1 //===-- ARMAddressingModes.h - ARM Addressing Modes -------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the ARM addressing mode implementation stuff.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H
15 #define LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H
16 
17 #include "llvm/ADT/APFloat.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/Support/ErrorHandling.h"
20 #include "llvm/Support/MathExtras.h"
21 #include <cassert>
22 
23 namespace llvm {
24 
25 /// ARM_AM - ARM Addressing Mode Stuff
26 namespace ARM_AM {
27   enum ShiftOpc {
28     no_shift = 0,
29     asr,
30     lsl,
31     lsr,
32     ror,
33     rrx
34   };
35 
36   enum AddrOpc {
37     sub = 0,
38     add
39   };
40 
getAddrOpcStr(AddrOpc Op)41   static inline const char *getAddrOpcStr(AddrOpc Op) {
42     return Op == sub ? "-" : "";
43   }
44 
getShiftOpcStr(ShiftOpc Op)45   static inline const char *getShiftOpcStr(ShiftOpc Op) {
46     switch (Op) {
47     default: llvm_unreachable("Unknown shift opc!");
48     case ARM_AM::asr: return "asr";
49     case ARM_AM::lsl: return "lsl";
50     case ARM_AM::lsr: return "lsr";
51     case ARM_AM::ror: return "ror";
52     case ARM_AM::rrx: return "rrx";
53     }
54   }
55 
getShiftOpcEncoding(ShiftOpc Op)56   static inline unsigned getShiftOpcEncoding(ShiftOpc Op) {
57     switch (Op) {
58     default: llvm_unreachable("Unknown shift opc!");
59     case ARM_AM::asr: return 2;
60     case ARM_AM::lsl: return 0;
61     case ARM_AM::lsr: return 1;
62     case ARM_AM::ror: return 3;
63     }
64   }
65 
66   enum AMSubMode {
67     bad_am_submode = 0,
68     ia,
69     ib,
70     da,
71     db
72   };
73 
getAMSubModeStr(AMSubMode Mode)74   static inline const char *getAMSubModeStr(AMSubMode Mode) {
75     switch (Mode) {
76     default: llvm_unreachable("Unknown addressing sub-mode!");
77     case ARM_AM::ia: return "ia";
78     case ARM_AM::ib: return "ib";
79     case ARM_AM::da: return "da";
80     case ARM_AM::db: return "db";
81     }
82   }
83 
84   /// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits.
85   ///
rotr32(unsigned Val,unsigned Amt)86   static inline unsigned rotr32(unsigned Val, unsigned Amt) {
87     assert(Amt < 32 && "Invalid rotate amount");
88     return (Val >> Amt) | (Val << ((32-Amt)&31));
89   }
90 
91   /// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits.
92   ///
rotl32(unsigned Val,unsigned Amt)93   static inline unsigned rotl32(unsigned Val, unsigned Amt) {
94     assert(Amt < 32 && "Invalid rotate amount");
95     return (Val << Amt) | (Val >> ((32-Amt)&31));
96   }
97 
98   //===--------------------------------------------------------------------===//
99   // Addressing Mode #1: shift_operand with registers
100   //===--------------------------------------------------------------------===//
101   //
102   // This 'addressing mode' is used for arithmetic instructions.  It can
103   // represent things like:
104   //   reg
105   //   reg [asr|lsl|lsr|ror|rrx] reg
106   //   reg [asr|lsl|lsr|ror|rrx] imm
107   //
108   // This is stored three operands [rega, regb, opc].  The first is the base
109   // reg, the second is the shift amount (or reg0 if not present or imm).  The
110   // third operand encodes the shift opcode and the imm if a reg isn't present.
