1 //===-- NVPTXInferAddressSpace.cpp - ---------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // CUDA C/C++ includes memory space designation as variable type qualifers (such
11 // as __global__ and __shared__). Knowing the space of a memory access allows
12 // CUDA compilers to emit faster PTX loads and stores. For example, a load from
13 // shared memory can be translated to `ld.shared` which is roughly 10% faster
14 // than a generic `ld` on an NVIDIA Tesla K40c.
15 //
16 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA
17 // compilers must infer the memory space of an address expression from
18 // type-qualified variables.
19 //
20 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory
21 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend
22 // places only type-qualified variables in specific address spaces, and then
23 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
24 // (so-called the generic address space) for other instructions to use.
25 //
26 // For example, the Clang translates the following CUDA code
27 //   __shared__ float a[10];
28 //   float v = a[i];
29 // to
30 //   %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
31 //   %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
32 //   %v = load float, float* %1 ; emits ld.f32
33 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is
34 // redirected to %0 (the generic version of @a).
35 //
36 // The optimization implemented in this file propagates specific address spaces
37 // from type-qualified variable declarations to its users. For example, it
38 // optimizes the above IR to
39 //   %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
40 //   %v = load float addrspace(3)* %1 ; emits ld.shared.f32
41 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX
42 // codegen is able to emit ld.shared.f32 for %v.
43 //
44 // Address space inference works in two steps. First, it uses a data-flow
45 // analysis to infer as many generic pointers as possible to point to only one
46 // specific address space. In the above example, it can prove that %1 only
47 // points to addrspace(3). This algorithm was published in
48 //   CUDA: Compiling and optimizing for a GPU platform
49 //   Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
50 //   ICCS 2012
51 //
52 // Then, address space inference replaces all refinable generic pointers with
53 // equivalent specific pointers.
54 //
55 // The major challenge of implementing this optimization is handling PHINodes,
56 // which may create loops in the data flow graph. This brings two complications.
57 //
58 // First, the data flow analysis in Step 1 needs to be circular. For example,
59 //     %generic.input = addrspacecast float addrspace(3)* %input to float*
60 //   loop:
61 //     %y = phi [ %generic.input, %y2 ]
62 //     %y2 = getelementptr %y, 1
63 //     %v = load %y2
64 //     br ..., label %loop, ...
65 // proving %y specific requires proving both %generic.input and %y2 specific,
66 // but proving %y2 specific circles back to %y. To address this complication,
67 // the data flow analysis operates on a lattice:
68 //   uninitialized > specific address spaces > generic.
69 // All address expressions (our implementation only considers phi, bitcast,
70 // addrspacecast, and getelementptr) start with the uninitialized address space.
71 // The monotone transfer function moves the address space of a pointer down a
72 // lattice path from uninitialized to specific and then to generic. A join
73 // operation of two different specific address spaces pushes the expression down
74 // to the generic address space. The analysis completes once it reaches a fixed
75 // point.
76 //
77 // Second, IR rewriting in Step 2 also needs to be circular. For example,
78 // converting %y to addrspace(3) requires the compiler to know the converted
79 // %y2, but converting %y2 needs the converted %y. To address this complication,
80 // we break these cycles using "undef" placeholders. When converting an
81 // instruction `I` to a new address space, if its operand `Op` is not converted
82 // yet, we let `I` temporarily use `undef` and fix all the uses of undef later.
83 // For instance, our algorithm first converts %y to
84 //   %y' = phi float addrspace(3)* [ %input, undef ]
85 // Then, it converts %y2 to
86 //   %y2' = getelementptr %y', 1
87 // Finally, it fixes the undef in %y' so that
88 //   %y' = phi float addrspace(3)* [ %input, %y2' ]
89 //
90 // TODO: This pass is experimental and not enabled by default. Users can turn it
91 // on by setting the -nvptx-use-infer-addrspace flag of llc. We plan to replace
92 // NVPTXNonFavorGenericAddrSpaces with this pass shortly.
