1 //===--- HexagonExpandCondsets.cpp ----------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 // Replace mux instructions with the corresponding legal instructions.
11 // It is meant to work post-SSA, but still on virtual registers. It was
12 // originally placed between register coalescing and machine instruction
13 // scheduler.
14 // In this place in the optimization sequence, live interval analysis had
15 // been performed, and the live intervals should be preserved. A large part
16 // of the code deals with preserving the liveness information.
17 //
18 // Liveness tracking aside, the main functionality of this pass is divided
19 // into two steps. The first step is to replace an instruction
20 // vreg0 = C2_mux vreg1, vreg2, vreg3
21 // with a pair of conditional transfers
22 // vreg0 = A2_tfrt vreg1, vreg2
23 // vreg0 = A2_tfrf vreg1, vreg3
24 // It is the intention that the execution of this pass could be terminated
25 // after this step, and the code generated would be functionally correct.
26 //
27 // If the uses of the source values vreg1 and vreg2 are kills, and their
28 // definitions are predicable, then in the second step, the conditional
29 // transfers will then be rewritten as predicated instructions. E.g.
30 // vreg0 = A2_or vreg1, vreg2
31 // vreg3 = A2_tfrt vreg99, vreg0<kill>
32 // will be rewritten as
33 // vreg3 = A2_port vreg99, vreg1, vreg2
34 //
35 // This replacement has two variants: "up" and "down". Consider this case:
36 // vreg0 = A2_or vreg1, vreg2
37 // ... [intervening instructions] ...
38 // vreg3 = A2_tfrt vreg99, vreg0<kill>
39 // variant "up":
40 // vreg3 = A2_port vreg99, vreg1, vreg2
41 // ... [intervening instructions, vreg0->vreg3] ...
42 // [deleted]
43 // variant "down":
44 // [deleted]
45 // ... [intervening instructions] ...
46 // vreg3 = A2_port vreg99, vreg1, vreg2
47 //
48 // Both, one or none of these variants may be valid, and checks are made
49 // to rule out inapplicable variants.
50 //
51 // As an additional optimization, before either of the two steps above is
52 // executed, the pass attempts to coalesce the target register with one of
53 // the source registers, e.g. given an instruction
54 // vreg3 = C2_mux vreg0, vreg1, vreg2
55 // vreg3 will be coalesced with either vreg1 or vreg2. If this succeeds,
56 // the instruction would then be (for example)
57 // vreg3 = C2_mux vreg0, vreg3, vreg2
58 // and, under certain circumstances, this could result in only one predicated
59 // instruction:
60 // vreg3 = A2_tfrf vreg0, vreg2
61 //
62
63 // Splitting a definition of a register into two predicated transfers
64 // creates a complication in liveness tracking. Live interval computation
65 // will see both instructions as actual definitions, and will mark the
66 // first one as dead. The definition is not actually dead, and this
67 // situation will need to be fixed. For example:
68 // vreg1<def,dead> = A2_tfrt ... ; marked as dead
69 // vreg1<def> = A2_tfrf ...
70 //
71 // Since any of the individual predicated transfers may end up getting
72 // removed (in case it is an identity copy), some pre-existing def may
73 // be marked as dead after live interval recomputation:
74 // vreg1<def,dead> = ... ; marked as dead
75 // ...
76 // vreg1<def> = A2_tfrf ... ; if A2_tfrt is removed
77 // This case happens if vreg1 was used as a source in A2_tfrt, which means
78 // that is it actually live at the A2_tfrf, and so the now dead definition
79 // of vreg1 will need to be updated to non-dead at some point.
80 //
81 // This issue could be remedied by adding implicit uses to the predicated
82 // transfers, but this will create a problem with subsequent predication,
83 // since the transfers will no longer be possible to reorder. To avoid
84 // that, the initial splitting will not add any implicit uses. These
85 // implicit uses will be added later, after predication. The extra price,
86 // however, is that finding the locations where the implicit uses need
87 // to be added, and updating the live ranges will be more involved.
88 //
89 // An additional problem appears when subregister liveness tracking is
90 // enabled. In such a scenario, the live interval for the super-register
91 // will have live ranges for each subregister (i.e. subranges). This sub-
92 // range contains all liveness information about the subregister, except
93 // for one case: a "read-undef" flag from another subregister will not
94 // be reflected: given
95 // vreg1:subreg_hireg<def,read-undef> = ... ; "undefines" subreg_loreg
96 // the subrange for subreg_loreg will not have any indication that it is
97 // undefined at this point. Calculating subregister liveness based only
98 // on the information from the subrange may create a segment which spans
99 // over such a "read-undef" flag. This would create inconsistencies in
100 // the liveness data, resulting in assertions or incorrect code.
101 // Example:
102 // vreg1:subreg_loreg<def> = ...
103 // vreg1:subreg_hireg<def, read-undef> = ... ; "undefines" subreg_loreg
104 // ...
105 // vreg1:subreg_loreg<def> = A2_tfrt ... ; may end up with imp-use
106 // ; of subreg_loreg
107 // The remedy takes advantage of the fact, that at this point we have
108 // an unconditional definition of the subregister. What this means is
109 // that any preceding value in this subregister will be overwritten,
110 // or in other words, the last use before this def is a kill. This also
111 // implies that the first of the predicated transfers at this location
112 // should not have any implicit uses.
113 // Assume for a moment that no part of the corresponding super-register
114 // is used as a source. In such case, the entire super-register can be
115 // considered undefined immediately before this instruction. Because of
116 // that, we can insert an IMPLICIT_DEF of the super-register at this
117 // location, which will cause it to be reflected in all the associated
118 // subranges. What is important here is that if an IMPLICIT_DEF of
119 // subreg_loreg was used, we would lose the indication that subreg_hireg
120 // is also considered undefined. This could lead to having implicit uses
121 // incorrectly added.
122 //
123 // What is left is the two cases when the super-register is used as a
124 // source.
125 // * Case 1: the used part is the same as the one that is defined:
126 // vreg1<def> = ...
127 // ...
128 // vreg1:subreg_loreg<def,read-undef> = C2_mux ..., vreg1:subreg_loreg
129 // In the end, the subreg_loreg should be marked as live at the point of
130 // the splitting:
131 // vreg1:subreg_loreg<def,read-undef> = A2_tfrt ; should have imp-use
132 // vreg1:subreg_loreg<def,read-undef> = A2_tfrf ; should have imp-use
133 // Hence, an IMPLICIT_DEF of only vreg1:subreg_hireg would be sufficient.
134 // * Case 2: the used part does not overlap the part being defined:
135 // vreg1<def> = ...
136 // ...
137 // vreg1:subreg_loreg<def,read-undef> = C2_mux ..., vreg1:subreg_hireg
138 // For this case, we insert an IMPLICIT_DEF of vreg1:subreg_hireg after
139 // the C2_mux.
