1//===-- SparcInstr64Bit.td - 64-bit instructions for Sparc Target ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains instruction definitions and patterns needed for 64-bit
11// code generation on SPARC v9.
12//
13// Some SPARC v9 instructions are defined in SparcInstrInfo.td because they can
14// also be used in 32-bit code running on a SPARC v9 CPU.
15//
16//===----------------------------------------------------------------------===//
17
18let Predicates = [Is64Bit] in {
19// The same integer registers are used for i32 and i64 values.
20// When registers hold i32 values, the high bits are don't care.
21// This give us free trunc and anyext.
22def : Pat<(i64 (anyext i32:$val)), (COPY_TO_REGCLASS $val, I64Regs)>;
23def : Pat<(i32 (trunc i64:$val)), (COPY_TO_REGCLASS $val, IntRegs)>;
24
25} // Predicates = [Is64Bit]
26
27
28//===----------------------------------------------------------------------===//
29// 64-bit Shift Instructions.
30//===----------------------------------------------------------------------===//
31//
32// The 32-bit shift instructions are still available. The left shift srl
33// instructions shift all 64 bits, but it only accepts a 5-bit shift amount.
34//
35// The srl instructions only shift the low 32 bits and clear the high 32 bits.
36// Finally, sra shifts the low 32 bits and sign-extends to 64 bits.
37
38let Predicates = [Is64Bit] in {
39
40def : Pat<(i64 (zext i32:$val)), (SRLri $val, 0)>;
41def : Pat<(i64 (sext i32:$val)), (SRAri $val, 0)>;
42
43def : Pat<(i64 (and i64:$val, 0xffffffff)), (SRLri $val, 0)>;
44def : Pat<(i64 (sext_inreg i64:$val, i32)), (SRAri $val, 0)>;
45
46defm SLLX : F3_S<"sllx", 0b100101, 1, shl, i64, I64Regs>;
47defm SRLX : F3_S<"srlx", 0b100110, 1, srl, i64, I64Regs>;
48defm SRAX : F3_S<"srax", 0b100111, 1, sra, i64, I64Regs>;
49
50} // Predicates = [Is64Bit]
51
52
53//===----------------------------------------------------------------------===//
54// 64-bit Immediates.
55//===----------------------------------------------------------------------===//
56//
57// All 32-bit immediates can be materialized with sethi+or, but 64-bit
58// immediates may require more code. There may be a point where it is
59// preferable to use a constant pool load instead, depending on the
60// microarchitecture.
61
62// Single-instruction patterns.
63
64// The ALU instructions want their simm13 operands as i32 immediates.
65def as_i32imm : SDNodeXForm<imm, [{
66  return CurDAG->getTargetConstant(N->getSExtValue(), SDLoc(N), MVT::i32);
67}]>;
68def : Pat<(i64 simm13:$val), (ORri (i64 G0), (as_i32imm $val))>;
69def : Pat<(i64 SETHIimm:$val), (SETHIi (HI22 $val))>;
70
71// Double-instruction patterns.
72
73// All unsigned i32 immediates can be handled by sethi+or.
74def uimm32 : PatLeaf<(imm), [{ return isUInt<32>(N->getZExtValue()); }]>;
75def : Pat<(i64 uimm32:$val), (ORri (SETHIi (HI22 $val)), (LO10 $val))>,
76      Requires<[Is64Bit]>;
77
78// All negative i33 immediates can be handled by sethi+xor.
79def nimm33 : PatLeaf<(imm), [{
80  int64_t Imm = N->getSExtValue();
81  return Imm < 0 && isInt<33>(Imm);
82}]>;
83// Bits 10-31 inverted. Same as assembler's %hix.
84def HIX22 : SDNodeXForm<imm, [{
85  uint64_t Val = (~N->getZExtValue() >> 10) & ((1u << 22) - 1);
86  return CurDAG->getTargetConstant(Val, SDLoc(N), MVT::i32);
87}]>;
88// Bits 0-9 with ones in bits 10-31. Same as assembler's %lox.
