1 //===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the ARM-specific support for the FastISel class. Some
11 // of the target-specific code is generated by tablegen in the file
12 // ARMGenFastISel.inc, which is #included here.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "ARM.h"
17 #include "ARMBaseRegisterInfo.h"
18 #include "ARMCallingConv.h"
19 #include "ARMConstantPoolValue.h"
20 #include "ARMISelLowering.h"
21 #include "ARMMachineFunctionInfo.h"
22 #include "ARMSubtarget.h"
23 #include "MCTargetDesc/ARMAddressingModes.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/CodeGen/FastISel.h"
26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineMemOperand.h"
31 #include "llvm/CodeGen/MachineModuleInfo.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/GetElementPtrTypeIterator.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/Module.h"
42 #include "llvm/IR/Operator.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Target/TargetInstrInfo.h"
45 #include "llvm/Target/TargetLowering.h"
46 #include "llvm/Target/TargetMachine.h"
47 #include "llvm/Target/TargetOptions.h"
48 using namespace llvm;
49 
50 namespace {
51 
52   // All possible address modes, plus some.
53   typedef struct Address {
54     enum {
55       RegBase,
56       FrameIndexBase
57     } BaseType;
58 
59     union {
60       unsigned Reg;
61       int FI;
62     } Base;
63 
64     int Offset;
65 
66     // Innocuous defaults for our address.
Address__anonb1bfd3920111::Address67     Address()
68      : BaseType(RegBase), Offset(0) {
69        Base.Reg = 0;
70      }
71   } Address;
72 
73 class ARMFastISel final : public FastISel {
74 
75   /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
76   /// make the right decision when generating code for different targets.
77   const ARMSubtarget *Subtarget;
78   Module &M;
79   const TargetMachine &TM;
80   const TargetInstrInfo &TII;
81   const TargetLowering &TLI;
82   ARMFunctionInfo *AFI;
83 
84   // Convenience variables to avoid some queries.
85   bool isThumb2;
86   LLVMContext *Context;
87 
88   public:
ARMFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo)89     explicit ARMFastISel(FunctionLoweringInfo &funcInfo,
90                          const TargetLibraryInfo *libInfo)
91         : FastISel(funcInfo, libInfo),
92           Subtarget(
93               &static_cast<const ARMSubtarget &>(funcInfo.MF->getSubtarget())),
94           M(const_cast<Module &>(*funcInfo.Fn->getParent())),
95           TM(funcInfo.MF->getTarget()), TII(*Subtarget->getInstrInfo()),
96           TLI(*Subtarget->getTargetLowering()) {
97       AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
98       isThumb2 = AFI->isThumbFunction();
99       Context = &funcInfo.Fn->getContext();
100     }
101 
102     // Code from FastISel.cpp.
103   private:
104     unsigned fastEmitInst_r(unsigned MachineInstOpcode,
105                             const TargetRegisterClass *RC,
106                             unsigned Op0, bool Op0IsKill);
107     unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
108                              const TargetRegisterClass *RC,
109                              unsigned Op0, bool Op0IsKill,
110                              unsigned Op1, bool Op1IsKill);
111     unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
112                              const TargetRegisterClass *RC,
113                              unsigned Op0, bool Op0IsKill,
114                              uint64_t Imm);
115     unsigned fastEmitInst_rri(unsigned MachineInstOpcode,
116                               const TargetRegisterClass *RC,
117                               unsigned Op0, bool Op0IsKill,
118                               unsigned Op1, bool Op1IsKill,
119                               uint64_t Imm);
120     unsigned fastEmitInst_i(unsigned MachineInstOpcode,
121                             const TargetRegisterClass *RC,
122                             uint64_t Imm);
123 
124     // Backend specific FastISel code.
125   private:
126     bool fastSelectInstruction(const Instruction *I) override;
127     unsigned fastMaterializeConstant(const Constant *C) override;
128     unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
129     bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
130                              const LoadInst *LI) override;
131     bool fastLowerArguments() override;
132   private:
133   #include "ARMGenFastISel.inc"
134 
135     // Instruction selection routines.
136   private:
137     bool SelectLoad(const Instruction *I);
138     bool SelectStore(const Instruction *I);
139     bool SelectBranch(const Instruction *I);
140     bool SelectIndirectBr(const Instruction *I);
141     bool SelectCmp(const Instruction *I);
142     bool SelectFPExt(const Instruction *I);
143     bool SelectFPTrunc(const Instruction *I);
144     bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
145     bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode);
146     bool SelectIToFP(const Instruction *I, bool isSigned);
147     bool SelectFPToI(const Instruction *I, bool isSigned);
148     bool SelectDiv(const Instruction *I, bool isSigned);
149     bool SelectRem(const Instruction *I, bool isSigned);
150     bool SelectCall(const Instruction *I, const char *IntrMemName);
151     bool SelectIntrinsicCall(const IntrinsicInst &I);
152     bool SelectSelect(const Instruction *I);
153     bool SelectRet(const Instruction *I);
154     bool SelectTrunc(const Instruction *I);
155     bool SelectIntExt(const Instruction *I);
156     bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy);
157 
158     // Utility routines.
159   private:
160     bool isPositionIndependent() const;
161     bool isTypeLegal(Type *Ty, MVT &VT);
162     bool isLoadTypeLegal(Type *Ty, MVT &VT);
163     bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
164                     bool isZExt);
165     bool ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
166                      unsigned Alignment = 0, bool isZExt = true,
167                      bool allocReg = true);
168     bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
169                       unsigned Alignment = 0);
170     bool ARMComputeAddress(const Value *Obj, Address &Addr);
171     void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3);
172     bool ARMIsMemCpySmall(uint64_t Len);
173     bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
174                                unsigned Alignment);
175     unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
176     unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT);
177     unsigned ARMMaterializeInt(const Constant *C, MVT VT);
178     unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT);
179     unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg);
180     unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg);
181     unsigned ARMSelectCallOp(bool UseReg);
182     unsigned ARMLowerPICELF(const GlobalValue *GV, unsigned Align, MVT VT);
183 
getTargetLowering()184     const TargetLowering *getTargetLowering() { return &TLI; }
185 
186     // Call handling routines.
187   private:
188     CCAssignFn *CCAssignFnForCall(CallingConv::ID CC,
189                                   bool Return,
190                                   bool isVarArg);
191     bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
192                          SmallVectorImpl<unsigned> &ArgRegs,
193                          SmallVectorImpl<MVT> &ArgVTs,
194                          SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
195                          SmallVectorImpl<unsigned> &RegArgs,
196                          CallingConv::ID CC,
197                          unsigned &NumBytes,
198                          bool isVarArg);
199     unsigned getLibcallReg(const Twine &Name);
200     bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
201                     const Instruction *I, CallingConv::ID CC,
202                     unsigned &NumBytes, bool isVarArg);
203     bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
204 
205     // OptionalDef handling routines.
206   private:
207     bool isARMNEONPred(const MachineInstr *MI);
208     bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
209     const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
210     void AddLoadStoreOperands(MVT VT, Address &Addr,
211                               const MachineInstrBuilder &MIB,
212                               unsigned Flags, bool useAM3);
213 };
214 
215 } // end anonymous namespace
216 
217 #include "ARMGenCallingConv.inc"
218 
219 // DefinesOptionalPredicate - This is different from DefinesPredicate in that
220 // we don't care about implicit defs here, just places we'll need to add a
221 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
DefinesOptionalPredicate(MachineInstr * MI,bool * CPSR)222 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
223   if (!MI->hasOptionalDef())
224     return false;
225 
226   // Look to see if our OptionalDef is defining CPSR or CCR.
227   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
228     const MachineOperand &MO = MI->getOperand(i);
229     if (!MO.isReg() || !MO.isDef()) continue;
230     if (MO.getReg() == ARM::CPSR)
231       *CPSR = true;
232   }
233   return true;
234 }
235 
isARMNEONPred(const MachineInstr * MI)236 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
237   const MCInstrDesc &MCID = MI->getDesc();
238 
239   // If we're a thumb2 or not NEON function we'll be handled via isPredicable.
240   if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
241        AFI->isThumb2Function())
242     return MI->isPredicable();
243 
244   for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i)
245     if (MCID.OpInfo[i].isPredicate())
246       return true;
247 
248   return false;
249 }
250 
251 // If the machine is predicable go ahead and add the predicate operands, if
252 // it needs default CC operands add those.
253 // TODO: If we want to support thumb1 then we'll need to deal with optional
254 // CPSR defs that need to be added before the remaining operands. See s_cc_out
255 // for descriptions why.
256 const MachineInstrBuilder &
AddOptionalDefs(const MachineInstrBuilder & MIB)257 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
258   MachineInstr *MI = &*MIB;
259 
260   // Do we use a predicate? or...
261   // Are we NEON in ARM mode and have a predicate operand? If so, I know
262   // we're not predicable but add it anyways.
263   if (isARMNEONPred(MI))
264     AddDefaultPred(MIB);
265 
266   // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
267   // defines CPSR. All other OptionalDefines in ARM are the CCR register.
268   bool CPSR = false;
269   if (DefinesOptionalPredicate(MI, &CPSR)) {
270     if (CPSR)
271       AddDefaultT1CC(MIB);
272     else
273       AddDefaultCC(MIB);
274   }
275   return MIB;
276 }
277 
fastEmitInst_r(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill)278 unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
279                                      const TargetRegisterClass *RC,
280                                      unsigned Op0, bool Op0IsKill) {
281   unsigned ResultReg = createResultReg(RC);
282   const MCInstrDesc &II = TII.get(MachineInstOpcode);
283 
284   // Make sure the input operand is sufficiently constrained to be legal
285   // for this instruction.
286   Op0 = constrainOperandRegClass(II, Op0, 1);
287   if (II.getNumDefs() >= 1) {
288     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
289                             ResultReg).addReg(Op0, Op0IsKill * RegState::Kill));
290   } else {
291     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
292                    .addReg(Op0, Op0IsKill * RegState::Kill));
293     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
294                    TII.get(TargetOpcode::COPY), ResultReg)
295                    .addReg(II.ImplicitDefs[0]));
296   }
297   return ResultReg;
298 }
299 
fastEmitInst_rr(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill)300 unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
301                                       const TargetRegisterClass *RC,
302                                       unsigned Op0, bool Op0IsKill,
303                                       unsigned Op1, bool Op1IsKill) {
304   unsigned ResultReg = createResultReg(RC);
305   const MCInstrDesc &II = TII.get(MachineInstOpcode);
306 
307   // Make sure the input operands are sufficiently constrained to be legal
308   // for this instruction.
309   Op0 = constrainOperandRegClass(II, Op0, 1);
310   Op1 = constrainOperandRegClass(II, Op1, 2);
311 
312   if (II.getNumDefs() >= 1) {
313     AddOptionalDefs(
314         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
315             .addReg(Op0, Op0IsKill * RegState::Kill)
316             .addReg(Op1, Op1IsKill * RegState::Kill));
317   } else {
318     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
319                    .addReg(Op0, Op0IsKill * RegState::Kill)
320                    .addReg(Op1, Op1IsKill * RegState::Kill));
321     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
322                            TII.get(TargetOpcode::COPY), ResultReg)
323                    .addReg(II.ImplicitDefs[0]));
324   }
325   return ResultReg;
326 }
327 
fastEmitInst_ri(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,uint64_t Imm)328 unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
329                                       const TargetRegisterClass *RC,
330                                       unsigned Op0, bool Op0IsKill,
331                                       uint64_t Imm) {
332   unsigned ResultReg = createResultReg(RC);
333   const MCInstrDesc &II = TII.get(MachineInstOpcode);
334 
335   // Make sure the input operand is sufficiently constrained to be legal
336   // for this instruction.
337   Op0 = constrainOperandRegClass(II, Op0, 1);
338   if (II.getNumDefs() >= 1) {
339     AddOptionalDefs(
340         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
341             .addReg(Op0, Op0IsKill * RegState::Kill)
342             .addImm(Imm));
343   } else {
344     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
345                    .addReg(Op0, Op0IsKill * RegState::Kill)
346                    .addImm(Imm));
347     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
348                            TII.get(TargetOpcode::COPY), ResultReg)
349                    .addReg(II.ImplicitDefs[0]));
350   }
351   return ResultReg;
352 }
353 
fastEmitInst_rri(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill,uint64_t Imm)354 unsigned ARMFastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
355                                        const TargetRegisterClass *RC,
356                                        unsigned Op0, bool Op0IsKill,
357                                        unsigned Op1, bool Op1IsKill,
358                                        uint64_t Imm) {
359   unsigned ResultReg = createResultReg(RC);
360   const MCInstrDesc &II = TII.get(MachineInstOpcode);
361 
362   // Make sure the input operands are sufficiently constrained to be legal
363   // for this instruction.