140
141 #define DEBUG_TYPE "expand-condsets"
142
143 #include "HexagonTargetMachine.h"
144 #include "llvm/ADT/SetVector.h"
145 #include "llvm/CodeGen/Passes.h"
146 #include "llvm/CodeGen/LiveInterval.h"
147 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
148 #include "llvm/CodeGen/MachineDominators.h"
149 #include "llvm/CodeGen/MachineFunction.h"
150 #include "llvm/CodeGen/MachineInstrBuilder.h"
151 #include "llvm/CodeGen/MachineRegisterInfo.h"
152 #include "llvm/Target/TargetInstrInfo.h"
153 #include "llvm/Target/TargetMachine.h"
154 #include "llvm/Target/TargetRegisterInfo.h"
155 #include "llvm/Support/CommandLine.h"
156 #include "llvm/Support/Debug.h"
157 #include "llvm/Support/raw_ostream.h"
158
159 #include <algorithm>
160 #include <iterator>
161 #include <set>
162 #include <utility>
163
164 using namespace llvm;
165
166 static cl::opt<unsigned> OptTfrLimit("expand-condsets-tfr-limit",
167 cl::init(~0U), cl::Hidden, cl::desc("Max number of mux expansions"));
168 static cl::opt<unsigned> OptCoaLimit("expand-condsets-coa-limit",
169 cl::init(~0U), cl::Hidden, cl::desc("Max number of segment coalescings"));
170
171 namespace llvm {
172 void initializeHexagonExpandCondsetsPass(PassRegistry&);
173 FunctionPass *createHexagonExpandCondsets();
174 }
175
176 namespace {
177 class HexagonExpandCondsets : public MachineFunctionPass {
178 public:
179 static char ID;
HexagonExpandCondsets()180 HexagonExpandCondsets() :
181 MachineFunctionPass(ID), HII(0), TRI(0), MRI(0),
182 LIS(0), CoaLimitActive(false),
183 TfrLimitActive(false), CoaCounter(0), TfrCounter(0) {
184 if (OptCoaLimit.getPosition())
185 CoaLimitActive = true, CoaLimit = OptCoaLimit;
186 if (OptTfrLimit.getPosition())
187 TfrLimitActive = true, TfrLimit = OptTfrLimit;
188 initializeHexagonExpandCondsetsPass(*PassRegistry::getPassRegistry());
189 }
190
getPassName() const191 const char *getPassName() const override {
192 return "Hexagon Expand Condsets";
193 }
getAnalysisUsage(AnalysisUsage & AU) const194 void getAnalysisUsage(AnalysisUsage &AU) const override {
195 AU.addRequired<LiveIntervals>();
196 AU.addPreserved<LiveIntervals>();
197 AU.addPreserved<SlotIndexes>();
198 AU.addRequired<MachineDominatorTree>();
199 AU.addPreserved<MachineDominatorTree>();
200 MachineFunctionPass::getAnalysisUsage(AU);
201 }
202 bool runOnMachineFunction(MachineFunction &MF) override;
203
204 private:
205 const HexagonInstrInfo *HII;
206 const TargetRegisterInfo *TRI;
207 MachineDominatorTree *MDT;
208 MachineRegisterInfo *MRI;
209 LiveIntervals *LIS;
210 std::set<MachineInstr*> LocalImpDefs;
211
212 bool CoaLimitActive, TfrLimitActive;
213 unsigned CoaLimit, TfrLimit, CoaCounter, TfrCounter;
214
215 struct RegisterRef {
RegisterRef__anonceba9f4e0111::HexagonExpandCondsets::RegisterRef216 RegisterRef(const MachineOperand &Op) : Reg(Op.getReg()),
217 Sub(Op.getSubReg()) {}
RegisterRef__anonceba9f4e0111::HexagonExpandCondsets::RegisterRef218 RegisterRef(unsigned R = 0, unsigned S = 0) : Reg(R), Sub(S) {}
operator ==__anonceba9f4e0111::HexagonExpandCondsets::RegisterRef219 bool operator== (RegisterRef RR) const {
220 return Reg == RR.Reg && Sub == RR.Sub;
221 }
operator !=__anonceba9f4e0111::HexagonExpandCondsets::RegisterRef222 bool operator!= (RegisterRef RR) const { return !operator==(RR); }
operator <__anonceba9f4e0111::HexagonExpandCondsets::RegisterRef223 bool operator< (RegisterRef RR) const {
224 return Reg < RR.Reg || (Reg == RR.Reg && Sub < RR.Sub);
225 }
226 unsigned Reg, Sub;
227 };
228
229 typedef DenseMap<unsigned,unsigned> ReferenceMap;
230 enum { Sub_Low = 0x1, Sub_High = 0x2, Sub_None = (Sub_Low | Sub_High) };
231 enum { Exec_Then = 0x10, Exec_Else = 0x20 };
232 unsigned getMaskForSub(unsigned Sub);
233 bool isCondset(const MachineInstr &MI);
234 LaneBitmask getLaneMask(unsigned Reg, unsigned Sub);
235
236 void addRefToMap(RegisterRef RR, ReferenceMap &Map, unsigned Exec);
237 bool isRefInMap(RegisterRef, ReferenceMap &Map, unsigned Exec);
238
239 void removeImpDefSegments(LiveRange &Range);
240 void updateDeadsInRange(unsigned Reg, LaneBitmask LM, LiveRange &Range);
241 void updateKillFlags(unsigned Reg);
242 void updateDeadFlags(unsigned Reg);
243 void recalculateLiveInterval(unsigned Reg);
244 void removeInstr(MachineInstr &MI);
245 void updateLiveness(std::set<unsigned> &RegSet, bool Recalc,
246 bool UpdateKills, bool UpdateDeads);
247
248 unsigned getCondTfrOpcode(const MachineOperand &SO, bool Cond);
249 MachineInstr *genCondTfrFor(MachineOperand &SrcOp,
250 MachineBasicBlock::iterator At, unsigned DstR,
251 unsigned DstSR, const MachineOperand &PredOp, bool PredSense,
252 bool ReadUndef, bool ImpUse);
253 bool split(MachineInstr &MI, std::set<unsigned> &UpdRegs);
254 bool splitInBlock(MachineBasicBlock &B, std::set<unsigned> &UpdRegs);
255
256 bool isPredicable(MachineInstr *MI);
257 MachineInstr *getReachingDefForPred(RegisterRef RD,
258 MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond);
259 bool canMoveOver(MachineInstr &MI, ReferenceMap &Defs, ReferenceMap &Uses);
260 bool canMoveMemTo(MachineInstr &MI, MachineInstr &ToI, bool IsDown);
261 void predicateAt(const MachineOperand &DefOp, MachineInstr &MI,
262 MachineBasicBlock::iterator Where,
263 const MachineOperand &PredOp, bool Cond,
264 std::set<unsigned> &UpdRegs);
265 void renameInRange(RegisterRef RO, RegisterRef RN, unsigned PredR,
266 bool Cond, MachineBasicBlock::iterator First,
267 MachineBasicBlock::iterator Last);
268 bool predicate(MachineInstr &TfrI, bool Cond, std::set<unsigned> &UpdRegs);
269 bool predicateInBlock(MachineBasicBlock &B,
270 std::set<unsigned> &UpdRegs);
271
272 bool isIntReg(RegisterRef RR, unsigned &BW);
273 bool isIntraBlocks(LiveInterval &LI);
274 bool coalesceRegisters(RegisterRef R1, RegisterRef R2);
275 bool coalesceSegments(MachineFunction &MF);
276 };
277 }
278
279 char HexagonExpandCondsets::ID = 0;
280
281 INITIALIZE_PASS_BEGIN(HexagonExpandCondsets, "expand-condsets",
282 "Hexagon Expand Condsets", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)283 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
284 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
285 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
286 INITIALIZE_PASS_END(HexagonExpandCondsets, "expand-condsets",
287 "Hexagon Expand Condsets", false, false)
288
289 unsigned HexagonExpandCondsets::getMaskForSub(unsigned Sub) {
290 switch (Sub) {
291 case Hexagon::subreg_loreg:
292 return Sub_Low;
293 case Hexagon::subreg_hireg:
294 return Sub_High;
295 case Hexagon::NoSubRegister:
296 return Sub_None;
297 }
298 llvm_unreachable("Invalid subregister");
299 }
300
isCondset(const MachineInstr & MI)301 bool HexagonExpandCondsets::isCondset(const MachineInstr &MI) {
302 unsigned Opc = MI.getOpcode();
303 switch (Opc) {
304 case Hexagon::C2_mux:
305 case Hexagon::C2_muxii:
306 case Hexagon::C2_muxir:
307 case Hexagon::C2_muxri:
308 case Hexagon::MUX64_rr:
309 return true;
310 break;
311 }
312 return false;
313 }
314
315
getLaneMask(unsigned Reg,unsigned Sub)316 LaneBitmask HexagonExpandCondsets::getLaneMask(unsigned Reg, unsigned Sub) {
317 assert(TargetRegisterInfo::isVirtualRegister(Reg));
318 return Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
319 : MRI->getMaxLaneMaskForVReg(Reg);
320 }
321
322
addRefToMap(RegisterRef RR,ReferenceMap & Map,unsigned Exec)323 void HexagonExpandCondsets::addRefToMap(RegisterRef RR, ReferenceMap &Map,
324 unsigned Exec) {
325 unsigned Mask = getMaskForSub(RR.Sub) | Exec;
326 ReferenceMap::iterator F = Map.find(RR.Reg);
327 if (F == Map.end())
328 Map.insert(std::make_pair(RR.Reg, Mask));
329 else
330 F->second |= Mask;
331 }
332
333
isRefInMap(RegisterRef RR,ReferenceMap & Map,unsigned Exec)334 bool HexagonExpandCondsets::isRefInMap(RegisterRef RR, ReferenceMap &Map,
335 unsigned Exec) {
336 ReferenceMap::iterator F = Map.find(RR.Reg);
337 if (F == Map.end())
338 return false;
339 unsigned Mask = getMaskForSub(RR.Sub) | Exec;
340 if (Mask & F->second)
341 return true;
342 return false;
343 }
344
345
updateKillFlags(unsigned Reg)346 void HexagonExpandCondsets::updateKillFlags(unsigned Reg) {
347 auto KillAt = [this,Reg] (SlotIndex K, LaneBitmask LM) -> void {
348 // Set the <kill> flag on a use of Reg whose lane mask is contained in LM.