89def LOX10 : SDNodeXForm<imm, [{
90  return CurDAG->getTargetConstant(~(~N->getZExtValue() & 0x3ff), SDLoc(N),
91                                   MVT::i32);
92}]>;
93def : Pat<(i64 nimm33:$val), (XORri (SETHIi (HIX22 $val)), (LOX10 $val))>,
94      Requires<[Is64Bit]>;
95
96// More possible patterns:
97//
98//   (sllx sethi, n)
99//   (sllx simm13, n)
100//
101// 3 instrs:
102//
103//   (xor (sllx sethi), simm13)
104//   (sllx (xor sethi, simm13))
105//
106// 4 instrs:
107//
108//   (or sethi, (sllx sethi))
109//   (xnor sethi, (sllx sethi))
110//
111// 5 instrs:
112//
113//   (or (sllx sethi), (or sethi, simm13))
114//   (xnor (sllx sethi), (or sethi, simm13))
115//   (or (sllx sethi), (sllx sethi))
116//   (xnor (sllx sethi), (sllx sethi))
117//
118// Worst case is 6 instrs:
119//
120//   (or (sllx (or sethi, simmm13)), (or sethi, simm13))
121
122// Bits 42-63, same as assembler's %hh.
123def HH22 : SDNodeXForm<imm, [{
124  uint64_t Val = (N->getZExtValue() >> 42) & ((1u << 22) - 1);
125  return CurDAG->getTargetConstant(Val, SDLoc(N), MVT::i32);
126}]>;
127// Bits 32-41, same as assembler's %hm.
128def HM10 : SDNodeXForm<imm, [{
129  uint64_t Val = (N->getZExtValue() >> 32) & ((1u << 10) - 1);
130  return CurDAG->getTargetConstant(Val, SDLoc(N), MVT::i32);
131}]>;
132def : Pat<(i64 imm:$val),
133          (ORrr (SLLXri (ORri (SETHIi (HH22 $val)), (HM10 $val)), (i32 32)),
134                (ORri (SETHIi (HI22 $val)), (LO10 $val)))>,
135      Requires<[Is64Bit]>;
136
137
138//===----------------------------------------------------------------------===//
139// 64-bit Integer Arithmetic and Logic.
140//===----------------------------------------------------------------------===//
141
142let Predicates = [Is64Bit] in {
143
144// Register-register instructions.
145let isCodeGenOnly = 1 in {
146defm ANDX    : F3_12<"and", 0b000001, and, I64Regs, i64, i64imm>;
147defm ORX     : F3_12<"or",  0b000010, or,  I64Regs, i64, i64imm>;
148defm XORX    : F3_12<"xor", 0b000011, xor, I64Regs, i64, i64imm>;
149
150def ANDXNrr  : F3_1<2, 0b000101,
151                 (outs I64Regs:$dst), (ins I64Regs:$b, I64Regs:$c),
152                 "andn $b, $c, $dst",
153                 [(set i64:$dst, (and i64:$b, (not i64:$c)))]>;
154def ORXNrr   : F3_1<2, 0b000110,
155                 (outs I64Regs:$dst), (ins I64Regs:$b, I64Regs:$c),
156                 "orn $b, $c, $dst",
157                 [(set i64:$dst, (or i64:$b, (not i64:$c)))]>;
158def XNORXrr  : F3_1<2, 0b000111,
159                   (outs I64Regs:$dst), (ins I64Regs:$b, I64Regs:$c),
160                   "xnor $b, $c, $dst",
161                   [(set i64:$dst, (not (xor i64:$b, i64:$c)))]>;
162
163defm ADDX    : F3_12<"add", 0b000000, add, I64Regs, i64, i64imm>;
164defm SUBX    : F3_12<"sub", 0b000100, sub, I64Regs, i64, i64imm>;
165
166def TLS_ADDXrr : F3_1<2, 0b000000, (outs I64Regs:$rd),
167                   (ins I64Regs:$rs1, I64Regs:$rs2, TLSSym:$sym),
168                   "add $rs1, $rs2, $rd, $sym",
169                   [(set i64:$rd,
170                       (tlsadd i64:$rs1, i64:$rs2, tglobaltlsaddr:$sym))]>;
171
172// "LEA" form of add
173def LEAX_ADDri : F3_2<2, 0b000000,
174                     (outs I64Regs:$dst), (ins MEMri:$addr),
175                     "add ${addr:arith}, $dst",
176                     [(set iPTR:$dst, ADDRri:$addr)]>;
177}
178
179def : Pat<(SPcmpicc i64:$a, i64:$b), (CMPrr $a, $b)>;
180def : Pat<(SPcmpicc i64:$a, (i64 simm13:$b)), (CMPri $a, (as_i32imm $b))>;
181def : Pat<(ctpop i64:$src), (POPCrr $src)>;
182
183} // Predicates = [Is64Bit]
184
185
186//===----------------------------------------------------------------------===//
187// 64-bit Integer Multiply and Divide.
