1//===-- ARMScheduleV6.td - ARM v6 Scheduling Definitions ---*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the itinerary class data for the ARM v6 processors.
11//
12//===----------------------------------------------------------------------===//
13
14// Model based on ARM1176
15//
16// Functional Units
17def V6_Pipe : FuncUnit; // pipeline
18
19// Scheduling information derived from "ARM1176JZF-S Technical Reference Manual"
20//
21def ARMV6Itineraries : ProcessorItineraries<
22  [V6_Pipe], [], [
23  //
24  // No operand cycles
25  InstrItinData<IIC_iALUx    , [InstrStage<1, [V6_Pipe]>]>,
26  //
27  // Binary Instructions that produce a result
28  InstrItinData<IIC_iALUi    , [InstrStage<1, [V6_Pipe]>], [2, 2]>,
29  InstrItinData<IIC_iALUr    , [InstrStage<1, [V6_Pipe]>], [2, 2, 2]>,
30  InstrItinData<IIC_iALUsi   , [InstrStage<1, [V6_Pipe]>], [2, 2, 1]>,
31  InstrItinData<IIC_iALUsr   , [InstrStage<2, [V6_Pipe]>], [3, 3, 2, 1]>,
32  //
33  // Bitwise Instructions that produce a result
34  InstrItinData<IIC_iBITi    , [InstrStage<1, [V6_Pipe]>], [2, 2]>,
35  InstrItinData<IIC_iBITr    , [InstrStage<1, [V6_Pipe]>], [2, 2, 2]>,
36  InstrItinData<IIC_iBITsi   , [InstrStage<1, [V6_Pipe]>], [2, 2, 1]>,
37  InstrItinData<IIC_iBITsr   , [InstrStage<2, [V6_Pipe]>], [3, 3, 2, 1]>,
38  //
39  // Unary Instructions that produce a result
40  InstrItinData<IIC_iUNAr    , [InstrStage<1, [V6_Pipe]>], [2, 2]>,
41  InstrItinData<IIC_iUNAsi   , [InstrStage<1, [V6_Pipe]>], [2, 1]>,
42  //
43  // Zero and sign extension instructions
44  InstrItinData<IIC_iEXTr    , [InstrStage<1, [V6_Pipe]>], [1, 1]>,
45  InstrItinData<IIC_iEXTAr   , [InstrStage<1, [V6_Pipe]>], [2, 2, 1]>,
46  InstrItinData<IIC_iEXTAsr  , [InstrStage<2, [V6_Pipe]>], [3, 3, 2, 1]>,
47  //
48  // Compare instructions
49  InstrItinData<IIC_iCMPi    , [InstrStage<1, [V6_Pipe]>], [2]>,
50  InstrItinData<IIC_iCMPr    , [InstrStage<1, [V6_Pipe]>], [2, 2]>,
51  InstrItinData<IIC_iCMPsi   , [InstrStage<1, [V6_Pipe]>], [2, 1]>,
52  InstrItinData<IIC_iCMPsr   , [InstrStage<2, [V6_Pipe]>], [3, 2, 1]>,
53  //
54  // Test instructions
55  InstrItinData<IIC_iTSTi    , [InstrStage<1, [V6_Pipe]>], [2]>,
56  InstrItinData<IIC_iTSTr    , [InstrStage<1, [V6_Pipe]>], [2, 2]>,
57  InstrItinData<IIC_iTSTsi   , [InstrStage<1, [V6_Pipe]>], [2, 1]>,
58  InstrItinData<IIC_iTSTsr   , [InstrStage<2, [V6_Pipe]>], [3, 2, 1]>,
59  //
60  // Move instructions, unconditional
61  InstrItinData<IIC_iMOVi    , [InstrStage<1, [V6_Pipe]>], [2]>,
62  InstrItinData<IIC_iMOVr    , [InstrStage<1, [V6_Pipe]>], [2, 2]>,
63  InstrItinData<IIC_iMOVsi   , [InstrStage<1, [V6_Pipe]>], [2, 1]>,
