2196 return false;
2197
2198 // Can't handle non-double multi-reg retvals.
2199 if (RetVT != MVT::isVoid && RetVT != MVT::i32) {
2200 SmallVector<CCValAssign, 16> RVLocs;
2201 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
2202 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false));
2203 if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2204 return false;
2205 }
2206
2207 // Set up the argument vectors.
2208 SmallVector<Value*, 8> Args;
2209 SmallVector<unsigned, 8> ArgRegs;
2210 SmallVector<MVT, 8> ArgVTs;
2211 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2212 Args.reserve(I->getNumOperands());
2213 ArgRegs.reserve(I->getNumOperands());
2214 ArgVTs.reserve(I->getNumOperands());
2215 ArgFlags.reserve(I->getNumOperands());
2216 for (unsigned i = 0; i < I->getNumOperands(); ++i) {
2217 Value *Op = I->getOperand(i);
2218 unsigned Arg = getRegForValue(Op);
2219 if (Arg == 0) return false;
2220
2221 Type *ArgTy = Op->getType();
2222 MVT ArgVT;
2223 if (!isTypeLegal(ArgTy, ArgVT)) return false;
2224
2225 ISD::ArgFlagsTy Flags;
2226 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
2227 Flags.setOrigAlign(OriginalAlignment);
2228
2229 Args.push_back(Op);
2230 ArgRegs.push_back(Arg);
2231 ArgVTs.push_back(ArgVT);
2232 ArgFlags.push_back(Flags);
2233 }
2234
2235 // Handle the arguments now that we've gotten them.
2236 SmallVector<unsigned, 4> RegArgs;
2237 unsigned NumBytes;
2238 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2239 RegArgs, CC, NumBytes, false))
2240 return false;
2241
2242 unsigned CalleeReg = 0;
2243 if (Subtarget->genLongCalls()) {
2244 CalleeReg = getLibcallReg(TLI.getLibcallName(Call));
2245 if (CalleeReg == 0) return false;
2246 }
2247
2248 // Issue the call.
2249 unsigned CallOpc = ARMSelectCallOp(Subtarget->genLongCalls());
2250 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2251 DbgLoc, TII.get(CallOpc));
2252 // BL / BLX don't take a predicate, but tBL / tBLX do.
2253 if (isThumb2)
2254 AddDefaultPred(MIB);
2255 if (Subtarget->genLongCalls())
2256 MIB.addReg(CalleeReg);
2257 else
2258 MIB.addExternalSymbol(TLI.getLibcallName(Call));
2259
2260 // Add implicit physical register uses to the call.
2261 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
2262 MIB.addReg(RegArgs[i], RegState::Implicit);
2263
2264 // Add a register mask with the call-preserved registers.
2265 // Proper defs for return values will be added by setPhysRegsDeadExcept().
2266 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
2267
2268 // Finish off the call including any return values.
2269 SmallVector<unsigned, 4> UsedRegs;
2270 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false;
2271
2272 // Set all unused physreg defs as dead.
2273 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2274
2275 return true;
2276 }
2277
SelectCall(const Instruction * I,const char * IntrMemName=nullptr)2278 bool ARMFastISel::SelectCall(const Instruction *I,
2279 const char *IntrMemName = nullptr) {
2280 const CallInst *CI = cast<CallInst>(I);
2281 const Value *Callee = CI->getCalledValue();
2282
2283 // Can't handle inline asm.
2284 if (isa<InlineAsm>(Callee)) return false;
2285
2286 // Allow SelectionDAG isel to handle tail calls.
2287 if (CI->isTailCall()) return false;
2288
2289 // Check the calling convention.
2290 ImmutableCallSite CS(CI);
2291 CallingConv::ID CC = CS.getCallingConv();
2292
2293 // TODO: Avoid some calling conventions?
2294
2295 FunctionType *FTy = CS.getFunctionType();
2296 bool isVarArg = FTy->isVarArg();
2297
2298 // Handle *simple* calls for now.
2299 Type *RetTy = I->getType();
2300 MVT RetVT;
2301 if (RetTy->isVoidTy())
2302 RetVT = MVT::isVoid;
2303 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
2304 RetVT != MVT::i8 && RetVT != MVT::i1)
2305 return false;
2306
2307 // Can't handle non-double multi-reg retvals.
