1 //===-- ARMSubtarget.cpp - ARM Subtarget Information ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the ARM specific subclass of TargetSubtargetInfo.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "ARMSubtarget.h"
15 #include "ARMFrameLowering.h"
16 #include "ARMISelLowering.h"
17 #include "ARMInstrInfo.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMSelectionDAGInfo.h"
20 #include "ARMSubtarget.h"
21 #include "ARMTargetMachine.h"
22 #include "Thumb1FrameLowering.h"
23 #include "Thumb1InstrInfo.h"
24 #include "Thumb2InstrInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/GlobalValue.h"
29 #include "llvm/MC/MCAsmInfo.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Target/TargetInstrInfo.h"
32 #include "llvm/Target/TargetOptions.h"
33 #include "llvm/Target/TargetRegisterInfo.h"
34 
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "arm-subtarget"
38 
39 #define GET_SUBTARGETINFO_TARGET_DESC
40 #define GET_SUBTARGETINFO_CTOR
41 #include "ARMGenSubtargetInfo.inc"
42 
43 static cl::opt<bool>
44 UseFusedMulOps("arm-use-mulops",
45                cl::init(true), cl::Hidden);
46 
47 enum ITMode {
48   DefaultIT,
49   RestrictedIT,
50   NoRestrictedIT
51 };
52 
53 static cl::opt<ITMode>
54 IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT),
55    cl::ZeroOrMore,
56    cl::values(clEnumValN(DefaultIT, "arm-default-it",
57                          "Generate IT block based on arch"),
58               clEnumValN(RestrictedIT, "arm-restrict-it",
59                          "Disallow deprecated IT based on ARMv8"),
60               clEnumValN(NoRestrictedIT, "arm-no-restrict-it",
61                          "Allow IT blocks based on ARMv7"),
62               clEnumValEnd));
63 
64 /// ForceFastISel - Use the fast-isel, even for subtargets where it is not
65 /// currently supported (for testing only).
66 static cl::opt<bool>
67 ForceFastISel("arm-force-fast-isel",
68                cl::init(false), cl::Hidden);
69 
70 /// initializeSubtargetDependencies - Initializes using a CPU and feature string
71 /// so that we can use initializer lists for subtarget initialization.
initializeSubtargetDependencies(StringRef CPU,StringRef FS)72 ARMSubtarget &ARMSubtarget::initializeSubtargetDependencies(StringRef CPU,
73                                                             StringRef FS) {
74   initializeEnvironment();
75   initSubtargetFeatures(CPU, FS);
76   return *this;
77 }
78 
initializeFrameLowering(StringRef CPU,StringRef FS)79 ARMFrameLowering *ARMSubtarget::initializeFrameLowering(StringRef CPU,
80                                                         StringRef FS) {
81   ARMSubtarget &STI = initializeSubtargetDependencies(CPU, FS);
82   if (STI.isThumb1Only())
83     return (ARMFrameLowering *)new Thumb1FrameLowering(STI);
84 
85   return new ARMFrameLowering(STI);
86 }
87 
ARMSubtarget(const Triple & TT,const std::string & CPU,const std::string & FS,const ARMBaseTargetMachine & TM,bool IsLittle)88 ARMSubtarget::ARMSubtarget(const Triple &TT, const std::string &CPU,
89                            const std::string &FS,
90                            const ARMBaseTargetMachine &TM, bool IsLittle)
91     : ARMGenSubtargetInfo(TT, CPU, FS), UseMulOps(UseFusedMulOps),
92       CPUString(CPU), IsLittle(IsLittle), TargetTriple(TT), Options(TM.Options),
93       TM(TM), FrameLowering(initializeFrameLowering(CPU, FS)),
94       // At this point initializeSubtargetDependencies has been called so
95       // we can query directly.
96       InstrInfo(isThumb1Only()
97                     ? (ARMBaseInstrInfo *)new Thumb1InstrInfo(*this)
98                     : !isThumb()
99                           ? (ARMBaseInstrInfo *)new ARMInstrInfo(*this)
100                           : (ARMBaseInstrInfo *)new Thumb2InstrInfo(*this)),
101       TLInfo(TM, *this) {}
102 
initializeEnvironment()103 void ARMSubtarget::initializeEnvironment() {
104   // MCAsmInfo isn't always present (e.g. in opt) so we can't initialize this
105   // directly from it, but we can try to make sure they're consistent when both
106   // available.