349 MachineInstr *MI = LIS->getInstructionFromIndex(K);
350 for (auto &Op : MI->operands()) {
351 if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg)
352 continue;
353 LaneBitmask SLM = getLaneMask(Reg, Op.getSubReg());
354 if ((SLM & LM) == SLM) {
355 // Only set the kill flag on the first encountered use of Reg in this
356 // instruction.
357 Op.setIsKill(true);
358 break;
359 }
360 }
361 };
362
363 LiveInterval &LI = LIS->getInterval(Reg);
364 for (auto I = LI.begin(), E = LI.end(); I != E; ++I) {
365 if (!I->end.isRegister())
366 continue;
367 // Do not mark the end of the segment as <kill>, if the next segment
368 // starts with a predicated instruction.
369 auto NextI = std::next(I);
370 if (NextI != E && NextI->start.isRegister()) {
371 MachineInstr *DefI = LIS->getInstructionFromIndex(NextI->start);
372 if (HII->isPredicated(*DefI))
373 continue;
374 }
375 bool WholeReg = true;
376 if (LI.hasSubRanges()) {
377 auto EndsAtI = [I] (LiveInterval::SubRange &S) -> bool {
378 LiveRange::iterator F = S.find(I->end);
379 return F != S.end() && I->end == F->end;
380 };
381 // Check if all subranges end at I->end. If so, make sure to kill
382 // the whole register.
383 for (LiveInterval::SubRange &S : LI.subranges()) {
384 if (EndsAtI(S))
385 KillAt(I->end, S.LaneMask);
386 else
387 WholeReg = false;
388 }
389 }
390 if (WholeReg)
391 KillAt(I->end, MRI->getMaxLaneMaskForVReg(Reg));
392 }
393 }
394
395
removeImpDefSegments(LiveRange & Range)396 void HexagonExpandCondsets::removeImpDefSegments(LiveRange &Range) {
397 auto StartImpDef = [this] (LiveRange::Segment &S) -> bool {
398 return S.start.isRegister() &&
399 LocalImpDefs.count(LIS->getInstructionFromIndex(S.start));
400 };
401 Range.segments.erase(std::remove_if(Range.begin(), Range.end(), StartImpDef),
402 Range.end());
403 }
404
updateDeadsInRange(unsigned Reg,LaneBitmask LM,LiveRange & Range)405 void HexagonExpandCondsets::updateDeadsInRange(unsigned Reg, LaneBitmask LM,
406 LiveRange &Range) {
407 assert(TargetRegisterInfo::isVirtualRegister(Reg));
408 if (Range.empty())
409 return;
410
411 auto IsRegDef = [this,Reg,LM] (MachineOperand &Op) -> bool {
412 if (!Op.isReg() || !Op.isDef())
413 return false;
414 unsigned DR = Op.getReg(), DSR = Op.getSubReg();
415 if (!TargetRegisterInfo::isVirtualRegister(DR) || DR != Reg)
416 return false;
417 LaneBitmask SLM = getLaneMask(DR, DSR);
418 return (SLM & LM) != 0;
419 };
420
421 // The splitting step will create pairs of predicated definitions without
422 // any implicit uses (since implicit uses would interfere with predication).
423 // This can cause the reaching defs to become dead after live range
424 // recomputation, even though they are not really dead.
425 // We need to identify predicated defs that need implicit uses, and
426 // dead defs that are not really dead, and correct both problems.
427
428 SetVector<MachineBasicBlock*> Defs;
429 auto Dominate = [this] (SetVector<MachineBasicBlock*> &Defs,
430 MachineBasicBlock *Dest) -> bool {
431 for (MachineBasicBlock *D : Defs)
432 if (D != Dest && MDT->dominates(D, Dest))
433 return true;
434
435 MachineBasicBlock *Entry = &Dest->getParent()->front();
436 SetVector<MachineBasicBlock*> Work(Dest->pred_begin(), Dest->pred_end());
437 for (unsigned i = 0; i < Work.size(); ++i) {
438 MachineBasicBlock *B = Work[i];
439 if (Defs.count(B))
440 continue;
441 if (B == Entry)
442 return false;
443 for (auto *P : B->predecessors())
444 Work.insert(P);
445 }
446 return true;
447 };
448
449 // First, try to extend live range within individual basic blocks. This
450 // will leave us only with dead defs that do not reach any predicated
451 // defs in the same block.
452 SmallVector<SlotIndex,4> PredDefs;
453 for (auto &Seg : Range) {
454 if (!Seg.start.isRegister())
455 continue;
456 MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
457 if (LocalImpDefs.count(DefI))
458 continue;
459 Defs.insert(DefI->getParent());
460 if (HII->isPredicated(*DefI))
461 PredDefs.push_back(Seg.start);
462 }
463 for (auto &SI : PredDefs) {
464 MachineBasicBlock *BB = LIS->getMBBFromIndex(SI);
465 if (Range.extendInBlock(LIS->getMBBStartIdx(BB), SI))
466 SI = SlotIndex();
467 }
468
469 // Calculate reachability for those predicated defs that were not handled
470 // by the in-block extension.
471 SmallVector<SlotIndex,4> ExtTo;
472 for (auto &SI : PredDefs) {
473 if (!SI.isValid())
474 continue;
475 MachineBasicBlock *BB = LIS->getMBBFromIndex(SI);
476 if (BB->pred_empty())
477 continue;
478 // If the defs from this range reach SI via all predecessors, it is live.