64  InstrItinData<IIC_iMOVsr   , [InstrStage<2, [V6_Pipe]>], [3, 2, 1]>,
65  InstrItinData<IIC_iMOVix2  , [InstrStage<1, [V6_Pipe]>,
66                                InstrStage<1, [V6_Pipe]>], [2]>,
67  InstrItinData<IIC_iMOVix2addpc,[InstrStage<1, [V6_Pipe]>,
68                                  InstrStage<1, [V6_Pipe]>,
69                                  InstrStage<1, [V6_Pipe]>], [3]>,
70  InstrItinData<IIC_iMOVix2ld , [InstrStage<1, [V6_Pipe]>,
71                                 InstrStage<1, [V6_Pipe]>,
72                                 InstrStage<1, [V6_Pipe]>], [5]>,
73  //
74  // Move instructions, conditional
75  InstrItinData<IIC_iCMOVi   , [InstrStage<1, [V6_Pipe]>], [3]>,
76  InstrItinData<IIC_iCMOVr   , [InstrStage<1, [V6_Pipe]>], [3, 2]>,
77  InstrItinData<IIC_iCMOVsi  , [InstrStage<1, [V6_Pipe]>], [3, 1]>,
78  InstrItinData<IIC_iCMOVsr  , [InstrStage<1, [V6_Pipe]>], [4, 2, 1]>,
79  InstrItinData<IIC_iCMOVix2 , [InstrStage<1, [V6_Pipe]>,
80                                InstrStage<1, [V6_Pipe]>], [4]>,
81  //
82  // MVN instructions
83  InstrItinData<IIC_iMVNi    , [InstrStage<1, [V6_Pipe]>], [2]>,
84  InstrItinData<IIC_iMVNr    , [InstrStage<1, [V6_Pipe]>], [2, 2]>,
85  InstrItinData<IIC_iMVNsi   , [InstrStage<1, [V6_Pipe]>], [2, 1]>,
86  InstrItinData<IIC_iMVNsr   , [InstrStage<2, [V6_Pipe]>], [3, 2, 1]>,
87
88  // Integer multiply pipeline
89  //
90  InstrItinData<IIC_iMUL16   , [InstrStage<1, [V6_Pipe]>], [4, 1, 1]>,
91  InstrItinData<IIC_iMAC16   , [InstrStage<1, [V6_Pipe]>], [4, 1, 1, 2]>,
92  InstrItinData<IIC_iMUL32   , [InstrStage<2, [V6_Pipe]>], [5, 1, 1]>,
93  InstrItinData<IIC_iMAC32   , [InstrStage<2, [V6_Pipe]>], [5, 1, 1, 2]>,
94  InstrItinData<IIC_iMUL64   , [InstrStage<3, [V6_Pipe]>], [6, 1, 1]>,
95  InstrItinData<IIC_iMAC64   , [InstrStage<3, [V6_Pipe]>], [6, 1, 1, 2]>,
96
97  // Integer load pipeline
98  //
99  // Immediate offset
100  InstrItinData<IIC_iLoad_i   , [InstrStage<1, [V6_Pipe]>], [4, 1]>,
101  InstrItinData<IIC_iLoad_bh_i, [InstrStage<1, [V6_Pipe]>], [4, 1]>,
102  InstrItinData<IIC_iLoad_d_i , [InstrStage<1, [V6_Pipe]>], [4, 1]>,
103  //
104  // Register offset
105  InstrItinData<IIC_iLoad_r   , [InstrStage<1, [V6_Pipe]>], [4, 1, 1]>,
106  InstrItinData<IIC_iLoad_bh_r, [InstrStage<1, [V6_Pipe]>], [4, 1, 1]>,
107  InstrItinData<IIC_iLoad_d_r , [InstrStage<1, [V6_Pipe]>], [4, 1, 1]>,
108  //
109  // Scaled register offset, issues over 2 cycles
110  InstrItinData<IIC_iLoad_si   , [InstrStage<2, [V6_Pipe]>], [5, 2, 1]>,
111  InstrItinData<IIC_iLoad_bh_si, [InstrStage<2, [V6_Pipe]>], [5, 2, 1]>,
112  //
