1 //===-- ARMTargetTransformInfo.cpp - ARM specific TTI ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "ARMTargetTransformInfo.h"
11 #include "llvm/Support/Debug.h"
12 #include "llvm/Target/CostTable.h"
13 #include "llvm/Target/TargetLowering.h"
14 using namespace llvm;
15 
16 #define DEBUG_TYPE "armtti"
17 
getIntImmCost(const APInt & Imm,Type * Ty)18 int ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
19   assert(Ty->isIntegerTy());
20 
21  unsigned Bits = Ty->getPrimitiveSizeInBits();
22  if (Bits == 0 || Imm.getActiveBits() >= 64)
23    return 4;
24 
25   int64_t SImmVal = Imm.getSExtValue();
26   uint64_t ZImmVal = Imm.getZExtValue();
27   if (!ST->isThumb()) {
28     if ((SImmVal >= 0 && SImmVal < 65536) ||
29         (ARM_AM::getSOImmVal(ZImmVal) != -1) ||
30         (ARM_AM::getSOImmVal(~ZImmVal) != -1))
31       return 1;
32     return ST->hasV6T2Ops() ? 2 : 3;
33   }
34   if (ST->isThumb2()) {
35     if ((SImmVal >= 0 && SImmVal < 65536) ||
36         (ARM_AM::getT2SOImmVal(ZImmVal) != -1) ||
37         (ARM_AM::getT2SOImmVal(~ZImmVal) != -1))
38       return 1;
39     return ST->hasV6T2Ops() ? 2 : 3;
40   }
41   // Thumb1.
42   if (SImmVal >= 0 && SImmVal < 256)
43     return 1;
44   if ((~ZImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal))
45     return 2;
46   // Load from constantpool.
47   return 3;
48 }
49 
50 
51 // Constants smaller than 256 fit in the immediate field of
52 // Thumb1 instructions so we return a zero cost and 1 otherwise.
getIntImmCodeSizeCost(unsigned Opcode,unsigned Idx,const APInt & Imm,Type * Ty)53 int ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
54                                       const APInt &Imm, Type *Ty) {
55   if (Imm.isNonNegative() && Imm.getLimitedValue() < 256)
56     return 0;
57 
58   return 1;
59 }
60 
getIntImmCost(unsigned Opcode,unsigned Idx,const APInt & Imm,Type * Ty)61 int ARMTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
62                               Type *Ty) {
63   // Division by a constant can be turned into multiplication, but only if we
64   // know it's constant. So it's not so much that the immediate is cheap (it's
65   // not), but that the alternative is worse.
66   // FIXME: this is probably unneeded with GlobalISel.
67   if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv ||
68        Opcode == Instruction::SRem || Opcode == Instruction::URem) &&
69       Idx == 1)
70     return 0;
71 
72   return getIntImmCost(Imm, Ty);
73 }
74 
75 
getCastInstrCost(unsigned Opcode,Type * Dst,Type * Src)76 int ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
77   int ISD = TLI->InstructionOpcodeToISD(Opcode);
78   assert(ISD && "Invalid opcode");
79 
80   // Single to/from double precision conversions.
81   static const CostTblEntry NEONFltDblTbl[] = {
82     // Vector fptrunc/fpext conversions.
83     { ISD::FP_ROUND,   MVT::v2f64, 2 },
84     { ISD::FP_EXTEND,  MVT::v2f32, 2 },
85     { ISD::FP_EXTEND,  MVT::v4f32, 4 }
86   };
87 
88   if (Src->isVectorTy() && ST->hasNEON() && (ISD == ISD::FP_ROUND ||
89                                           ISD == ISD::FP_EXTEND)) {
90     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
91     if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second))
92       return LT.first * Entry->Cost;
93   }
94 
95   EVT SrcTy = TLI->getValueType(DL, Src);
96   EVT DstTy = TLI->getValueType(DL, Dst);
97 
98   if (!SrcTy.isSimple() || !DstTy.isSimple())
99     return BaseT::getCastInstrCost(Opcode, Dst, Src);
100 
101   // Some arithmetic, load and store operations have specific instructions
102   // to cast up/down their types automatically at no extra cost.