364   Op0 = constrainOperandRegClass(II, Op0, 1);
365   Op1 = constrainOperandRegClass(II, Op1, 2);
366   if (II.getNumDefs() >= 1) {
367     AddOptionalDefs(
368         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
369             .addReg(Op0, Op0IsKill * RegState::Kill)
370             .addReg(Op1, Op1IsKill * RegState::Kill)
371             .addImm(Imm));
372   } else {
373     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
374                    .addReg(Op0, Op0IsKill * RegState::Kill)
375                    .addReg(Op1, Op1IsKill * RegState::Kill)
376                    .addImm(Imm));
377     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
378                            TII.get(TargetOpcode::COPY), ResultReg)
379                    .addReg(II.ImplicitDefs[0]));
380   }
381   return ResultReg;
382 }
383 
fastEmitInst_i(unsigned MachineInstOpcode,const TargetRegisterClass * RC,uint64_t Imm)384 unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode,
385                                      const TargetRegisterClass *RC,
386                                      uint64_t Imm) {
387   unsigned ResultReg = createResultReg(RC);
388   const MCInstrDesc &II = TII.get(MachineInstOpcode);
389 
390   if (II.getNumDefs() >= 1) {
391     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
392                             ResultReg).addImm(Imm));
393   } else {
394     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
395                    .addImm(Imm));
396     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
397                            TII.get(TargetOpcode::COPY), ResultReg)
398                    .addReg(II.ImplicitDefs[0]));
399   }
400   return ResultReg;
401 }
402 
403 // TODO: Don't worry about 64-bit now, but when this is fixed remove the
404 // checks from the various callers.
ARMMoveToFPReg(MVT VT,unsigned SrcReg)405 unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) {
406   if (VT == MVT::f64) return 0;
407 
408   unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
409   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
410                           TII.get(ARM::VMOVSR), MoveReg)
411                   .addReg(SrcReg));
412   return MoveReg;
413 }
414 
ARMMoveToIntReg(MVT VT,unsigned SrcReg)415 unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) {
416   if (VT == MVT::i64) return 0;
417 
418   unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
419   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
420                           TII.get(ARM::VMOVRS), MoveReg)
421                   .addReg(SrcReg));
422   return MoveReg;
423 }
424 
425 // For double width floating point we need to materialize two constants
426 // (the high and the low) into integer registers then use a move to get
427 // the combined constant into an FP reg.
ARMMaterializeFP(const ConstantFP * CFP,MVT VT)428 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) {
429   const APFloat Val = CFP->getValueAPF();
430   bool is64bit = VT == MVT::f64;
431 
432   // This checks to see if we can use VFP3 instructions to materialize
433   // a constant, otherwise we have to go through the constant pool.
434   if (TLI.isFPImmLegal(Val, VT)) {
435     int Imm;
436     unsigned Opc;
437     if (is64bit) {
438       Imm = ARM_AM::getFP64Imm(Val);
439       Opc = ARM::FCONSTD;
440     } else {
441       Imm = ARM_AM::getFP32Imm(Val);
442       Opc = ARM::FCONSTS;
443     }
444     unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
445     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
446                             TII.get(Opc), DestReg).addImm(Imm));
447     return DestReg;
448   }
449 
450   // Require VFP2 for loading fp constants.
451   if (!Subtarget->hasVFP2()) return false;
452 
453   // MachineConstantPool wants an explicit alignment.
454   unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
455   if (Align == 0) {
456     // TODO: Figure out if this is correct.
457     Align = DL.getTypeAllocSize(CFP->getType());
458   }
459   unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
460   unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
461   unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
462 
463   // The extra reg is for addrmode5.
464   AddOptionalDefs(
465       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
466           .addConstantPoolIndex(Idx)
467           .addReg(0));
468   return DestReg;
469 }
470 
ARMMaterializeInt(const Constant * C,MVT VT)471 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) {
472 
473   if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
474     return 0;
475 
476   // If we can do this in a single instruction without a constant pool entry
477   // do so now.
478   const ConstantInt *CI = cast<ConstantInt>(C);
479   if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
480     unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16;
481     const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
482       &ARM::GPRRegClass;
483     unsigned ImmReg = createResultReg(RC);
484     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
485                             TII.get(Opc), ImmReg)
486                     .addImm(CI->getZExtValue()));
487     return ImmReg;
488   }
489 
490   // Use MVN to emit negative constants.
491   if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) {
492     unsigned Imm = (unsigned)~(CI->getSExtValue());
493     bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
494       (ARM_AM::getSOImmVal(Imm) != -1);
495     if (UseImm) {
496       unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
497       const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
498                                                  &ARM::GPRRegClass;
499       unsigned ImmReg = createResultReg(RC);
500       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
501                               TII.get(Opc), ImmReg)
502                       .addImm(Imm));
503       return ImmReg;
504     }
505   }
506 
507   unsigned ResultReg = 0;
508   if (Subtarget->useMovt(*FuncInfo.MF))
509     ResultReg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
510 
511   if (ResultReg)
512     return ResultReg;
513 
514   // Load from constant pool.  For now 32-bit only.
515   if (VT != MVT::i32)
516     return 0;
517 
518   // MachineConstantPool wants an explicit alignment.
519   unsigned Align = DL.getPrefTypeAlignment(C->getType());
520   if (Align == 0) {
521     // TODO: Figure out if this is correct.
522     Align = DL.getTypeAllocSize(C->getType());
523   }
524   unsigned Idx = MCP.getConstantPoolIndex(C, Align);
525   ResultReg = createResultReg(TLI.getRegClassFor(VT));
526   if (isThumb2)
527     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
528                             TII.get(ARM::t2LDRpci), ResultReg)
529                       .addConstantPoolIndex(Idx));
530   else {
531     // The extra immediate is for addrmode2.
532     ResultReg = constrainOperandRegClass(TII.get(ARM::LDRcp), ResultReg, 0);
533     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
534                             TII.get(ARM::LDRcp), ResultReg)
535                       .addConstantPoolIndex(Idx)
536                       .addImm(0));
537   }
538   return ResultReg;
539 }
540 
isPositionIndependent() const541 bool ARMFastISel::isPositionIndependent() const {
542   return TLI.isPositionIndependent();
543 }
544 
ARMMaterializeGV(const GlobalValue * GV,MVT VT)545 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) {
546   // For now 32-bit only.
547   if (VT != MVT::i32 || GV->isThreadLocal()) return 0;
548 
549   bool IsIndirect = Subtarget->isGVIndirectSymbol(GV);
550   const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
551                                            : &ARM::GPRRegClass;
552   unsigned DestReg = createResultReg(RC);
553 
554   // FastISel TLS support on non-MachO is broken, punt to SelectionDAG.
555   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
556   bool IsThreadLocal = GVar && GVar->isThreadLocal();
557   if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0;
558 
559   bool IsPositionIndependent = isPositionIndependent();
560   // Use movw+movt when possible, it avoids constant pool entries.
561   // Non-darwin targets only support static movt relocations in FastISel.
562   if (Subtarget->useMovt(*FuncInfo.MF) &&
563       (Subtarget->isTargetMachO() || !IsPositionIndependent)) {
564     unsigned Opc;
565     unsigned char TF = 0;
566     if (Subtarget->isTargetMachO())
567       TF = ARMII::MO_NONLAZY;
568 
569     if (IsPositionIndependent)
570       Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel;
571     else
572       Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm;
573     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
574                             TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF));
575   } else {
576     // MachineConstantPool wants an explicit alignment.
577     unsigned Align = DL.getPrefTypeAlignment(GV->getType());
578     if (Align == 0) {
579       // TODO: Figure out if this is correct.
580       Align = DL.getTypeAllocSize(GV->getType());
581     }
582 
583     if (Subtarget->isTargetELF() && IsPositionIndependent)
584       return ARMLowerPICELF(GV, Align, VT);
585 
586     // Grab index.
587     unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
588     unsigned Id = AFI->createPICLabelUId();
589     ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
590                                                                 ARMCP::CPValue,
591                                                                 PCAdj);
592     unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
593 
594     // Load value.
595     MachineInstrBuilder MIB;
596     if (isThumb2) {
597       unsigned Opc = IsPositionIndependent ? ARM::t2LDRpci_pic : ARM::t2LDRpci;
598       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
599                     DestReg).addConstantPoolIndex(Idx);
600       if (IsPositionIndependent)
601         MIB.addImm(Id);
602       AddOptionalDefs(MIB);
603     } else {
604       // The extra immediate is for addrmode2.
605       DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0);
606       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
607                     TII.get(ARM::LDRcp), DestReg)
608                 .addConstantPoolIndex(Idx)
609                 .addImm(0);
610       AddOptionalDefs(MIB);
611 
612       if (IsPositionIndependent) {
613         unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD;
614         unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
615 
616         MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
617                                           DbgLoc, TII.get(Opc), NewDestReg)
618                                   .addReg(DestReg)
619                                   .addImm(Id);
620         AddOptionalDefs(MIB);
621         return NewDestReg;
622       }
623     }
624   }
625 
626   if (IsIndirect) {
627     MachineInstrBuilder MIB;
628     unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
629     if (isThumb2)
630       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
631                     TII.get(ARM::t2LDRi12), NewDestReg)
632             .addReg(DestReg)
633             .addImm(0);
634     else
635       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
636                     TII.get(ARM::LDRi12), NewDestReg)
637                 .addReg(DestReg)
638                 .addImm(0);
639     DestReg = NewDestReg;
640     AddOptionalDefs(MIB);
641   }
642 
643   return DestReg;
644 }
645 
fastMaterializeConstant(const Constant * C)646 unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) {
647   EVT CEVT = TLI.getValueType(DL, C->getType(), true);
648 
649   // Only handle simple types.
650   if (!CEVT.isSimple()) return 0;
651   MVT VT = CEVT.getSimpleVT();
652 
653   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
654     return ARMMaterializeFP(CFP, VT);
655   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
656     return ARMMaterializeGV(GV, VT);
657   else if (isa<ConstantInt>(C))
658     return ARMMaterializeInt(C, VT);
659 
660   return 0;
661 }
662 
663 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF);
664 
fastMaterializeAlloca(const AllocaInst * AI)665 unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
666   // Don't handle dynamic allocas.
667   if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
668 
669   MVT VT;
670   if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
671 
672   DenseMap<const AllocaInst*, int>::iterator SI =
673     FuncInfo.StaticAllocaMap.find(AI);
674 
675   // This will get lowered later into the correct offsets and registers
676   // via rewriteXFrameIndex.
677   if (SI != FuncInfo.StaticAllocaMap.end()) {
678     unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
679     const TargetRegisterClass* RC = TLI.getRegClassFor(VT);
680     unsigned ResultReg = createResultReg(RC);
681     ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0);
682 
683     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
684                             TII.get(Opc), ResultReg)
685                             .addFrameIndex(SI->second)
686                             .addImm(0));
687     return ResultReg;
688   }
689 
690   return 0;
691 }
692 
isTypeLegal(Type * Ty,MVT & VT)693 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
694   EVT evt = TLI.getValueType(DL, Ty, true);
695 
696   // Only handle simple types.
697   if (evt == MVT::Other || !evt.isSimple()) return false;
698   VT = evt.getSimpleVT();
699 
700   // Handle all legal types, i.e. a register that will directly hold this
701   // value.
702   return TLI.isTypeLegal(VT);
703 }
704 
isLoadTypeLegal(Type * Ty,MVT & VT)705 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
706   if (isTypeLegal(Ty, VT)) return true;
707 
708   // If this is a type than can be sign or zero-extended to a basic operation
709   // go ahead and accept it now.
710   if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
711     return true;
712 
713   return false;
714 }
715 
716 // Computes the address to get to an object.
ARMComputeAddress(const Value * Obj,Address & Addr)717 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
718   // Some boilerplate from the X86 FastISel.
719   const User *U = nullptr;
720   unsigned Opcode = Instruction::UserOp1;
721   if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
722     // Don't walk into other basic blocks unless the object is an alloca from
723     // another block, otherwise it may not have a virtual register assigned.
724     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
725         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
726       Opcode = I->getOpcode();
727       U = I;
728     }
729   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
730     Opcode = C->getOpcode();
731     U = C;
732   }
733 
734   if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
735     if (Ty->getAddressSpace() > 255)
736       // Fast instruction selection doesn't support the special
737       // address spaces.
738       return false;
739 
740   switch (Opcode) {
741     default:
742     break;
743     case Instruction::BitCast:
744       // Look through bitcasts.
745       return ARMComputeAddress(U->getOperand(0), Addr);
746     case Instruction::IntToPtr:
747       // Look past no-op inttoptrs.
748       if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
749           TLI.getPointerTy(DL))
750         return ARMComputeAddress(U->getOperand(0), Addr);
751       break;
752     case Instruction::PtrToInt:
753       // Look past no-op ptrtoints.
754       if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
755         return ARMComputeAddress(U->getOperand(0), Addr);
756       break;
757     case Instruction::GetElementPtr: {
758       Address SavedAddr = Addr;
759       int TmpOffset = Addr.Offset;
760 
761       // Iterate through the GEP folding the constants into offsets where
762       // we can.
763       gep_type_iterator GTI = gep_type_begin(U);
764       for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
765            i != e; ++i, ++GTI) {
766         const Value *Op = *i;
767         if (StructType *STy = dyn_cast<StructType>(*GTI)) {
768           const StructLayout *SL = DL.getStructLayout(STy);
769           unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
770           TmpOffset += SL->getElementOffset(Idx);
771         } else {
772           uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
773           for (;;) {
774             if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
775               // Constant-offset addressing.
776               TmpOffset += CI->getSExtValue() * S;
777               break;
778             }
779             if (canFoldAddIntoGEP(U, Op)) {
780               // A compatible add with a constant operand. Fold the constant.
781               ConstantInt *CI =
782               cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
783               TmpOffset += CI->getSExtValue() * S;
784               // Iterate on the other operand.
785               Op = cast<AddOperator>(Op)->getOperand(0);
786               continue;
787             }
788             // Unsupported
789             goto unsupported_gep;
790           }
791         }
792       }
793 
794       // Try to grab the base operand now.
795       Addr.Offset = TmpOffset;
796       if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
797 
798       // We failed, restore everything and try the other options.