479 if (Dominate(Defs, BB))
480 ExtTo.push_back(SI);
481 }
482 LIS->extendToIndices(Range, ExtTo);
483
484 // Remove <dead> flags from all defs that are not dead after live range
485 // extension, and collect all def operands. They will be used to generate
486 // the necessary implicit uses.
487 std::set<RegisterRef> DefRegs;
488 for (auto &Seg : Range) {
489 if (!Seg.start.isRegister())
490 continue;
491 MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
492 if (LocalImpDefs.count(DefI))
493 continue;
494 for (auto &Op : DefI->operands()) {
495 if (Seg.start.isDead() || !IsRegDef(Op))
496 continue;
497 DefRegs.insert(Op);
498 Op.setIsDead(false);
499 }
500 }
501
502
503 // Finally, add implicit uses to each predicated def that is reached
504 // by other defs. Remove segments started by implicit-defs first, since
505 // they do not define registers.
506 removeImpDefSegments(Range);
507
508 for (auto &Seg : Range) {
509 if (!Seg.start.isRegister() || !Range.liveAt(Seg.start.getPrevSlot()))
510 continue;
511 MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
512 if (!HII->isPredicated(*DefI))
513 continue;
514 MachineFunction &MF = *DefI->getParent()->getParent();
515 // Construct the set of all necessary implicit uses, based on the def
516 // operands in the instruction.
517 std::set<RegisterRef> ImpUses;
518 for (auto &Op : DefI->operands())
519 if (Op.isReg() && Op.isDef() && DefRegs.count(Op))
520 ImpUses.insert(Op);
521 for (RegisterRef R : ImpUses)
522 MachineInstrBuilder(MF, DefI).addReg(R.Reg, RegState::Implicit, R.Sub);
523 }
524 }
525
526
updateDeadFlags(unsigned Reg)527 void HexagonExpandCondsets::updateDeadFlags(unsigned Reg) {
528 LiveInterval &LI = LIS->getInterval(Reg);
529 if (LI.hasSubRanges()) {
530 for (LiveInterval::SubRange &S : LI.subranges()) {
531 updateDeadsInRange(Reg, S.LaneMask, S);
532 LIS->shrinkToUses(S, Reg);
533 // LI::shrinkToUses will add segments started by implicit-defs.
534 // Remove them again.
535 removeImpDefSegments(S);
536 }
537 LI.clear();
538 LIS->constructMainRangeFromSubranges(LI);
539 } else {
540 updateDeadsInRange(Reg, MRI->getMaxLaneMaskForVReg(Reg), LI);
541 }
542 }
543
544
recalculateLiveInterval(unsigned Reg)545 void HexagonExpandCondsets::recalculateLiveInterval(unsigned Reg) {
546 LIS->removeInterval(Reg);
547 LIS->createAndComputeVirtRegInterval(Reg);
548 }
549
removeInstr(MachineInstr & MI)550 void HexagonExpandCondsets::removeInstr(MachineInstr &MI) {
551 LIS->RemoveMachineInstrFromMaps(MI);
552 MI.eraseFromParent();
553 }
554
555
updateLiveness(std::set<unsigned> & RegSet,bool Recalc,bool UpdateKills,bool UpdateDeads)556 void HexagonExpandCondsets::updateLiveness(std::set<unsigned> &RegSet,
557 bool Recalc, bool UpdateKills, bool UpdateDeads) {
558 UpdateKills |= UpdateDeads;
559 for (auto R : RegSet) {
560 if (Recalc)
561 recalculateLiveInterval(R);
562 if (UpdateKills)
563 MRI->clearKillFlags(R);
564 if (UpdateDeads)
565 updateDeadFlags(R);
566 // Fixing <dead> flags may extend live ranges, so reset <kill> flags
567 // after that.
568 if (UpdateKills)
569 updateKillFlags(R);
570 LIS->getInterval(R).verify();
571 }
572 }
573
574
575 /// Get the opcode for a conditional transfer of the value in SO (source
576 /// operand). The condition (true/false) is given in Cond.
getCondTfrOpcode(const MachineOperand & SO,bool IfTrue)577 unsigned HexagonExpandCondsets::getCondTfrOpcode(const MachineOperand &SO,
578 bool IfTrue) {
579 using namespace Hexagon;
580 if (SO.isReg()) {
581 unsigned PhysR;
582 RegisterRef RS = SO;
583 if (TargetRegisterInfo::isVirtualRegister(RS.Reg)) {
584 const TargetRegisterClass *VC = MRI->getRegClass(RS.Reg);
585 assert(VC->begin() != VC->end() && "Empty register class");
586 PhysR = *VC->begin();
587 } else {
588 assert(TargetRegisterInfo::isPhysicalRegister(RS.Reg));
589 PhysR = RS.Reg;
590 }
591 unsigned PhysS = (RS.Sub == 0) ? PhysR : TRI->getSubReg(PhysR, RS.Sub);
592 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysS);
593 switch (RC->getSize()) {
594 case 4:
595 return IfTrue ? A2_tfrt : A2_tfrf;
596 case 8:
597 return IfTrue ? A2_tfrpt : A2_tfrpf;
598 }
599 llvm_unreachable("Invalid register operand");
600 }
601 if (SO.isImm() || SO.isFPImm())
602 return IfTrue ? C2_cmoveit : C2_cmoveif;
603 llvm_unreachable("Unexpected source operand");
604 }
605
606
607 /// Generate a conditional transfer, copying the value SrcOp to the
608 /// destination register DstR:DstSR, and using the predicate register from
609 /// PredOp. The Cond argument specifies whether the predicate is to be
610 /// if(PredOp), or if(!PredOp).
genCondTfrFor(MachineOperand & SrcOp,MachineBasicBlock::iterator At,unsigned DstR,unsigned DstSR,const MachineOperand & PredOp,bool PredSense,bool ReadUndef,bool ImpUse)611 MachineInstr *HexagonExpandCondsets::genCondTfrFor(MachineOperand &SrcOp,
612 MachineBasicBlock::iterator At,
613 unsigned DstR, unsigned DstSR, const MachineOperand &PredOp,
614 bool PredSense, bool ReadUndef, bool ImpUse) {
615 MachineInstr *MI = SrcOp.getParent();
616 MachineBasicBlock &B = *At->getParent();
617 const DebugLoc &DL = MI->getDebugLoc();
618
619 // Don't avoid identity copies here (i.e. if the source and the destination
620 // are the same registers). It is actually better to generate them here,
621 // since this would cause the copy to potentially be predicated in the next
622 // step. The predication will remove such a copy if it is unable to
623 /// predicate.
624
625 unsigned Opc = getCondTfrOpcode(SrcOp, PredSense);
626 unsigned State = RegState::Define | (ReadUndef ? RegState::Undef : 0);
627 MachineInstrBuilder MIB = BuildMI(B, At, DL, HII->get(Opc))
628 .addReg(DstR, State, DstSR)
629 .addOperand(PredOp)
630 .addOperand(SrcOp);
631
632 // We don't want any kills yet.