113  // Immediate offset with update
114  InstrItinData<IIC_iLoad_iu   , [InstrStage<1, [V6_Pipe]>], [4, 2, 1]>,
115  InstrItinData<IIC_iLoad_bh_iu, [InstrStage<1, [V6_Pipe]>], [4, 2, 1]>,
116  //
117  // Register offset with update
118  InstrItinData<IIC_iLoad_ru   , [InstrStage<1, [V6_Pipe]>], [4, 2, 1, 1]>,
119  InstrItinData<IIC_iLoad_bh_ru, [InstrStage<1, [V6_Pipe]>], [4, 2, 1, 1]>,
120  InstrItinData<IIC_iLoad_d_ru , [InstrStage<1, [V6_Pipe]>], [4, 2, 1, 1]>,
121  //
122  // Scaled register offset with update, issues over 2 cycles
123  InstrItinData<IIC_iLoad_siu,   [InstrStage<2, [V6_Pipe]>], [5, 2, 2, 1]>,
124  InstrItinData<IIC_iLoad_bh_siu,[InstrStage<2, [V6_Pipe]>], [5, 2, 2, 1]>,
125
126  //
127  // Load multiple, def is the 5th operand.
128  InstrItinData<IIC_iLoad_m  , [InstrStage<3, [V6_Pipe]>], [1, 1, 1, 1, 4]>,
129  //
130  // Load multiple + update, defs are the 1st and 5th operands.
131  InstrItinData<IIC_iLoad_mu , [InstrStage<3, [V6_Pipe]>], [2, 1, 1, 1, 4]>,
132  //
133  // Load multiple plus branch
134  InstrItinData<IIC_iLoad_mBr, [InstrStage<3, [V6_Pipe]>,
135                                InstrStage<1, [V6_Pipe]>], [1, 2, 1, 1, 4]>,
136
137  //
138  // iLoadi + iALUr for t2LDRpci_pic.
139  InstrItinData<IIC_iLoadiALU, [InstrStage<1, [V6_Pipe]>,
140                                InstrStage<1, [V6_Pipe]>], [3, 1]>,
141
142  //
143  // Pop, def is the 3rd operand.
144  InstrItinData<IIC_iPop     , [InstrStage<3, [V6_Pipe]>], [1, 1, 4]>,
145  //
146  // Pop + branch, def is the 3rd operand.
147  InstrItinData<IIC_iPop_Br,   [InstrStage<3, [V6_Pipe]>,
148                                InstrStage<1, [V6_Pipe]>], [1, 2, 4]>,
149
150  // Integer store pipeline
151  //
152  // Immediate offset
153  InstrItinData<IIC_iStore_i   , [InstrStage<1, [V6_Pipe]>], [2, 1]>,
154  InstrItinData<IIC_iStore_bh_i, [InstrStage<1, [V6_Pipe]>], [2, 1]>,
155  InstrItinData<IIC_iStore_d_i , [InstrStage<1, [V6_Pipe]>], [2, 1]>,
156  //
157  // Register offset
158  InstrItinData<IIC_iStore_r   , [InstrStage<1, [V6_Pipe]>], [2, 1, 1]>,
159  InstrItinData<IIC_iStore_bh_r, [InstrStage<1, [V6_Pipe]>], [2, 1, 1]>,
160  InstrItinData<IIC_iStore_d_r , [InstrStage<1, [V6_Pipe]>], [2, 1, 1]>,
161  //
162  // Scaled register offset, issues over 2 cycles
163  InstrItinData<IIC_iStore_si   , [InstrStage<2, [V6_Pipe]>], [2, 2, 1]>,
164  InstrItinData<IIC_iStore_bh_si, [InstrStage<2, [V6_Pipe]>], [2, 2, 1]>,
165  //
166  // Immediate offset with update
167  InstrItinData<IIC_iStore_iu   , [InstrStage<1, [V6_Pipe]>], [2, 2, 1]>,
168  InstrItinData<IIC_iStore_bh_iu, [InstrStage<1, [V6_Pipe]>], [2, 2, 1]>,
169  //