111   //
getSORegOpc(ShiftOpc ShOp,unsigned Imm)112   static inline unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm) {
113     return ShOp | (Imm << 3);
114   }
getSORegOffset(unsigned Op)115   static inline unsigned getSORegOffset(unsigned Op) {
116     return Op >> 3;
117   }
getSORegShOp(unsigned Op)118   static inline ShiftOpc getSORegShOp(unsigned Op) {
119     return (ShiftOpc)(Op & 7);
120   }
121 
122   /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return
123   /// the 8-bit imm value.
getSOImmValImm(unsigned Imm)124   static inline unsigned getSOImmValImm(unsigned Imm) {
125     return Imm & 0xFF;
126   }
127   /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return
128   /// the rotate amount.
getSOImmValRot(unsigned Imm)129   static inline unsigned getSOImmValRot(unsigned Imm) {
130     return (Imm >> 8) * 2;
131   }
132 
133   /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand,
134   /// computing the rotate amount to use.  If this immediate value cannot be
135   /// handled with a single shifter-op, determine a good rotate amount that will
136   /// take a maximal chunk of bits out of the immediate.
getSOImmValRotate(unsigned Imm)137   static inline unsigned getSOImmValRotate(unsigned Imm) {
138     // 8-bit (or less) immediates are trivially shifter_operands with a rotate
139     // of zero.
140     if ((Imm & ~255U) == 0) return 0;
141 
142     // Use CTZ to compute the rotate amount.
143     unsigned TZ = countTrailingZeros(Imm);
144 
145     // Rotate amount must be even.  Something like 0x200 must be rotated 8 bits,
146     // not 9.
147     unsigned RotAmt = TZ & ~1;
148 
149     // If we can handle this spread, return it.
150     if ((rotr32(Imm, RotAmt) & ~255U) == 0)
151       return (32-RotAmt)&31;  // HW rotates right, not left.
152 
153     // For values like 0xF000000F, we should ignore the low 6 bits, then
154     // retry the hunt.
155     if (Imm & 63U) {
156       unsigned TZ2 = countTrailingZeros(Imm & ~63U);
157       unsigned RotAmt2 = TZ2 & ~1;
158       if ((rotr32(Imm, RotAmt2) & ~255U) == 0)
159         return (32-RotAmt2)&31;  // HW rotates right, not left.
160     }
161 
162     // Otherwise, we have no way to cover this span of bits with a single
163     // shifter_op immediate.  Return a chunk of bits that will be useful to
164     // handle.
165     return (32-RotAmt)&31;  // HW rotates right, not left.
166   }
167 
168   /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit
169   /// into an shifter_operand immediate operand, return the 12-bit encoding for
170   /// it.  If not, return -1.
getSOImmVal(unsigned Arg)171   static inline int getSOImmVal(unsigned Arg) {
172     // 8-bit (or less) immediates are trivially shifter_operands with a rotate
173     // of zero.
174     if ((Arg & ~255U) == 0) return Arg;
175 
176     unsigned RotAmt = getSOImmValRotate(Arg);
177 
178     // If this cannot be handled with a single shifter_op, bail out.
179     if (rotr32(~255U, RotAmt) & Arg)
180       return -1;
181 
182     // Encode this correctly.
183     return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8);
184   }
185 
186   /// isSOImmTwoPartVal - Return true if the specified value can be obtained by
187   /// or'ing together two SOImmVal's.
isSOImmTwoPartVal(unsigned V)188   static inline bool isSOImmTwoPartVal(unsigned V) {
189     // If this can be handled with a single shifter_op, bail out.
190     V = rotr32(~255U, getSOImmValRotate(V)) & V;
191     if (V == 0)
192       return false;
193 
194     // If this can be handled with two shifter_op's, accept.
195     V = rotr32(~255U, getSOImmValRotate(V)) & V;
196     return V == 0;
197   }
198 
199   /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal,
200   /// return the first chunk of it.
getSOImmTwoPartFirst(unsigned V)201   static inline unsigned getSOImmTwoPartFirst(unsigned V) {
202     return rotr32(255U, getSOImmValRotate(V)) & V;
203   }
204 
205   /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal,
206   /// return the second chunk of it.
getSOImmTwoPartSecond(unsigned V)207   static inline unsigned getSOImmTwoPartSecond(unsigned V) {
208     // Mask out the first hunk.
209     V = rotr32(~255U, getSOImmValRotate(V)) & V;
210 
211     // Take what's left.
212     assert(V == (rotr32(255U, getSOImmValRotate(V)) & V));
213     return V;
214   }
215 
216   /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed
217   /// by a left shift. Returns the shift amount to use.
getThumbImmValShift(unsigned Imm)218   static inline unsigned getThumbImmValShift(unsigned Imm) {
219     // 8-bit (or less) immediates are trivially immediate operand with a shift
220     // of zero.