633 MIB->clearKillInfo();
634 DEBUG(dbgs() << "created an initial copy: " << *MIB);
635 return &*MIB;
636 }
637
638
639 /// Replace a MUX instruction MI with a pair A2_tfrt/A2_tfrf. This function
640 /// performs all necessary changes to complete the replacement.
split(MachineInstr & MI,std::set<unsigned> & UpdRegs)641 bool HexagonExpandCondsets::split(MachineInstr &MI,
642 std::set<unsigned> &UpdRegs) {
643 if (TfrLimitActive) {
644 if (TfrCounter >= TfrLimit)
645 return false;
646 TfrCounter++;
647 }
648 DEBUG(dbgs() << "\nsplitting BB#" << MI.getParent()->getNumber() << ": "
649 << MI);
650 MachineOperand &MD = MI.getOperand(0); // Definition
651 MachineOperand &MP = MI.getOperand(1); // Predicate register
652 MachineOperand &MS1 = MI.getOperand(2); // Source value #1
653 MachineOperand &MS2 = MI.getOperand(3); // Source value #2
654 assert(MD.isDef());
655 unsigned DR = MD.getReg(), DSR = MD.getSubReg();
656 bool ReadUndef = MD.isUndef();
657 MachineBasicBlock::iterator At = MI;
658
659 if (ReadUndef && DSR != 0 && MRI->shouldTrackSubRegLiveness(DR)) {
660 unsigned NewSR = 0;
661 MachineBasicBlock::iterator DefAt = At;
662 bool SameReg = (MS1.isReg() && DR == MS1.getReg()) ||
663 (MS2.isReg() && DR == MS2.getReg());
664 if (SameReg) {
665 NewSR = (DSR == Hexagon::subreg_loreg) ? Hexagon::subreg_hireg
666 : Hexagon::subreg_loreg;
667 // Advance the insertion point if the subregisters differ between
668 // the source and the target (with the same super-register).
669 // Note: this case has never occured during tests.
670 if ((MS1.isReg() && NewSR == MS1.getSubReg()) ||
671 (MS2.isReg() && NewSR == MS2.getSubReg()))
672 ++DefAt;
673 }
674 // Use "At", since "DefAt" may be end().
675 MachineBasicBlock &B = *At->getParent();
676 DebugLoc DL = At->getDebugLoc();
677 auto ImpD = BuildMI(B, DefAt, DL, HII->get(TargetOpcode::IMPLICIT_DEF))
678 .addReg(DR, RegState::Define, NewSR);
679 LIS->InsertMachineInstrInMaps(*ImpD);
680 LocalImpDefs.insert(&*ImpD);
681 }
682
683 // First, create the two invididual conditional transfers, and add each
684 // of them to the live intervals information. Do that first and then remove
685 // the old instruction from live intervals.
686 MachineInstr *TfrT =
687 genCondTfrFor(MI.getOperand(2), At, DR, DSR, MP, true, ReadUndef, false);
688 MachineInstr *TfrF =
689 genCondTfrFor(MI.getOperand(3), At, DR, DSR, MP, false, ReadUndef, true);
690 LIS->InsertMachineInstrInMaps(*TfrT);
691 LIS->InsertMachineInstrInMaps(*TfrF);
692
693 // Will need to recalculate live intervals for all registers in MI.
694 for (auto &Op : MI.operands())
695 if (Op.isReg())
696 UpdRegs.insert(Op.getReg());
697
698 removeInstr(MI);
699 return true;
700 }
701
702
703 /// Split all MUX instructions in the given block into pairs of conditional
704 /// transfers.
splitInBlock(MachineBasicBlock & B,std::set<unsigned> & UpdRegs)705 bool HexagonExpandCondsets::splitInBlock(MachineBasicBlock &B,
706 std::set<unsigned> &UpdRegs) {
707 bool Changed = false;
708 MachineBasicBlock::iterator I, E, NextI;
709 for (I = B.begin(), E = B.end(); I != E; I = NextI) {
710 NextI = std::next(I);
711 if (isCondset(*I))
712 Changed |= split(*I, UpdRegs);
713 }
714 return Changed;
715 }
716
717
isPredicable(MachineInstr * MI)718 bool HexagonExpandCondsets::isPredicable(MachineInstr *MI) {
719 if (HII->isPredicated(*MI) || !HII->isPredicable(*MI))
720 return false;
721 if (MI->hasUnmodeledSideEffects() || MI->mayStore())
722 return false;
723 // Reject instructions with multiple defs (e.g. post-increment loads).
724 bool HasDef = false;
725 for (auto &Op : MI->operands()) {
726 if (!Op.isReg() || !Op.isDef())
727 continue;
728 if (HasDef)
729 return false;
730 HasDef = true;
731 }
732 for (auto &Mo : MI->memoperands())
733 if (Mo->isVolatile())
734 return false;
735 return true;
736 }
737
738
739 /// Find the reaching definition for a predicated use of RD. The RD is used
740 /// under the conditions given by PredR and Cond, and this function will ignore
741 /// definitions that set RD under the opposite conditions.
getReachingDefForPred(RegisterRef RD,MachineBasicBlock::iterator UseIt,unsigned PredR,bool Cond)742 MachineInstr *HexagonExpandCondsets::getReachingDefForPred(RegisterRef RD,
743 MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond) {
744 MachineBasicBlock &B = *UseIt->getParent();
745 MachineBasicBlock::iterator I = UseIt, S = B.begin();
746 if (I == S)
747 return 0;
748
749 bool PredValid = true;
750 do {
751 --I;
752 MachineInstr *MI = &*I;
753 // Check if this instruction can be ignored, i.e. if it is predicated
754 // on the complementary condition.
755 if (PredValid && HII->isPredicated(*MI)) {
756 if (MI->readsRegister(PredR) && (Cond != HII->isPredicatedTrue(*MI)))
757 continue;
758 }
759
760 // Check the defs. If the PredR is defined, invalidate it. If RD is
761 // defined, return the instruction or 0, depending on the circumstances.
762 for (auto &Op : MI->operands()) {
763 if (!Op.isReg() || !Op.isDef())
764 continue;
765 RegisterRef RR = Op;
766 if (RR.Reg == PredR) {
767 PredValid = false;
768 continue;
769 }
770 if (RR.Reg != RD.Reg)
771 continue;
772 // If the "Reg" part agrees, there is still the subregister to check.
773 // If we are looking for vreg1:loreg, we can skip vreg1:hireg, but
774 // not vreg1 (w/o subregisters).
775 if (RR.Sub == RD.Sub)
776 return MI;
777 if (RR.Sub == 0 || RD.Sub == 0)
778 return 0;
779 // We have different subregisters, so we can continue looking.
780 }
781 } while (I != S);
782
783 return 0;
784 }
785
786
787 /// Check if the instruction MI can be safely moved over a set of instructions
788 /// whose side-effects (in terms of register defs and uses) are expressed in
789 /// the maps Defs and Uses. These maps reflect the conditional defs and uses
790 /// that depend on the same predicate register to allow moving instructions
791 /// over instructions predicated on the opposite condition.
canMoveOver(MachineInstr & MI,ReferenceMap & Defs,ReferenceMap & Uses)792 bool HexagonExpandCondsets::canMoveOver(MachineInstr &MI, ReferenceMap &Defs,
793 ReferenceMap &Uses) {
794 // In order to be able to safely move MI over instructions that define
795 // "Defs" and use "Uses", no def operand from MI can be defined or used
796 // and no use operand can be defined.
797 for (auto &Op : MI.operands()) {
798 if (!Op.isReg())
799 continue;
800 RegisterRef RR = Op;
801 // For physical register we would need to check register aliases, etc.
802 // and we don't want to bother with that. It would be of little value
803 // before the actual register rewriting (from virtual to physical).
804 if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
805 return false;
806 // No redefs for any operand.
807 if (isRefInMap(RR, Defs, Exec_Then))
808 return false;
809 // For defs, there cannot be uses.