2308 if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 &&
2309 RetVT != MVT::i16 && RetVT != MVT::i32) {
2310 SmallVector<CCValAssign, 16> RVLocs;
2311 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
2312 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2313 if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2314 return false;
2315 }
2316
2317 // Set up the argument vectors.
2318 SmallVector<Value*, 8> Args;
2319 SmallVector<unsigned, 8> ArgRegs;
2320 SmallVector<MVT, 8> ArgVTs;
2321 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2322 unsigned arg_size = CS.arg_size();
2323 Args.reserve(arg_size);
2324 ArgRegs.reserve(arg_size);
2325 ArgVTs.reserve(arg_size);
2326 ArgFlags.reserve(arg_size);
2327 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
2328 i != e; ++i) {
2329 // If we're lowering a memory intrinsic instead of a regular call, skip the
2330 // last two arguments, which shouldn't be passed to the underlying function.
2331 if (IntrMemName && e-i <= 2)
2332 break;
2333
2334 ISD::ArgFlagsTy Flags;
2335 unsigned AttrInd = i - CS.arg_begin() + 1;
2336 if (CS.paramHasAttr(AttrInd, Attribute::SExt))
2337 Flags.setSExt();
2338 if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
2339 Flags.setZExt();
2340
2341 // FIXME: Only handle *easy* calls for now.
2342 if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
2343 CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
2344 CS.paramHasAttr(AttrInd, Attribute::SwiftSelf) ||
2345 CS.paramHasAttr(AttrInd, Attribute::SwiftError) ||
2346 CS.paramHasAttr(AttrInd, Attribute::Nest) ||
2347 CS.paramHasAttr(AttrInd, Attribute::ByVal))
2348 return false;
2349
2350 Type *ArgTy = (*i)->getType();
2351 MVT ArgVT;
2352 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 &&
2353 ArgVT != MVT::i1)
2354 return false;
2355
2356 unsigned Arg = getRegForValue(*i);
2357 if (Arg == 0)
2358 return false;
2359
2360 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
2361 Flags.setOrigAlign(OriginalAlignment);
2362
2363 Args.push_back(*i);
2364 ArgRegs.push_back(Arg);
2365 ArgVTs.push_back(ArgVT);
2366 ArgFlags.push_back(Flags);
2367 }
2368
2369 // Handle the arguments now that we've gotten them.
2370 SmallVector<unsigned, 4> RegArgs;
2371 unsigned NumBytes;
2372 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2373 RegArgs, CC, NumBytes, isVarArg))
2374 return false;
2375
2376 bool UseReg = false;
2377 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
2378 if (!GV || Subtarget->genLongCalls()) UseReg = true;
2379
2380 unsigned CalleeReg = 0;
2381 if (UseReg) {
2382 if (IntrMemName)
2383 CalleeReg = getLibcallReg(IntrMemName);
2384 else
2385 CalleeReg = getRegForValue(Callee);
2386
2387 if (CalleeReg == 0) return false;
2388 }
2389
2390 // Issue the call.
2391 unsigned CallOpc = ARMSelectCallOp(UseReg);
2392 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2393 DbgLoc, TII.get(CallOpc));
2394
2395 // ARM calls don't take a predicate, but tBL / tBLX do.
2396 if(isThumb2)
2397 AddDefaultPred(MIB);
2398 if (UseReg)
2399 MIB.addReg(CalleeReg);
2400 else if (!IntrMemName)
2401 MIB.addGlobalAddress(GV, 0, 0);
2402 else
2403 MIB.addExternalSymbol(IntrMemName, 0);
2404
2405 // Add implicit physical register uses to the call.
2406 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
2407 MIB.addReg(RegArgs[i], RegState::Implicit);
2408
2409 // Add a register mask with the call-preserved registers.
2410 // Proper defs for return values will be added by setPhysRegsDeadExcept().
2411 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
2412
2413 // Finish off the call including any return values.
2414 SmallVector<unsigned, 4> UsedRegs;
2415 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg))
2416 return false;
2417
2418 // Set all unused physreg defs as dead.