799       Addr = SavedAddr;
800 
801       unsupported_gep:
802       break;
803     }
804     case Instruction::Alloca: {
805       const AllocaInst *AI = cast<AllocaInst>(Obj);
806       DenseMap<const AllocaInst*, int>::iterator SI =
807         FuncInfo.StaticAllocaMap.find(AI);
808       if (SI != FuncInfo.StaticAllocaMap.end()) {
809         Addr.BaseType = Address::FrameIndexBase;
810         Addr.Base.FI = SI->second;
811         return true;
812       }
813       break;
814     }
815   }
816 
817   // Try to get this in a register if nothing else has worked.
818   if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
819   return Addr.Base.Reg != 0;
820 }
821 
ARMSimplifyAddress(Address & Addr,MVT VT,bool useAM3)822 void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) {
823   bool needsLowering = false;
824   switch (VT.SimpleTy) {
825     default: llvm_unreachable("Unhandled load/store type!");
826     case MVT::i1:
827     case MVT::i8:
828     case MVT::i16:
829     case MVT::i32:
830       if (!useAM3) {
831         // Integer loads/stores handle 12-bit offsets.
832         needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
833         // Handle negative offsets.
834         if (needsLowering && isThumb2)
835           needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 &&
836                             Addr.Offset > -256);
837       } else {
838         // ARM halfword load/stores and signed byte loads use +/-imm8 offsets.
839         needsLowering = (Addr.Offset > 255 || Addr.Offset < -255);
840       }
841       break;
842     case MVT::f32:
843     case MVT::f64:
844       // Floating point operands handle 8-bit offsets.
845       needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
846       break;
847   }
848 
849   // If this is a stack pointer and the offset needs to be simplified then
850   // put the alloca address into a register, set the base type back to
851   // register and continue. This should almost never happen.
852   if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
853     const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
854                                              : &ARM::GPRRegClass;
855     unsigned ResultReg = createResultReg(RC);
856     unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
857     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
858                             TII.get(Opc), ResultReg)
859                             .addFrameIndex(Addr.Base.FI)
860                             .addImm(0));
861     Addr.Base.Reg = ResultReg;
862     Addr.BaseType = Address::RegBase;
863   }
864 
865   // Since the offset is too large for the load/store instruction
866   // get the reg+offset into a register.
867   if (needsLowering) {
868     Addr.Base.Reg = fastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
869                                  /*Op0IsKill*/false, Addr.Offset, MVT::i32);
870     Addr.Offset = 0;
871   }
872 }
873 
AddLoadStoreOperands(MVT VT,Address & Addr,const MachineInstrBuilder & MIB,unsigned Flags,bool useAM3)874 void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr,
875                                        const MachineInstrBuilder &MIB,
876                                        unsigned Flags, bool useAM3) {
877   // addrmode5 output depends on the selection dag addressing dividing the
878   // offset by 4 that it then later multiplies. Do this here as well.
879   if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64)
880     Addr.Offset /= 4;
881 
882   // Frame base works a bit differently. Handle it separately.
883   if (Addr.BaseType == Address::FrameIndexBase) {
884     int FI = Addr.Base.FI;
885     int Offset = Addr.Offset;
886     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
887         MachinePointerInfo::getFixedStack(*FuncInfo.MF, FI, Offset), Flags,
888         MFI.getObjectSize(FI), MFI.getObjectAlignment(FI));
889     // Now add the rest of the operands.
890     MIB.addFrameIndex(FI);
891 
892     // ARM halfword load/stores and signed byte loads need an additional
893     // operand.
894     if (useAM3) {
895       int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
896       MIB.addReg(0);
897       MIB.addImm(Imm);
898     } else {
899       MIB.addImm(Addr.Offset);
900     }
901     MIB.addMemOperand(MMO);
902   } else {
903     // Now add the rest of the operands.
904     MIB.addReg(Addr.Base.Reg);
905 
906     // ARM halfword load/stores and signed byte loads need an additional
907     // operand.
908     if (useAM3) {
909       int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
910       MIB.addReg(0);
911       MIB.addImm(Imm);
912     } else {
913       MIB.addImm(Addr.Offset);
914     }
915   }
916   AddOptionalDefs(MIB);
917 }
918 
ARMEmitLoad(MVT VT,unsigned & ResultReg,Address & Addr,unsigned Alignment,bool isZExt,bool allocReg)919 bool ARMFastISel::ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
920                               unsigned Alignment, bool isZExt, bool allocReg) {
921   unsigned Opc;
922   bool useAM3 = false;
923   bool needVMOV = false;
924   const TargetRegisterClass *RC;
925   switch (VT.SimpleTy) {
926     // This is mostly going to be Neon/vector support.
927     default: return false;
928     case MVT::i1:
929     case MVT::i8:
930       if (isThumb2) {
931         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
932           Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8;
933         else
934           Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12;
935       } else {
936         if (isZExt) {
937           Opc = ARM::LDRBi12;
938         } else {
939           Opc = ARM::LDRSB;
940           useAM3 = true;
941         }
942       }
943       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
944       break;
945     case MVT::i16:
946       if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
947         return false;
948 
949       if (isThumb2) {
950         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
951           Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8;
952         else
953           Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12;
954       } else {
955         Opc = isZExt ? ARM::LDRH : ARM::LDRSH;
956         useAM3 = true;
957       }
958       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
959       break;
960     case MVT::i32:
961       if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
962         return false;
963 
964       if (isThumb2) {
965         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
966           Opc = ARM::t2LDRi8;
967         else
968           Opc = ARM::t2LDRi12;
969       } else {
970         Opc = ARM::LDRi12;
971       }
972       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
973       break;
974     case MVT::f32:
975       if (!Subtarget->hasVFP2()) return false;
976       // Unaligned loads need special handling. Floats require word-alignment.
977       if (Alignment && Alignment < 4) {
978         needVMOV = true;
979         VT = MVT::i32;
980         Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
981         RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
982       } else {
983         Opc = ARM::VLDRS;
984         RC = TLI.getRegClassFor(VT);
985       }
986       break;
987     case MVT::f64:
988       if (!Subtarget->hasVFP2()) return false;
989       // FIXME: Unaligned loads need special handling.  Doublewords require
990       // word-alignment.
991       if (Alignment && Alignment < 4)
992         return false;
993 
994       Opc = ARM::VLDRD;
995       RC = TLI.getRegClassFor(VT);
996       break;
997   }
998   // Simplify this down to something we can handle.
999   ARMSimplifyAddress(Addr, VT, useAM3);
1000 
1001   // Create the base instruction, then add the operands.
1002   if (allocReg)
1003     ResultReg = createResultReg(RC);
1004   assert (ResultReg > 255 && "Expected an allocated virtual register.");
1005   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1006                                     TII.get(Opc), ResultReg);
1007   AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3);
1008 
1009   // If we had an unaligned load of a float we've converted it to an regular
1010   // load.  Now we must move from the GRP to the FP register.
1011   if (needVMOV) {
1012     unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1013     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1014                             TII.get(ARM::VMOVSR), MoveReg)
1015                     .addReg(ResultReg));
1016     ResultReg = MoveReg;
1017   }
1018   return true;
1019 }
1020 
SelectLoad(const Instruction * I)1021 bool ARMFastISel::SelectLoad(const Instruction *I) {
1022   // Atomic loads need special handling.
1023   if (cast<LoadInst>(I)->isAtomic())
1024     return false;
1025 
1026   const Value *SV = I->getOperand(0);
1027   if (TLI.supportSwiftError()) {
1028     // Swifterror values can come from either a function parameter with
1029     // swifterror attribute or an alloca with swifterror attribute.
1030     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
1031       if (Arg->hasSwiftErrorAttr())
1032         return false;
1033     }
1034 
1035     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
1036       if (Alloca->isSwiftError())
1037         return false;
1038     }
1039   }
1040 
1041   // Verify we have a legal type before going any further.
1042   MVT VT;
1043   if (!isLoadTypeLegal(I->getType(), VT))
1044     return false;
1045 
1046   // See if we can handle this address.
1047   Address Addr;
1048   if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
1049 
1050   unsigned ResultReg;
1051   if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
1052     return false;
1053   updateValueMap(I, ResultReg);
1054   return true;
1055 }
1056 
ARMEmitStore(MVT VT,unsigned SrcReg,Address & Addr,unsigned Alignment)1057 bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
1058                                unsigned Alignment) {
1059   unsigned StrOpc;
1060   bool useAM3 = false;
1061   switch (VT.SimpleTy) {
1062     // This is mostly going to be Neon/vector support.
1063     default: return false;
1064     case MVT::i1: {
1065       unsigned Res = createResultReg(isThumb2 ? &ARM::tGPRRegClass
1066                                               : &ARM::GPRRegClass);
1067       unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
1068       SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1);
1069       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1070                               TII.get(Opc), Res)
1071                       .addReg(SrcReg).addImm(1));
1072       SrcReg = Res;
1073     } // Fallthrough here.
1074     case MVT::i8:
1075       if (isThumb2) {
1076         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1077           StrOpc = ARM::t2STRBi8;
1078         else
1079           StrOpc = ARM::t2STRBi12;
1080       } else {
1081         StrOpc = ARM::STRBi12;
1082       }
1083       break;
1084     case MVT::i16:
1085       if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
1086         return false;
1087 
1088       if (isThumb2) {
1089         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1090           StrOpc = ARM::t2STRHi8;
1091         else
1092           StrOpc = ARM::t2STRHi12;
1093       } else {
1094         StrOpc = ARM::STRH;
1095         useAM3 = true;
1096       }
1097       break;
1098     case MVT::i32:
1099       if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
1100         return false;
1101 
1102       if (isThumb2) {
1103         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1104           StrOpc = ARM::t2STRi8;
1105         else
1106           StrOpc = ARM::t2STRi12;
1107       } else {
1108         StrOpc = ARM::STRi12;
1109       }
1110       break;
1111     case MVT::f32:
1112       if (!Subtarget->hasVFP2()) return false;
1113       // Unaligned stores need special handling. Floats require word-alignment.
1114       if (Alignment && Alignment < 4) {
1115         unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32));
1116         AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1117                                 TII.get(ARM::VMOVRS), MoveReg)
1118                         .addReg(SrcReg));
1119         SrcReg = MoveReg;
1120         VT = MVT::i32;
1121         StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12;
1122       } else {
1123         StrOpc = ARM::VSTRS;
1124       }
1125       break;
1126     case MVT::f64:
1127       if (!Subtarget->hasVFP2()) return false;
1128       // FIXME: Unaligned stores need special handling.  Doublewords require
1129       // word-alignment.
1130       if (Alignment && Alignment < 4)
1131           return false;
1132 
1133       StrOpc = ARM::VSTRD;
1134       break;
1135   }
1136   // Simplify this down to something we can handle.
1137   ARMSimplifyAddress(Addr, VT, useAM3);
1138 
1139   // Create the base instruction, then add the operands.
1140   SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0);
1141   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1142                                     TII.get(StrOpc))
1143                             .addReg(SrcReg);
1144   AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3);
1145   return true;
1146 }
1147 
SelectStore(const Instruction * I)1148 bool ARMFastISel::SelectStore(const Instruction *I) {
1149   Value *Op0 = I->getOperand(0);
1150   unsigned SrcReg = 0;
1151 
1152   // Atomic stores need special handling.
1153   if (cast<StoreInst>(I)->isAtomic())
1154     return false;
1155 
1156   const Value *PtrV = I->getOperand(1);
1157   if (TLI.supportSwiftError()) {
1158     // Swifterror values can come from either a function parameter with
1159     // swifterror attribute or an alloca with swifterror attribute.
1160     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
1161       if (Arg->hasSwiftErrorAttr())
1162         return false;
1163     }
1164 
1165     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
1166       if (Alloca->isSwiftError())
1167         return false;
1168     }
1169   }
1170 
1171   // Verify we have a legal type before going any further.
1172   MVT VT;
1173   if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
1174     return false;
1175 
1176   // Get the value to be stored into a register.
1177   SrcReg = getRegForValue(Op0);
1178   if (SrcReg == 0) return false;
1179 
1180   // See if we can handle this address.
1181   Address Addr;
1182   if (!ARMComputeAddress(I->getOperand(1), Addr))
1183     return false;
1184 
1185   if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
1186     return false;
1187   return true;
1188 }
1189 
getComparePred(CmpInst::Predicate Pred)1190 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
1191   switch (Pred) {
1192     // Needs two compares...
1193     case CmpInst::FCMP_ONE:
1194     case CmpInst::FCMP_UEQ:
1195     default:
1196       // AL is our "false" for now. The other two need more compares.