810 if (Op.isDef() && isRefInMap(RR, Uses, Exec_Then))
811 return false;
812 }
813 return true;
814 }
815
816
817 /// Check if the instruction accessing memory (TheI) can be moved to the
818 /// location ToI.
canMoveMemTo(MachineInstr & TheI,MachineInstr & ToI,bool IsDown)819 bool HexagonExpandCondsets::canMoveMemTo(MachineInstr &TheI, MachineInstr &ToI,
820 bool IsDown) {
821 bool IsLoad = TheI.mayLoad(), IsStore = TheI.mayStore();
822 if (!IsLoad && !IsStore)
823 return true;
824 if (HII->areMemAccessesTriviallyDisjoint(TheI, ToI))
825 return true;
826 if (TheI.hasUnmodeledSideEffects())
827 return false;
828
829 MachineBasicBlock::iterator StartI = IsDown ? TheI : ToI;
830 MachineBasicBlock::iterator EndI = IsDown ? ToI : TheI;
831 bool Ordered = TheI.hasOrderedMemoryRef();
832
833 // Search for aliased memory reference in (StartI, EndI).
834 for (MachineBasicBlock::iterator I = std::next(StartI); I != EndI; ++I) {
835 MachineInstr *MI = &*I;
836 if (MI->hasUnmodeledSideEffects())
837 return false;
838 bool L = MI->mayLoad(), S = MI->mayStore();
839 if (!L && !S)
840 continue;
841 if (Ordered && MI->hasOrderedMemoryRef())
842 return false;
843
844 bool Conflict = (L && IsStore) || S;
845 if (Conflict)
846 return false;
847 }
848 return true;
849 }
850
851
852 /// Generate a predicated version of MI (where the condition is given via
853 /// PredR and Cond) at the point indicated by Where.
predicateAt(const MachineOperand & DefOp,MachineInstr & MI,MachineBasicBlock::iterator Where,const MachineOperand & PredOp,bool Cond,std::set<unsigned> & UpdRegs)854 void HexagonExpandCondsets::predicateAt(const MachineOperand &DefOp,
855 MachineInstr &MI,
856 MachineBasicBlock::iterator Where,
857 const MachineOperand &PredOp, bool Cond,
858 std::set<unsigned> &UpdRegs) {
859 // The problem with updating live intervals is that we can move one def
860 // past another def. In particular, this can happen when moving an A2_tfrt
861 // over an A2_tfrf defining the same register. From the point of view of
862 // live intervals, these two instructions are two separate definitions,
863 // and each one starts another live segment. LiveIntervals's "handleMove"
864 // does not allow such moves, so we need to handle it ourselves. To avoid
865 // invalidating liveness data while we are using it, the move will be
866 // implemented in 4 steps: (1) add a clone of the instruction MI at the
867 // target location, (2) update liveness, (3) delete the old instruction,
868 // and (4) update liveness again.
869
870 MachineBasicBlock &B = *MI.getParent();
871 DebugLoc DL = Where->getDebugLoc(); // "Where" points to an instruction.
872 unsigned Opc = MI.getOpcode();
873 unsigned PredOpc = HII->getCondOpcode(Opc, !Cond);
874 MachineInstrBuilder MB = BuildMI(B, Where, DL, HII->get(PredOpc));
875 unsigned Ox = 0, NP = MI.getNumOperands();
876 // Skip all defs from MI first.
877 while (Ox < NP) {
878 MachineOperand &MO = MI.getOperand(Ox);
879 if (!MO.isReg() || !MO.isDef())
880 break;
881 Ox++;
882 }
883 // Add the new def, then the predicate register, then the rest of the
884 // operands.
885 MB.addReg(DefOp.getReg(), getRegState(DefOp), DefOp.getSubReg());
886 MB.addReg(PredOp.getReg(), PredOp.isUndef() ? RegState::Undef : 0,
887 PredOp.getSubReg());
888 while (Ox < NP) {
889 MachineOperand &MO = MI.getOperand(Ox);
890 if (!MO.isReg() || !MO.isImplicit())
891 MB.addOperand(MO);
892 Ox++;
893 }
894
895 MachineFunction &MF = *B.getParent();
896 MachineInstr::mmo_iterator I = MI.memoperands_begin();
897 unsigned NR = std::distance(I, MI.memoperands_end());
898 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(NR);
899 for (unsigned i = 0; i < NR; ++i)
900 MemRefs[i] = *I++;
901 MB.setMemRefs(MemRefs, MemRefs+NR);
902
903 MachineInstr *NewI = MB;
904 NewI->clearKillInfo();
905 LIS->InsertMachineInstrInMaps(*NewI);
906
907 for (auto &Op : NewI->operands())
908 if (Op.isReg())
909 UpdRegs.insert(Op.getReg());
910 }
911
912
913 /// In the range [First, Last], rename all references to the "old" register RO
914 /// to the "new" register RN, but only in instructions predicated on the given
915 /// condition.
renameInRange(RegisterRef RO,RegisterRef RN,unsigned PredR,bool Cond,MachineBasicBlock::iterator First,MachineBasicBlock::iterator Last)916 void HexagonExpandCondsets::renameInRange(RegisterRef RO, RegisterRef RN,
917 unsigned PredR, bool Cond, MachineBasicBlock::iterator First,
918 MachineBasicBlock::iterator Last) {
919 MachineBasicBlock::iterator End = std::next(Last);
920 for (MachineBasicBlock::iterator I = First; I != End; ++I) {
921 MachineInstr *MI = &*I;
922 // Do not touch instructions that are not predicated, or are predicated
923 // on the opposite condition.
924 if (!HII->isPredicated(*MI))
925 continue;
926 if (!MI->readsRegister(PredR) || (Cond != HII->isPredicatedTrue(*MI)))
927 continue;
928
929 for (auto &Op : MI->operands()) {
930 if (!Op.isReg() || RO != RegisterRef(Op))
931 continue;
932 Op.setReg(RN.Reg);
933 Op.setSubReg(RN.Sub);
934 // In practice, this isn't supposed to see any defs.
935 assert(!Op.isDef() && "Not expecting a def");
936 }
937 }
938 }
939
940
941 /// For a given conditional copy, predicate the definition of the source of
942 /// the copy under the given condition (using the same predicate register as
943 /// the copy).
predicate(MachineInstr & TfrI,bool Cond,std::set<unsigned> & UpdRegs)944 bool HexagonExpandCondsets::predicate(MachineInstr &TfrI, bool Cond,
945 std::set<unsigned> &UpdRegs) {
946 // TfrI - A2_tfr[tf] Instruction (not A2_tfrsi).
947 unsigned Opc = TfrI.getOpcode();
948 (void)Opc;
949 assert(Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf);
950 DEBUG(dbgs() << "\nattempt to predicate if-" << (Cond ? "true" : "false")
951 << ": " << TfrI);
952
953 MachineOperand &MD = TfrI.getOperand(0);
954 MachineOperand &MP = TfrI.getOperand(1);
955 MachineOperand &MS = TfrI.getOperand(2);
956 // The source operand should be a <kill>. This is not strictly necessary,
957 // but it makes things a lot simpler. Otherwise, we would need to rename
958 // some registers, which would complicate the transformation considerably.
959 if (!MS.isKill())
960 return false;
961 // Avoid predicating instructions that define a subregister if subregister
962 // liveness tracking is not enabled.
963 if (MD.getSubReg() && !MRI->shouldTrackSubRegLiveness(MD.getReg()))
964 return false;
965
966 RegisterRef RT(MS);
967 unsigned PredR = MP.getReg();
968 MachineInstr *DefI = getReachingDefForPred(RT, TfrI, PredR, Cond);
969 if (!DefI || !isPredicable(DefI))
970 return false;
971
972 DEBUG(dbgs() << "Source def: " << *DefI);
973
974 // Collect the information about registers defined and used between the
975 // DefI and the TfrI.