2419 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2420
2421 return true;
2422 }
2423
ARMIsMemCpySmall(uint64_t Len)2424 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) {
2425 return Len <= 16;
2426 }
2427
ARMTryEmitSmallMemCpy(Address Dest,Address Src,uint64_t Len,unsigned Alignment)2428 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src,
2429 uint64_t Len, unsigned Alignment) {
2430 // Make sure we don't bloat code by inlining very large memcpy's.
2431 if (!ARMIsMemCpySmall(Len))
2432 return false;
2433
2434 while (Len) {
2435 MVT VT;
2436 if (!Alignment || Alignment >= 4) {
2437 if (Len >= 4)
2438 VT = MVT::i32;
2439 else if (Len >= 2)
2440 VT = MVT::i16;
2441 else {
2442 assert (Len == 1 && "Expected a length of 1!");
2443 VT = MVT::i8;
2444 }
2445 } else {
2446 // Bound based on alignment.
2447 if (Len >= 2 && Alignment == 2)
2448 VT = MVT::i16;
2449 else {
2450 VT = MVT::i8;
2451 }
2452 }
2453
2454 bool RV;
2455 unsigned ResultReg;
2456 RV = ARMEmitLoad(VT, ResultReg, Src);
2457 assert (RV == true && "Should be able to handle this load.");
2458 RV = ARMEmitStore(VT, ResultReg, Dest);
2459 assert (RV == true && "Should be able to handle this store.");
2460 (void)RV;
2461
2462 unsigned Size = VT.getSizeInBits()/8;
2463 Len -= Size;
2464 Dest.Offset += Size;
2465 Src.Offset += Size;
2466 }
2467
2468 return true;
2469 }
2470
SelectIntrinsicCall(const IntrinsicInst & I)2471 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
2472 // FIXME: Handle more intrinsics.
2473 switch (I.getIntrinsicID()) {
2474 default: return false;
2475 case Intrinsic::frameaddress: {
2476 MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo();
2477 MFI->setFrameAddressIsTaken(true);
2478
2479 unsigned LdrOpc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
2480 const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
2481 : &ARM::GPRRegClass;
2482
2483 const ARMBaseRegisterInfo *RegInfo =
2484 static_cast<const ARMBaseRegisterInfo *>(Subtarget->getRegisterInfo());
2485 unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
2486 unsigned SrcReg = FramePtr;
2487
2488 // Recursively load frame address
2489 // ldr r0 [fp]
2490 // ldr r0 [r0]
2491 // ldr r0 [r0]
2492 // ...
2493 unsigned DestReg;
2494 unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue();
2495 while (Depth--) {
2496 DestReg = createResultReg(RC);
2497 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2498 TII.get(LdrOpc), DestReg)
2499 .addReg(SrcReg).addImm(0));
2500 SrcReg = DestReg;
2501 }
2502 updateValueMap(&I, SrcReg);
2503 return true;
2504 }
2505 case Intrinsic::memcpy:
2506 case Intrinsic::memmove: {
2507 const MemTransferInst &MTI = cast<MemTransferInst>(I);
2508 // Don't handle volatile.
2509 if (MTI.isVolatile())
2510 return false;
2511
2512 // Disable inlining for memmove before calls to ComputeAddress. Otherwise,
2513 // we would emit dead code because we don't currently handle memmoves.
2514 bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
2515 if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
2516 // Small memcpy's are common enough that we want to do them without a call
2517 // if possible.
2518 uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
2519 if (ARMIsMemCpySmall(Len)) {
2520 Address Dest, Src;
2521 if (!ARMComputeAddress(MTI.getRawDest(), Dest) ||
2522 !ARMComputeAddress(MTI.getRawSource(), Src))
2523 return false;
2524 unsigned Alignment = MTI.getAlignment();
2525 if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment))
2526 return true;
2527 }
2528 }
2529
2530 if (!MTI.getLength()->getType()->isIntegerTy(32))
2531 return false;
2532
2533 if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
2534 return false;
2535
2536 const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
2537 return SelectCall(&I, IntrMemName);
2538 }
2539 case Intrinsic::memset: {
2540 const MemSetInst &MSI = cast<MemSetInst>(I);
2541 // Don't handle volatile.