93 //===----------------------------------------------------------------------===//
94 
95 #define DEBUG_TYPE "nvptx-infer-addrspace"
96 
97 #include "NVPTX.h"
98 #include "MCTargetDesc/NVPTXBaseInfo.h"
99 #include "llvm/ADT/DenseSet.h"
100 #include "llvm/ADT/Optional.h"
101 #include "llvm/ADT/SetVector.h"
102 #include "llvm/IR/Function.h"
103 #include "llvm/IR/InstIterator.h"
104 #include "llvm/IR/Instructions.h"
105 #include "llvm/IR/Operator.h"
106 #include "llvm/Support/Debug.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Transforms/Utils/Local.h"
109 #include "llvm/Transforms/Utils/ValueMapper.h"
110 
111 using namespace llvm;
112 
113 namespace {
114 const unsigned ADDRESS_SPACE_UNINITIALIZED = (unsigned)-1;
115 
116 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
117 
118 /// \brief NVPTXInferAddressSpaces
119 class NVPTXInferAddressSpaces: public FunctionPass {
120 public:
121   static char ID;
122 
NVPTXInferAddressSpaces()123   NVPTXInferAddressSpaces() : FunctionPass(ID) {}
124 
125   bool runOnFunction(Function &F) override;
126 
127 private:
128   // Returns the new address space of V if updated; otherwise, returns None.
129   Optional<unsigned>
130   updateAddressSpace(const Value &V,
131                      const ValueToAddrSpaceMapTy &InferredAddrSpace);
132 
133   // Tries to infer the specific address space of each address expression in
134   // Postorder.
135   void inferAddressSpaces(const std::vector<Value *> &Postorder,
136                           ValueToAddrSpaceMapTy *InferredAddrSpace);
137 
138   // Changes the generic address expressions in function F to point to specific
139   // address spaces if InferredAddrSpace says so. Postorder is the postorder of
140   // all generic address expressions in the use-def graph of function F.
141   bool
142   rewriteWithNewAddressSpaces(const std::vector<Value *> &Postorder,
143                               const ValueToAddrSpaceMapTy &InferredAddrSpace,
144                               Function *F);
145 };
146 } // end anonymous namespace
147 
148 char NVPTXInferAddressSpaces::ID = 0;
149 
150 namespace llvm {
151 void initializeNVPTXInferAddressSpacesPass(PassRegistry &);
152 }
153 INITIALIZE_PASS(NVPTXInferAddressSpaces, "nvptx-infer-addrspace",
154                 "Infer address spaces",
155                 false, false)
156 
157 // Returns true if V is an address expression.
158 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and
159 // getelementptr operators.
isAddressExpression(const Value & V)160 static bool isAddressExpression(const Value &V) {
161   if (!isa<Operator>(V))
162     return false;
163 
164   switch (cast<Operator>(V).getOpcode()) {
165   case Instruction::PHI:
166   case Instruction::BitCast:
167   case Instruction::AddrSpaceCast:
168   case Instruction::GetElementPtr:
169     return true;
170   default:
171     return false;
172   }
173 }
174 
175 // Returns the pointer operands of V.
176 //
177 // Precondition: V is an address expression.
getPointerOperands(const Value & V)178 static SmallVector<Value *, 2> getPointerOperands(const Value &V) {
179   assert(isAddressExpression(V));
180   const Operator& Op = cast<Operator>(V);
181   switch (Op.getOpcode()) {
182   case Instruction::PHI: {
183     auto IncomingValues = cast<PHINode>(Op).incoming_values();
184     return SmallVector<Value *, 2>(IncomingValues.begin(),
185                                    IncomingValues.end());
186   }
187   case Instruction::BitCast:
188   case Instruction::AddrSpaceCast:
189   case Instruction::GetElementPtr:
190     return {Op.getOperand(0)};
191   default:
192     llvm_unreachable("Unexpected instruction type.");
193   }
194 }
195 
196 // If V is an unvisited generic address expression, appends V to PostorderStack
197 // and marks it as visited.
appendsGenericAddressExpressionToPostorderStack(Value * V,std::vector<std::pair<Value *,bool>> * PostorderStack,DenseSet<Value * > * Visited)198 static void appendsGenericAddressExpressionToPostorderStack(
199     Value *V, std::vector<std::pair<Value *, bool>> *PostorderStack,
200     DenseSet<Value *> *Visited) {
201   assert(V->getType()->isPointerTy());
202   if (isAddressExpression(*V) &&
203       V->getType()->getPointerAddressSpace() ==
204           AddressSpace::ADDRESS_SPACE_GENERIC) {
205     if (Visited->insert(V).second)
206       PostorderStack->push_back(std::make_pair(V, false));
207   }
208 }
209 
210 // Returns all generic address expressions in function F. The elements are
211 // ordered in postorder.
collectGenericAddressExpressions(Function & F)212 static std::vector<Value *> collectGenericAddressExpressions(Function &F) {
213   // This function implements a non-recursive postorder traversal of a partial
214   // use-def graph of function F.