976 // Map: reg -> bitmask of subregs
977 ReferenceMap Uses, Defs;
978 MachineBasicBlock::iterator DefIt = DefI, TfrIt = TfrI;
979
980 // Check if the predicate register is valid between DefI and TfrI.
981 // If it is, we can then ignore instructions predicated on the negated
982 // conditions when collecting def and use information.
983 bool PredValid = true;
984 for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) {
985 if (!I->modifiesRegister(PredR, 0))
986 continue;
987 PredValid = false;
988 break;
989 }
990
991 for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) {
992 MachineInstr *MI = &*I;
993 // If this instruction is predicated on the same register, it could
994 // potentially be ignored.
995 // By default assume that the instruction executes on the same condition
996 // as TfrI (Exec_Then), and also on the opposite one (Exec_Else).
997 unsigned Exec = Exec_Then | Exec_Else;
998 if (PredValid && HII->isPredicated(*MI) && MI->readsRegister(PredR))
999 Exec = (Cond == HII->isPredicatedTrue(*MI)) ? Exec_Then : Exec_Else;
1000
1001 for (auto &Op : MI->operands()) {
1002 if (!Op.isReg())
1003 continue;
1004 // We don't want to deal with physical registers. The reason is that
1005 // they can be aliased with other physical registers. Aliased virtual
1006 // registers must share the same register number, and can only differ
1007 // in the subregisters, which we are keeping track of. Physical
1008 // registers ters no longer have subregisters---their super- and
1009 // subregisters are other physical registers, and we are not checking
1010 // that.
1011 RegisterRef RR = Op;
1012 if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
1013 return false;
1014
1015 ReferenceMap &Map = Op.isDef() ? Defs : Uses;
1016 addRefToMap(RR, Map, Exec);
1017 }
1018 }
1019
1020 // The situation:
1021 // RT = DefI
1022 // ...
1023 // RD = TfrI ..., RT
1024
1025 // If the register-in-the-middle (RT) is used or redefined between
1026 // DefI and TfrI, we may not be able proceed with this transformation.
1027 // We can ignore a def that will not execute together with TfrI, and a
1028 // use that will. If there is such a use (that does execute together with
1029 // TfrI), we will not be able to move DefI down. If there is a use that
1030 // executed if TfrI's condition is false, then RT must be available
1031 // unconditionally (cannot be predicated).
1032 // Essentially, we need to be able to rename RT to RD in this segment.
1033 if (isRefInMap(RT, Defs, Exec_Then) || isRefInMap(RT, Uses, Exec_Else))
1034 return false;
1035 RegisterRef RD = MD;
1036 // If the predicate register is defined between DefI and TfrI, the only
1037 // potential thing to do would be to move the DefI down to TfrI, and then
1038 // predicate. The reaching def (DefI) must be movable down to the location
1039 // of the TfrI.
1040 // If the target register of the TfrI (RD) is not used or defined between
1041 // DefI and TfrI, consider moving TfrI up to DefI.
1042 bool CanUp = canMoveOver(TfrI, Defs, Uses);
1043 bool CanDown = canMoveOver(*DefI, Defs, Uses);
1044 // The TfrI does not access memory, but DefI could. Check if it's safe
1045 // to move DefI down to TfrI.
1046 if (DefI->mayLoad() || DefI->mayStore())
1047 if (!canMoveMemTo(*DefI, TfrI, true))
1048 CanDown = false;
1049
1050 DEBUG(dbgs() << "Can move up: " << (CanUp ? "yes" : "no")
1051 << ", can move down: " << (CanDown ? "yes\n" : "no\n"));
1052 MachineBasicBlock::iterator PastDefIt = std::next(DefIt);
1053 if (CanUp)
1054 predicateAt(MD, *DefI, PastDefIt, MP, Cond, UpdRegs);
1055 else if (CanDown)
1056 predicateAt(MD, *DefI, TfrIt, MP, Cond, UpdRegs);
1057 else
1058 return false;
1059
1060 if (RT != RD) {
1061 renameInRange(RT, RD, PredR, Cond, PastDefIt, TfrIt);
1062 UpdRegs.insert(RT.Reg);
1063 }
1064
1065 removeInstr(TfrI);
1066 removeInstr(*DefI);
1067 return true;
1068 }
1069
1070
1071 /// Predicate all cases of conditional copies in the specified block.
predicateInBlock(MachineBasicBlock & B,std::set<unsigned> & UpdRegs)1072 bool HexagonExpandCondsets::predicateInBlock(MachineBasicBlock &B,
1073 std::set<unsigned> &UpdRegs) {
1074 bool Changed = false;
1075 MachineBasicBlock::iterator I, E, NextI;
1076 for (I = B.begin(), E = B.end(); I != E; I = NextI) {
1077 NextI = std::next(I);
1078 unsigned Opc = I->getOpcode();
1079 if (Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf) {
1080 bool Done = predicate(*I, (Opc == Hexagon::A2_tfrt), UpdRegs);
1081 if (!Done) {
1082 // If we didn't predicate I, we may need to remove it in case it is
1083 // an "identity" copy, e.g. vreg1 = A2_tfrt vreg2, vreg1.
1084 if (RegisterRef(I->getOperand(0)) == RegisterRef(I->getOperand(2))) {
1085 for (auto &Op : I->operands())
1086 if (Op.isReg())
1087 UpdRegs.insert(Op.getReg());
1088 removeInstr(*I);
1089 }
1090 }
1091 Changed |= Done;
1092 }
1093 }
1094 return Changed;
1095 }
1096
1097
isIntReg(RegisterRef RR,unsigned & BW)1098 bool HexagonExpandCondsets::isIntReg(RegisterRef RR, unsigned &BW) {
1099 if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
1100 return false;
1101 const TargetRegisterClass *RC = MRI->getRegClass(RR.Reg);
1102 if (RC == &Hexagon::IntRegsRegClass) {
1103 BW = 32;
1104 return true;
1105 }
1106 if (RC == &Hexagon::DoubleRegsRegClass) {
1107 BW = (RR.Sub != 0) ? 32 : 64;
1108 return true;
1109 }
1110 return false;
1111 }
1112
1113
isIntraBlocks(LiveInterval & LI)1114 bool HexagonExpandCondsets::isIntraBlocks(LiveInterval &LI) {
1115 for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
1116 LiveRange::Segment &LR = *I;
1117 // Range must start at a register...
1118 if (!LR.start.isRegister())
1119 return false;
1120 // ...and end in a register or in a dead slot.
1121 if (!LR.end.isRegister() && !LR.end.isDead())
1122 return false;
1123 }
1124 return true;
1125 }
1126
1127
coalesceRegisters(RegisterRef R1,RegisterRef R2)1128 bool HexagonExpandCondsets::coalesceRegisters(RegisterRef R1, RegisterRef R2) {
1129 if (CoaLimitActive) {
1130 if (CoaCounter >= CoaLimit)
1131 return false;
1132 CoaCounter++;
1133 }
1134 unsigned BW1, BW2;
1135 if (!isIntReg(R1, BW1) || !isIntReg(R2, BW2) || BW1 != BW2)
1136 return false;
1137 if (MRI->isLiveIn(R1.Reg))
1138 return false;
1139 if (MRI->isLiveIn(R2.Reg))
1140 return false;
1141
1142 LiveInterval &L1 = LIS->getInterval(R1.Reg);
1143 LiveInterval &L2 = LIS->getInterval(R2.Reg);
1144 bool Overlap = L1.overlaps(L2);
1145
1146 DEBUG(dbgs() << "compatible registers: ("
1147 << (Overlap ? "overlap" : "disjoint") << ")\n "
1148 << PrintReg(R1.Reg, TRI, R1.Sub) << " " << L1 << "\n "
1149 << PrintReg(R2.Reg, TRI, R2.Sub) << " " << L2 << "\n");
1150 if (R1.Sub || R2.Sub)
1151 return false;
1152 if (Overlap)
1153 return false;
1154
1155 // Coalescing could have a negative impact on scheduling, so try to limit
1156 // to some reasonable extent. Only consider coalescing segments, when one
1157 // of them does not cross basic block boundaries.