221     if ((Imm & ~255U) == 0) return 0;
222 
223     // Use CTZ to compute the shift amount.
224     return countTrailingZeros(Imm);
225   }
226 
227   /// isThumbImmShiftedVal - Return true if the specified value can be obtained
228   /// by left shifting a 8-bit immediate.
isThumbImmShiftedVal(unsigned V)229   static inline bool isThumbImmShiftedVal(unsigned V) {
230     // If this can be handled with
231     V = (~255U << getThumbImmValShift(V)) & V;
232     return V == 0;
233   }
234 
235   /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed
236   /// by a left shift. Returns the shift amount to use.
getThumbImm16ValShift(unsigned Imm)237   static inline unsigned getThumbImm16ValShift(unsigned Imm) {
238     // 16-bit (or less) immediates are trivially immediate operand with a shift
239     // of zero.
240     if ((Imm & ~65535U) == 0) return 0;
241 
242     // Use CTZ to compute the shift amount.
243     return countTrailingZeros(Imm);
244   }
245 
246   /// isThumbImm16ShiftedVal - Return true if the specified value can be
247   /// obtained by left shifting a 16-bit immediate.
isThumbImm16ShiftedVal(unsigned V)248   static inline bool isThumbImm16ShiftedVal(unsigned V) {
249     // If this can be handled with
250     V = (~65535U << getThumbImm16ValShift(V)) & V;
251     return V == 0;
252   }
253 
254   /// getThumbImmNonShiftedVal - If V is a value that satisfies
255   /// isThumbImmShiftedVal, return the non-shiftd value.
getThumbImmNonShiftedVal(unsigned V)256   static inline unsigned getThumbImmNonShiftedVal(unsigned V) {
257     return V >> getThumbImmValShift(V);
258   }
259 
260 
261   /// getT2SOImmValSplat - Return the 12-bit encoded representation
262   /// if the specified value can be obtained by splatting the low 8 bits
263   /// into every other byte or every byte of a 32-bit value. i.e.,
264   ///     00000000 00000000 00000000 abcdefgh    control = 0
265   ///     00000000 abcdefgh 00000000 abcdefgh    control = 1
266   ///     abcdefgh 00000000 abcdefgh 00000000    control = 2
267   ///     abcdefgh abcdefgh abcdefgh abcdefgh    control = 3
268   /// Return -1 if none of the above apply.
269   /// See ARM Reference Manual A6.3.2.
getT2SOImmValSplatVal(unsigned V)270   static inline int getT2SOImmValSplatVal(unsigned V) {
271     unsigned u, Vs, Imm;
272     // control = 0
273     if ((V & 0xffffff00) == 0)
274       return V;
275 
276     // If the value is zeroes in the first byte, just shift those off
277     Vs = ((V & 0xff) == 0) ? V >> 8 : V;
278     // Any passing value only has 8 bits of payload, splatted across the word
279     Imm = Vs & 0xff;
280     // Likewise, any passing values have the payload splatted into the 3rd byte
281     u = Imm | (Imm << 16);
282 
283     // control = 1 or 2
284     if (Vs == u)
285       return (((Vs == V) ? 1 : 2) << 8) | Imm;
286 
287     // control = 3
288     if (Vs == (u | (u << 8)))
289       return (3 << 8) | Imm;
290 
291     return -1;
292   }
293 
294   /// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the
295   /// specified value is a rotated 8-bit value. Return -1 if no rotation
296   /// encoding is possible.
297   /// See ARM Reference Manual A6.3.2.
getT2SOImmValRotateVal(unsigned V)298   static inline int getT2SOImmValRotateVal(unsigned V) {
299     unsigned RotAmt = countLeadingZeros(V);
300     if (RotAmt >= 24)
301       return -1;
302 
303     // If 'Arg' can be handled with a single shifter_op return the value.
304     if ((rotr32(0xff000000U, RotAmt) & V) == V)
305       return (rotr32(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7);
306 
307     return -1;
308   }
309 
310   /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit
311   /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit
312   /// encoding for it.  If not, return -1.