1197       return ARMCC::AL;
1198     case CmpInst::ICMP_EQ:
1199     case CmpInst::FCMP_OEQ:
1200       return ARMCC::EQ;
1201     case CmpInst::ICMP_SGT:
1202     case CmpInst::FCMP_OGT:
1203       return ARMCC::GT;
1204     case CmpInst::ICMP_SGE:
1205     case CmpInst::FCMP_OGE:
1206       return ARMCC::GE;
1207     case CmpInst::ICMP_UGT:
1208     case CmpInst::FCMP_UGT:
1209       return ARMCC::HI;
1210     case CmpInst::FCMP_OLT:
1211       return ARMCC::MI;
1212     case CmpInst::ICMP_ULE:
1213     case CmpInst::FCMP_OLE:
1214       return ARMCC::LS;
1215     case CmpInst::FCMP_ORD:
1216       return ARMCC::VC;
1217     case CmpInst::FCMP_UNO:
1218       return ARMCC::VS;
1219     case CmpInst::FCMP_UGE:
1220       return ARMCC::PL;
1221     case CmpInst::ICMP_SLT:
1222     case CmpInst::FCMP_ULT:
1223       return ARMCC::LT;
1224     case CmpInst::ICMP_SLE:
1225     case CmpInst::FCMP_ULE:
1226       return ARMCC::LE;
1227     case CmpInst::FCMP_UNE:
1228     case CmpInst::ICMP_NE:
1229       return ARMCC::NE;
1230     case CmpInst::ICMP_UGE:
1231       return ARMCC::HS;
1232     case CmpInst::ICMP_ULT:
1233       return ARMCC::LO;
1234   }
1235 }
1236 
SelectBranch(const Instruction * I)1237 bool ARMFastISel::SelectBranch(const Instruction *I) {
1238   const BranchInst *BI = cast<BranchInst>(I);
1239   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1240   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1241 
1242   // Simple branch support.
1243 
1244   // If we can, avoid recomputing the compare - redoing it could lead to wonky
1245   // behavior.
1246   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1247     if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
1248 
1249       // Get the compare predicate.
1250       // Try to take advantage of fallthrough opportunities.
1251       CmpInst::Predicate Predicate = CI->getPredicate();
1252       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1253         std::swap(TBB, FBB);
1254         Predicate = CmpInst::getInversePredicate(Predicate);
1255       }
1256 
1257       ARMCC::CondCodes ARMPred = getComparePred(Predicate);
1258 
1259       // We may not handle every CC for now.
1260       if (ARMPred == ARMCC::AL) return false;
1261 
1262       // Emit the compare.
1263       if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1264         return false;
1265 
1266       unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1267       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1268       .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1269       finishCondBranch(BI->getParent(), TBB, FBB);
1270       return true;
1271     }
1272   } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1273     MVT SourceVT;
1274     if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1275         (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
1276       unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1277       unsigned OpReg = getRegForValue(TI->getOperand(0));
1278       OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0);
1279       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1280                               TII.get(TstOpc))
1281                       .addReg(OpReg).addImm(1));
1282 
1283       unsigned CCMode = ARMCC::NE;
1284       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1285         std::swap(TBB, FBB);
1286         CCMode = ARMCC::EQ;
1287       }
1288 
1289       unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1290       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1291       .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1292 
1293       finishCondBranch(BI->getParent(), TBB, FBB);
1294       return true;
1295     }
1296   } else if (const ConstantInt *CI =
1297              dyn_cast<ConstantInt>(BI->getCondition())) {
1298     uint64_t Imm = CI->getZExtValue();
1299     MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
1300     fastEmitBranch(Target, DbgLoc);
1301     return true;
1302   }
1303 
1304   unsigned CmpReg = getRegForValue(BI->getCondition());
1305   if (CmpReg == 0) return false;
1306 
1307   // We've been divorced from our compare!  Our block was split, and
1308   // now our compare lives in a predecessor block.  We musn't
1309   // re-compare here, as the children of the compare aren't guaranteed
1310   // live across the block boundary (we *could* check for this).
1311   // Regardless, the compare has been done in the predecessor block,
1312   // and it left a value for us in a virtual register.  Ergo, we test
1313   // the one-bit value left in the virtual register.
1314   unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1315   CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0);
1316   AddOptionalDefs(
1317       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc))
1318           .addReg(CmpReg)
1319           .addImm(1));
1320 
1321   unsigned CCMode = ARMCC::NE;
1322   if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1323     std::swap(TBB, FBB);
1324     CCMode = ARMCC::EQ;
1325   }
1326 
1327   unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1328   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1329                   .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1330   finishCondBranch(BI->getParent(), TBB, FBB);
1331   return true;
1332 }
1333 
SelectIndirectBr(const Instruction * I)1334 bool ARMFastISel::SelectIndirectBr(const Instruction *I) {
1335   unsigned AddrReg = getRegForValue(I->getOperand(0));
1336   if (AddrReg == 0) return false;
1337 
1338   unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX;
1339   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1340                           TII.get(Opc)).addReg(AddrReg));
1341 
1342   const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1343   for (const BasicBlock *SuccBB : IB->successors())
1344     FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]);
1345 
1346   return true;
1347 }
1348 
ARMEmitCmp(const Value * Src1Value,const Value * Src2Value,bool isZExt)1349 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
1350                              bool isZExt) {
1351   Type *Ty = Src1Value->getType();
1352   EVT SrcEVT = TLI.getValueType(DL, Ty, true);
1353   if (!SrcEVT.isSimple()) return false;
1354   MVT SrcVT = SrcEVT.getSimpleVT();
1355 
1356   bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy());
1357   if (isFloat && !Subtarget->hasVFP2())
1358     return false;
1359 
1360   // Check to see if the 2nd operand is a constant that we can encode directly
1361   // in the compare.
1362   int Imm = 0;
1363   bool UseImm = false;
1364   bool isNegativeImm = false;
1365   // FIXME: At -O0 we don't have anything that canonicalizes operand order.
1366   // Thus, Src1Value may be a ConstantInt, but we're missing it.
1367   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
1368     if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 ||
1369         SrcVT == MVT::i1) {
1370       const APInt &CIVal = ConstInt->getValue();
1371       Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue();
1372       // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather
1373       // then a cmn, because there is no way to represent 2147483648 as a
1374       // signed 32-bit int.
1375       if (Imm < 0 && Imm != (int)0x80000000) {
1376         isNegativeImm = true;
1377         Imm = -Imm;
1378       }
1379       UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1380         (ARM_AM::getSOImmVal(Imm) != -1);
1381     }
1382   } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
1383     if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
1384       if (ConstFP->isZero() && !ConstFP->isNegative())
1385         UseImm = true;
1386   }
1387 
1388   unsigned CmpOpc;
1389   bool isICmp = true;
1390   bool needsExt = false;
1391   switch (SrcVT.SimpleTy) {
1392     default: return false;
1393     // TODO: Verify compares.
1394     case MVT::f32:
1395       isICmp = false;
1396       CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES;
1397       break;
1398     case MVT::f64:
1399       isICmp = false;
1400       CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED;
1401       break;
1402     case MVT::i1:
1403     case MVT::i8:
1404     case MVT::i16:
1405       needsExt = true;
1406     // Intentional fall-through.
1407     case MVT::i32:
1408       if (isThumb2) {
1409         if (!UseImm)
1410           CmpOpc = ARM::t2CMPrr;
1411         else
1412           CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri;
1413       } else {
1414         if (!UseImm)
1415           CmpOpc = ARM::CMPrr;
1416         else
1417           CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri;
1418       }
1419       break;
1420   }
1421 
1422   unsigned SrcReg1 = getRegForValue(Src1Value);
1423   if (SrcReg1 == 0) return false;
1424 
1425   unsigned SrcReg2 = 0;
1426   if (!UseImm) {
1427     SrcReg2 = getRegForValue(Src2Value);
1428     if (SrcReg2 == 0) return false;
1429   }
1430 
1431   // We have i1, i8, or i16, we need to either zero extend or sign extend.
1432   if (needsExt) {
1433     SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
1434     if (SrcReg1 == 0) return false;
1435     if (!UseImm) {
1436       SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
1437       if (SrcReg2 == 0) return false;
1438     }
1439   }
1440 
1441   const MCInstrDesc &II = TII.get(CmpOpc);
1442   SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0);
1443   if (!UseImm) {
1444     SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1);
1445     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1446                     .addReg(SrcReg1).addReg(SrcReg2));
1447   } else {
1448     MachineInstrBuilder MIB;
1449     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1450       .addReg(SrcReg1);
1451 
1452     // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0.
1453     if (isICmp)
1454       MIB.addImm(Imm);
1455     AddOptionalDefs(MIB);
1456   }
1457 
1458   // For floating point we need to move the result to a comparison register
1459   // that we can then use for branches.
1460   if (Ty->isFloatTy() || Ty->isDoubleTy())
1461     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1462                             TII.get(ARM::FMSTAT)));
1463   return true;
1464 }
1465 
SelectCmp(const Instruction * I)1466 bool ARMFastISel::SelectCmp(const Instruction *I) {
1467   const CmpInst *CI = cast<CmpInst>(I);
1468 
1469   // Get the compare predicate.
1470   ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1471 
1472   // We may not handle every CC for now.
1473   if (ARMPred == ARMCC::AL) return false;
1474 
1475   // Emit the compare.
1476   if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1477     return false;
1478 
1479   // Now set a register based on the comparison. Explicitly set the predicates
1480   // here.
1481   unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1482   const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
1483                                            : &ARM::GPRRegClass;
1484   unsigned DestReg = createResultReg(RC);
1485   Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1486   unsigned ZeroReg = fastMaterializeConstant(Zero);
1487   // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR.
1488   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), DestReg)
1489           .addReg(ZeroReg).addImm(1)
1490           .addImm(ARMPred).addReg(ARM::CPSR);
1491 
1492   updateValueMap(I, DestReg);
1493   return true;
1494 }
1495 
SelectFPExt(const Instruction * I)1496 bool ARMFastISel::SelectFPExt(const Instruction *I) {
1497   // Make sure we have VFP and that we're extending float to double.
1498   if (!Subtarget->hasVFP2()) return false;
1499 
1500   Value *V = I->getOperand(0);
1501   if (!I->getType()->isDoubleTy() ||
1502       !V->getType()->isFloatTy()) return false;
1503 
1504   unsigned Op = getRegForValue(V);
1505   if (Op == 0) return false;
1506 
1507   unsigned Result = createResultReg(&ARM::DPRRegClass);
1508   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1509                           TII.get(ARM::VCVTDS), Result)
1510                   .addReg(Op));
1511   updateValueMap(I, Result);
1512   return true;
1513 }
1514 
SelectFPTrunc(const Instruction * I)1515 bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1516   // Make sure we have VFP and that we're truncating double to float.
1517   if (!Subtarget->hasVFP2()) return false;
1518 
1519   Value *V = I->getOperand(0);
1520   if (!(I->getType()->isFloatTy() &&
1521         V->getType()->isDoubleTy())) return false;
1522 
1523   unsigned Op = getRegForValue(V);
1524   if (Op == 0) return false;
1525 
1526   unsigned Result = createResultReg(&ARM::SPRRegClass);
1527   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1528                           TII.get(ARM::VCVTSD), Result)
1529                   .addReg(Op));
1530   updateValueMap(I, Result);
1531   return true;
1532 }
1533 
SelectIToFP(const Instruction * I,bool isSigned)1534 bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) {
1535   // Make sure we have VFP.
1536   if (!Subtarget->hasVFP2()) return false;
1537 
1538   MVT DstVT;
1539   Type *Ty = I->getType();
1540   if (!isTypeLegal(Ty, DstVT))
1541     return false;
1542 
1543   Value *Src = I->getOperand(0);
1544   EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true);
1545   if (!SrcEVT.isSimple())
1546     return false;
1547   MVT SrcVT = SrcEVT.getSimpleVT();
1548   if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1549     return false;
1550 
1551   unsigned SrcReg = getRegForValue(Src);
1552   if (SrcReg == 0) return false;
1553 
1554   // Handle sign-extension.
1555   if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
1556     SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32,
1557                                        /*isZExt*/!isSigned);
1558     if (SrcReg == 0) return false;
1559   }
1560 
1561   // The conversion routine works on fp-reg to fp-reg and the operand above
1562   // was an integer, move it to the fp registers if possible.
1563   unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
1564   if (FP == 0) return false;
1565 
1566   unsigned Opc;
1567   if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS;
1568   else if (Ty->isDoubleTy()) Opc = isSigned ? ARM::VSITOD : ARM::VUITOD;
1569   else return false;
1570 
1571   unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1572   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1573                           TII.get(Opc), ResultReg).addReg(FP));
1574   updateValueMap(I, ResultReg);
1575   return true;
1576 }
1577 
SelectFPToI(const Instruction * I,bool isSigned)1578 bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) {
1579   // Make sure we have VFP.
1580   if (!Subtarget->hasVFP2()) return false;
1581 
1582   MVT DstVT;
1583   Type *RetTy = I->getType();
1584   if (!isTypeLegal(RetTy, DstVT))
1585     return false;
1586 
1587   unsigned Op = getRegForValue(I->getOperand(0));
1588   if (Op == 0) return false;
1589 
1590   unsigned Opc;
1591   Type *OpTy = I->getOperand(0)->getType();
1592   if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS;
1593   else if (OpTy->isDoubleTy()) Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD;
1594   else return false;
1595 
1596   // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg.
1597   unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1598   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1599                           TII.get(Opc), ResultReg).addReg(Op));
1600 
1601   // This result needs to be in an integer register, but the conversion only
1602   // takes place in fp-regs.
1603   unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1604   if (IntReg == 0) return false;
1605 
1606   updateValueMap(I, IntReg);
1607   return true;
1608 }
1609 
SelectSelect(const Instruction * I)1610 bool ARMFastISel::SelectSelect(const Instruction *I) {
1611   MVT VT;
1612   if (!isTypeLegal(I->getType(), VT))
1613     return false;
1614 
1615   // Things need to be register sized for register moves.
1616   if (VT != MVT::i32) return false;
1617 
1618   unsigned CondReg = getRegForValue(I->getOperand(0));
1619   if (CondReg == 0) return false;
1620   unsigned Op1Reg = getRegForValue(I->getOperand(1));
1621   if (Op1Reg == 0) return false;
1622 
1623   // Check to see if we can use an immediate in the conditional move.