1158 if (!isIntraBlocks(L1) && !isIntraBlocks(L2))
1159 return false;
1160
1161 MRI->replaceRegWith(R2.Reg, R1.Reg);
1162
1163 // Move all live segments from L2 to L1.
1164 typedef DenseMap<VNInfo*,VNInfo*> ValueInfoMap;
1165 ValueInfoMap VM;
1166 for (LiveInterval::iterator I = L2.begin(), E = L2.end(); I != E; ++I) {
1167 VNInfo *NewVN, *OldVN = I->valno;
1168 ValueInfoMap::iterator F = VM.find(OldVN);
1169 if (F == VM.end()) {
1170 NewVN = L1.getNextValue(I->valno->def, LIS->getVNInfoAllocator());
1171 VM.insert(std::make_pair(OldVN, NewVN));
1172 } else {
1173 NewVN = F->second;
1174 }
1175 L1.addSegment(LiveRange::Segment(I->start, I->end, NewVN));
1176 }
1177 while (L2.begin() != L2.end())
1178 L2.removeSegment(*L2.begin());
1179
1180 updateKillFlags(R1.Reg);
1181 DEBUG(dbgs() << "coalesced: " << L1 << "\n");
1182 L1.verify();
1183
1184 return true;
1185 }
1186
1187
1188 /// Attempt to coalesce one of the source registers to a MUX intruction with
1189 /// the destination register. This could lead to having only one predicated
1190 /// instruction in the end instead of two.
coalesceSegments(MachineFunction & MF)1191 bool HexagonExpandCondsets::coalesceSegments(MachineFunction &MF) {
1192 SmallVector<MachineInstr*,16> Condsets;
1193 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
1194 MachineBasicBlock &B = *I;
1195 for (MachineBasicBlock::iterator J = B.begin(), F = B.end(); J != F; ++J) {
1196 MachineInstr *MI = &*J;
1197 if (!isCondset(*MI))
1198 continue;
1199 MachineOperand &S1 = MI->getOperand(2), &S2 = MI->getOperand(3);
1200 if (!S1.isReg() && !S2.isReg())
1201 continue;
1202 Condsets.push_back(MI);
1203 }
1204 }
1205
1206 bool Changed = false;
1207 for (unsigned i = 0, n = Condsets.size(); i < n; ++i) {
1208 MachineInstr *CI = Condsets[i];
1209 RegisterRef RD = CI->getOperand(0);
1210 RegisterRef RP = CI->getOperand(1);
1211 MachineOperand &S1 = CI->getOperand(2), &S2 = CI->getOperand(3);
1212 bool Done = false;
1213 // Consider this case:
1214 // vreg1 = instr1 ...
1215 // vreg2 = instr2 ...
1216 // vreg0 = C2_mux ..., vreg1, vreg2
1217 // If vreg0 was coalesced with vreg1, we could end up with the following
1218 // code:
1219 // vreg0 = instr1 ...
1220 // vreg2 = instr2 ...
1221 // vreg0 = A2_tfrf ..., vreg2
1222 // which will later become:
1223 // vreg0 = instr1 ...
1224 // vreg0 = instr2_cNotPt ...
1225 // i.e. there will be an unconditional definition (instr1) of vreg0
1226 // followed by a conditional one. The output dependency was there before
1227 // and it unavoidable, but if instr1 is predicable, we will no longer be
1228 // able to predicate it here.
1229 // To avoid this scenario, don't coalesce the destination register with
1230 // a source register that is defined by a predicable instruction.
1231 if (S1.isReg()) {
1232 RegisterRef RS = S1;
1233 MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, true);
1234 if (!RDef || !HII->isPredicable(*RDef))
1235 Done = coalesceRegisters(RD, RegisterRef(S1));
1236 }
1237 if (!Done && S2.isReg()) {
1238 RegisterRef RS = S2;
1239 MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, false);
1240 if (!RDef || !HII->isPredicable(*RDef))
1241 Done = coalesceRegisters(RD, RegisterRef(S2));
1242 }
1243 Changed |= Done;
1244 }
1245 return Changed;
1246 }
1247
1248
runOnMachineFunction(MachineFunction & MF)1249 bool HexagonExpandCondsets::runOnMachineFunction(MachineFunction &MF) {
1250 if (skipFunction(*MF.getFunction()))
1251 return false;
1252
1253 HII = static_cast<const HexagonInstrInfo*>(MF.getSubtarget().getInstrInfo());
1254 TRI = MF.getSubtarget().getRegisterInfo();
1255 MDT = &getAnalysis<MachineDominatorTree>();
1256 LIS = &getAnalysis<LiveIntervals>();
1257 MRI = &MF.getRegInfo();
1258 LocalImpDefs.clear();
1259
1260 DEBUG(LIS->print(dbgs() << "Before expand-condsets\n",
1261 MF.getFunction()->getParent()));
1262
1263 bool Changed = false;
1264 std::set<unsigned> SplitUpd, PredUpd;
1265
1266 // Try to coalesce the target of a mux with one of its sources.
1267 // This could eliminate a register copy in some circumstances.
1268 Changed |= coalesceSegments(MF);
1269
1270 // First, simply split all muxes into a pair of conditional transfers
1271 // and update the live intervals to reflect the new arrangement. The
1272 // goal is to update the kill flags, since predication will rely on
1273 // them.
1274 for (auto &B : MF)
1275 Changed |= splitInBlock(B, SplitUpd);
1276 updateLiveness(SplitUpd, true, true, false);
1277
1278 // Traverse all blocks and collapse predicable instructions feeding
1279 // conditional transfers into predicated instructions.
1280 // Walk over all the instructions again, so we may catch pre-existing
1281 // cases that were not created in the previous step.
1282 for (auto &B : MF)
1283 Changed |= predicateInBlock(B, PredUpd);
1284
1285 updateLiveness(PredUpd, true, true, true);
1286 // Remove from SplitUpd all registers contained in PredUpd to avoid
1287 // unnecessary liveness recalculation.
1288 std::set<unsigned> Diff;
1289 std::set_difference(SplitUpd.begin(), SplitUpd.end(),
1290 PredUpd.begin(), PredUpd.end(),
1291 std::inserter(Diff, Diff.begin()));
1292 updateLiveness(Diff, false, false, true);
1293
1294 for (auto *ImpD : LocalImpDefs)
1295 removeInstr(*ImpD);
1296
1297 DEBUG({
1298 if (Changed)
1299 LIS->print(dbgs() << "After expand-condsets\n",
1300 MF.getFunction()->getParent());
1301 });
1302
1303 return Changed;
1304 }
1305
1306
1307 //===----------------------------------------------------------------------===//
1308 // Public Constructor Functions
1309 //===----------------------------------------------------------------------===//
1310
createHexagonExpandCondsets()1311 FunctionPass *llvm::createHexagonExpandCondsets() {
1312 return new HexagonExpandCondsets();
1313 }
1314