188//===----------------------------------------------------------------------===//
189
190let Predicates = [Is64Bit] in {
191
192def MULXrr : F3_1<2, 0b001001,
193                  (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
194                  "mulx $rs1, $rs2, $rd",
195                  [(set i64:$rd, (mul i64:$rs1, i64:$rs2))]>;
196def MULXri : F3_2<2, 0b001001,
197                  (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$simm13),
198                  "mulx $rs1, $simm13, $rd",
199                  [(set i64:$rd, (mul i64:$rs1, (i64 simm13:$simm13)))]>;
200
201// Division can trap.
202let hasSideEffects = 1 in {
203def SDIVXrr : F3_1<2, 0b101101,
204                   (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
205                   "sdivx $rs1, $rs2, $rd",
206                   [(set i64:$rd, (sdiv i64:$rs1, i64:$rs2))]>;
207def SDIVXri : F3_2<2, 0b101101,
208                   (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$simm13),
209                   "sdivx $rs1, $simm13, $rd",
210                   [(set i64:$rd, (sdiv i64:$rs1, (i64 simm13:$simm13)))]>;
211
212def UDIVXrr : F3_1<2, 0b001101,
213                   (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
214                   "udivx $rs1, $rs2, $rd",
215                   [(set i64:$rd, (udiv i64:$rs1, i64:$rs2))]>;
216def UDIVXri : F3_2<2, 0b001101,
217                   (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$simm13),
218                   "udivx $rs1, $simm13, $rd",
219                   [(set i64:$rd, (udiv i64:$rs1, (i64 simm13:$simm13)))]>;
220} // hasSideEffects = 1
221
222} // Predicates = [Is64Bit]
223
224
225//===----------------------------------------------------------------------===//
226// 64-bit Loads and Stores.
227//===----------------------------------------------------------------------===//
228//
229// All the 32-bit loads and stores are available. The extending loads are sign
230// or zero-extending to 64 bits. The LDrr and LDri instructions load 32 bits
231// zero-extended to i64. Their mnemonic is lduw in SPARC v9 (Load Unsigned
232// Word).
233//
234// SPARC v9 adds 64-bit loads as well as a sign-extending ldsw i32 loads.
235
236let Predicates = [Is64Bit] in {
237
238// 64-bit loads.
239let DecoderMethod = "DecodeLoadInt" in
240  defm LDX   : Load<"ldx", 0b001011, load, I64Regs, i64>;
241
242let mayLoad = 1, isCodeGenOnly = 1, isAsmParserOnly = 1 in
243  def TLS_LDXrr : F3_1<3, 0b001011,
244                       (outs IntRegs:$dst), (ins MEMrr:$addr, TLSSym:$sym),
245                       "ldx [$addr], $dst, $sym",
246                       [(set i64:$dst,
247                           (tlsld ADDRrr:$addr, tglobaltlsaddr:$sym))]>;
248
249// Extending loads to i64.
250def : Pat<(i64 (zextloadi1 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
251def : Pat<(i64 (zextloadi1 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
252def : Pat<(i64 (extloadi1 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
253def : Pat<(i64 (extloadi1 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
254
255def : Pat<(i64 (zextloadi8 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
256def : Pat<(i64 (zextloadi8 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
257def : Pat<(i64 (extloadi8 ADDRrr:$addr)),  (LDUBrr ADDRrr:$addr)>;
258def : Pat<(i64 (extloadi8 ADDRri:$addr)),  (LDUBri ADDRri:$addr)>;
259def : Pat<(i64 (sextloadi8 ADDRrr:$addr)), (LDSBrr ADDRrr:$addr)>;
260def : Pat<(i64 (sextloadi8 ADDRri:$addr)), (LDSBri ADDRri:$addr)>;
261
262def : Pat<(i64 (zextloadi16 ADDRrr:$addr)), (LDUHrr ADDRrr:$addr)>;
263def : Pat<(i64 (zextloadi16 ADDRri:$addr)), (LDUHri ADDRri:$addr)>;
264def : Pat<(i64 (extloadi16 ADDRrr:$addr)),  (LDUHrr ADDRrr:$addr)>;
265def : Pat<(i64 (extloadi16 ADDRri:$addr)),  (LDUHri ADDRri:$addr)>;
266def : Pat<(i64 (sextloadi16 ADDRrr:$addr)), (LDSHrr ADDRrr:$addr)>;
267def : Pat<(i64 (sextloadi16 ADDRri:$addr)), (LDSHri ADDRri:$addr)>;
268
269def : Pat<(i64 (zextloadi32 ADDRrr:$addr)), (LDrr ADDRrr:$addr)>;
270def : Pat<(i64 (zextloadi32 ADDRri:$addr)), (LDri ADDRri:$addr)>;
271def : Pat<(i64 (extloadi32 ADDRrr:$addr)),  (LDrr ADDRrr:$addr)>;
272def : Pat<(i64 (extloadi32 ADDRri:$addr)),  (LDri ADDRri:$addr)>;
273
274// Sign-extending load of i32 into i64 is a new SPARC v9 instruction.