103   // TODO: Get these tables to know at least what the related operations are.
104   static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = {
105     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
106     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
107     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
108     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
109     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64, 0 },
110     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i32, 1 },
111 
112     // The number of vmovl instructions for the extension.
113     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
114     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
115     { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
116     { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
117     { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
118     { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
119     { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
120     { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
121     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
122     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
123 
124     // Operations that we legalize using splitting.
125     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i32, 6 },
126     { ISD::TRUNCATE,    MVT::v8i8, MVT::v8i32, 3 },
127 
128     // Vector float <-> i32 conversions.
129     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
130     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
131 
132     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
133     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
134     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
135     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
136     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
137     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
138     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
139     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
140     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
141     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
142     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
143     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
144     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
145     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
146     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
147     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
148     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
149     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
150     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
151     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
152 
153     { ISD::FP_TO_SINT,  MVT::v4i32, MVT::v4f32, 1 },
154     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f32, 1 },
155     { ISD::FP_TO_SINT,  MVT::v4i8, MVT::v4f32, 3 },
156     { ISD::FP_TO_UINT,  MVT::v4i8, MVT::v4f32, 3 },
157     { ISD::FP_TO_SINT,  MVT::v4i16, MVT::v4f32, 2 },
158     { ISD::FP_TO_UINT,  MVT::v4i16, MVT::v4f32, 2 },
159 
160     // Vector double <-> i32 conversions.
161     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
162     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
163 
164     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
165     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
166     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
167     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
168     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
169     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
170 
171     { ISD::FP_TO_SINT,  MVT::v2i32, MVT::v2f64, 2 },
172     { ISD::FP_TO_UINT,  MVT::v2i32, MVT::v2f64, 2 },
173     { ISD::FP_TO_SINT,  MVT::v8i16, MVT::v8f32, 4 },
174     { ISD::FP_TO_UINT,  MVT::v8i16, MVT::v8f32, 4 },
175     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f32, 8 },
176     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 8 }
177   };
178 
179   if (SrcTy.isVector() && ST->hasNEON()) {
180     if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD,
181                                                    DstTy.getSimpleVT(),
182                                                    SrcTy.getSimpleVT()))
183       return Entry->Cost;
184   }
185 
186   // Scalar float to integer conversions.
187   static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = {
188     { ISD::FP_TO_SINT,  MVT::i1, MVT::f32, 2 },
189     { ISD::FP_TO_UINT,  MVT::i1, MVT::f32, 2 },
190     { ISD::FP_TO_SINT,  MVT::i1, MVT::f64, 2 },
191     { ISD::FP_TO_UINT,  MVT::i1, MVT::f64, 2 },
192     { ISD::FP_TO_SINT,  MVT::i8, MVT::f32, 2 },
193     { ISD::FP_TO_UINT,  MVT::i8, MVT::f32, 2 },
194     { ISD::FP_TO_SINT,  MVT::i8, MVT::f64, 2 },
195     { ISD::FP_TO_UINT,  MVT::i8, MVT::f64, 2 },
196     { ISD::FP_TO_SINT,  MVT::i16, MVT::f32, 2 },
197     { ISD::FP_TO_UINT,  MVT::i16, MVT::f32, 2 },
198     { ISD::FP_TO_SINT,  MVT::i16, MVT::f64, 2 },
199     { ISD::FP_TO_UINT,  MVT::i16, MVT::f64, 2 },
200     { ISD::FP_TO_SINT,  MVT::i32, MVT::f32, 2 },
201     { ISD::FP_TO_UINT,  MVT::i32, MVT::f32, 2 },
202     { ISD::FP_TO_SINT,  MVT::i32, MVT::f64, 2 },
203     { ISD::FP_TO_UINT,  MVT::i32, MVT::f64, 2 },
204     { ISD::FP_TO_SINT,  MVT::i64, MVT::f32, 10 },
205     { ISD::FP_TO_UINT,  MVT::i64, MVT::f32, 10 },
206     { ISD::FP_TO_SINT,  MVT::i64, MVT::f64, 10 },
207     { ISD::FP_TO_UINT,  MVT::i64, MVT::f64, 10 }
208   };
209   if (SrcTy.isFloatingPoint() && ST->hasNEON()) {
210     if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD,
211                                                    DstTy.getSimpleVT(),
212                                                    SrcTy.getSimpleVT()))
213       return Entry->Cost;
214   }
215 
216   // Scalar integer to float conversions.