170  // Register offset with update
171  InstrItinData<IIC_iStore_ru,   [InstrStage<1, [V6_Pipe]>], [2, 2, 1, 1]>,
172  InstrItinData<IIC_iStore_bh_ru,[InstrStage<1, [V6_Pipe]>], [2, 2, 1, 1]>,
173  InstrItinData<IIC_iStore_d_ru, [InstrStage<1, [V6_Pipe]>], [2, 2, 1, 1]>,
174  //
175  // Scaled register offset with update, issues over 2 cycles
176  InstrItinData<IIC_iStore_siu,   [InstrStage<2, [V6_Pipe]>], [2, 2, 2, 1]>,
177  InstrItinData<IIC_iStore_bh_siu,[InstrStage<2, [V6_Pipe]>], [2, 2, 2, 1]>,
178  //
179  // Store multiple
180  InstrItinData<IIC_iStore_m  , [InstrStage<3, [V6_Pipe]>]>,
181  //
182  // Store multiple + update
183  InstrItinData<IIC_iStore_mu , [InstrStage<3, [V6_Pipe]>], [2]>,
184
185  // Branch
186  //
187  // no delay slots, so the latency of a branch is unimportant
188  InstrItinData<IIC_Br      , [InstrStage<1, [V6_Pipe]>]>,
189
190  // VFP
191  // Issue through integer pipeline, and execute in NEON unit. We assume
192  // RunFast mode so that NFP pipeline is used for single-precision when
193  // possible.
194  //
195  // FP Special Register to Integer Register File Move
196  InstrItinData<IIC_fpSTAT , [InstrStage<1, [V6_Pipe]>], [3]>,
197  //
198  // Single-precision FP Unary
199  InstrItinData<IIC_fpUNA32 , [InstrStage<1, [V6_Pipe]>], [5, 2]>,
200  //
201  // Double-precision FP Unary
202  InstrItinData<IIC_fpUNA64 , [InstrStage<1, [V6_Pipe]>], [5, 2]>,
203  //
204  // Single-precision FP Compare
205  InstrItinData<IIC_fpCMP32 , [InstrStage<1, [V6_Pipe]>], [2, 2]>,
206  //
207  // Double-precision FP Compare
208  InstrItinData<IIC_fpCMP64 , [InstrStage<1, [V6_Pipe]>], [2, 2]>,
209  //
210  // Single to Double FP Convert
211  InstrItinData<IIC_fpCVTSD , [InstrStage<1, [V6_Pipe]>], [5, 2]>,
212  //
213  // Double to Single FP Convert
214  InstrItinData<IIC_fpCVTDS , [InstrStage<1, [V6_Pipe]>], [5, 2]>,
215  //
216  // Single-Precision FP to Integer Convert
217  InstrItinData<IIC_fpCVTSI , [InstrStage<1, [V6_Pipe]>], [9, 2]>,
218  //
219  // Double-Precision FP to Integer Convert
220  InstrItinData<IIC_fpCVTDI , [InstrStage<1, [V6_Pipe]>], [9, 2]>,
221  //
222  // Integer to Single-Precision FP Convert
223  InstrItinData<IIC_fpCVTIS , [InstrStage<1, [V6_Pipe]>], [9, 2]>,
224  //
225  // Integer to Double-Precision FP Convert
226  InstrItinData<IIC_fpCVTID , [InstrStage<1, [V6_Pipe]>], [9, 2]>,
227  //
228  // Single-precision FP ALU
229  InstrItinData<IIC_fpALU32 , [InstrStage<1, [V6_Pipe]>], [9, 2, 2]>,
230  //
231  // Double-precision FP ALU
232  InstrItinData<IIC_fpALU64 , [InstrStage<1, [V6_Pipe]>], [9, 2, 2]>,
233  //
234  // Single-precision FP Multiply