313   /// See ARM Reference Manual A6.3.2.
getT2SOImmVal(unsigned Arg)314   static inline int getT2SOImmVal(unsigned Arg) {
315     // If 'Arg' is an 8-bit splat, then get the encoded value.
316     int Splat = getT2SOImmValSplatVal(Arg);
317     if (Splat != -1)
318       return Splat;
319 
320     // If 'Arg' can be handled with a single shifter_op return the value.
321     int Rot = getT2SOImmValRotateVal(Arg);
322     if (Rot != -1)
323       return Rot;
324 
325     return -1;
326   }
327 
getT2SOImmValRotate(unsigned V)328   static inline unsigned getT2SOImmValRotate(unsigned V) {
329     if ((V & ~255U) == 0) return 0;
330     // Use CTZ to compute the rotate amount.
331     unsigned RotAmt = countTrailingZeros(V);
332     return (32 - RotAmt) & 31;
333   }
334 
isT2SOImmTwoPartVal(unsigned Imm)335   static inline bool isT2SOImmTwoPartVal (unsigned Imm) {
336     unsigned V = Imm;
337     // Passing values can be any combination of splat values and shifter
338     // values. If this can be handled with a single shifter or splat, bail
339     // out. Those should be handled directly, not with a two-part val.
340     if (getT2SOImmValSplatVal(V) != -1)
341       return false;
342     V = rotr32 (~255U, getT2SOImmValRotate(V)) & V;
343     if (V == 0)
344       return false;
345 
346     // If this can be handled as an immediate, accept.
347     if (getT2SOImmVal(V) != -1) return true;
348 
349     // Likewise, try masking out a splat value first.
350     V = Imm;
351     if (getT2SOImmValSplatVal(V & 0xff00ff00U) != -1)
352       V &= ~0xff00ff00U;
353     else if (getT2SOImmValSplatVal(V & 0x00ff00ffU) != -1)
354       V &= ~0x00ff00ffU;
355     // If what's left can be handled as an immediate, accept.
356     if (getT2SOImmVal(V) != -1) return true;
357 
358     // Otherwise, do not accept.
359     return false;
360   }
361 
getT2SOImmTwoPartFirst(unsigned Imm)362   static inline unsigned getT2SOImmTwoPartFirst(unsigned Imm) {
363     assert (isT2SOImmTwoPartVal(Imm) &&
364             "Immedate cannot be encoded as two part immediate!");
365     // Try a shifter operand as one part
366     unsigned V = rotr32 (~255, getT2SOImmValRotate(Imm)) & Imm;
367     // If the rest is encodable as an immediate, then return it.
368     if (getT2SOImmVal(V) != -1) return V;
369 
370     // Try masking out a splat value first.
371     if (getT2SOImmValSplatVal(Imm & 0xff00ff00U) != -1)
372       return Imm & 0xff00ff00U;
373 
374     // The other splat is all that's left as an option.
375     assert (getT2SOImmValSplatVal(Imm & 0x00ff00ffU) != -1);
376     return Imm & 0x00ff00ffU;
377   }
378 
getT2SOImmTwoPartSecond(unsigned Imm)379   static inline unsigned getT2SOImmTwoPartSecond(unsigned Imm) {
380     // Mask out the first hunk
381     Imm ^= getT2SOImmTwoPartFirst(Imm);
382     // Return what's left
383     assert (getT2SOImmVal(Imm) != -1 &&
384             "Unable to encode second part of T2 two part SO immediate");
385     return Imm;
386   }
387 
388 
389   //===--------------------------------------------------------------------===//
390   // Addressing Mode #2
391   //===--------------------------------------------------------------------===//
392   //
393   // This is used for most simple load/store instructions.
394   //
395   // addrmode2 := reg +/- reg shop imm
396   // addrmode2 := reg +/- imm12
397   //
398   // The first operand is always a Reg.  The second operand is a reg if in
399   // reg/reg form, otherwise it's reg#0.  The third field encodes the operation
400   // in bit 12, the immediate in bits 0-11, and the shift op in 13-15. The
401   // fourth operand 16-17 encodes the index mode.