275let DecoderMethod = "DecodeLoadInt" in
276  defm LDSW   : Load<"ldsw", 0b001000, sextloadi32, I64Regs, i64>;
277
278// 64-bit stores.
279let DecoderMethod = "DecodeStoreInt" in
280  defm STX    : Store<"stx", 0b001110, store,  I64Regs, i64>;
281
282// Truncating stores from i64 are identical to the i32 stores.
283def : Pat<(truncstorei8  i64:$src, ADDRrr:$addr), (STBrr ADDRrr:$addr, $src)>;
284def : Pat<(truncstorei8  i64:$src, ADDRri:$addr), (STBri ADDRri:$addr, $src)>;
285def : Pat<(truncstorei16 i64:$src, ADDRrr:$addr), (STHrr ADDRrr:$addr, $src)>;
286def : Pat<(truncstorei16 i64:$src, ADDRri:$addr), (STHri ADDRri:$addr, $src)>;
287def : Pat<(truncstorei32 i64:$src, ADDRrr:$addr), (STrr  ADDRrr:$addr, $src)>;
288def : Pat<(truncstorei32 i64:$src, ADDRri:$addr), (STri  ADDRri:$addr, $src)>;
289
290// store 0, addr -> store %g0, addr
291def : Pat<(store (i64 0), ADDRrr:$dst), (STXrr ADDRrr:$dst, (i64 G0))>;
292def : Pat<(store (i64 0), ADDRri:$dst), (STXri ADDRri:$dst, (i64 G0))>;
293
294} // Predicates = [Is64Bit]
295
296
297//===----------------------------------------------------------------------===//
298// 64-bit Conditionals.
299//===----------------------------------------------------------------------===//
300
301//
302// Flag-setting instructions like subcc and addcc set both icc and xcc flags.
303// The icc flags correspond to the 32-bit result, and the xcc are for the
304// full 64-bit result.
305//
306// We reuse CMPICC SDNodes for compares, but use new BRXCC branch nodes for
307// 64-bit compares. See LowerBR_CC.
308
309let Predicates = [Is64Bit] in {
310
311let Uses = [ICC], cc = 0b10 in
312  defm BPX : IPredBranch<"%xcc", [(SPbrxcc bb:$imm19, imm:$cond)]>;
313
314// Conditional moves on %xcc.
315let Uses = [ICC], Constraints = "$f = $rd" in {
316let intcc = 1, cc = 0b10 in {
317def MOVXCCrr : F4_1<0b101100, (outs IntRegs:$rd),
318                      (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
319                      "mov$cond %xcc, $rs2, $rd",
320                      [(set i32:$rd,
321                       (SPselectxcc i32:$rs2, i32:$f, imm:$cond))]>;
322def MOVXCCri : F4_2<0b101100, (outs IntRegs:$rd),
323                      (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
324                      "mov$cond %xcc, $simm11, $rd",
325                      [(set i32:$rd,
326                       (SPselectxcc simm11:$simm11, i32:$f, imm:$cond))]>;
327} // cc
328
329let intcc = 1, opf_cc = 0b10 in {
330def FMOVS_XCC : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
331                      (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
332                      "fmovs$cond %xcc, $rs2, $rd",
333                      [(set f32:$rd,
334                       (SPselectxcc f32:$rs2, f32:$f, imm:$cond))]>;
335def FMOVD_XCC : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
336                      (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
337                      "fmovd$cond %xcc, $rs2, $rd",
338                      [(set f64:$rd,
339                       (SPselectxcc f64:$rs2, f64:$f, imm:$cond))]>;
340def FMOVQ_XCC : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
341                      (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
342                      "fmovq$cond %xcc, $rs2, $rd",
343                      [(set f128:$rd,
344                       (SPselectxcc f128:$rs2, f128:$f, imm:$cond))]>;
345} // opf_cc
346} // Uses, Constraints
347
348// Branch On integer register with Prediction (BPr).