217   static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = {
218     { ISD::SINT_TO_FP,  MVT::f32, MVT::i1, 2 },
219     { ISD::UINT_TO_FP,  MVT::f32, MVT::i1, 2 },
220     { ISD::SINT_TO_FP,  MVT::f64, MVT::i1, 2 },
221     { ISD::UINT_TO_FP,  MVT::f64, MVT::i1, 2 },
222     { ISD::SINT_TO_FP,  MVT::f32, MVT::i8, 2 },
223     { ISD::UINT_TO_FP,  MVT::f32, MVT::i8, 2 },
224     { ISD::SINT_TO_FP,  MVT::f64, MVT::i8, 2 },
225     { ISD::UINT_TO_FP,  MVT::f64, MVT::i8, 2 },
226     { ISD::SINT_TO_FP,  MVT::f32, MVT::i16, 2 },
227     { ISD::UINT_TO_FP,  MVT::f32, MVT::i16, 2 },
228     { ISD::SINT_TO_FP,  MVT::f64, MVT::i16, 2 },
229     { ISD::UINT_TO_FP,  MVT::f64, MVT::i16, 2 },
230     { ISD::SINT_TO_FP,  MVT::f32, MVT::i32, 2 },
231     { ISD::UINT_TO_FP,  MVT::f32, MVT::i32, 2 },
232     { ISD::SINT_TO_FP,  MVT::f64, MVT::i32, 2 },
233     { ISD::UINT_TO_FP,  MVT::f64, MVT::i32, 2 },
234     { ISD::SINT_TO_FP,  MVT::f32, MVT::i64, 10 },
235     { ISD::UINT_TO_FP,  MVT::f32, MVT::i64, 10 },
236     { ISD::SINT_TO_FP,  MVT::f64, MVT::i64, 10 },
237     { ISD::UINT_TO_FP,  MVT::f64, MVT::i64, 10 }
238   };
239 
240   if (SrcTy.isInteger() && ST->hasNEON()) {
241     if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl,
242                                                    ISD, DstTy.getSimpleVT(),
243                                                    SrcTy.getSimpleVT()))
244       return Entry->Cost;
245   }
246 
247   // Scalar integer conversion costs.
248   static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = {
249     // i16 -> i64 requires two dependent operations.
250     { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 },
251 
252     // Truncates on i64 are assumed to be free.
253     { ISD::TRUNCATE,    MVT::i32, MVT::i64, 0 },
254     { ISD::TRUNCATE,    MVT::i16, MVT::i64, 0 },
255     { ISD::TRUNCATE,    MVT::i8,  MVT::i64, 0 },
256     { ISD::TRUNCATE,    MVT::i1,  MVT::i64, 0 }
257   };
258 
259   if (SrcTy.isInteger()) {
260     if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD,
261                                                    DstTy.getSimpleVT(),
262                                                    SrcTy.getSimpleVT()))
263       return Entry->Cost;
264   }
265 
266   return BaseT::getCastInstrCost(Opcode, Dst, Src);
267 }
268 
getVectorInstrCost(unsigned Opcode,Type * ValTy,unsigned Index)269 int ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
270                                    unsigned Index) {
271   // Penalize inserting into an D-subregister. We end up with a three times
272   // lower estimated throughput on swift.
273   if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement &&
274       ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32)
275     return 3;
276 
277   if ((Opcode == Instruction::InsertElement ||
278        Opcode == Instruction::ExtractElement)) {
279     // Cross-class copies are expensive on many microarchitectures,
280     // so assume they are expensive by default.
281     if (ValTy->getVectorElementType()->isIntegerTy())
282       return 3;
283 
284     // Even if it's not a cross class copy, this likely leads to mixing
285     // of NEON and VFP code and should be therefore penalized.
