1 //===--- HexagonStoreWidening.cpp------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 // Replace sequences of "narrow" stores to adjacent memory locations with
10 // a fewer "wide" stores that have the same effect.
11 // For example, replace:
12 // S4_storeirb_io %vreg100, 0, 0 ; store-immediate-byte
13 // S4_storeirb_io %vreg100, 1, 0 ; store-immediate-byte
14 // with
15 // S4_storeirh_io %vreg100, 0, 0 ; store-immediate-halfword
16 // The above is the general idea. The actual cases handled by the code
17 // may be a bit more complex.
18 // The purpose of this pass is to reduce the number of outstanding stores,
19 // or as one could say, "reduce store queue pressure". Also, wide stores
20 // mean fewer stores, and since there are only two memory instructions allowed
21 // per packet, it also means fewer packets, and ultimately fewer cycles.
22 //===---------------------------------------------------------------------===//
23
24 #define DEBUG_TYPE "hexagon-widen-stores"
25
26 #include "HexagonTargetMachine.h"
27
28 #include "llvm/PassSupport.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/CodeGen/Passes.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineFunctionPass.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/MC/MCInstrDesc.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Target/TargetMachine.h"
39 #include "llvm/Target/TargetRegisterInfo.h"
40 #include "llvm/Target/TargetInstrInfo.h"
41
42 #include <algorithm>
43
44
45 using namespace llvm;
46
47 namespace llvm {
48 FunctionPass *createHexagonStoreWidening();
49 void initializeHexagonStoreWideningPass(PassRegistry&);
50 }
51
52 namespace {
53 struct HexagonStoreWidening : public MachineFunctionPass {
54 const HexagonInstrInfo *TII;
55 const HexagonRegisterInfo *TRI;
56 const MachineRegisterInfo *MRI;
57 AliasAnalysis *AA;
58 MachineFunction *MF;
59
60 public:
61 static char ID;
HexagonStoreWidening__anonf45b31ad0111::HexagonStoreWidening62 HexagonStoreWidening() : MachineFunctionPass(ID) {
63 initializeHexagonStoreWideningPass(*PassRegistry::getPassRegistry());
64 }
65
66 bool runOnMachineFunction(MachineFunction &MF) override;
67
getPassName__anonf45b31ad0111::HexagonStoreWidening68 const char *getPassName() const override {
69 return "Hexagon Store Widening";
70 }
71
getAnalysisUsage__anonf45b31ad0111::HexagonStoreWidening72 void getAnalysisUsage(AnalysisUsage &AU) const override {
73 AU.addRequired<AAResultsWrapperPass>();
74 AU.addPreserved<AAResultsWrapperPass>();
75 MachineFunctionPass::getAnalysisUsage(AU);
76 }
77
78 static bool handledStoreType(const MachineInstr *MI);
79
80 private:
81 static const int MaxWideSize = 4;
82
83 typedef std::vector<MachineInstr*> InstrGroup;
84 typedef std::vector<InstrGroup> InstrGroupList;
85
86 bool instrAliased(InstrGroup &Stores, const MachineMemOperand &MMO);
87 bool instrAliased(InstrGroup &Stores, const MachineInstr *MI);
88 void createStoreGroup(MachineInstr *BaseStore, InstrGroup::iterator Begin,
89 InstrGroup::iterator End, InstrGroup &Group);
90 void createStoreGroups(MachineBasicBlock &MBB,
91 InstrGroupList &StoreGroups);
92 bool processBasicBlock(MachineBasicBlock &MBB);
93 bool processStoreGroup(InstrGroup &Group);
94 bool selectStores(InstrGroup::iterator Begin, InstrGroup::iterator End,
95 InstrGroup &OG, unsigned &TotalSize, unsigned MaxSize);
96 bool createWideStores(InstrGroup &OG, InstrGroup &NG, unsigned TotalSize);
97 bool replaceStores(InstrGroup &OG, InstrGroup &NG);
98 bool storesAreAdjacent(const MachineInstr *S1, const MachineInstr *S2);
99 };
100
101 } // namespace
102
103
104 namespace {
105
106 // Some local helper functions...