2542 if (MSI.isVolatile())
2543 return false;
2544
2545 if (!MSI.getLength()->getType()->isIntegerTy(32))
2546 return false;
2547
2548 if (MSI.getDestAddressSpace() > 255)
2549 return false;
2550
2551 return SelectCall(&I, "memset");
2552 }
2553 case Intrinsic::trap: {
2554 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(
2555 Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP));
2556 return true;
2557 }
2558 }
2559 }
2560
SelectTrunc(const Instruction * I)2561 bool ARMFastISel::SelectTrunc(const Instruction *I) {
2562 // The high bits for a type smaller than the register size are assumed to be
2563 // undefined.
2564 Value *Op = I->getOperand(0);
2565
2566 EVT SrcVT, DestVT;
2567 SrcVT = TLI.getValueType(DL, Op->getType(), true);
2568 DestVT = TLI.getValueType(DL, I->getType(), true);
2569
2570 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
2571 return false;
2572 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
2573 return false;
2574
2575 unsigned SrcReg = getRegForValue(Op);
2576 if (!SrcReg) return false;
2577
2578 // Because the high bits are undefined, a truncate doesn't generate
2579 // any code.
2580 updateValueMap(I, SrcReg);
2581 return true;
2582 }
2583
ARMEmitIntExt(MVT SrcVT,unsigned SrcReg,MVT DestVT,bool isZExt)2584 unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
2585 bool isZExt) {
2586 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
2587 return 0;
2588 if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1)
2589 return 0;
2590
2591 // Table of which combinations can be emitted as a single instruction,
2592 // and which will require two.
2593 static const uint8_t isSingleInstrTbl[3][2][2][2] = {
2594 // ARM Thumb
2595 // !hasV6Ops hasV6Ops !hasV6Ops hasV6Ops
2596 // ext: s z s z s z s z
2597 /* 1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } },
2598 /* 8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } },
2599 /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }
2600 };
2601
2602 // Target registers for:
2603 // - For ARM can never be PC.
2604 // - For 16-bit Thumb are restricted to lower 8 registers.
2605 // - For 32-bit Thumb are restricted to non-SP and non-PC.
2606 static const TargetRegisterClass *RCTbl[2][2] = {
2607 // Instructions: Two Single
2608 /* ARM */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass },
2609 /* Thumb */ { &ARM::tGPRRegClass, &ARM::rGPRRegClass }
2610 };
2611
2612 // Table governing the instruction(s) to be emitted.
2613 static const struct InstructionTable {
2614 uint32_t Opc : 16;
2615 uint32_t hasS : 1; // Some instructions have an S bit, always set it to 0.
2616 uint32_t Shift : 7; // For shift operand addressing mode, used by MOVsi.
2617 uint32_t Imm : 8; // All instructions have either a shift or a mask.
2618 } IT[2][2][3][2] = {
2619 { // Two instructions (first is left shift, second is in this table).
2620 { // ARM Opc S Shift Imm
2621 /* 1 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 31 },
2622 /* 1 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 31 } },
2623 /* 8 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 24 },
2624 /* 8 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 24 } },
2625 /* 16 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 16 },
2626 /* 16 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 16 } }
2627 },
2628 { // Thumb Opc S Shift Imm
2629 /* 1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 31 },
2630 /* 1 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 31 } },
2631 /* 8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 24 },
2632 /* 8 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 24 } },
2633 /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 16 },
2634 /* 16 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 16 } }
2635 }
2636 },
2637 { // Single instruction.