1624   int Imm = 0;
1625   bool UseImm = false;
1626   bool isNegativeImm = false;
1627   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) {
1628     assert (VT == MVT::i32 && "Expecting an i32.");
1629     Imm = (int)ConstInt->getValue().getZExtValue();
1630     if (Imm < 0) {
1631       isNegativeImm = true;
1632       Imm = ~Imm;
1633     }
1634     UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1635       (ARM_AM::getSOImmVal(Imm) != -1);
1636   }
1637 
1638   unsigned Op2Reg = 0;
1639   if (!UseImm) {
1640     Op2Reg = getRegForValue(I->getOperand(2));
1641     if (Op2Reg == 0) return false;
1642   }
1643 
1644   unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1645   CondReg = constrainOperandRegClass(TII.get(TstOpc), CondReg, 0);
1646   AddOptionalDefs(
1647       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc))
1648           .addReg(CondReg)
1649           .addImm(1));
1650 
1651   unsigned MovCCOpc;
1652   const TargetRegisterClass *RC;
1653   if (!UseImm) {
1654     RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
1655     MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr;
1656   } else {
1657     RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass;
1658     if (!isNegativeImm)
1659       MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1660     else
1661       MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi;
1662   }
1663   unsigned ResultReg = createResultReg(RC);
1664   if (!UseImm) {
1665     Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1);
1666     Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2);
1667     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
1668             ResultReg)
1669         .addReg(Op2Reg)
1670         .addReg(Op1Reg)
1671         .addImm(ARMCC::NE)
1672         .addReg(ARM::CPSR);
1673   } else {
1674     Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1);
1675     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
1676             ResultReg)
1677         .addReg(Op1Reg)
1678         .addImm(Imm)
1679         .addImm(ARMCC::EQ)
1680         .addReg(ARM::CPSR);
1681   }
1682   updateValueMap(I, ResultReg);
1683   return true;
1684 }
1685 
SelectDiv(const Instruction * I,bool isSigned)1686 bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) {
1687   MVT VT;
1688   Type *Ty = I->getType();
1689   if (!isTypeLegal(Ty, VT))
1690     return false;
1691 
1692   // If we have integer div support we should have selected this automagically.
1693   // In case we have a real miss go ahead and return false and we'll pick
1694   // it up later.
1695   if (Subtarget->hasDivide()) return false;
1696 
1697   // Otherwise emit a libcall.
1698   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1699   if (VT == MVT::i8)
1700     LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8;
1701   else if (VT == MVT::i16)
1702     LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16;
1703   else if (VT == MVT::i32)
1704     LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32;
1705   else if (VT == MVT::i64)
1706     LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64;
1707   else if (VT == MVT::i128)
1708     LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128;
1709   assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1710 
1711   return ARMEmitLibcall(I, LC);
1712 }
1713 
SelectRem(const Instruction * I,bool isSigned)1714 bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) {
1715   MVT VT;
1716   Type *Ty = I->getType();
1717   if (!isTypeLegal(Ty, VT))
1718     return false;
1719 
1720   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1721   if (VT == MVT::i8)
1722     LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8;
1723   else if (VT == MVT::i16)
1724     LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16;
1725   else if (VT == MVT::i32)
1726     LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32;
1727   else if (VT == MVT::i64)
1728     LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64;
1729   else if (VT == MVT::i128)
1730     LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128;
1731   assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1732 
1733   return ARMEmitLibcall(I, LC);
1734 }
1735 
SelectBinaryIntOp(const Instruction * I,unsigned ISDOpcode)1736 bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1737   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1738 
1739   // We can get here in the case when we have a binary operation on a non-legal
1740   // type and the target independent selector doesn't know how to handle it.
1741   if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1742     return false;
1743 
1744   unsigned Opc;
1745   switch (ISDOpcode) {
1746     default: return false;
1747     case ISD::ADD:
1748       Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr;
1749       break;
1750     case ISD::OR:
1751       Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr;
1752       break;
1753     case ISD::SUB:
1754       Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr;
1755       break;
1756   }
1757 
1758   unsigned SrcReg1 = getRegForValue(I->getOperand(0));
1759   if (SrcReg1 == 0) return false;
1760 
1761   // TODO: Often the 2nd operand is an immediate, which can be encoded directly
1762   // in the instruction, rather then materializing the value in a register.
1763   unsigned SrcReg2 = getRegForValue(I->getOperand(1));
1764   if (SrcReg2 == 0) return false;
1765 
1766   unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
1767   SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1);
1768   SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2);
1769   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1770                           TII.get(Opc), ResultReg)
1771                   .addReg(SrcReg1).addReg(SrcReg2));
1772   updateValueMap(I, ResultReg);
1773   return true;
1774 }
1775 
SelectBinaryFPOp(const Instruction * I,unsigned ISDOpcode)1776 bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) {
1777   EVT FPVT = TLI.getValueType(DL, I->getType(), true);
1778   if (!FPVT.isSimple()) return false;
1779   MVT VT = FPVT.getSimpleVT();
1780 
1781   // FIXME: Support vector types where possible.
1782   if (VT.isVector())
1783     return false;
1784 
1785   // We can get here in the case when we want to use NEON for our fp
1786   // operations, but can't figure out how to. Just use the vfp instructions
1787   // if we have them.
1788   // FIXME: It'd be nice to use NEON instructions.
1789   Type *Ty = I->getType();
1790   bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1791   if (isFloat && !Subtarget->hasVFP2())
1792     return false;
1793 
1794   unsigned Opc;
1795   bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1796   switch (ISDOpcode) {
1797     default: return false;
1798     case ISD::FADD:
1799       Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1800       break;
1801     case ISD::FSUB:
1802       Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1803       break;
1804     case ISD::FMUL:
1805       Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1806       break;
1807   }
1808   unsigned Op1 = getRegForValue(I->getOperand(0));
1809   if (Op1 == 0) return false;
1810 
1811   unsigned Op2 = getRegForValue(I->getOperand(1));
1812   if (Op2 == 0) return false;
1813 
1814   unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
1815   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1816                           TII.get(Opc), ResultReg)
1817                   .addReg(Op1).addReg(Op2));
1818   updateValueMap(I, ResultReg);
1819   return true;
1820 }
1821 
1822 // Call Handling Code
1823 
1824 // This is largely taken directly from CCAssignFnForNode
1825 // TODO: We may not support all of this.
CCAssignFnForCall(CallingConv::ID CC,bool Return,bool isVarArg)1826 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC,
1827                                            bool Return,
1828                                            bool isVarArg) {
1829   switch (CC) {
1830   default:
1831     llvm_unreachable("Unsupported calling convention");
1832   case CallingConv::Fast:
1833     if (Subtarget->hasVFP2() && !isVarArg) {
1834       if (!Subtarget->isAAPCS_ABI())
1835         return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1836       // For AAPCS ABI targets, just use VFP variant of the calling convention.
1837       return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1838     }
1839     // Fallthrough
1840   case CallingConv::C:
1841   case CallingConv::CXX_FAST_TLS:
1842     // Use target triple & subtarget features to do actual dispatch.
1843     if (Subtarget->isAAPCS_ABI()) {
1844       if (Subtarget->hasVFP2() &&
1845           TM.Options.FloatABIType == FloatABI::Hard && !isVarArg)
1846         return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1847       else
1848         return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1849     } else {
1850       return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1851     }
1852   case CallingConv::ARM_AAPCS_VFP:
1853   case CallingConv::Swift:
1854     if (!isVarArg)
1855       return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1856     // Fall through to soft float variant, variadic functions don't
1857     // use hard floating point ABI.
1858   case CallingConv::ARM_AAPCS:
1859     return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1860   case CallingConv::ARM_APCS:
1861     return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1862   case CallingConv::GHC:
1863     if (Return)
1864       llvm_unreachable("Can't return in GHC call convention");
1865     else
1866       return CC_ARM_APCS_GHC;
1867   }
1868 }
1869 
ProcessCallArgs(SmallVectorImpl<Value * > & Args,SmallVectorImpl<unsigned> & ArgRegs,SmallVectorImpl<MVT> & ArgVTs,SmallVectorImpl<ISD::ArgFlagsTy> & ArgFlags,SmallVectorImpl<unsigned> & RegArgs,CallingConv::ID CC,unsigned & NumBytes,bool isVarArg)1870 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1871                                   SmallVectorImpl<unsigned> &ArgRegs,
1872                                   SmallVectorImpl<MVT> &ArgVTs,
1873                                   SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1874                                   SmallVectorImpl<unsigned> &RegArgs,
1875                                   CallingConv::ID CC,
1876                                   unsigned &NumBytes,
1877                                   bool isVarArg) {
1878   SmallVector<CCValAssign, 16> ArgLocs;
1879   CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context);
1880   CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags,
1881                              CCAssignFnForCall(CC, false, isVarArg));
1882 
1883   // Check that we can handle all of the arguments. If we can't, then bail out
1884   // now before we add code to the MBB.
1885   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1886     CCValAssign &VA = ArgLocs[i];
1887     MVT ArgVT = ArgVTs[VA.getValNo()];
1888 
1889     // We don't handle NEON/vector parameters yet.
1890     if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1891       return false;
1892 
1893     // Now copy/store arg to correct locations.
1894     if (VA.isRegLoc() && !VA.needsCustom()) {
1895       continue;
1896     } else if (VA.needsCustom()) {
1897       // TODO: We need custom lowering for vector (v2f64) args.
1898       if (VA.getLocVT() != MVT::f64 ||
1899           // TODO: Only handle register args for now.
1900           !VA.isRegLoc() || !ArgLocs[++i].isRegLoc())
1901         return false;
1902     } else {
1903       switch (ArgVT.SimpleTy) {
1904       default:
1905         return false;
1906       case MVT::i1:
1907       case MVT::i8:
1908       case MVT::i16:
1909       case MVT::i32:
1910         break;
1911       case MVT::f32:
1912         if (!Subtarget->hasVFP2())
1913           return false;
1914         break;
1915       case MVT::f64:
1916         if (!Subtarget->hasVFP2())
1917           return false;
1918         break;
1919       }
1920     }
1921   }
1922 
1923   // At the point, we are able to handle the call's arguments in fast isel.
1924 
1925   // Get a count of how many bytes are to be pushed on the stack.
1926   NumBytes = CCInfo.getNextStackOffset();
1927 
1928   // Issue CALLSEQ_START
1929   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
1930   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1931                           TII.get(AdjStackDown))
1932                   .addImm(NumBytes));
1933 
1934   // Process the args.
1935   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1936     CCValAssign &VA = ArgLocs[i];
1937     const Value *ArgVal = Args[VA.getValNo()];
1938     unsigned Arg = ArgRegs[VA.getValNo()];
1939     MVT ArgVT = ArgVTs[VA.getValNo()];
1940 
1941     assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) &&
1942            "We don't handle NEON/vector parameters yet.");
1943 
1944     // Handle arg promotion, etc.
1945     switch (VA.getLocInfo()) {
1946       case CCValAssign::Full: break;
1947       case CCValAssign::SExt: {
1948         MVT DestVT = VA.getLocVT();
1949         Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false);
1950         assert (Arg != 0 && "Failed to emit a sext");
1951         ArgVT = DestVT;
1952         break;
1953       }
1954       case CCValAssign::AExt:
1955         // Intentional fall-through.  Handle AExt and ZExt.
1956       case CCValAssign::ZExt: {
1957         MVT DestVT = VA.getLocVT();
1958         Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true);
1959         assert (Arg != 0 && "Failed to emit a zext");
1960         ArgVT = DestVT;
1961         break;
1962       }
1963       case CCValAssign::BCvt: {
1964         unsigned BC = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
1965                                  /*TODO: Kill=*/false);
1966         assert(BC != 0 && "Failed to emit a bitcast!");
1967         Arg = BC;
1968         ArgVT = VA.getLocVT();
1969         break;
1970       }
1971       default: llvm_unreachable("Unknown arg promotion!");
1972     }
1973 
1974     // Now copy/store arg to correct locations.
1975     if (VA.isRegLoc() && !VA.needsCustom()) {
1976       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1977               TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg);
1978       RegArgs.push_back(VA.getLocReg());
1979     } else if (VA.needsCustom()) {
1980       // TODO: We need custom lowering for vector (v2f64) args.
1981       assert(VA.getLocVT() == MVT::f64 &&
1982              "Custom lowering for v2f64 args not available");
1983 
1984       CCValAssign &NextVA = ArgLocs[++i];
1985 
1986       assert(VA.isRegLoc() && NextVA.isRegLoc() &&
1987              "We only handle register args!");
1988 
1989       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1990                               TII.get(ARM::VMOVRRD), VA.getLocReg())
1991                       .addReg(NextVA.getLocReg(), RegState::Define)
1992                       .addReg(Arg));
1993       RegArgs.push_back(VA.getLocReg());
1994       RegArgs.push_back(NextVA.getLocReg());
1995     } else {
1996       assert(VA.isMemLoc());
1997       // Need to store on the stack.
1998 
1999       // Don't emit stores for undef values.
2000       if (isa<UndefValue>(ArgVal))
2001         continue;
2002 
2003       Address Addr;
2004       Addr.BaseType = Address::RegBase;
2005       Addr.Base.Reg = ARM::SP;
2006       Addr.Offset = VA.getLocMemOffset();
2007 
2008       bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet;
2009       assert(EmitRet && "Could not emit a store for argument!");
2010     }
2011   }
2012 
2013   return true;
2014 }
2015 
FinishCall(MVT RetVT,SmallVectorImpl<unsigned> & UsedRegs,const Instruction * I,CallingConv::ID CC,unsigned & NumBytes,bool isVarArg)2016 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
2017                              const Instruction *I, CallingConv::ID CC,
2018                              unsigned &NumBytes, bool isVarArg) {
2019   // Issue CALLSEQ_END
2020   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
2021   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2022                           TII.get(AdjStackUp))
2023                   .addImm(NumBytes).addImm(0));
2024 
2025   // Now the return value.