402   //
403   // If this addressing mode is a frame index (before prolog/epilog insertion
404   // and code rewriting), this operand will have the form:  FI#, reg0, <offs>
405   // with no shift amount for the frame offset.
406   //
407   static inline unsigned getAM2Opc(AddrOpc Opc, unsigned Imm12, ShiftOpc SO,
408                                    unsigned IdxMode = 0) {
409     assert(Imm12 < (1 << 12) && "Imm too large!");
410     bool isSub = Opc == sub;
411     return Imm12 | ((int)isSub << 12) | (SO << 13) | (IdxMode << 16) ;
412   }
getAM2Offset(unsigned AM2Opc)413   static inline unsigned getAM2Offset(unsigned AM2Opc) {
414     return AM2Opc & ((1 << 12)-1);
415   }
getAM2Op(unsigned AM2Opc)416   static inline AddrOpc getAM2Op(unsigned AM2Opc) {
417     return ((AM2Opc >> 12) & 1) ? sub : add;
418   }
getAM2ShiftOpc(unsigned AM2Opc)419   static inline ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) {
420     return (ShiftOpc)((AM2Opc >> 13) & 7);
421   }
getAM2IdxMode(unsigned AM2Opc)422   static inline unsigned getAM2IdxMode(unsigned AM2Opc) {
423     return (AM2Opc >> 16);
424   }
425 
426 
427   //===--------------------------------------------------------------------===//
428   // Addressing Mode #3
429   //===--------------------------------------------------------------------===//
430   //
431   // This is used for sign-extending loads, and load/store-pair instructions.
432   //
433   // addrmode3 := reg +/- reg
434   // addrmode3 := reg +/- imm8
435   //
436   // The first operand is always a Reg.  The second operand is a reg if in
437   // reg/reg form, otherwise it's reg#0.  The third field encodes the operation
438   // in bit 8, the immediate in bits 0-7. The fourth operand 9-10 encodes the
439   // index mode.
440 
441   /// getAM3Opc - This function encodes the addrmode3 opc field.
442   static inline unsigned getAM3Opc(AddrOpc Opc, unsigned char Offset,
443                                    unsigned IdxMode = 0) {
444     bool isSub = Opc == sub;
445     return ((int)isSub << 8) | Offset | (IdxMode << 9);
446   }
getAM3Offset(unsigned AM3Opc)447   static inline unsigned char getAM3Offset(unsigned AM3Opc) {
448     return AM3Opc & 0xFF;
449   }
getAM3Op(unsigned AM3Opc)450   static inline AddrOpc getAM3Op(unsigned AM3Opc) {
451     return ((AM3Opc >> 8) & 1) ? sub : add;
452   }
getAM3IdxMode(unsigned AM3Opc)453   static inline unsigned getAM3IdxMode(unsigned AM3Opc) {
454     return (AM3Opc >> 9);
455   }
456 
457   //===--------------------------------------------------------------------===//
458   // Addressing Mode #4
459   //===--------------------------------------------------------------------===//
460   //
461   // This is used for load / store multiple instructions.
462   //
463   // addrmode4 := reg, <mode>
464   //
465   // The four modes are:
466   //    IA - Increment after
467   //    IB - Increment before
468   //    DA - Decrement after
469   //    DB - Decrement before
470   // For VFP instructions, only the IA and DB modes are valid.
471 
getAM4SubMode(unsigned Mode)472   static inline AMSubMode getAM4SubMode(unsigned Mode) {
473     return (AMSubMode)(Mode & 0x7);
474   }
475 
getAM4ModeImm(AMSubMode SubMode)476   static inline unsigned getAM4ModeImm(AMSubMode SubMode) {
477     return (int)SubMode;
478   }
479 
480   //===--------------------------------------------------------------------===//
481   // Addressing Mode #5
482   //===--------------------------------------------------------------------===//
483   //
484   // This is used for coprocessor instructions, such as FP load/stores.
485   //
486   // addrmode5 := reg +/- imm8*4
487   //
488   // The first operand is always a Reg.  The second operand encodes the
489   // operation (add or subtract) in bit 8 and the immediate in bits 0-7.