getBaseAddressRegister(const MachineInstr * MI)107 unsigned getBaseAddressRegister(const MachineInstr *MI) {
108 const MachineOperand &MO = MI->getOperand(0);
109 assert(MO.isReg() && "Expecting register operand");
110 return MO.getReg();
111 }
112
getStoreOffset(const MachineInstr * MI)113 int64_t getStoreOffset(const MachineInstr *MI) {
114 unsigned OpC = MI->getOpcode();
115 assert(HexagonStoreWidening::handledStoreType(MI) && "Unhandled opcode");
116
117 switch (OpC) {
118 case Hexagon::S4_storeirb_io:
119 case Hexagon::S4_storeirh_io:
120 case Hexagon::S4_storeiri_io: {
121 const MachineOperand &MO = MI->getOperand(1);
122 assert(MO.isImm() && "Expecting immediate offset");
123 return MO.getImm();
124 }
125 }
126 dbgs() << *MI;
127 llvm_unreachable("Store offset calculation missing for a handled opcode");
128 return 0;
129 }
130
getStoreTarget(const MachineInstr * MI)131 const MachineMemOperand &getStoreTarget(const MachineInstr *MI) {
132 assert(!MI->memoperands_empty() && "Expecting memory operands");
133 return **MI->memoperands_begin();
134 }
135
136 } // namespace
137
138
139 char HexagonStoreWidening::ID = 0;
140
141 INITIALIZE_PASS_BEGIN(HexagonStoreWidening, "hexagon-widen-stores",
142 "Hexason Store Widening", false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)143 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
144 INITIALIZE_PASS_END(HexagonStoreWidening, "hexagon-widen-stores",
145 "Hexagon Store Widening", false, false)
146
147
148 // Filtering function: any stores whose opcodes are not "approved" of by
149 // this function will not be subjected to widening.
150 inline bool HexagonStoreWidening::handledStoreType(const MachineInstr *MI) {
151 // For now, only handle stores of immediate values.
152 // Also, reject stores to stack slots.
153 unsigned Opc = MI->getOpcode();
154 switch (Opc) {
155 case Hexagon::S4_storeirb_io:
156 case Hexagon::S4_storeirh_io:
157 case Hexagon::S4_storeiri_io:
158 // Base address must be a register. (Implement FI later.)
159 return MI->getOperand(0).isReg();
160 default:
161 return false;
162 }
163 }
164
165
166 // Check if the machine memory operand MMO is aliased with any of the
167 // stores in the store group Stores.
instrAliased(InstrGroup & Stores,const MachineMemOperand & MMO)168 bool HexagonStoreWidening::instrAliased(InstrGroup &Stores,
169 const MachineMemOperand &MMO) {
170 if (!MMO.getValue())
171 return true;
172
173 MemoryLocation L(MMO.getValue(), MMO.getSize(), MMO.getAAInfo());
174
175 for (auto SI : Stores) {
176 const MachineMemOperand &SMO = getStoreTarget(SI);
177 if (!SMO.getValue())
178 return true;
179
180 MemoryLocation SL(SMO.getValue(), SMO.getSize(), SMO.getAAInfo());
181 if (AA->alias(L, SL))
182 return true;
183 }
184
185 return false;
186 }
187
188
189 // Check if the machine instruction MI accesses any storage aliased with
190 // any store in the group Stores.
instrAliased(InstrGroup & Stores,const MachineInstr * MI)191 bool HexagonStoreWidening::instrAliased(InstrGroup &Stores,
192 const MachineInstr *MI) {
193 for (auto &I : MI->memoperands())
194 if (instrAliased(Stores, *I))
195 return true;
196 return false;
197 }
198
199
200 // Inspect a machine basic block, and generate store groups out of stores
201 // encountered in the block.
202 //
203 // A store group is a group of stores that use the same base register,
204 // and which can be reordered within that group without altering the
205 // semantics of the program. A single store group could be widened as
206 // a whole, if there existed a single store instruction with the same
207 // semantics as the entire group. In many cases, a single store group
208 // may need more than one wide store.
createStoreGroups(MachineBasicBlock & MBB,InstrGroupList & StoreGroups)209 void HexagonStoreWidening::createStoreGroups(MachineBasicBlock &MBB,
210 InstrGroupList &StoreGroups) {
211 InstrGroup AllInsns;
212
213 // Copy all instruction pointers from the basic block to a temporary
214 // list. This will allow operating on the list, and modifying its
215 // elements without affecting the basic block.