2026   if (RetVT != MVT::isVoid) {
2027     SmallVector<CCValAssign, 16> RVLocs;
2028     CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
2029     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2030 
2031     // Copy all of the result registers out of their specified physreg.
2032     if (RVLocs.size() == 2 && RetVT == MVT::f64) {
2033       // For this move we copy into two registers and then move into the
2034       // double fp reg we want.
2035       MVT DestVT = RVLocs[0].getValVT();
2036       const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
2037       unsigned ResultReg = createResultReg(DstRC);
2038       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2039                               TII.get(ARM::VMOVDRR), ResultReg)
2040                       .addReg(RVLocs[0].getLocReg())
2041                       .addReg(RVLocs[1].getLocReg()));
2042 
2043       UsedRegs.push_back(RVLocs[0].getLocReg());
2044       UsedRegs.push_back(RVLocs[1].getLocReg());
2045 
2046       // Finally update the result.
2047       updateValueMap(I, ResultReg);
2048     } else {
2049       assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
2050       MVT CopyVT = RVLocs[0].getValVT();
2051 
2052       // Special handling for extended integers.
2053       if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
2054         CopyVT = MVT::i32;
2055 
2056       const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
2057 
2058       unsigned ResultReg = createResultReg(DstRC);
2059       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2060               TII.get(TargetOpcode::COPY),
2061               ResultReg).addReg(RVLocs[0].getLocReg());
2062       UsedRegs.push_back(RVLocs[0].getLocReg());
2063 
2064       // Finally update the result.
2065       updateValueMap(I, ResultReg);
2066     }
2067   }
2068 
2069   return true;
2070 }
2071 
SelectRet(const Instruction * I)2072 bool ARMFastISel::SelectRet(const Instruction *I) {
2073   const ReturnInst *Ret = cast<ReturnInst>(I);
2074   const Function &F = *I->getParent()->getParent();
2075 
2076   if (!FuncInfo.CanLowerReturn)
2077     return false;
2078 
2079   if (TLI.supportSwiftError() &&
2080       F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
2081     return false;
2082 
2083   if (TLI.supportSplitCSR(FuncInfo.MF))
2084     return false;
2085 
2086   // Build a list of return value registers.
2087   SmallVector<unsigned, 4> RetRegs;
2088 
2089   CallingConv::ID CC = F.getCallingConv();
2090   if (Ret->getNumOperands() > 0) {
2091     SmallVector<ISD::OutputArg, 4> Outs;
2092     GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
2093 
2094     // Analyze operands of the call, assigning locations to each operand.
2095     SmallVector<CCValAssign, 16> ValLocs;
2096     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
2097     CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */,
2098                                                  F.isVarArg()));
2099 
2100     const Value *RV = Ret->getOperand(0);
2101     unsigned Reg = getRegForValue(RV);
2102     if (Reg == 0)
2103       return false;
2104 
2105     // Only handle a single return value for now.
2106     if (ValLocs.size() != 1)
2107       return false;
2108 
2109     CCValAssign &VA = ValLocs[0];
2110 
2111     // Don't bother handling odd stuff for now.
2112     if (VA.getLocInfo() != CCValAssign::Full)
2113       return false;
2114     // Only handle register returns for now.
2115     if (!VA.isRegLoc())
2116       return false;
2117 
2118     unsigned SrcReg = Reg + VA.getValNo();
2119     EVT RVEVT = TLI.getValueType(DL, RV->getType());
2120     if (!RVEVT.isSimple()) return false;
2121     MVT RVVT = RVEVT.getSimpleVT();
2122     MVT DestVT = VA.getValVT();
2123     // Special handling for extended integers.
2124     if (RVVT != DestVT) {
2125       if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
2126         return false;
2127 
2128       assert(DestVT == MVT::i32 && "ARM should always ext to i32");
2129 
2130       // Perform extension if flagged as either zext or sext.  Otherwise, do
2131       // nothing.
2132       if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
2133         SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt());
2134         if (SrcReg == 0) return false;
2135       }
2136     }
2137 
2138     // Make the copy.
2139     unsigned DstReg = VA.getLocReg();
2140     const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
2141     // Avoid a cross-class copy. This is very unlikely.
2142     if (!SrcRC->contains(DstReg))
2143       return false;
2144     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2145             TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
2146 
2147     // Add register to return instruction.
2148     RetRegs.push_back(VA.getLocReg());
2149   }
2150 
2151   unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET;
2152   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2153                                     TII.get(RetOpc));
2154   AddOptionalDefs(MIB);
2155   for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
2156     MIB.addReg(RetRegs[i], RegState::Implicit);
2157   return true;
2158 }
2159 
ARMSelectCallOp(bool UseReg)2160 unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) {
2161   if (UseReg)
2162     return isThumb2 ? ARM::tBLXr : ARM::BLX;
2163   else
2164     return isThumb2 ? ARM::tBL : ARM::BL;
2165 }
2166 
getLibcallReg(const Twine & Name)2167 unsigned ARMFastISel::getLibcallReg(const Twine &Name) {
2168   // Manually compute the global's type to avoid building it when unnecessary.
2169   Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0);
2170   EVT LCREVT = TLI.getValueType(DL, GVTy);
2171   if (!LCREVT.isSimple()) return 0;
2172 
2173   GlobalValue *GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false,
2174                                        GlobalValue::ExternalLinkage, nullptr,
2175                                        Name);
2176   assert(GV->getType() == GVTy && "We miscomputed the type for the global!");
2177   return ARMMaterializeGV(GV, LCREVT.getSimpleVT());
2178 }
2179 
2180 // A quick function that will emit a call for a named libcall in F with the
2181 // vector of passed arguments for the Instruction in I. We can assume that we
2182 // can emit a call for any libcall we can produce. This is an abridged version
2183 // of the full call infrastructure since we won't need to worry about things
2184 // like computed function pointers or strange arguments at call sites.
2185 // TODO: Try to unify this and the normal call bits for ARM, then try to unify
2186 // with X86.
ARMEmitLibcall(const Instruction * I,RTLIB::Libcall Call)2187 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
2188   CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
2189 
2190   // Handle *simple* calls for now.
2191   Type *RetTy = I->getType();
2192   MVT RetVT;
2193   if (RetTy->isVoidTy())
2194     RetVT = MVT::isVoid;
2195   else if (!isTypeLegal(RetTy, RetVT))
2196     return false;
2197 
2198   // Can't handle non-double multi-reg retvals.
2199   if (RetVT != MVT::isVoid && RetVT != MVT::i32) {
2200     SmallVector<CCValAssign, 16> RVLocs;
2201     CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
2202     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false));
2203     if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2204       return false;
2205   }
2206 
2207   // Set up the argument vectors.
2208   SmallVector<Value*, 8> Args;
2209   SmallVector<unsigned, 8> ArgRegs;
2210   SmallVector<MVT, 8> ArgVTs;
2211   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2212   Args.reserve(I->getNumOperands());
2213   ArgRegs.reserve(I->getNumOperands());
2214   ArgVTs.reserve(I->getNumOperands());
2215   ArgFlags.reserve(I->getNumOperands());
2216   for (unsigned i = 0; i < I->getNumOperands(); ++i) {
2217     Value *Op = I->getOperand(i);
2218     unsigned Arg = getRegForValue(Op);
2219     if (Arg == 0) return false;
2220 
2221     Type *ArgTy = Op->getType();
2222     MVT ArgVT;
2223     if (!isTypeLegal(ArgTy, ArgVT)) return false;
2224 
2225     ISD::ArgFlagsTy Flags;
2226     unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
2227     Flags.setOrigAlign(OriginalAlignment);
2228 
2229     Args.push_back(Op);
2230     ArgRegs.push_back(Arg);
2231     ArgVTs.push_back(ArgVT);
2232     ArgFlags.push_back(Flags);
2233   }
2234 
2235   // Handle the arguments now that we've gotten them.
2236   SmallVector<unsigned, 4> RegArgs;
2237   unsigned NumBytes;
2238   if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2239                        RegArgs, CC, NumBytes, false))
2240     return false;
2241 
2242   unsigned CalleeReg = 0;
2243   if (Subtarget->genLongCalls()) {
2244     CalleeReg = getLibcallReg(TLI.getLibcallName(Call));
2245     if (CalleeReg == 0) return false;
2246   }
2247 
2248   // Issue the call.
2249   unsigned CallOpc = ARMSelectCallOp(Subtarget->genLongCalls());
2250   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2251                                     DbgLoc, TII.get(CallOpc));
2252   // BL / BLX don't take a predicate, but tBL / tBLX do.
2253   if (isThumb2)
2254     AddDefaultPred(MIB);
2255   if (Subtarget->genLongCalls())
2256     MIB.addReg(CalleeReg);
2257   else
2258     MIB.addExternalSymbol(TLI.getLibcallName(Call));
2259 
2260   // Add implicit physical register uses to the call.
2261   for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
2262     MIB.addReg(RegArgs[i], RegState::Implicit);
2263 
2264   // Add a register mask with the call-preserved registers.
2265   // Proper defs for return values will be added by setPhysRegsDeadExcept().
2266   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
2267 
2268   // Finish off the call including any return values.
2269   SmallVector<unsigned, 4> UsedRegs;
2270   if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false;
2271 
2272   // Set all unused physreg defs as dead.
2273   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2274 
2275   return true;
2276 }
2277 
SelectCall(const Instruction * I,const char * IntrMemName=nullptr)2278 bool ARMFastISel::SelectCall(const Instruction *I,
2279                              const char *IntrMemName = nullptr) {
2280   const CallInst *CI = cast<CallInst>(I);
2281   const Value *Callee = CI->getCalledValue();
2282 
2283   // Can't handle inline asm.
2284   if (isa<InlineAsm>(Callee)) return false;
2285 
2286   // Allow SelectionDAG isel to handle tail calls.
2287   if (CI->isTailCall()) return false;
2288 
2289   // Check the calling convention.
2290   ImmutableCallSite CS(CI);
2291   CallingConv::ID CC = CS.getCallingConv();
2292 
2293   // TODO: Avoid some calling conventions?
2294 
2295   FunctionType *FTy = CS.getFunctionType();
2296   bool isVarArg = FTy->isVarArg();
2297 
2298   // Handle *simple* calls for now.
2299   Type *RetTy = I->getType();
2300   MVT RetVT;
2301   if (RetTy->isVoidTy())
2302     RetVT = MVT::isVoid;
2303   else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
2304            RetVT != MVT::i8  && RetVT != MVT::i1)
2305     return false;
2306 
2307   // Can't handle non-double multi-reg retvals.
2308   if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 &&
2309       RetVT != MVT::i16 && RetVT != MVT::i32) {
2310     SmallVector<CCValAssign, 16> RVLocs;
2311     CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
2312     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2313     if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2314       return false;
2315   }
2316 
2317   // Set up the argument vectors.
2318   SmallVector<Value*, 8> Args;
2319   SmallVector<unsigned, 8> ArgRegs;
2320   SmallVector<MVT, 8> ArgVTs;
2321   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2322   unsigned arg_size = CS.arg_size();
2323   Args.reserve(arg_size);
2324   ArgRegs.reserve(arg_size);
2325   ArgVTs.reserve(arg_size);
2326   ArgFlags.reserve(arg_size);
2327   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
2328        i != e; ++i) {
2329     // If we're lowering a memory intrinsic instead of a regular call, skip the
2330     // last two arguments, which shouldn't be passed to the underlying function.
2331     if (IntrMemName && e-i <= 2)
2332       break;
2333 
2334     ISD::ArgFlagsTy Flags;
2335     unsigned AttrInd = i - CS.arg_begin() + 1;
2336     if (CS.paramHasAttr(AttrInd, Attribute::SExt))
2337       Flags.setSExt();
2338     if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
2339       Flags.setZExt();
2340 
2341     // FIXME: Only handle *easy* calls for now.
2342     if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
2343         CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
2344         CS.paramHasAttr(AttrInd, Attribute::SwiftSelf) ||
2345         CS.paramHasAttr(AttrInd, Attribute::SwiftError) ||
2346         CS.paramHasAttr(AttrInd, Attribute::Nest) ||
2347         CS.paramHasAttr(AttrInd, Attribute::ByVal))
2348       return false;
2349 
2350     Type *ArgTy = (*i)->getType();
2351     MVT ArgVT;
2352     if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 &&
2353         ArgVT != MVT::i1)
2354       return false;
2355 
2356     unsigned Arg = getRegForValue(*i);
2357     if (Arg == 0)
2358       return false;
2359 
2360     unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
2361     Flags.setOrigAlign(OriginalAlignment);
2362 
2363     Args.push_back(*i);
2364     ArgRegs.push_back(Arg);
2365     ArgVTs.push_back(ArgVT);
2366     ArgFlags.push_back(Flags);
2367   }
2368 
2369   // Handle the arguments now that we've gotten them.