490 
491   /// getAM5Opc - This function encodes the addrmode5 opc field.
getAM5Opc(AddrOpc Opc,unsigned char Offset)492   static inline unsigned getAM5Opc(AddrOpc Opc, unsigned char Offset) {
493     bool isSub = Opc == sub;
494     return ((int)isSub << 8) | Offset;
495   }
getAM5Offset(unsigned AM5Opc)496   static inline unsigned char getAM5Offset(unsigned AM5Opc) {
497     return AM5Opc & 0xFF;
498   }
getAM5Op(unsigned AM5Opc)499   static inline AddrOpc getAM5Op(unsigned AM5Opc) {
500     return ((AM5Opc >> 8) & 1) ? sub : add;
501   }
502 
503   //===--------------------------------------------------------------------===//
504   // Addressing Mode #5 FP16
505   //===--------------------------------------------------------------------===//
506   //
507   // This is used for coprocessor instructions, such as 16-bit FP load/stores.
508   //
509   // addrmode5fp16 := reg +/- imm8*2
510   //
511   // The first operand is always a Reg.  The second operand encodes the
512   // operation (add or subtract) in bit 8 and the immediate in bits 0-7.
513 
514   /// getAM5FP16Opc - This function encodes the addrmode5fp16 opc field.
getAM5FP16Opc(AddrOpc Opc,unsigned char Offset)515   static inline unsigned getAM5FP16Opc(AddrOpc Opc, unsigned char Offset) {
516     bool isSub = Opc == sub;
517     return ((int)isSub << 8) | Offset;
518   }
getAM5FP16Offset(unsigned AM5Opc)519   static inline unsigned char getAM5FP16Offset(unsigned AM5Opc) {
520     return AM5Opc & 0xFF;
521   }
getAM5FP16Op(unsigned AM5Opc)522   static inline AddrOpc getAM5FP16Op(unsigned AM5Opc) {
523     return ((AM5Opc >> 8) & 1) ? sub : add;
524   }
525 
526   //===--------------------------------------------------------------------===//
527   // Addressing Mode #6
528   //===--------------------------------------------------------------------===//
529   //
530   // This is used for NEON load / store instructions.
531   //
532   // addrmode6 := reg with optional alignment
533   //
534   // This is stored in two operands [regaddr, align].  The first is the
535   // address register.  The second operand is the value of the alignment
536   // specifier in bytes or zero if no explicit alignment.
537   // Valid alignments depend on the specific instruction.
538 
539   //===--------------------------------------------------------------------===//
540   // NEON Modified Immediates
541   //===--------------------------------------------------------------------===//
542   //
543   // Several NEON instructions (e.g., VMOV) take a "modified immediate"
544   // vector operand, where a small immediate encoded in the instruction
545   // specifies a full NEON vector value.  These modified immediates are
546   // represented here as encoded integers.  The low 8 bits hold the immediate
547   // value; bit 12 holds the "Op" field of the instruction, and bits 11-8 hold
548   // the "Cmode" field of the instruction.  The interfaces below treat the
549   // Op and Cmode values as a single 5-bit value.
550 
createNEONModImm(unsigned OpCmode,unsigned Val)551   static inline unsigned createNEONModImm(unsigned OpCmode, unsigned Val) {
552     return (OpCmode << 8) | Val;
553   }
getNEONModImmOpCmode(unsigned ModImm)554   static inline unsigned getNEONModImmOpCmode(unsigned ModImm) {
555     return (ModImm >> 8) & 0x1f;
556   }
getNEONModImmVal(unsigned ModImm)557   static inline unsigned getNEONModImmVal(unsigned ModImm) {
558     return ModImm & 0xff;
559   }
560 
561   /// decodeNEONModImm - Decode a NEON modified immediate value into the
562   /// element value and the element size in bits.  (If the element size is
563   /// smaller than the vector, it is splatted into all the elements.)