215   std::vector<std::pair<Value*, bool>> PostorderStack;
216   // The set of visited expressions.
217   DenseSet<Value*> Visited;
218   // We only explore address expressions that are reachable from loads and
219   // stores for now because we aim at generating faster loads and stores.
220   for (Instruction &I : instructions(F)) {
221     if (isa<LoadInst>(I)) {
222       appendsGenericAddressExpressionToPostorderStack(
223           I.getOperand(0), &PostorderStack, &Visited);
224     } else if (isa<StoreInst>(I)) {
225       appendsGenericAddressExpressionToPostorderStack(
226           I.getOperand(1), &PostorderStack, &Visited);
227     }
228   }
229 
230   std::vector<Value *> Postorder; // The resultant postorder.
231   while (!PostorderStack.empty()) {
232     // If the operands of the expression on the top are already explored,
233     // adds that expression to the resultant postorder.
234     if (PostorderStack.back().second) {
235       Postorder.push_back(PostorderStack.back().first);
236       PostorderStack.pop_back();
237       continue;
238     }
239     // Otherwise, adds its operands to the stack and explores them.
240     PostorderStack.back().second = true;
241     for (Value *PtrOperand : getPointerOperands(*PostorderStack.back().first)) {
242       appendsGenericAddressExpressionToPostorderStack(
243           PtrOperand, &PostorderStack, &Visited);
244     }
245   }
246   return Postorder;
247 }
248 
249 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
250 // of OperandUse.get() in the new address space. If the clone is not ready yet,
251 // returns an undef in the new address space as a placeholder.
operandWithNewAddressSpaceOrCreateUndef(const Use & OperandUse,unsigned NewAddrSpace,const ValueToValueMapTy & ValueWithNewAddrSpace,SmallVectorImpl<const Use * > * UndefUsesToFix)252 static Value *operandWithNewAddressSpaceOrCreateUndef(
253     const Use &OperandUse, unsigned NewAddrSpace,
254     const ValueToValueMapTy &ValueWithNewAddrSpace,
255     SmallVectorImpl<const Use *> *UndefUsesToFix) {
256   Value *Operand = OperandUse.get();
257   if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
258     return NewOperand;
259 
260   UndefUsesToFix->push_back(&OperandUse);
261   return UndefValue::get(
262       Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace));
263 }
264 
265 // Returns a clone of `I` with its operands converted to those specified in
266 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
267 // operand whose address space needs to be modified might not exist in
268 // ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and
269 // adds that operand use to UndefUsesToFix so that caller can fix them later.
270 //
271 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
272 // from a pointer whose type already matches. Therefore, this function returns a
273 // Value* instead of an Instruction*.
cloneInstructionWithNewAddressSpace(Instruction * I,unsigned NewAddrSpace,const ValueToValueMapTy & ValueWithNewAddrSpace,SmallVectorImpl<const Use * > * UndefUsesToFix)274 static Value *cloneInstructionWithNewAddressSpace(
275     Instruction *I, unsigned NewAddrSpace,
276     const ValueToValueMapTy &ValueWithNewAddrSpace,
277     SmallVectorImpl<const Use *> *UndefUsesToFix) {
278   Type *NewPtrType =
279       I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
280 
281   if (I->getOpcode() == Instruction::AddrSpaceCast) {
282     Value *Src = I->getOperand(0);
283     // Because `I` is generic, the source address space must be specific.
284     // Therefore, the inferred address space must be the source space, according
285     // to our algorithm.
286     assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
287     if (Src->getType() != NewPtrType)
288       return new BitCastInst(Src, NewPtrType);
289     return Src;
290   }
291 
292   // Computes the converted pointer operands.