216 for (auto &I : MBB)
217 AllInsns.push_back(&I);
218
219 // Traverse all instructions in the AllInsns list, and if we encounter
220 // a store, then try to create a store group starting at that instruction
221 // i.e. a sequence of independent stores that can be widened.
222 for (auto I = AllInsns.begin(), E = AllInsns.end(); I != E; ++I) {
223 MachineInstr *MI = *I;
224 // Skip null pointers (processed instructions).
225 if (!MI || !handledStoreType(MI))
226 continue;
227
228 // Found a store. Try to create a store group.
229 InstrGroup G;
230 createStoreGroup(MI, I+1, E, G);
231 if (G.size() > 1)
232 StoreGroups.push_back(G);
233 }
234 }
235
236
237 // Create a single store group. The stores need to be independent between
238 // themselves, and also there cannot be other instructions between them
239 // that could read or modify storage being stored into.
createStoreGroup(MachineInstr * BaseStore,InstrGroup::iterator Begin,InstrGroup::iterator End,InstrGroup & Group)240 void HexagonStoreWidening::createStoreGroup(MachineInstr *BaseStore,
241 InstrGroup::iterator Begin, InstrGroup::iterator End, InstrGroup &Group) {
242 assert(handledStoreType(BaseStore) && "Unexpected instruction");
243 unsigned BaseReg = getBaseAddressRegister(BaseStore);
244 InstrGroup Other;
245
246 Group.push_back(BaseStore);
247
248 for (auto I = Begin; I != End; ++I) {
249 MachineInstr *MI = *I;
250 if (!MI)
251 continue;
252
253 if (handledStoreType(MI)) {
254 // If this store instruction is aliased with anything already in the
255 // group, terminate the group now.
256 if (instrAliased(Group, getStoreTarget(MI)))
257 return;
258 // If this store is aliased to any of the memory instructions we have
259 // seen so far (that are not a part of this group), terminate the group.
260 if (instrAliased(Other, getStoreTarget(MI)))
261 return;
262
263 unsigned BR = getBaseAddressRegister(MI);
264 if (BR == BaseReg) {
265 Group.push_back(MI);
266 *I = 0;
267 continue;
268 }
269 }
270
271 // Assume calls are aliased to everything.
272 if (MI->isCall() || MI->hasUnmodeledSideEffects())
273 return;
274
275 if (MI->mayLoad() || MI->mayStore()) {
276 if (MI->hasOrderedMemoryRef() || instrAliased(Group, MI))
277 return;
278 Other.push_back(MI);
279 }
280 } // for
281 }
282
283
284 // Check if store instructions S1 and S2 are adjacent. More precisely,
285 // S2 has to access memory immediately following that accessed by S1.
storesAreAdjacent(const MachineInstr * S1,const MachineInstr * S2)286 bool HexagonStoreWidening::storesAreAdjacent(const MachineInstr *S1,
287 const MachineInstr *S2) {
288 if (!handledStoreType(S1) || !handledStoreType(S2))
289 return false;
290
291 const MachineMemOperand &S1MO = getStoreTarget(S1);
292
293 // Currently only handling immediate stores.
294 int Off1 = S1->getOperand(1).getImm();
295 int Off2 = S2->getOperand(1).getImm();
296
297 return (Off1 >= 0) ? Off1+S1MO.getSize() == unsigned(Off2)
298 : int(Off1+S1MO.getSize()) == Off2;
299 }
300
301
302 /// Given a sequence of adjacent stores, and a maximum size of a single wide
303 /// store, pick a group of stores that can be replaced by a single store
304 /// of size not exceeding MaxSize. The selected sequence will be recorded
305 /// in OG ("old group" of instructions).