235  InstrItinData<IIC_fpMUL32 , [InstrStage<1, [V6_Pipe]>], [9, 2, 2]>,
236  //
237  // Double-precision FP Multiply
238  InstrItinData<IIC_fpMUL64 , [InstrStage<2, [V6_Pipe]>], [9, 2, 2]>,
239  //
240  // Single-precision FP MAC
241  InstrItinData<IIC_fpMAC32 , [InstrStage<1, [V6_Pipe]>], [9, 2, 2, 2]>,
242  //
243  // Double-precision FP MAC
244  InstrItinData<IIC_fpMAC64 , [InstrStage<2, [V6_Pipe]>], [9, 2, 2, 2]>,
245  //
246  // Single-precision Fused FP MAC
247  InstrItinData<IIC_fpFMAC32, [InstrStage<1, [V6_Pipe]>], [9, 2, 2, 2]>,
248  //
249  // Double-precision Fused FP MAC
250  InstrItinData<IIC_fpFMAC64, [InstrStage<2, [V6_Pipe]>], [9, 2, 2, 2]>,
251  //
252  // Single-precision FP DIV
253  InstrItinData<IIC_fpDIV32 , [InstrStage<15, [V6_Pipe]>], [20, 2, 2]>,
254  //
255  // Double-precision FP DIV
256  InstrItinData<IIC_fpDIV64 , [InstrStage<29, [V6_Pipe]>], [34, 2, 2]>,
257  //
258  // Single-precision FP SQRT
259  InstrItinData<IIC_fpSQRT32 , [InstrStage<15, [V6_Pipe]>], [20, 2, 2]>,
260  //
261  // Double-precision FP SQRT
262  InstrItinData<IIC_fpSQRT64 , [InstrStage<29, [V6_Pipe]>], [34, 2, 2]>,
263  //
264  // Integer to Single-precision Move
265  InstrItinData<IIC_fpMOVIS,  [InstrStage<1, [V6_Pipe]>], [10, 1]>,
266  //
267  // Integer to Double-precision Move
268  InstrItinData<IIC_fpMOVID,  [InstrStage<1, [V6_Pipe]>], [10, 1, 1]>,
269  //
270  // Single-precision to Integer Move
271  InstrItinData<IIC_fpMOVSI,  [InstrStage<1, [V6_Pipe]>], [10, 1]>,
272  //
273  // Double-precision to Integer Move
274  InstrItinData<IIC_fpMOVDI,  [InstrStage<1, [V6_Pipe]>], [10, 10, 1]>,
275  //
276  // Single-precision FP Load
277  InstrItinData<IIC_fpLoad32 , [InstrStage<1, [V6_Pipe]>], [5, 2, 2]>,
278  //
279  // Double-precision FP Load
280  InstrItinData<IIC_fpLoad64 , [InstrStage<1, [V6_Pipe]>], [5, 2, 2]>,
281  //
282  // FP Load Multiple
283  InstrItinData<IIC_fpLoad_m , [InstrStage<3, [V6_Pipe]>], [2, 1, 1, 5]>,
284  //
285  // FP Load Multiple + update
286  InstrItinData<IIC_fpLoad_mu, [InstrStage<3, [V6_Pipe]>], [3, 2, 1, 1, 5]>,
287  //
288  // Single-precision FP Store
289  InstrItinData<IIC_fpStore32 , [InstrStage<1, [V6_Pipe]>], [2, 2, 2]>,
290  //
291  // Double-precision FP Store
292  // use FU_Issue to enforce the 1 load/store per cycle limit
293  InstrItinData<IIC_fpStore64 , [InstrStage<1, [V6_Pipe]>], [2, 2, 2]>,
294  //
295  // FP Store Multiple
296  InstrItinData<IIC_fpStore_m, [InstrStage<3, [V6_Pipe]>], [2, 2, 2, 2]>,
297  //
298  // FP Store Multiple + update
299  InstrItinData<IIC_fpStore_mu,[InstrStage<3, [V6_Pipe]>], [3, 2, 2, 2, 2]>
300]>;
301