286     if (ValTy->isVectorTy() &&
287         ValTy->getScalarSizeInBits() <= 32)
288       return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U);
289   }
290 
291   return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
292 }
293 
getCmpSelInstrCost(unsigned Opcode,Type * ValTy,Type * CondTy)294 int ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) {
295 
296   int ISD = TLI->InstructionOpcodeToISD(Opcode);
297   // On NEON a a vector select gets lowered to vbsl.
298   if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT) {
299     // Lowering of some vector selects is currently far from perfect.
300     static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = {
301       { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 },
302       { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 },
303       { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 }
304     };
305 
306     EVT SelCondTy = TLI->getValueType(DL, CondTy);
307     EVT SelValTy = TLI->getValueType(DL, ValTy);
308     if (SelCondTy.isSimple() && SelValTy.isSimple()) {
309       if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD,
310                                                      SelCondTy.getSimpleVT(),
311                                                      SelValTy.getSimpleVT()))
312         return Entry->Cost;
313     }
314 
315     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
316     return LT.first;
317   }
318 
319   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
320 }
321 
getAddressComputationCost(Type * Ty,bool IsComplex)322 int ARMTTIImpl::getAddressComputationCost(Type *Ty, bool IsComplex) {
323   // Address computations in vectorized code with non-consecutive addresses will
324   // likely result in more instructions compared to scalar code where the
325   // computation can more often be merged into the index mode. The resulting
326   // extra micro-ops can significantly decrease throughput.
327   unsigned NumVectorInstToHideOverhead = 10;
328 
329   if (Ty->isVectorTy() && IsComplex)
330     return NumVectorInstToHideOverhead;
331 
332   // In many cases the address computation is not merged into the instruction
333   // addressing mode.
334   return 1;
335 }
336 
getFPOpCost(Type * Ty)337 int ARMTTIImpl::getFPOpCost(Type *Ty) {
338   // Use similar logic that's in ARMISelLowering:
339   // Any ARM CPU with VFP2 has floating point, but Thumb1 didn't have access
340   // to VFP.
341 
342   if (ST->hasVFP2() && !ST->isThumb1Only()) {
343     if (Ty->isFloatTy()) {
344       return TargetTransformInfo::TCC_Basic;
345     }
346 
347     if (Ty->isDoubleTy()) {
348       return ST->isFPOnlySP() ? TargetTransformInfo::TCC_Expensive :
349         TargetTransformInfo::TCC_Basic;
350     }
351   }
352 
353   return TargetTransformInfo::TCC_Expensive;
354 }
355 
getShuffleCost(TTI::ShuffleKind Kind,Type * Tp,int Index,Type * SubTp)356 int ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
357                                Type *SubTp) {
358   // We only handle costs of reverse and alternate shuffles for now.
359   if (Kind != TTI::SK_Reverse && Kind != TTI::SK_Alternate)
360     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
361 
362   if (Kind == TTI::SK_Reverse) {
363     static const CostTblEntry NEONShuffleTbl[] = {
364         // Reverse shuffle cost one instruction if we are shuffling within a
365         // double word (vrev) or two if we shuffle a quad word (vrev, vext).
366         {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
367         {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
368         {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
369         {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
370 
371         {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
372         {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
373         {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2},
374         {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}};
375 
376     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
377 
378     if (const auto *Entry = CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE,
379                                             LT.second))
380       return LT.first * Entry->Cost;
381 
382     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
383   }
384   if (Kind == TTI::SK_Alternate) {
385     static const CostTblEntry NEONAltShuffleTbl[] = {
386         // Alt shuffle cost table for ARM. Cost is the number of instructions
387         // required to create the shuffled vector.
388 
389         {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
390         {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
391         {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
392         {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
393 
394         {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
395         {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
396         {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2},
397 
398         {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16},
399 
400         {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}};
401 
402     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
403     if (const auto *Entry = CostTableLookup(NEONAltShuffleTbl,
404                                             ISD::VECTOR_SHUFFLE, LT.second))
405       return LT.first * Entry->Cost;
406     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
407   }
408   return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
409 }
410 
getArithmeticInstrCost(unsigned Opcode,Type * Ty,TTI::OperandValueKind Op1Info,TTI::OperandValueKind Op2Info,TTI::OperandValueProperties Opd1PropInfo,TTI::OperandValueProperties Opd2PropInfo)411 int ARMTTIImpl::getArithmeticInstrCost(
412     unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
413     TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
414     TTI::OperandValueProperties Opd2PropInfo) {
415 
416   int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode);
417   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
418 
419   const unsigned FunctionCallDivCost = 20;
420   const unsigned ReciprocalDivCost = 10;
421   static const CostTblEntry CostTbl[] = {
422     // Division.