293   SmallVector<Value *, 4> NewPointerOperands;
294   for (const Use &OperandUse : I->operands()) {
295     if (!OperandUse.get()->getType()->isPointerTy())
296       NewPointerOperands.push_back(nullptr);
297     else
298       NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef(
299           OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix));
300   }
301 
302   switch (I->getOpcode()) {
303   case Instruction::BitCast:
304     return new BitCastInst(NewPointerOperands[0], NewPtrType);
305   case Instruction::PHI: {
306     assert(I->getType()->isPointerTy());
307     PHINode *PHI = cast<PHINode>(I);
308     PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
309     for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
310       unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
311       NewPHI->addIncoming(NewPointerOperands[OperandNo],
312                           PHI->getIncomingBlock(Index));
313     }
314     return NewPHI;
315   }
316   case Instruction::GetElementPtr: {
317     GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
318     GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
319         GEP->getSourceElementType(), NewPointerOperands[0],
320         SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end()));
321     NewGEP->setIsInBounds(GEP->isInBounds());
322     return NewGEP;
323   }
324   default:
325     llvm_unreachable("Unexpected opcode");
326   }
327 }
328 
329 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
330 // constant expression `CE` with its operands replaced as specified in
331 // ValueWithNewAddrSpace.
cloneConstantExprWithNewAddressSpace(ConstantExpr * CE,unsigned NewAddrSpace,const ValueToValueMapTy & ValueWithNewAddrSpace)332 static Value *cloneConstantExprWithNewAddressSpace(
333     ConstantExpr *CE, unsigned NewAddrSpace,
334     const ValueToValueMapTy &ValueWithNewAddrSpace) {
335   Type *TargetType =
336       CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
337 
338   if (CE->getOpcode() == Instruction::AddrSpaceCast) {
339     // Because CE is generic, the source address space must be specific.
340     // Therefore, the inferred address space must be the source space according
341     // to our algorithm.
342     assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
343            NewAddrSpace);
344     return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
345   }
346 
347   // Computes the operands of the new constant expression.
348   SmallVector<Constant *, 4> NewOperands;
349   for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
350     Constant *Operand = CE->getOperand(Index);
351     // If the address space of `Operand` needs to be modified, the new operand
352     // with the new address space should already be in ValueWithNewAddrSpace
353     // because (1) the constant expressions we consider (i.e. addrspacecast,
354     // bitcast, and getelementptr) do not incur cycles in the data flow graph
355     // and (2) this function is called on constant expressions in postorder.
356     if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
357       NewOperands.push_back(cast<Constant>(NewOperand));
358     } else {
359       // Otherwise, reuses the old operand.
360       NewOperands.push_back(Operand);
361     }
362   }
363 
364   if (CE->getOpcode() == Instruction::GetElementPtr) {
365     // Needs to specify the source type while constructing a getelementptr
366     // constant expression.
367     return CE->getWithOperands(
368         NewOperands, TargetType, /*OnlyIfReduced=*/false,
369         NewOperands[0]->getType()->getPointerElementType());
370   }
371 
372   return CE->getWithOperands(NewOperands, TargetType);
373 }
374 
375 // Returns a clone of the value `V`, with its operands replaced as specified in
376 // ValueWithNewAddrSpace. This function is called on every generic address
377 // expression whose address space needs to be modified, in postorder.
378 //
379 // See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix.
380 static Value *
cloneValueWithNewAddressSpace(Value * V,unsigned NewAddrSpace,const ValueToValueMapTy & ValueWithNewAddrSpace,SmallVectorImpl<const Use * > * UndefUsesToFix)381 cloneValueWithNewAddressSpace(Value *V, unsigned NewAddrSpace,
382                               const ValueToValueMapTy &ValueWithNewAddrSpace,
383                               SmallVectorImpl<const Use *> *UndefUsesToFix) {
384   // All values in Postorder are generic address expressions.