2370   SmallVector<unsigned, 4> RegArgs;
2371   unsigned NumBytes;
2372   if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2373                        RegArgs, CC, NumBytes, isVarArg))
2374     return false;
2375 
2376   bool UseReg = false;
2377   const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
2378   if (!GV || Subtarget->genLongCalls()) UseReg = true;
2379 
2380   unsigned CalleeReg = 0;
2381   if (UseReg) {
2382     if (IntrMemName)
2383       CalleeReg = getLibcallReg(IntrMemName);
2384     else
2385       CalleeReg = getRegForValue(Callee);
2386 
2387     if (CalleeReg == 0) return false;
2388   }
2389 
2390   // Issue the call.
2391   unsigned CallOpc = ARMSelectCallOp(UseReg);
2392   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2393                                     DbgLoc, TII.get(CallOpc));
2394 
2395   // ARM calls don't take a predicate, but tBL / tBLX do.
2396   if(isThumb2)
2397     AddDefaultPred(MIB);
2398   if (UseReg)
2399     MIB.addReg(CalleeReg);
2400   else if (!IntrMemName)
2401     MIB.addGlobalAddress(GV, 0, 0);
2402   else
2403     MIB.addExternalSymbol(IntrMemName, 0);
2404 
2405   // Add implicit physical register uses to the call.
2406   for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
2407     MIB.addReg(RegArgs[i], RegState::Implicit);
2408 
2409   // Add a register mask with the call-preserved registers.
2410   // Proper defs for return values will be added by setPhysRegsDeadExcept().
2411   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
2412 
2413   // Finish off the call including any return values.
2414   SmallVector<unsigned, 4> UsedRegs;
2415   if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg))
2416     return false;
2417 
2418   // Set all unused physreg defs as dead.
2419   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2420 
2421   return true;
2422 }
2423 
ARMIsMemCpySmall(uint64_t Len)2424 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) {
2425   return Len <= 16;
2426 }
2427 
ARMTryEmitSmallMemCpy(Address Dest,Address Src,uint64_t Len,unsigned Alignment)2428 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src,
2429                                         uint64_t Len, unsigned Alignment) {
2430   // Make sure we don't bloat code by inlining very large memcpy's.
2431   if (!ARMIsMemCpySmall(Len))
2432     return false;
2433 
2434   while (Len) {
2435     MVT VT;
2436     if (!Alignment || Alignment >= 4) {
2437       if (Len >= 4)
2438         VT = MVT::i32;
2439       else if (Len >= 2)
2440         VT = MVT::i16;
2441       else {
2442         assert (Len == 1 && "Expected a length of 1!");
2443         VT = MVT::i8;
2444       }
2445     } else {
2446       // Bound based on alignment.
2447       if (Len >= 2 && Alignment == 2)
2448         VT = MVT::i16;
2449       else {
2450         VT = MVT::i8;
2451       }
2452     }
2453 
2454     bool RV;
2455     unsigned ResultReg;
2456     RV = ARMEmitLoad(VT, ResultReg, Src);
2457     assert (RV == true && "Should be able to handle this load.");
2458     RV = ARMEmitStore(VT, ResultReg, Dest);
2459     assert (RV == true && "Should be able to handle this store.");
2460     (void)RV;
2461 
2462     unsigned Size = VT.getSizeInBits()/8;
2463     Len -= Size;
2464     Dest.Offset += Size;
2465     Src.Offset += Size;
2466   }
2467 
2468   return true;
2469 }
2470 
SelectIntrinsicCall(const IntrinsicInst & I)2471 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
2472   // FIXME: Handle more intrinsics.
2473   switch (I.getIntrinsicID()) {
2474   default: return false;
2475   case Intrinsic::frameaddress: {
2476     MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo();
2477     MFI->setFrameAddressIsTaken(true);
2478 
2479     unsigned LdrOpc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
2480     const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
2481                                              : &ARM::GPRRegClass;
2482 
2483     const ARMBaseRegisterInfo *RegInfo =
2484         static_cast<const ARMBaseRegisterInfo *>(Subtarget->getRegisterInfo());
2485     unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
2486     unsigned SrcReg = FramePtr;
2487 
2488     // Recursively load frame address
2489     // ldr r0 [fp]
2490     // ldr r0 [r0]
2491     // ldr r0 [r0]
2492     // ...
2493     unsigned DestReg;
2494     unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue();
2495     while (Depth--) {
2496       DestReg = createResultReg(RC);
2497       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2498                               TII.get(LdrOpc), DestReg)
2499                       .addReg(SrcReg).addImm(0));
2500       SrcReg = DestReg;
2501     }
2502     updateValueMap(&I, SrcReg);
2503     return true;
2504   }
2505   case Intrinsic::memcpy:
2506   case Intrinsic::memmove: {
2507     const MemTransferInst &MTI = cast<MemTransferInst>(I);
2508     // Don't handle volatile.
2509     if (MTI.isVolatile())
2510       return false;
2511 
2512     // Disable inlining for memmove before calls to ComputeAddress.  Otherwise,
2513     // we would emit dead code because we don't currently handle memmoves.
2514     bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
2515     if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
2516       // Small memcpy's are common enough that we want to do them without a call
2517       // if possible.
2518       uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
2519       if (ARMIsMemCpySmall(Len)) {
2520         Address Dest, Src;
2521         if (!ARMComputeAddress(MTI.getRawDest(), Dest) ||
2522             !ARMComputeAddress(MTI.getRawSource(), Src))
2523           return false;
2524         unsigned Alignment = MTI.getAlignment();
2525         if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment))
2526           return true;
2527       }
2528     }
2529 
2530     if (!MTI.getLength()->getType()->isIntegerTy(32))
2531       return false;
2532 
2533     if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
2534       return false;
2535 
2536     const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
2537     return SelectCall(&I, IntrMemName);
2538   }
2539   case Intrinsic::memset: {
2540     const MemSetInst &MSI = cast<MemSetInst>(I);
2541     // Don't handle volatile.
2542     if (MSI.isVolatile())
2543       return false;
2544 
2545     if (!MSI.getLength()->getType()->isIntegerTy(32))
2546       return false;
2547 
2548     if (MSI.getDestAddressSpace() > 255)
2549       return false;
2550 
2551     return SelectCall(&I, "memset");
2552   }
2553   case Intrinsic::trap: {
2554     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(
2555       Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP));
2556     return true;
2557   }
2558   }
2559 }
2560 
SelectTrunc(const Instruction * I)2561 bool ARMFastISel::SelectTrunc(const Instruction *I) {
2562   // The high bits for a type smaller than the register size are assumed to be
2563   // undefined.
2564   Value *Op = I->getOperand(0);
2565 
2566   EVT SrcVT, DestVT;
2567   SrcVT = TLI.getValueType(DL, Op->getType(), true);
2568   DestVT = TLI.getValueType(DL, I->getType(), true);
2569 
2570   if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
2571     return false;
2572   if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
2573     return false;
2574 
2575   unsigned SrcReg = getRegForValue(Op);
2576   if (!SrcReg) return false;
2577 
2578   // Because the high bits are undefined, a truncate doesn't generate
2579   // any code.
2580   updateValueMap(I, SrcReg);
2581   return true;
2582 }
2583 
ARMEmitIntExt(MVT SrcVT,unsigned SrcReg,MVT DestVT,bool isZExt)2584 unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
2585                                     bool isZExt) {
2586   if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
2587     return 0;
2588   if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1)
2589     return 0;
2590 
2591   // Table of which combinations can be emitted as a single instruction,
2592   // and which will require two.
2593   static const uint8_t isSingleInstrTbl[3][2][2][2] = {
2594     //            ARM                     Thumb
2595     //           !hasV6Ops  hasV6Ops     !hasV6Ops  hasV6Ops
2596     //    ext:     s  z      s  z          s  z      s  z
2597     /*  1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } },
2598     /*  8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } },
2599     /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }
2600   };
2601 
2602   // Target registers for:
2603   //  - For ARM can never be PC.
2604   //  - For 16-bit Thumb are restricted to lower 8 registers.
2605   //  - For 32-bit Thumb are restricted to non-SP and non-PC.
2606   static const TargetRegisterClass *RCTbl[2][2] = {
2607     // Instructions: Two                     Single
2608     /* ARM      */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass },
2609     /* Thumb    */ { &ARM::tGPRRegClass,    &ARM::rGPRRegClass    }
2610   };
2611 
2612   // Table governing the instruction(s) to be emitted.
2613   static const struct InstructionTable {
2614     uint32_t Opc   : 16;
2615     uint32_t hasS  :  1; // Some instructions have an S bit, always set it to 0.
2616     uint32_t Shift :  7; // For shift operand addressing mode, used by MOVsi.
2617     uint32_t Imm   :  8; // All instructions have either a shift or a mask.
2618   } IT[2][2][3][2] = {
2619     { // Two instructions (first is left shift, second is in this table).
2620       { // ARM                Opc           S  Shift             Imm
2621         /*  1 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  31 },
2622         /*  1 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  31 } },
2623         /*  8 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  24 },
2624         /*  8 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  24 } },
2625         /* 16 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  16 },
2626         /* 16 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  16 } }
2627       },
2628       { // Thumb              Opc           S  Shift             Imm
2629         /*  1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  31 },
2630         /*  1 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  31 } },
2631         /*  8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  24 },
2632         /*  8 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  24 } },
2633         /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  16 },
2634         /* 16 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  16 } }
2635       }
2636     },
2637     { // Single instruction.
2638       { // ARM                Opc           S  Shift             Imm
2639         /*  1 bit sext */ { { ARM::KILL   , 0, ARM_AM::no_shift,   0 },
2640         /*  1 bit zext */   { ARM::ANDri  , 1, ARM_AM::no_shift,   1 } },
2641         /*  8 bit sext */ { { ARM::SXTB   , 0, ARM_AM::no_shift,   0 },
2642         /*  8 bit zext */   { ARM::ANDri  , 1, ARM_AM::no_shift, 255 } },
2643         /* 16 bit sext */ { { ARM::SXTH   , 0, ARM_AM::no_shift,   0 },
2644         /* 16 bit zext */   { ARM::UXTH   , 0, ARM_AM::no_shift,   0 } }
2645       },
2646       { // Thumb              Opc           S  Shift             Imm
2647         /*  1 bit sext */ { { ARM::KILL   , 0, ARM_AM::no_shift,   0 },
2648         /*  1 bit zext */   { ARM::t2ANDri, 1, ARM_AM::no_shift,   1 } },
2649         /*  8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift,   0 },
2650         /*  8 bit zext */   { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } },
2651         /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift,   0 },
2652         /* 16 bit zext */   { ARM::t2UXTH , 0, ARM_AM::no_shift,   0 } }
2653       }
2654     }
2655   };
2656 
2657   unsigned SrcBits = SrcVT.getSizeInBits();
2658   unsigned DestBits = DestVT.getSizeInBits();
2659   (void) DestBits;
2660   assert((SrcBits < DestBits) && "can only extend to larger types");
2661   assert((DestBits == 32 || DestBits == 16 || DestBits == 8) &&
2662          "other sizes unimplemented");
2663   assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) &&
2664          "other sizes unimplemented");
2665 
2666   bool hasV6Ops = Subtarget->hasV6Ops();
2667   unsigned Bitness = SrcBits / 8;  // {1,8,16}=>{0,1,2}
2668   assert((Bitness < 3) && "sanity-check table bounds");
2669 
2670   bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt];
2671   const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr];
2672   const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt];
2673   unsigned Opc = ITP->Opc;
2674   assert(ARM::KILL != Opc && "Invalid table entry");
2675   unsigned hasS = ITP->hasS;
2676   ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift;
2677   assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) &&
2678          "only MOVsi has shift operand addressing mode");
2679   unsigned Imm = ITP->Imm;
2680 
2681   // 16-bit Thumb instructions always set CPSR (unless they're in an IT block).
2682   bool setsCPSR = &ARM::tGPRRegClass == RC;
2683   unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi;
2684   unsigned ResultReg;
2685   // MOVsi encodes shift and immediate in shift operand addressing mode.
2686   // The following condition has the same value when emitting two
2687   // instruction sequences: both are shifts.
2688   bool ImmIsSO = (Shift != ARM_AM::no_shift);
2689 
2690   // Either one or two instructions are emitted.
2691   // They're always of the form:
2692   //   dst = in OP imm
2693   // CPSR is set only by 16-bit Thumb instructions.
2694   // Predicate, if any, is AL.
2695   // S bit, if available, is always 0.
2696   // When two are emitted the first's result will feed as the second's input,
2697   // that value is then dead.
2698   unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2;
2699   for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) {
2700     ResultReg = createResultReg(RC);
2701     bool isLsl = (0 == Instr) && !isSingleInstr;
2702     unsigned Opcode = isLsl ? LSLOpc : Opc;
2703     ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift;
2704     unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm;
2705     bool isKill = 1 == Instr;
2706     MachineInstrBuilder MIB = BuildMI(
2707         *FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode), ResultReg);
2708     if (setsCPSR)
2709       MIB.addReg(ARM::CPSR, RegState::Define);
2710     SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR);
2711     AddDefaultPred(MIB.addReg(SrcReg, isKill * RegState::Kill).addImm(ImmEnc));
2712     if (hasS)
2713       AddDefaultCC(MIB);
2714     // Second instruction consumes the first's result.
2715     SrcReg = ResultReg;
2716   }
2717 
2718   return ResultReg;
2719 }
2720 
SelectIntExt(const Instruction * I)2721 bool ARMFastISel::SelectIntExt(const Instruction *I) {
2722   // On ARM, in general, integer casts don't involve legal types; this code
2723   // handles promotable integers.