107   UseSjLjEH = isTargetDarwin() && !isTargetWatchABI();
108   assert((!TM.getMCAsmInfo() ||
109           (TM.getMCAsmInfo()->getExceptionHandlingType() ==
110            ExceptionHandling::SjLj) == UseSjLjEH) &&
111          "inconsistent sjlj choice between CodeGen and MC");
112 }
113 
initSubtargetFeatures(StringRef CPU,StringRef FS)114 void ARMSubtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) {
115   if (CPUString.empty()) {
116     CPUString = "generic";
117 
118     if (isTargetDarwin()) {
119       StringRef ArchName = TargetTriple.getArchName();
120       if (ArchName.endswith("v7s"))
121         // Default to the Swift CPU when targeting armv7s/thumbv7s.
122         CPUString = "swift";
123       else if (ArchName.endswith("v7k"))
124         // Default to the Cortex-a7 CPU when targeting armv7k/thumbv7k.
125         // ARMv7k does not use SjLj exception handling.
126         CPUString = "cortex-a7";
127     }
128   }
129 
130   // Insert the architecture feature derived from the target triple into the
131   // feature string. This is important for setting features that are implied
132   // based on the architecture version.
133   std::string ArchFS = ARM_MC::ParseARMTriple(TargetTriple, CPUString);
134   if (!FS.empty()) {
135     if (!ArchFS.empty())
136       ArchFS = (Twine(ArchFS) + "," + FS).str();
137     else
138       ArchFS = FS;
139   }
140   ParseSubtargetFeatures(CPUString, ArchFS);
141 
142   // FIXME: This used enable V6T2 support implicitly for Thumb2 mode.
143   // Assert this for now to make the change obvious.
144   assert(hasV6T2Ops() || !hasThumb2());
145 
146   // Keep a pointer to static instruction cost data for the specified CPU.
147   SchedModel = getSchedModelForCPU(CPUString);
148 
149   // Initialize scheduling itinerary for the specified CPU.
150   InstrItins = getInstrItineraryForCPU(CPUString);
151 
152   // FIXME: this is invalid for WindowsCE
153   if (isTargetWindows())
154     NoARM = true;
155 
156   if (isAAPCS_ABI())
157     stackAlignment = 8;
158   if (isTargetNaCl() || isAAPCS16_ABI())
159     stackAlignment = 16;
160 
161   // FIXME: Completely disable sibcall for Thumb1 since ThumbRegisterInfo::
162   // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
163   // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
164   // support in the assembler and linker to be used. This would need to be
165   // fixed to fully support tail calls in Thumb1.
166   //
167   // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
168   // LR.  This means if we need to reload LR, it takes an extra instructions,
169   // which outweighs the value of the tail call; but here we don't know yet
170   // whether LR is going to be used.  Probably the right approach is to
171   // generate the tail call here and turn it back into CALL/RET in
172   // emitEpilogue if LR is used.
173 
174   // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
175   // but we need to make sure there are enough registers; the only valid
176   // registers are the 4 used for parameters.  We don't currently do this
177   // case.
178 
179   SupportsTailCall = !isThumb() || hasV8MBaselineOps();
180 
181   if (isTargetMachO() && isTargetIOS() && getTargetTriple().isOSVersionLT(5, 0))
182     SupportsTailCall = false;
183 
184   switch (IT) {
185   case DefaultIT:
186     RestrictIT = hasV8Ops();
187     break;
188   case RestrictedIT:
189     RestrictIT = true;
190     break;
191   case NoRestrictedIT:
192     RestrictIT = false;
193     break;
194   }
195 
196   // NEON f32 ops are non-IEEE 754 compliant. Darwin is ok with it by default.
197   const FeatureBitset &Bits = getFeatureBits();
198   if ((Bits[ARM::ProcA5] || Bits[ARM::ProcA8]) && // Where this matters
199       (Options.UnsafeFPMath || isTargetDarwin()))
200     UseNEONForSinglePrecisionFP = true;
201 
202   // FIXME: Teach TableGen to deal with these instead of doing it manually here.