385   assert(isAddressExpression(*V) &&
386          V->getType()->getPointerAddressSpace() ==
387              AddressSpace::ADDRESS_SPACE_GENERIC);
388 
389   if (Instruction *I = dyn_cast<Instruction>(V)) {
390     Value *NewV = cloneInstructionWithNewAddressSpace(
391         I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix);
392     if (Instruction *NewI = dyn_cast<Instruction>(NewV)) {
393       if (NewI->getParent() == nullptr) {
394         NewI->insertBefore(I);
395         NewI->takeName(I);
396       }
397     }
398     return NewV;
399   }
400 
401   return cloneConstantExprWithNewAddressSpace(
402       cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace);
403 }
404 
405 // Defines the join operation on the address space lattice (see the file header
406 // comments).
joinAddressSpaces(unsigned AS1,unsigned AS2)407 static unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) {
408   if (AS1 == AddressSpace::ADDRESS_SPACE_GENERIC ||
409       AS2 == AddressSpace::ADDRESS_SPACE_GENERIC)
410     return AddressSpace::ADDRESS_SPACE_GENERIC;
411 
412   if (AS1 == ADDRESS_SPACE_UNINITIALIZED)
413     return AS2;
414   if (AS2 == ADDRESS_SPACE_UNINITIALIZED)
415     return AS1;
416 
417   // The join of two different specific address spaces is generic.
418   return AS1 == AS2 ? AS1 : (unsigned)AddressSpace::ADDRESS_SPACE_GENERIC;
419 }
420 
runOnFunction(Function & F)421 bool NVPTXInferAddressSpaces::runOnFunction(Function &F) {
422   if (skipFunction(F))
423     return false;
424 
425   // Collects all generic address expressions in postorder.
426   std::vector<Value *> Postorder = collectGenericAddressExpressions(F);
427 
428   // Runs a data-flow analysis to refine the address spaces of every expression
429   // in Postorder.
430   ValueToAddrSpaceMapTy InferredAddrSpace;
431   inferAddressSpaces(Postorder, &InferredAddrSpace);
432 
433   // Changes the address spaces of the generic address expressions who are
434   // inferred to point to a specific address space.
435   return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, &F);
436 }
437 
inferAddressSpaces(const std::vector<Value * > & Postorder,ValueToAddrSpaceMapTy * InferredAddrSpace)438 void NVPTXInferAddressSpaces::inferAddressSpaces(
439     const std::vector<Value *> &Postorder,
440     ValueToAddrSpaceMapTy *InferredAddrSpace) {
441   SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
442   // Initially, all expressions are in the uninitialized address space.
443   for (Value *V : Postorder)
444     (*InferredAddrSpace)[V] = ADDRESS_SPACE_UNINITIALIZED;
445 
446   while (!Worklist.empty()) {
447     Value* V = Worklist.pop_back_val();
448 
449     // Tries to update the address space of the stack top according to the
450     // address spaces of its operands.
451     DEBUG(dbgs() << "Updating the address space of\n"
452                  << "  " << *V << "\n");
453     Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace);
454     if (!NewAS.hasValue())
455       continue;
456     // If any updates are made, grabs its users to the worklist because
457     // their address spaces can also be possibly updated.
458     DEBUG(dbgs() << "  to " << NewAS.getValue() << "\n");
459     (*InferredAddrSpace)[V] = NewAS.getValue();
460 
461     for (Value *User : V->users()) {
462       // Skip if User is already in the worklist.
463       if (Worklist.count(User))
464         continue;
465 
466       auto Pos = InferredAddrSpace->find(User);
467       // Our algorithm only updates the address spaces of generic address
468       // expressions, which are those in InferredAddrSpace.
469       if (Pos == InferredAddrSpace->end())
470         continue;
471 
472       // Function updateAddressSpace moves the address space down a lattice
473       // path. Therefore, nothing to do if User is already inferred as
474       // generic (the bottom element in the lattice).
475       if (Pos->second == AddressSpace::ADDRESS_SPACE_GENERIC)
476         continue;
477 
478       Worklist.insert(User);
479     }
480   }
481 }
482 
updateAddressSpace(const Value & V,const ValueToAddrSpaceMapTy & InferredAddrSpace)483 Optional<unsigned> NVPTXInferAddressSpaces::updateAddressSpace(
484     const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) {
485   assert(InferredAddrSpace.count(&V));
486 
487   // The new inferred address space equals the join of the address spaces
488   // of all its pointer operands.