2724   Type *DestTy = I->getType();
2725   Value *Src = I->getOperand(0);
2726   Type *SrcTy = Src->getType();
2727 
2728   bool isZExt = isa<ZExtInst>(I);
2729   unsigned SrcReg = getRegForValue(Src);
2730   if (!SrcReg) return false;
2731 
2732   EVT SrcEVT, DestEVT;
2733   SrcEVT = TLI.getValueType(DL, SrcTy, true);
2734   DestEVT = TLI.getValueType(DL, DestTy, true);
2735   if (!SrcEVT.isSimple()) return false;
2736   if (!DestEVT.isSimple()) return false;
2737 
2738   MVT SrcVT = SrcEVT.getSimpleVT();
2739   MVT DestVT = DestEVT.getSimpleVT();
2740   unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
2741   if (ResultReg == 0) return false;
2742   updateValueMap(I, ResultReg);
2743   return true;
2744 }
2745 
SelectShift(const Instruction * I,ARM_AM::ShiftOpc ShiftTy)2746 bool ARMFastISel::SelectShift(const Instruction *I,
2747                               ARM_AM::ShiftOpc ShiftTy) {
2748   // We handle thumb2 mode by target independent selector
2749   // or SelectionDAG ISel.
2750   if (isThumb2)
2751     return false;
2752 
2753   // Only handle i32 now.
2754   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
2755   if (DestVT != MVT::i32)
2756     return false;
2757 
2758   unsigned Opc = ARM::MOVsr;
2759   unsigned ShiftImm;
2760   Value *Src2Value = I->getOperand(1);
2761   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) {
2762     ShiftImm = CI->getZExtValue();
2763 
2764     // Fall back to selection DAG isel if the shift amount
2765     // is zero or greater than the width of the value type.
2766     if (ShiftImm == 0 || ShiftImm >=32)
2767       return false;
2768 
2769     Opc = ARM::MOVsi;
2770   }
2771 
2772   Value *Src1Value = I->getOperand(0);
2773   unsigned Reg1 = getRegForValue(Src1Value);
2774   if (Reg1 == 0) return false;
2775 
2776   unsigned Reg2 = 0;
2777   if (Opc == ARM::MOVsr) {
2778     Reg2 = getRegForValue(Src2Value);
2779     if (Reg2 == 0) return false;
2780   }
2781 
2782   unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
2783   if(ResultReg == 0) return false;
2784 
2785   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2786                                     TII.get(Opc), ResultReg)
2787                             .addReg(Reg1);
2788 
2789   if (Opc == ARM::MOVsi)
2790     MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm));
2791   else if (Opc == ARM::MOVsr) {
2792     MIB.addReg(Reg2);
2793     MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0));
2794   }
2795 
2796   AddOptionalDefs(MIB);
2797   updateValueMap(I, ResultReg);
2798   return true;
2799 }
2800 
2801 // TODO: SoftFP support.
fastSelectInstruction(const Instruction * I)2802 bool ARMFastISel::fastSelectInstruction(const Instruction *I) {
2803 
2804   switch (I->getOpcode()) {
2805     case Instruction::Load:
2806       return SelectLoad(I);
2807     case Instruction::Store:
2808       return SelectStore(I);
2809     case Instruction::Br:
2810       return SelectBranch(I);
2811     case Instruction::IndirectBr:
2812       return SelectIndirectBr(I);
2813     case Instruction::ICmp:
2814     case Instruction::FCmp:
2815       return SelectCmp(I);
2816     case Instruction::FPExt:
2817       return SelectFPExt(I);
2818     case Instruction::FPTrunc:
2819       return SelectFPTrunc(I);
2820     case Instruction::SIToFP:
2821       return SelectIToFP(I, /*isSigned*/ true);
2822     case Instruction::UIToFP:
2823       return SelectIToFP(I, /*isSigned*/ false);
2824     case Instruction::FPToSI:
2825       return SelectFPToI(I, /*isSigned*/ true);
2826     case Instruction::FPToUI:
2827       return SelectFPToI(I, /*isSigned*/ false);
2828     case Instruction::Add:
2829       return SelectBinaryIntOp(I, ISD::ADD);
2830     case Instruction::Or:
2831       return SelectBinaryIntOp(I, ISD::OR);
2832     case Instruction::Sub:
2833       return SelectBinaryIntOp(I, ISD::SUB);
2834     case Instruction::FAdd:
2835       return SelectBinaryFPOp(I, ISD::FADD);
2836     case Instruction::FSub:
2837       return SelectBinaryFPOp(I, ISD::FSUB);
2838     case Instruction::FMul:
2839       return SelectBinaryFPOp(I, ISD::FMUL);
2840     case Instruction::SDiv:
2841       return SelectDiv(I, /*isSigned*/ true);
2842     case Instruction::UDiv:
2843       return SelectDiv(I, /*isSigned*/ false);
2844     case Instruction::SRem:
2845       return SelectRem(I, /*isSigned*/ true);
2846     case Instruction::URem:
2847       return SelectRem(I, /*isSigned*/ false);
2848     case Instruction::Call:
2849       if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2850         return SelectIntrinsicCall(*II);
2851       return SelectCall(I);
2852     case Instruction::Select:
2853       return SelectSelect(I);
2854     case Instruction::Ret:
2855       return SelectRet(I);
2856     case Instruction::Trunc:
2857       return SelectTrunc(I);
2858     case Instruction::ZExt:
2859     case Instruction::SExt:
2860       return SelectIntExt(I);
2861     case Instruction::Shl:
2862       return SelectShift(I, ARM_AM::lsl);
2863     case Instruction::LShr:
2864       return SelectShift(I, ARM_AM::lsr);
2865     case Instruction::AShr:
2866       return SelectShift(I, ARM_AM::asr);
2867     default: break;
2868   }
2869   return false;
2870 }
2871 
2872 namespace {
2873 // This table describes sign- and zero-extend instructions which can be
2874 // folded into a preceding load. All of these extends have an immediate
2875 // (sometimes a mask and sometimes a shift) that's applied after
2876 // extension.
2877 const struct FoldableLoadExtendsStruct {
2878   uint16_t Opc[2];  // ARM, Thumb.
2879   uint8_t ExpectedImm;
2880   uint8_t isZExt     : 1;
2881   uint8_t ExpectedVT : 7;
2882 } FoldableLoadExtends[] = {
2883   { { ARM::SXTH,  ARM::t2SXTH  },   0, 0, MVT::i16 },
2884   { { ARM::UXTH,  ARM::t2UXTH  },   0, 1, MVT::i16 },
2885   { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8  },
2886   { { ARM::SXTB,  ARM::t2SXTB  },   0, 0, MVT::i8  },
2887   { { ARM::UXTB,  ARM::t2UXTB  },   0, 1, MVT::i8  }
2888 };
2889 }
2890 
2891 /// \brief The specified machine instr operand is a vreg, and that
2892 /// vreg is being provided by the specified load instruction.  If possible,
2893 /// try to fold the load as an operand to the instruction, returning true if
2894 /// successful.
tryToFoldLoadIntoMI(MachineInstr * MI,unsigned OpNo,const LoadInst * LI)2895 bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2896                                       const LoadInst *LI) {
2897   // Verify we have a legal type before going any further.
2898   MVT VT;
2899   if (!isLoadTypeLegal(LI->getType(), VT))
2900     return false;
2901 
2902   // Combine load followed by zero- or sign-extend.
2903   // ldrb r1, [r0]       ldrb r1, [r0]
2904   // uxtb r2, r1     =>
2905   // mov  r3, r2         mov  r3, r1
2906   if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm())
2907     return false;
2908   const uint64_t Imm = MI->getOperand(2).getImm();
2909 
2910   bool Found = false;
2911   bool isZExt;
2912   for (unsigned i = 0, e = array_lengthof(FoldableLoadExtends);
2913        i != e; ++i) {
2914     if (FoldableLoadExtends[i].Opc[isThumb2] == MI->getOpcode() &&
2915         (uint64_t)FoldableLoadExtends[i].ExpectedImm == Imm &&
2916         MVT((MVT::SimpleValueType)FoldableLoadExtends[i].ExpectedVT) == VT) {
2917       Found = true;
2918       isZExt = FoldableLoadExtends[i].isZExt;
2919     }
2920   }
2921   if (!Found) return false;
2922 
2923   // See if we can handle this address.
2924   Address Addr;
2925   if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false;
2926 
2927   unsigned ResultReg = MI->getOperand(0).getReg();
2928   if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false))
2929     return false;
2930   MI->eraseFromParent();
2931   return true;
2932 }
2933 
ARMLowerPICELF(const GlobalValue * GV,unsigned Align,MVT VT)2934 unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV,
2935                                      unsigned Align, MVT VT) {
2936   bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
2937 
2938   LLVMContext *Context = &MF->getFunction()->getContext();
2939   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2940   unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2941   ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(
2942       GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj,
2943       UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier,
2944       /*AddCurrentAddress=*/UseGOT_PREL);
2945 
2946   unsigned ConstAlign =
2947       MF->getDataLayout().getPrefTypeAlignment(Type::getInt32PtrTy(*Context));
2948   unsigned Idx = MF->getConstantPool()->getConstantPoolIndex(CPV, ConstAlign);
2949 
2950   unsigned TempReg = MF->getRegInfo().createVirtualRegister(&ARM::rGPRRegClass);
2951   unsigned Opc = isThumb2 ? ARM::t2LDRpci : ARM::LDRcp;
2952   MachineInstrBuilder MIB =
2953       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), TempReg)
2954           .addConstantPoolIndex(Idx);
2955   if (Opc == ARM::LDRcp)
2956     MIB.addImm(0);
2957   AddDefaultPred(MIB);
2958 
2959   // Fix the address by adding pc.
2960   unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
2961   Opc = Subtarget->isThumb() ? ARM::tPICADD : UseGOT_PREL ? ARM::PICLDR
2962                                                           : ARM::PICADD;
2963   DestReg = constrainOperandRegClass(TII.get(Opc), DestReg, 0);
2964   MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
2965             .addReg(TempReg)
2966             .addImm(ARMPCLabelIndex);
2967   if (!Subtarget->isThumb())
2968     AddDefaultPred(MIB);
2969 
2970   if (UseGOT_PREL && Subtarget->isThumb()) {
2971     unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
2972     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2973                   TII.get(ARM::t2LDRi12), NewDestReg)
2974               .addReg(DestReg)
2975               .addImm(0);
2976     DestReg = NewDestReg;
2977     AddOptionalDefs(MIB);
2978   }
2979   return DestReg;
2980 }
2981 
fastLowerArguments()2982 bool ARMFastISel::fastLowerArguments() {
2983   if (!FuncInfo.CanLowerReturn)
2984     return false;
2985 
2986   const Function *F = FuncInfo.Fn;
2987   if (F->isVarArg())
2988     return false;
2989 
2990   CallingConv::ID CC = F->getCallingConv();
2991   switch (CC) {
2992   default:
2993     return false;
2994   case CallingConv::Fast:
2995   case CallingConv::C:
2996   case CallingConv::ARM_AAPCS_VFP:
2997   case CallingConv::ARM_AAPCS:
2998   case CallingConv::ARM_APCS:
2999   case CallingConv::Swift:
3000     break;
3001   }
3002 
3003   // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments
3004   // which are passed in r0 - r3.
3005   unsigned Idx = 1;
3006   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
3007        I != E; ++I, ++Idx) {
3008     if (Idx > 4)
3009       return false;
3010 
3011     if (F->getAttributes().hasAttribute(Idx, Attribute::InReg) ||
3012         F->getAttributes().hasAttribute(Idx, Attribute::StructRet) ||
3013         F->getAttributes().hasAttribute(Idx, Attribute::SwiftSelf) ||
3014         F->getAttributes().hasAttribute(Idx, Attribute::SwiftError) ||
3015         F->getAttributes().hasAttribute(Idx, Attribute::ByVal))
3016       return false;
3017 
3018     Type *ArgTy = I->getType();
3019     if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
3020       return false;
3021 
3022     EVT ArgVT = TLI.getValueType(DL, ArgTy);
3023     if (!ArgVT.isSimple()) return false;
3024     switch (ArgVT.getSimpleVT().SimpleTy) {
3025     case MVT::i8:
3026     case MVT::i16:
3027     case MVT::i32:
3028       break;
3029     default:
3030       return false;
3031     }
3032   }
3033 
3034 
3035   static const MCPhysReg GPRArgRegs[] = {
3036     ARM::R0, ARM::R1, ARM::R2, ARM::R3
3037   };
3038 
3039   const TargetRegisterClass *RC = &ARM::rGPRRegClass;
3040   Idx = 0;
3041   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
3042        I != E; ++I, ++Idx) {
3043     unsigned SrcReg = GPRArgRegs[Idx];
3044     unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
3045     // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
3046     // Without this, EmitLiveInCopies may eliminate the livein if its only
3047     // use is a bitcast (which isn't turned into an instruction).
3048     unsigned ResultReg = createResultReg(RC);
3049     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3050             TII.get(TargetOpcode::COPY),
3051             ResultReg).addReg(DstReg, getKillRegState(true));
3052     updateValueMap(&*I, ResultReg);
3053   }
3054 
3055   return true;
3056 }
3057 
3058 namespace llvm {
createFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo)3059   FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo,
3060                                 const TargetLibraryInfo *libInfo) {
3061     if (funcInfo.MF->getSubtarget<ARMSubtarget>().useFastISel())
3062       return new ARMFastISel(funcInfo, libInfo);
3063 
3064     return nullptr;
3065   }
3066 }
3067