306 /// OG should be empty on entry, and should be left empty if the function
307 /// fails.
selectStores(InstrGroup::iterator Begin,InstrGroup::iterator End,InstrGroup & OG,unsigned & TotalSize,unsigned MaxSize)308 bool HexagonStoreWidening::selectStores(InstrGroup::iterator Begin,
309 InstrGroup::iterator End, InstrGroup &OG, unsigned &TotalSize,
310 unsigned MaxSize) {
311 assert(Begin != End && "No instructions to analyze");
312 assert(OG.empty() && "Old group not empty on entry");
313
314 if (std::distance(Begin, End) <= 1)
315 return false;
316
317 MachineInstr *FirstMI = *Begin;
318 assert(!FirstMI->memoperands_empty() && "Expecting some memory operands");
319 const MachineMemOperand &FirstMMO = getStoreTarget(FirstMI);
320 unsigned Alignment = FirstMMO.getAlignment();
321 unsigned SizeAccum = FirstMMO.getSize();
322 unsigned FirstOffset = getStoreOffset(FirstMI);
323
324 // The initial value of SizeAccum should always be a power of 2.
325 assert(isPowerOf2_32(SizeAccum) && "First store size not a power of 2");
326
327 // If the size of the first store equals to or exceeds the limit, do nothing.
328 if (SizeAccum >= MaxSize)
329 return false;
330
331 // If the size of the first store is greater than or equal to the address
332 // stored to, then the store cannot be made any wider.
333 if (SizeAccum >= Alignment)
334 return false;
335
336 // The offset of a store will put restrictions on how wide the store can be.
337 // Offsets in stores of size 2^n bytes need to have the n lowest bits be 0.
338 // If the first store already exhausts the offset limits, quit. Test this
339 // by checking if the next wider size would exceed the limit.
340 if ((2*SizeAccum-1) & FirstOffset)
341 return false;
342
343 OG.push_back(FirstMI);
344 MachineInstr *S1 = FirstMI, *S2 = *(Begin+1);
345 InstrGroup::iterator I = Begin+1;
346
347 // Pow2Num will be the largest number of elements in OG such that the sum
348 // of sizes of stores 0...Pow2Num-1 will be a power of 2.
349 unsigned Pow2Num = 1;
350 unsigned Pow2Size = SizeAccum;
351
352 // Be greedy: keep accumulating stores as long as they are to adjacent
353 // memory locations, and as long as the total number of bytes stored
354 // does not exceed the limit (MaxSize).
355 // Keep track of when the total size covered is a power of 2, since
356 // this is a size a single store can cover.
357 while (I != End) {
358 S2 = *I;
359 // Stores are sorted, so if S1 and S2 are not adjacent, there won't be
360 // any other store to fill the "hole".
361 if (!storesAreAdjacent(S1, S2))
362 break;
363
364 unsigned S2Size = getStoreTarget(S2).getSize();
365 if (SizeAccum + S2Size > std::min(MaxSize, Alignment))
366 break;
367
368 OG.push_back(S2);
369 SizeAccum += S2Size;
370 if (isPowerOf2_32(SizeAccum)) {
371 Pow2Num = OG.size();
372 Pow2Size = SizeAccum;
373 }
374 if ((2*Pow2Size-1) & FirstOffset)
375 break;
376
377 S1 = S2;
378 ++I;
379 }
380
381 // The stores don't add up to anything that can be widened. Clean up.
382 if (Pow2Num <= 1) {
383 OG.clear();
384 return false;
385 }
386
387 // Only leave the stored being widened.
388 OG.resize(Pow2Num);
389 TotalSize = Pow2Size;
390 return true;
391 }
392
393
394 /// Given an "old group" OG of stores, create a "new group" NG of instructions
395 /// to replace them. Ideally, NG would only have a single instruction in it,
396 /// but that may only be possible for store-immediate.
createWideStores(InstrGroup & OG,InstrGroup & NG,unsigned TotalSize)397 bool HexagonStoreWidening::createWideStores(InstrGroup &OG, InstrGroup &NG,
398 unsigned TotalSize) {
399 // XXX Current limitations:
400 // - only expect stores of immediate values in OG,
401 // - only handle a TotalSize of up to 4.
402
403 if (TotalSize > 4)
404 return false;
405
406 unsigned Acc = 0; // Value accumulator.