2638 { // ARM Opc S Shift Imm
2639 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 },
2640 /* 1 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 1 } },
2641 /* 8 bit sext */ { { ARM::SXTB , 0, ARM_AM::no_shift, 0 },
2642 /* 8 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 255 } },
2643 /* 16 bit sext */ { { ARM::SXTH , 0, ARM_AM::no_shift, 0 },
2644 /* 16 bit zext */ { ARM::UXTH , 0, ARM_AM::no_shift, 0 } }
2645 },
2646 { // Thumb Opc S Shift Imm
2647 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 },
2648 /* 1 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 1 } },
2649 /* 8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift, 0 },
2650 /* 8 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } },
2651 /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift, 0 },
2652 /* 16 bit zext */ { ARM::t2UXTH , 0, ARM_AM::no_shift, 0 } }
2653 }
2654 }
2655 };
2656
2657 unsigned SrcBits = SrcVT.getSizeInBits();
2658 unsigned DestBits = DestVT.getSizeInBits();
2659 (void) DestBits;
2660 assert((SrcBits < DestBits) && "can only extend to larger types");
2661 assert((DestBits == 32 || DestBits == 16 || DestBits == 8) &&
2662 "other sizes unimplemented");
2663 assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) &&
2664 "other sizes unimplemented");
2665
2666 bool hasV6Ops = Subtarget->hasV6Ops();
2667 unsigned Bitness = SrcBits / 8; // {1,8,16}=>{0,1,2}
2668 assert((Bitness < 3) && "sanity-check table bounds");
2669
2670 bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt];
2671 const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr];
2672 const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt];
2673 unsigned Opc = ITP->Opc;
2674 assert(ARM::KILL != Opc && "Invalid table entry");
2675 unsigned hasS = ITP->hasS;
2676 ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift;
2677 assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) &&
2678 "only MOVsi has shift operand addressing mode");
2679 unsigned Imm = ITP->Imm;
2680
2681 // 16-bit Thumb instructions always set CPSR (unless they're in an IT block).
2682 bool setsCPSR = &ARM::tGPRRegClass == RC;
2683 unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi;
2684 unsigned ResultReg;
2685 // MOVsi encodes shift and immediate in shift operand addressing mode.
2686 // The following condition has the same value when emitting two
2687 // instruction sequences: both are shifts.
2688 bool ImmIsSO = (Shift != ARM_AM::no_shift);
2689
2690 // Either one or two instructions are emitted.
2691 // They're always of the form:
2692 // dst = in OP imm
2693 // CPSR is set only by 16-bit Thumb instructions.
2694 // Predicate, if any, is AL.
2695 // S bit, if available, is always 0.
2696 // When two are emitted the first's result will feed as the second's input,
2697 // that value is then dead.
2698 unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2;
2699 for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) {
2700 ResultReg = createResultReg(RC);
2701 bool isLsl = (0 == Instr) && !isSingleInstr;
2702 unsigned Opcode = isLsl ? LSLOpc : Opc;
2703 ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift;
2704 unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm;
2705 bool isKill = 1 == Instr;
2706 MachineInstrBuilder MIB = BuildMI(
2707 *FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode), ResultReg);
2708 if (setsCPSR)
2709 MIB.addReg(ARM::CPSR, RegState::Define);
2710 SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR);
2711 AddDefaultPred(MIB.addReg(SrcReg, isKill * RegState::Kill).addImm(ImmEnc));
2712 if (hasS)
2713 AddDefaultCC(MIB);
2714 // Second instruction consumes the first's result.
2715 SrcReg = ResultReg;
2716 }
2717
2718 return ResultReg;
2719 }
2720
SelectIntExt(const Instruction * I)2721 bool ARMFastISel::SelectIntExt(const Instruction *I) {
2722 // On ARM, in general, integer casts don't involve legal types; this code
2723 // handles promotable integers.
2724 Type *DestTy = I->getType();
2725 Value *Src = I->getOperand(0);
2726 Type *SrcTy = Src->getType();
2727
2728 bool isZExt = isa<ZExtInst>(I);
2729 unsigned SrcReg = getRegForValue(Src);
2730 if (!SrcReg) return false;
2731
2732 EVT SrcEVT, DestEVT;
2733 SrcEVT = TLI.getValueType(DL, SrcTy, true);
2734 DestEVT = TLI.getValueType(DL, DestTy, true);
2735 if (!SrcEVT.isSimple()) return false;
2736 if (!DestEVT.isSimple()) return false;
2737
2738 MVT SrcVT = SrcEVT.getSimpleVT();
2739 MVT DestVT = DestEVT.getSimpleVT();
2740 unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
2741 if (ResultReg == 0) return false;
2742 updateValueMap(I, ResultReg);
2743 return true;
2744 }
2745
SelectShift(const Instruction * I,ARM_AM::ShiftOpc ShiftTy)2746 bool ARMFastISel::SelectShift(const Instruction *I,
2747 ARM_AM::ShiftOpc ShiftTy) {
2748 // We handle thumb2 mode by target independent selector
2749 // or SelectionDAG ISel.