423     // These costs are somewhat random. Choose a cost of 20 to indicate that
424     // vectorizing devision (added function call) is going to be very expensive.
425     // Double registers types.
426     { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost},
427     { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost},
428     { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost},
429     { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost},
430     { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost},
431     { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost},
432     { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost},
433     { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost},
434     { ISD::SDIV, MVT::v4i16,     ReciprocalDivCost},
435     { ISD::UDIV, MVT::v4i16,     ReciprocalDivCost},
436     { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost},
437     { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost},
438     { ISD::SDIV, MVT::v8i8,      ReciprocalDivCost},
439     { ISD::UDIV, MVT::v8i8,      ReciprocalDivCost},
440     { ISD::SREM, MVT::v8i8,  8 * FunctionCallDivCost},
441     { ISD::UREM, MVT::v8i8,  8 * FunctionCallDivCost},
442     // Quad register types.
443     { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost},
444     { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost},
445     { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost},
446     { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost},
447     { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost},
448     { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost},
449     { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost},
450     { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost},
451     { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost},
452     { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost},
453     { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost},
454     { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost},
455     { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost},
456     { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost},
457     { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost},
458     { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost},
459     // Multiplication.
460   };
461 
462   if (ST->hasNEON())
463     if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second))
464       return LT.first * Entry->Cost;
465 
466   int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
467                                            Opd1PropInfo, Opd2PropInfo);
468 
469   // This is somewhat of a hack. The problem that we are facing is that SROA
470   // creates a sequence of shift, and, or instructions to construct values.
471   // These sequences are recognized by the ISel and have zero-cost. Not so for
472   // the vectorized code. Because we have support for v2i64 but not i64 those
473   // sequences look particularly beneficial to vectorize.
474   // To work around this we increase the cost of v2i64 operations to make them
475   // seem less beneficial.
476   if (LT.second == MVT::v2i64 &&
477       Op2Info == TargetTransformInfo::OK_UniformConstantValue)
478     Cost += 4;
479 
480   return Cost;
481 }
482 
getMemoryOpCost(unsigned Opcode,Type * Src,unsigned Alignment,unsigned AddressSpace)483 int ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
484                                 unsigned AddressSpace) {
485   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
486 
487   if (Src->isVectorTy() && Alignment != 16 &&
488       Src->getVectorElementType()->isDoubleTy()) {
489     // Unaligned loads/stores are extremely inefficient.
490     // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr.
491     return LT.first * 4;
492   }
493   return LT.first;
494 }
495 
getInterleavedMemoryOpCost(unsigned Opcode,Type * VecTy,unsigned Factor,ArrayRef<unsigned> Indices,unsigned Alignment,unsigned AddressSpace)496 int ARMTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
497                                            unsigned Factor,
498                                            ArrayRef<unsigned> Indices,
499                                            unsigned Alignment,
500                                            unsigned AddressSpace) {
501   assert(Factor >= 2 && "Invalid interleave factor");
502   assert(isa<VectorType>(VecTy) && "Expect a vector type");
503 
504   // vldN/vstN doesn't support vector types of i64/f64 element.
505   bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64;
506 
507   if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits) {
508     unsigned NumElts = VecTy->getVectorNumElements();
509     Type *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor);
510     unsigned SubVecSize = DL.getTypeSizeInBits(SubVecTy);
511 
512     // vldN/vstN only support legal vector types of size 64 or 128 in bits.
513     if (NumElts % Factor == 0 && (SubVecSize == 64 || SubVecSize == 128))
514       return Factor;
515   }
516 
517   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
518                                            Alignment, AddressSpace);
519 }
520