407 unsigned Shift = 0;
408
409 for (InstrGroup::iterator I = OG.begin(), E = OG.end(); I != E; ++I) {
410 MachineInstr *MI = *I;
411 const MachineMemOperand &MMO = getStoreTarget(MI);
412 MachineOperand &SO = MI->getOperand(2); // Source.
413 assert(SO.isImm() && "Expecting an immediate operand");
414
415 unsigned NBits = MMO.getSize()*8;
416 unsigned Mask = (0xFFFFFFFFU >> (32-NBits));
417 unsigned Val = (SO.getImm() & Mask) << Shift;
418 Acc |= Val;
419 Shift += NBits;
420 }
421
422
423 MachineInstr *FirstSt = OG.front();
424 DebugLoc DL = OG.back()->getDebugLoc();
425 const MachineMemOperand &OldM = getStoreTarget(FirstSt);
426 MachineMemOperand *NewM =
427 MF->getMachineMemOperand(OldM.getPointerInfo(), OldM.getFlags(),
428 TotalSize, OldM.getAlignment(),
429 OldM.getAAInfo());
430
431 if (Acc < 0x10000) {
432 // Create mem[hw] = #Acc
433 unsigned WOpc = (TotalSize == 2) ? Hexagon::S4_storeirh_io :
434 (TotalSize == 4) ? Hexagon::S4_storeiri_io : 0;
435 assert(WOpc && "Unexpected size");
436
437 int Val = (TotalSize == 2) ? int16_t(Acc) : int(Acc);
438 const MCInstrDesc &StD = TII->get(WOpc);
439 MachineOperand &MR = FirstSt->getOperand(0);
440 int64_t Off = FirstSt->getOperand(1).getImm();
441 MachineInstr *StI = BuildMI(*MF, DL, StD)
442 .addReg(MR.getReg(), getKillRegState(MR.isKill()))
443 .addImm(Off)
444 .addImm(Val);
445 StI->addMemOperand(*MF, NewM);
446 NG.push_back(StI);
447 } else {
448 // Create vreg = A2_tfrsi #Acc; mem[hw] = vreg
449 const MCInstrDesc &TfrD = TII->get(Hexagon::A2_tfrsi);
450 const TargetRegisterClass *RC = TII->getRegClass(TfrD, 0, TRI, *MF);
451 unsigned VReg = MF->getRegInfo().createVirtualRegister(RC);
452 MachineInstr *TfrI = BuildMI(*MF, DL, TfrD, VReg)
453 .addImm(int(Acc));
454 NG.push_back(TfrI);
455
456 unsigned WOpc = (TotalSize == 2) ? Hexagon::S2_storerh_io :
457 (TotalSize == 4) ? Hexagon::S2_storeri_io : 0;
458 assert(WOpc && "Unexpected size");
459
460 const MCInstrDesc &StD = TII->get(WOpc);
461 MachineOperand &MR = FirstSt->getOperand(0);
462 int64_t Off = FirstSt->getOperand(1).getImm();
463 MachineInstr *StI = BuildMI(*MF, DL, StD)
464 .addReg(MR.getReg(), getKillRegState(MR.isKill()))
465 .addImm(Off)
466 .addReg(VReg, RegState::Kill);
467 StI->addMemOperand(*MF, NewM);
468 NG.push_back(StI);
469 }
470
471 return true;
472 }
473
474
475 // Replace instructions from the old group OG with instructions from the
476 // new group NG. Conceptually, remove all instructions in OG, and then
477 // insert all instructions in NG, starting at where the first instruction
478 // from OG was (in the order in which they appeared in the basic block).
479 // (The ordering in OG does not have to match the order in the basic block.)
replaceStores(InstrGroup & OG,InstrGroup & NG)480 bool HexagonStoreWidening::replaceStores(InstrGroup &OG, InstrGroup &NG) {
481 DEBUG({
482 dbgs() << "Replacing:\n";
483 for (auto I : OG)
484 dbgs() << " " << *I;
485 dbgs() << "with\n";
486 for (auto I : NG)
487 dbgs() << " " << *I;
488 });
489
490 MachineBasicBlock *MBB = OG.back()->getParent();
491 MachineBasicBlock::iterator InsertAt = MBB->end();
492
493 // Need to establish the insertion point. The best one is right before
494 // the first store in the OG, but in the order in which the stores occur
495 // in the program list. Since the ordering in OG does not correspond
496 // to the order in the program list, we need to do some work to find
497 // the insertion point.