2750 if (isThumb2)
2751 return false;
2752
2753 // Only handle i32 now.
2754 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
2755 if (DestVT != MVT::i32)
2756 return false;
2757
2758 unsigned Opc = ARM::MOVsr;
2759 unsigned ShiftImm;
2760 Value *Src2Value = I->getOperand(1);
2761 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) {
2762 ShiftImm = CI->getZExtValue();
2763
2764 // Fall back to selection DAG isel if the shift amount
2765 // is zero or greater than the width of the value type.
2766 if (ShiftImm == 0 || ShiftImm >=32)
2767 return false;
2768
2769 Opc = ARM::MOVsi;
2770 }
2771
2772 Value *Src1Value = I->getOperand(0);
2773 unsigned Reg1 = getRegForValue(Src1Value);
2774 if (Reg1 == 0) return false;
2775
2776 unsigned Reg2 = 0;
2777 if (Opc == ARM::MOVsr) {
2778 Reg2 = getRegForValue(Src2Value);
2779 if (Reg2 == 0) return false;
2780 }
2781
2782 unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
2783 if(ResultReg == 0) return false;
2784
2785 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2786 TII.get(Opc), ResultReg)
2787 .addReg(Reg1);
2788
2789 if (Opc == ARM::MOVsi)
2790 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm));
2791 else if (Opc == ARM::MOVsr) {
2792 MIB.addReg(Reg2);
2793 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0));
2794 }
2795
2796 AddOptionalDefs(MIB);
2797 updateValueMap(I, ResultReg);
2798 return true;
2799 }
2800
2801 // TODO: SoftFP support.
fastSelectInstruction(const Instruction * I)2802 bool ARMFastISel::fastSelectInstruction(const Instruction *I) {
2803
2804 switch (I->getOpcode()) {
2805 case Instruction::Load:
2806 return SelectLoad(I);
2807 case Instruction::Store:
2808 return SelectStore(I);
2809 case Instruction::Br:
2810 return SelectBranch(I);
2811 case Instruction::IndirectBr:
2812 return SelectIndirectBr(I);
2813 case Instruction::ICmp:
2814 case Instruction::FCmp:
2815 return SelectCmp(I);
2816 case Instruction::FPExt:
2817 return SelectFPExt(I);
2818 case Instruction::FPTrunc:
2819 return SelectFPTrunc(I);
2820 case Instruction::SIToFP:
2821 return SelectIToFP(I, /*isSigned*/ true);
2822 case Instruction::UIToFP:
2823 return SelectIToFP(I, /*isSigned*/ false);
2824 case Instruction::FPToSI:
2825 return SelectFPToI(I, /*isSigned*/ true);
2826 case Instruction::FPToUI:
2827 return SelectFPToI(I, /*isSigned*/ false);
2828 case Instruction::Add:
2829 return SelectBinaryIntOp(I, ISD::ADD);
2830 case Instruction::Or:
2831 return SelectBinaryIntOp(I, ISD::OR);
2832 case Instruction::Sub:
2833 return SelectBinaryIntOp(I, ISD::SUB);
2834 case Instruction::FAdd:
2835 return SelectBinaryFPOp(I, ISD::FADD);
2836 case Instruction::FSub:
2837 return SelectBinaryFPOp(I, ISD::FSUB);
2838 case Instruction::FMul:
2839 return SelectBinaryFPOp(I, ISD::FMUL);
2840 case Instruction::SDiv:
2841 return SelectDiv(I, /*isSigned*/ true);
2842 case Instruction::UDiv:
2843 return SelectDiv(I, /*isSigned*/ false);
2844 case Instruction::SRem:
2845 return SelectRem(I, /*isSigned*/ true);
2846 case Instruction::URem:
2847 return SelectRem(I, /*isSigned*/ false);
2848 case Instruction::Call:
2849 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2850 return SelectIntrinsicCall(*II);
2851 return SelectCall(I);
2852 case Instruction::Select:
2853 return SelectSelect(I);
2854 case Instruction::Ret:
2855 return SelectRet(I);
2856 case Instruction::Trunc:
2857 return SelectTrunc(I);
2858 case Instruction::ZExt:
2859 case Instruction::SExt:
2860 return SelectIntExt(I);
2861 case Instruction::Shl:
2862 return SelectShift(I, ARM_AM::lsl);
2863 case Instruction::LShr:
2864 return SelectShift(I, ARM_AM::lsr);
2865 case Instruction::AShr:
2866 return SelectShift(I, ARM_AM::asr);
2867 default: break;
2868 }
2869 return false;
2870 }
2871
2872 namespace {
2873 // This table describes sign- and zero-extend instructions which can be
2874 // folded into a preceding load. All of these extends have an immediate
2875 // (sometimes a mask and sometimes a shift) that's applied after
2876 // extension.