203   switch (ARMProcFamily) {
204   case Others:
205   case CortexA5:
206     break;
207   case CortexA7:
208     LdStMultipleTiming = DoubleIssue;
209     break;
210   case CortexA8:
211     LdStMultipleTiming = DoubleIssue;
212     break;
213   case CortexA9:
214     LdStMultipleTiming = DoubleIssueCheckUnalignedAccess;
215     PreISelOperandLatencyAdjustment = 1;
216     break;
217   case CortexA12:
218     break;
219   case CortexA15:
220     MaxInterleaveFactor = 2;
221     PreISelOperandLatencyAdjustment = 1;
222     PartialUpdateClearance = 12;
223     break;
224   case CortexA17:
225   case CortexA32:
226   case CortexA35:
227   case CortexA53:
228   case CortexA57:
229   case CortexA72:
230   case CortexA73:
231   case CortexR4:
232   case CortexR4F:
233   case CortexR5:
234   case CortexR7:
235   case CortexM3:
236   case ExynosM1:
237     break;
238   case Krait:
239     PreISelOperandLatencyAdjustment = 1;
240     break;
241   case Swift:
242     MaxInterleaveFactor = 2;
243     LdStMultipleTiming = SingleIssuePlusExtras;
244     PreISelOperandLatencyAdjustment = 1;
245     PartialUpdateClearance = 12;
246     break;
247   }
248 }
249 
isAPCS_ABI() const250 bool ARMSubtarget::isAPCS_ABI() const {
251   assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
252   return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_APCS;
253 }
isAAPCS_ABI() const254 bool ARMSubtarget::isAAPCS_ABI() const {
255   assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
256   return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS ||
257          TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16;
258 }
isAAPCS16_ABI() const259 bool ARMSubtarget::isAAPCS16_ABI() const {
260   assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
261   return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16;
262 }
263 
isGVIndirectSymbol(const GlobalValue * GV) const264 bool ARMSubtarget::isGVIndirectSymbol(const GlobalValue *GV) const {
265   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
266     return true;
267 
268   // 32 bit macho has no relocation for a-b if a is undefined, even if b is in
269   // the section that is being relocated. This means we have to use o load even
270   // for GVs that are known to be local to the dso.
271   if (isTargetDarwin() && TM.isPositionIndependent() &&
272       (GV->isDeclarationForLinker() || GV->hasCommonLinkage()))
273     return true;
274 
275   return false;
276 }
277 
getMispredictionPenalty() const278 unsigned ARMSubtarget::getMispredictionPenalty() const {
279   return SchedModel.MispredictPenalty;
280 }
281 
hasSinCos() const282 bool ARMSubtarget::hasSinCos() const {
283   return isTargetWatchOS() ||
284     (isTargetIOS() && !getTargetTriple().isOSVersionLT(7, 0));
285 }
286 
enableMachineScheduler() const287 bool ARMSubtarget::enableMachineScheduler() const {
288   // Enable the MachineScheduler before register allocation for out-of-order
289   // architectures where we do not use the PostRA scheduler anymore (for now
290   // restricted to swift).
291   return getSchedModel().isOutOfOrder() && isSwift();
292 }
293 
294 // This overrides the PostRAScheduler bit in the SchedModel for any CPU.
enablePostRAScheduler() const295 bool ARMSubtarget::enablePostRAScheduler() const {
296   // No need for PostRA scheduling on out of order CPUs (for now restricted to
297   // swift).
298   if (getSchedModel().isOutOfOrder() && isSwift())
299     return false;
300   return (!isThumb() || hasThumb2());
301 }
302 
enableAtomicExpand() const303 bool ARMSubtarget::enableAtomicExpand() const {
304   return hasAnyDataBarrier() && (!isThumb() || hasV8MBaselineOps());
305 }
306 
useStride4VFPs(const MachineFunction & MF) const307 bool ARMSubtarget::useStride4VFPs(const MachineFunction &MF) const {
308   // For general targets, the prologue can grow when VFPs are allocated with
309   // stride 4 (more vpush instructions). But WatchOS uses a compact unwind
310   // format which it's more important to get right.
311   return isTargetWatchABI() || (isSwift() && !MF.getFunction()->optForMinSize());
312 }
313 
useMovt(const MachineFunction & MF) const314 bool ARMSubtarget::useMovt(const MachineFunction &MF) const {
315   // NOTE Windows on ARM needs to use mov.w/mov.t pairs to materialise 32-bit
316   // immediates as it is inherently position independent, and may be out of
317   // range otherwise.
318   return !NoMovt && hasV8MBaselineOps() &&
319          (isTargetWindows() || !MF.getFunction()->optForMinSize());
320 }
321 
useFastISel() const322 bool ARMSubtarget::useFastISel() const {
323   // Enable fast-isel for any target, for testing only.
324   if (ForceFastISel)
325     return true;
326 
327   // Limit fast-isel to the targets that are or have been tested.
328   if (!hasV6Ops())
329     return false;
330 
331   // Thumb2 support on iOS; ARM support on iOS, Linux and NaCl.
332   return TM.Options.EnableFastISel &&
333          ((isTargetMachO() && !isThumb1Only()) ||
334           (isTargetLinux() && !isThumb()) || (isTargetNaCl() && !isThumb()));
335 }
336