489   unsigned NewAS = ADDRESS_SPACE_UNINITIALIZED;
490   for (Value *PtrOperand : getPointerOperands(V)) {
491     unsigned OperandAS;
492     if (InferredAddrSpace.count(PtrOperand))
493       OperandAS = InferredAddrSpace.lookup(PtrOperand);
494     else
495       OperandAS = PtrOperand->getType()->getPointerAddressSpace();
496     NewAS = joinAddressSpaces(NewAS, OperandAS);
497     // join(generic, *) = generic. So we can break if NewAS is already generic.
498     if (NewAS == AddressSpace::ADDRESS_SPACE_GENERIC)
499       break;
500   }
501 
502   unsigned OldAS = InferredAddrSpace.lookup(&V);
503   assert(OldAS != AddressSpace::ADDRESS_SPACE_GENERIC);
504   if (OldAS == NewAS)
505     return None;
506   return NewAS;
507 }
508 
rewriteWithNewAddressSpaces(const std::vector<Value * > & Postorder,const ValueToAddrSpaceMapTy & InferredAddrSpace,Function * F)509 bool NVPTXInferAddressSpaces::rewriteWithNewAddressSpaces(
510     const std::vector<Value *> &Postorder,
511     const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) {
512   // For each address expression to be modified, creates a clone of it with its
513   // pointer operands converted to the new address space. Since the pointer
514   // operands are converted, the clone is naturally in the new address space by
515   // construction.
516   ValueToValueMapTy ValueWithNewAddrSpace;
517   SmallVector<const Use *, 32> UndefUsesToFix;
518   for (Value* V : Postorder) {
519     unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
520     if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
521       ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace(
522           V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix);
523     }
524   }
525 
526   if (ValueWithNewAddrSpace.empty())
527     return false;
528 
529   // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace.
530   for (const Use* UndefUse : UndefUsesToFix) {
531     User *V = UndefUse->getUser();
532     User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V));
533     unsigned OperandNo = UndefUse->getOperandNo();
534     assert(isa<UndefValue>(NewV->getOperand(OperandNo)));
535     NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get()));
536   }
537 
538   // Replaces the uses of the old address expressions with the new ones.
539   for (Value *V : Postorder) {
540     Value *NewV = ValueWithNewAddrSpace.lookup(V);
541     if (NewV == nullptr)
542       continue;
543 
544     SmallVector<Use *, 4> Uses;
545     for (Use &U : V->uses())
546       Uses.push_back(&U);
547     DEBUG(dbgs() << "Replacing the uses of " << *V << "\n  to\n  " << *NewV
548                  << "\n");
549     for (Use *U : Uses) {
550       if (isa<LoadInst>(U->getUser()) ||
551           (isa<StoreInst>(U->getUser()) && U->getOperandNo() == 1)) {
552         // If V is used as the pointer operand of a load/store, sets the pointer
553         // operand to NewV. This replacement does not change the element type,
554         // so the resultant load/store is still valid.
555         U->set(NewV);
556       } else if (isa<Instruction>(U->getUser())) {
557         // Otherwise, replaces the use with generic(NewV).
558         // TODO: Some optimization opportunities are missed. For example, in
559         //   %0 = icmp eq float* %p, %q
560         // if both p and q are inferred to be shared, we can rewrite %0 as
561         //   %0 = icmp eq float addrspace(3)* %new_p, %new_q
562         // instead of currently
563         //   %generic_p = addrspacecast float addrspace(3)* %new_p to float*
564         //   %generic_q = addrspacecast float addrspace(3)* %new_q to float*
565         //   %0 = icmp eq float* %generic_p, %generic_q
566         if (Instruction *I = dyn_cast<Instruction>(V)) {
567           BasicBlock::iterator InsertPos = std::next(I->getIterator());
568           while (isa<PHINode>(InsertPos))
569             ++InsertPos;
570           U->set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos));
571         } else {
572           U->set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
573                                                 V->getType()));
574         }
575       }
576     }
577     if (V->use_empty())
578       RecursivelyDeleteTriviallyDeadInstructions(V);
579   }
580 
581   return true;
582 }
583 
createNVPTXInferAddressSpacesPass()584 FunctionPass *llvm::createNVPTXInferAddressSpacesPass() {
585   return new NVPTXInferAddressSpaces();
586 }
587