2877 const struct FoldableLoadExtendsStruct {
2878 uint16_t Opc[2]; // ARM, Thumb.
2879 uint8_t ExpectedImm;
2880 uint8_t isZExt : 1;
2881 uint8_t ExpectedVT : 7;
2882 } FoldableLoadExtends[] = {
2883 { { ARM::SXTH, ARM::t2SXTH }, 0, 0, MVT::i16 },
2884 { { ARM::UXTH, ARM::t2UXTH }, 0, 1, MVT::i16 },
2885 { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8 },
2886 { { ARM::SXTB, ARM::t2SXTB }, 0, 0, MVT::i8 },
2887 { { ARM::UXTB, ARM::t2UXTB }, 0, 1, MVT::i8 }
2888 };
2889 }
2890
2891 /// \brief The specified machine instr operand is a vreg, and that
2892 /// vreg is being provided by the specified load instruction. If possible,
2893 /// try to fold the load as an operand to the instruction, returning true if
2894 /// successful.
tryToFoldLoadIntoMI(MachineInstr * MI,unsigned OpNo,const LoadInst * LI)2895 bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2896 const LoadInst *LI) {
2897 // Verify we have a legal type before going any further.
2898 MVT VT;
2899 if (!isLoadTypeLegal(LI->getType(), VT))
2900 return false;
2901
2902 // Combine load followed by zero- or sign-extend.
2903 // ldrb r1, [r0] ldrb r1, [r0]
2904 // uxtb r2, r1 =>
2905 // mov r3, r2 mov r3, r1
2906 if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm())
2907 return false;
2908 const uint64_t Imm = MI->getOperand(2).getImm();
2909
2910 bool Found = false;
2911 bool isZExt;
2912 for (unsigned i = 0, e = array_lengthof(FoldableLoadExtends);
2913 i != e; ++i) {
2914 if (FoldableLoadExtends[i].Opc[isThumb2] == MI->getOpcode() &&
2915 (uint64_t)FoldableLoadExtends[i].ExpectedImm == Imm &&
2916 MVT((MVT::SimpleValueType)FoldableLoadExtends[i].ExpectedVT) == VT) {
2917 Found = true;
2918 isZExt = FoldableLoadExtends[i].isZExt;
2919 }
2920 }
2921 if (!Found) return false;
2922
2923 // See if we can handle this address.
2924 Address Addr;
2925 if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false;
2926
2927 unsigned ResultReg = MI->getOperand(0).getReg();
2928 if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false))
2929 return false;
2930 MI->eraseFromParent();
2931 return true;
2932 }
2933
ARMLowerPICELF(const GlobalValue * GV,unsigned Align,MVT VT)2934 unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV,
2935 unsigned Align, MVT VT) {
2936 bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
2937
2938 LLVMContext *Context = &MF->getFunction()->getContext();
2939 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2940 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2941 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(
2942 GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj,
2943 UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier,
2944 /*AddCurrentAddress=*/UseGOT_PREL);
2945
2946 unsigned ConstAlign =
2947 MF->getDataLayout().getPrefTypeAlignment(Type::getInt32PtrTy(*Context));
2948 unsigned Idx = MF->getConstantPool()->getConstantPoolIndex(CPV, ConstAlign);
2949
2950 unsigned TempReg = MF->getRegInfo().createVirtualRegister(&ARM::rGPRRegClass);
2951 unsigned Opc = isThumb2 ? ARM::t2LDRpci : ARM::LDRcp;
2952 MachineInstrBuilder MIB =
2953 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), TempReg)
2954 .addConstantPoolIndex(Idx);
2955 if (Opc == ARM::LDRcp)
2956 MIB.addImm(0);
2957 AddDefaultPred(MIB);
2958
2959 // Fix the address by adding pc.