decodeNEONModImm(unsigned ModImm,unsigned & EltBits)564   static inline uint64_t decodeNEONModImm(unsigned ModImm, unsigned &EltBits) {
565     unsigned OpCmode = getNEONModImmOpCmode(ModImm);
566     unsigned Imm8 = getNEONModImmVal(ModImm);
567     uint64_t Val = 0;
568 
569     if (OpCmode == 0xe) {
570       // 8-bit vector elements
571       Val = Imm8;
572       EltBits = 8;
573     } else if ((OpCmode & 0xc) == 0x8) {
574       // 16-bit vector elements
575       unsigned ByteNum = (OpCmode & 0x6) >> 1;
576       Val = Imm8 << (8 * ByteNum);
577       EltBits = 16;
578     } else if ((OpCmode & 0x8) == 0) {
579       // 32-bit vector elements, zero with one byte set
580       unsigned ByteNum = (OpCmode & 0x6) >> 1;
581       Val = Imm8 << (8 * ByteNum);
582       EltBits = 32;
583     } else if ((OpCmode & 0xe) == 0xc) {
584       // 32-bit vector elements, one byte with low bits set
585       unsigned ByteNum = 1 + (OpCmode & 0x1);
586       Val = (Imm8 << (8 * ByteNum)) | (0xffff >> (8 * (2 - ByteNum)));
587       EltBits = 32;
588     } else if (OpCmode == 0x1e) {
589       // 64-bit vector elements
590       for (unsigned ByteNum = 0; ByteNum < 8; ++ByteNum) {
591         if ((ModImm >> ByteNum) & 1)
592           Val |= (uint64_t)0xff << (8 * ByteNum);
593       }
594       EltBits = 64;
595     } else {
596       llvm_unreachable("Unsupported NEON immediate");
597     }
598     return Val;
599   }
600 
601   // Generic validation for single-byte immediate (0X00, 00X0, etc).
isNEONBytesplat(unsigned Value,unsigned Size)602   static inline bool isNEONBytesplat(unsigned Value, unsigned Size) {
603     assert(Size >= 1 && Size <= 4 && "Invalid size");
604     unsigned count = 0;
605     for (unsigned i = 0; i < Size; ++i) {
606       if (Value & 0xff) count++;
607       Value >>= 8;
608     }
609     return count == 1;
610   }
611 
612   /// Checks if Value is a correct immediate for instructions like VBIC/VORR.
isNEONi16splat(unsigned Value)613   static inline bool isNEONi16splat(unsigned Value) {
614     if (Value > 0xffff)
615       return false;
616     // i16 value with set bits only in one byte X0 or 0X.
617     return Value == 0 || isNEONBytesplat(Value, 2);
618   }
619 
620   // Encode NEON 16 bits Splat immediate for instructions like VBIC/VORR
encodeNEONi16splat(unsigned Value)621   static inline unsigned encodeNEONi16splat(unsigned Value) {
622     assert(isNEONi16splat(Value) && "Invalid NEON splat value");
623     if (Value >= 0x100)
624       Value = (Value >> 8) | 0xa00;
625     else
626       Value |= 0x800;
627     return Value;
628   }
629 
630   /// Checks if Value is a correct immediate for instructions like VBIC/VORR.
isNEONi32splat(unsigned Value)631   static inline bool isNEONi32splat(unsigned Value) {
632     // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X.
633     return Value == 0 || isNEONBytesplat(Value, 4);
634   }
635 
636   /// Encode NEON 32 bits Splat immediate for instructions like VBIC/VORR.
encodeNEONi32splat(unsigned Value)637   static inline unsigned encodeNEONi32splat(unsigned Value) {
638     assert(isNEONi32splat(Value) && "Invalid NEON splat value");
639     if (Value >= 0x100 && Value <= 0xff00)
640       Value = (Value >> 8) | 0x200;
641     else if (Value > 0xffff && Value <= 0xff0000)
642       Value = (Value >> 16) | 0x400;
643     else if (Value > 0xffffff)
644       Value = (Value >> 24) | 0x600;
645     return Value;
646   }
647 
648   //===--------------------------------------------------------------------===//
649   // Floating-point Immediates
650   //
getFPImmFloat(unsigned Imm)651   static inline float getFPImmFloat(unsigned Imm) {
652     // We expect an 8-bit binary encoding of a floating-point number here.