498
499 // Create a set of all instructions in OG (for quick lookup).
500 SmallPtrSet<MachineInstr*, 4> InstrSet;
501 for (auto I : OG)
502 InstrSet.insert(I);
503
504 // Traverse the block, until we hit an instruction from OG.
505 for (auto &I : *MBB) {
506 if (InstrSet.count(&I)) {
507 InsertAt = I;
508 break;
509 }
510 }
511
512 assert((InsertAt != MBB->end()) && "Cannot locate any store from the group");
513
514 bool AtBBStart = false;
515
516 // InsertAt points at the first instruction that will be removed. We need
517 // to move it out of the way, so it remains valid after removing all the
518 // old stores, and so we are able to recover it back to the proper insertion
519 // position.
520 if (InsertAt != MBB->begin())
521 --InsertAt;
522 else
523 AtBBStart = true;
524
525 for (auto I : OG)
526 I->eraseFromParent();
527
528 if (!AtBBStart)
529 ++InsertAt;
530 else
531 InsertAt = MBB->begin();
532
533 for (auto I : NG)
534 MBB->insert(InsertAt, I);
535
536 return true;
537 }
538
539
540 // Break up the group into smaller groups, each of which can be replaced by
541 // a single wide store. Widen each such smaller group and replace the old
542 // instructions with the widened ones.
processStoreGroup(InstrGroup & Group)543 bool HexagonStoreWidening::processStoreGroup(InstrGroup &Group) {
544 bool Changed = false;
545 InstrGroup::iterator I = Group.begin(), E = Group.end();
546 InstrGroup OG, NG; // Old and new groups.
547 unsigned CollectedSize;
548
549 while (I != E) {
550 OG.clear();
551 NG.clear();
552
553 bool Succ = selectStores(I++, E, OG, CollectedSize, MaxWideSize) &&
554 createWideStores(OG, NG, CollectedSize) &&
555 replaceStores(OG, NG);
556 if (!Succ)
557 continue;
558
559 assert(OG.size() > 1 && "Created invalid group");
560 assert(distance(I, E)+1 >= int(OG.size()) && "Too many elements");
561 I += OG.size()-1;
562
563 Changed = true;
564 }
565
566 return Changed;
567 }
568
569
570 // Process a single basic block: create the store groups, and replace them
571 // with the widened stores, if possible. Processing of each basic block
572 // is independent from processing of any other basic block. This transfor-
573 // mation could be stopped after having processed any basic block without
574 // any ill effects (other than not having performed widening in the unpro-
575 // cessed blocks). Also, the basic blocks can be processed in any order.
processBasicBlock(MachineBasicBlock & MBB)576 bool HexagonStoreWidening::processBasicBlock(MachineBasicBlock &MBB) {
577 InstrGroupList SGs;
578 bool Changed = false;
579
580 createStoreGroups(MBB, SGs);
581
582 auto Less = [] (const MachineInstr *A, const MachineInstr *B) -> bool {
583 return getStoreOffset(A) < getStoreOffset(B);
584 };
585 for (auto &G : SGs) {
586 assert(G.size() > 1 && "Store group with fewer than 2 elements");
587 std::sort(G.begin(), G.end(), Less);
588
589 Changed |= processStoreGroup(G);
590 }
591
592 return Changed;
593 }
594
595
runOnMachineFunction(MachineFunction & MFn)596 bool HexagonStoreWidening::runOnMachineFunction(MachineFunction &MFn) {
597 if (skipFunction(*MFn.getFunction()))
598 return false;
599
600 MF = &MFn;
601 auto &ST = MFn.getSubtarget<HexagonSubtarget>();
602 TII = ST.getInstrInfo();
603 TRI = ST.getRegisterInfo();
604 MRI = &MFn.getRegInfo();
605 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
606
607 bool Changed = false;
608
609 for (auto &B : MFn)
610 Changed |= processBasicBlock(B);
611
612 return Changed;
613 }
614
615
createHexagonStoreWidening()616 FunctionPass *llvm::createHexagonStoreWidening() {
617 return new HexagonStoreWidening();
618 }
619
620