2960 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
2961 Opc = Subtarget->isThumb() ? ARM::tPICADD : UseGOT_PREL ? ARM::PICLDR
2962 : ARM::PICADD;
2963 DestReg = constrainOperandRegClass(TII.get(Opc), DestReg, 0);
2964 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
2965 .addReg(TempReg)
2966 .addImm(ARMPCLabelIndex);
2967 if (!Subtarget->isThumb())
2968 AddDefaultPred(MIB);
2969
2970 if (UseGOT_PREL && Subtarget->isThumb()) {
2971 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
2972 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2973 TII.get(ARM::t2LDRi12), NewDestReg)
2974 .addReg(DestReg)
2975 .addImm(0);
2976 DestReg = NewDestReg;
2977 AddOptionalDefs(MIB);
2978 }
2979 return DestReg;
2980 }
2981
fastLowerArguments()2982 bool ARMFastISel::fastLowerArguments() {
2983 if (!FuncInfo.CanLowerReturn)
2984 return false;
2985
2986 const Function *F = FuncInfo.Fn;
2987 if (F->isVarArg())
2988 return false;
2989
2990 CallingConv::ID CC = F->getCallingConv();
2991 switch (CC) {
2992 default:
2993 return false;
2994 case CallingConv::Fast:
2995 case CallingConv::C:
2996 case CallingConv::ARM_AAPCS_VFP:
2997 case CallingConv::ARM_AAPCS:
2998 case CallingConv::ARM_APCS:
2999 case CallingConv::Swift:
3000 break;
3001 }
3002
3003 // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments
3004 // which are passed in r0 - r3.
3005 unsigned Idx = 1;
3006 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
3007 I != E; ++I, ++Idx) {
3008 if (Idx > 4)
3009 return false;
3010
3011 if (F->getAttributes().hasAttribute(Idx, Attribute::InReg) ||
3012 F->getAttributes().hasAttribute(Idx, Attribute::StructRet) ||
3013 F->getAttributes().hasAttribute(Idx, Attribute::SwiftSelf) ||
3014 F->getAttributes().hasAttribute(Idx, Attribute::SwiftError) ||
3015 F->getAttributes().hasAttribute(Idx, Attribute::ByVal))
3016 return false;
3017
3018 Type *ArgTy = I->getType();
3019 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
3020 return false;
3021
3022 EVT ArgVT = TLI.getValueType(DL, ArgTy);
3023 if (!ArgVT.isSimple()) return false;
3024 switch (ArgVT.getSimpleVT().SimpleTy) {
3025 case MVT::i8:
3026 case MVT::i16:
3027 case MVT::i32:
3028 break;
3029 default:
3030 return false;
3031 }
3032 }
3033
3034
3035 static const MCPhysReg GPRArgRegs[] = {
3036 ARM::R0, ARM::R1, ARM::R2, ARM::R3
3037 };
3038
3039 const TargetRegisterClass *RC = &ARM::rGPRRegClass;
3040 Idx = 0;
3041 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
3042 I != E; ++I, ++Idx) {
3043 unsigned SrcReg = GPRArgRegs[Idx];
3044 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
3045 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
3046 // Without this, EmitLiveInCopies may eliminate the livein if its only
3047 // use is a bitcast (which isn't turned into an instruction).
3048 unsigned ResultReg = createResultReg(RC);
3049 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3050 TII.get(TargetOpcode::COPY),
3051 ResultReg).addReg(DstReg, getKillRegState(true));
3052 updateValueMap(&*I, ResultReg);
3053 }
3054
3055 return true;
3056 }
3057
3058 namespace llvm {
createFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo)3059 FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo,
3060 const TargetLibraryInfo *libInfo) {
3061 if (funcInfo.MF->getSubtarget<ARMSubtarget>().useFastISel())
3062 return new ARMFastISel(funcInfo, libInfo);
3063
3064 return nullptr;
3065 }
3066 }
3067