653     union {
654       uint32_t I;
655       float F;
656     } FPUnion;
657 
658     uint8_t Sign = (Imm >> 7) & 0x1;
659     uint8_t Exp = (Imm >> 4) & 0x7;
660     uint8_t Mantissa = Imm & 0xf;
661 
662     //   8-bit FP    iEEEE Float Encoding
663     //   abcd efgh   aBbbbbbc defgh000 00000000 00000000
664     //
665     // where B = NOT(b);
666 
667     FPUnion.I = 0;
668     FPUnion.I |= Sign << 31;
669     FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
670     FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
671     FPUnion.I |= (Exp & 0x3) << 23;
672     FPUnion.I |= Mantissa << 19;
673     return FPUnion.F;
674   }
675 
676   /// getFP16Imm - Return an 8-bit floating-point version of the 16-bit
677   /// floating-point value. If the value cannot be represented as an 8-bit
678   /// floating-point value, then return -1.
getFP16Imm(const APInt & Imm)679   static inline int getFP16Imm(const APInt &Imm) {
680     uint32_t Sign = Imm.lshr(15).getZExtValue() & 1;
681     int32_t Exp = (Imm.lshr(10).getSExtValue() & 0x1f) - 15;  // -14 to 15
682     int64_t Mantissa = Imm.getZExtValue() & 0x3ff;  // 10 bits
683 
684     // We can handle 4 bits of mantissa.
685     // mantissa = (16+UInt(e:f:g:h))/16.
686     if (Mantissa & 0x3f)
687       return -1;
688     Mantissa >>= 6;
689 
690     // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
691     if (Exp < -3 || Exp > 4)
692       return -1;
693     Exp = ((Exp+3) & 0x7) ^ 4;
694 
695     return ((int)Sign << 7) | (Exp << 4) | Mantissa;
696   }
697 
getFP16Imm(const APFloat & FPImm)698   static inline int getFP16Imm(const APFloat &FPImm) {
699     return getFP16Imm(FPImm.bitcastToAPInt());
700   }
701 
702   /// getFP32Imm - Return an 8-bit floating-point version of the 32-bit
703   /// floating-point value. If the value cannot be represented as an 8-bit
704   /// floating-point value, then return -1.
getFP32Imm(const APInt & Imm)705   static inline int getFP32Imm(const APInt &Imm) {
706     uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
707     int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
708     int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
709 
710     // We can handle 4 bits of mantissa.
711     // mantissa = (16+UInt(e:f:g:h))/16.
712     if (Mantissa & 0x7ffff)
713       return -1;
714     Mantissa >>= 19;
715     if ((Mantissa & 0xf) != Mantissa)
716       return -1;
717 
718     // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
719     if (Exp < -3 || Exp > 4)
720       return -1;
721     Exp = ((Exp+3) & 0x7) ^ 4;
722 
723     return ((int)Sign << 7) | (Exp << 4) | Mantissa;
724   }
725 
getFP32Imm(const APFloat & FPImm)726   static inline int getFP32Imm(const APFloat &FPImm) {
727     return getFP32Imm(FPImm.bitcastToAPInt());
728   }
729 
730   /// getFP64Imm - Return an 8-bit floating-point version of the 64-bit
731   /// floating-point value. If the value cannot be represented as an 8-bit
732   /// floating-point value, then return -1.
getFP64Imm(const APInt & Imm)733   static inline int getFP64Imm(const APInt &Imm) {
734     uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
735     int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023
736     uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL;
737 
738     // We can handle 4 bits of mantissa.
739     // mantissa = (16+UInt(e:f:g:h))/16.
740     if (Mantissa & 0xffffffffffffULL)
741       return -1;
742     Mantissa >>= 48;
743     if ((Mantissa & 0xf) != Mantissa)
744       return -1;
745 
746     // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
747     if (Exp < -3 || Exp > 4)
748       return -1;
749     Exp = ((Exp+3) & 0x7) ^ 4;
750 
751     return ((int)Sign << 7) | (Exp << 4) | Mantissa;
752   }
753 
getFP64Imm(const APFloat & FPImm)754   static inline int getFP64Imm(const APFloat &FPImm) {
755     return getFP64Imm(FPImm.bitcastToAPInt());
756   }
757 
758 } // end namespace ARM_AM
759 } // end namespace llvm
760 
761 #endif
762 
763