349let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in
350multiclass BranchOnReg<bits<3> cond, string OpcStr> {
351  def napt : F2_4<cond, 0, 1, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16),
352             !strconcat(OpcStr, " $rs1, $imm16"), []>;
353  def apt  : F2_4<cond, 1, 1, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16),
354             !strconcat(OpcStr, ",a $rs1, $imm16"), []>;
355  def napn  : F2_4<cond, 0, 0, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16),
356             !strconcat(OpcStr, ",pn $rs1, $imm16"), []>;
357  def apn : F2_4<cond, 1, 0, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16),
358             !strconcat(OpcStr, ",a,pn $rs1, $imm16"), []>;
359}
360
361multiclass bpr_alias<string OpcStr, Instruction NAPT, Instruction APT> {
362  def : InstAlias<!strconcat(OpcStr, ",pt $rs1, $imm16"),
363                  (NAPT I64Regs:$rs1, bprtarget16:$imm16), 0>;
364  def : InstAlias<!strconcat(OpcStr, ",a,pt $rs1, $imm16"),
365                  (APT I64Regs:$rs1, bprtarget16:$imm16), 0>;
366}
367
368defm BPZ   : BranchOnReg<0b001, "brz">;
369defm BPLEZ : BranchOnReg<0b010, "brlez">;
370defm BPLZ  : BranchOnReg<0b011, "brlz">;
371defm BPNZ  : BranchOnReg<0b101, "brnz">;
372defm BPGZ  : BranchOnReg<0b110, "brgz">;
373defm BPGEZ : BranchOnReg<0b111, "brgez">;
374
375defm : bpr_alias<"brz",   BPZnapt,   BPZapt  >;
376defm : bpr_alias<"brlez", BPLEZnapt, BPLEZapt>;
377defm : bpr_alias<"brlz",  BPLZnapt,  BPLZapt >;
378defm : bpr_alias<"brnz",  BPNZnapt,  BPNZapt >;
379defm : bpr_alias<"brgz",  BPGZnapt,  BPGZapt >;
380defm : bpr_alias<"brgez", BPGEZnapt, BPGEZapt>;
381
382// Move integer register on register condition (MOVr).
383multiclass MOVR< bits<3> rcond,  string OpcStr> {
384  def rr : F4_4r<0b101111, 0b00000, rcond, (outs I64Regs:$rd),
385                   (ins I64Regs:$rs1, IntRegs:$rs2),
386                   !strconcat(OpcStr, " $rs1, $rs2, $rd"), []>;
387
388  def ri : F4_4i<0b101111, rcond, (outs I64Regs:$rd),
389                   (ins I64Regs:$rs1, i64imm:$simm10),
390                   !strconcat(OpcStr, " $rs1, $simm10, $rd"), []>;
391}
392
393defm MOVRRZ  : MOVR<0b001, "movrz">;
394defm MOVRLEZ : MOVR<0b010, "movrlez">;
395defm MOVRLZ  : MOVR<0b011, "movrlz">;
396defm MOVRNZ  : MOVR<0b101, "movrnz">;
397defm MOVRGZ  : MOVR<0b110, "movrgz">;
398defm MOVRGEZ : MOVR<0b111, "movrgez">;
399
400// Move FP register on integer register condition (FMOVr).
401multiclass FMOVR<bits<3> rcond, string OpcStr> {
402
403  def S : F4_4r<0b110101, 0b00101, rcond,
404                (outs FPRegs:$rd), (ins I64Regs:$rs1, FPRegs:$rs2),
405                !strconcat(!strconcat("fmovrs", OpcStr)," $rs1, $rs2, $rd"),
406                []>;
407  def D : F4_4r<0b110101, 0b00110, rcond,
408                (outs FPRegs:$rd), (ins I64Regs:$rs1, FPRegs:$rs2),
409                !strconcat(!strconcat("fmovrd", OpcStr)," $rs1, $rs2, $rd"),
410                []>;
411  def Q : F4_4r<0b110101, 0b00111, rcond,
412                (outs FPRegs:$rd), (ins I64Regs:$rs1, FPRegs:$rs2),
413                !strconcat(!strconcat("fmovrq", OpcStr)," $rs1, $rs2, $rd"),
414                []>, Requires<[HasHardQuad]>;
415}
416
417let Predicates = [HasV9] in {
418  defm FMOVRZ   : FMOVR<0b001, "z">;
419  defm FMOVRLEZ : FMOVR<0b010, "lez">;
420  defm FMOVRLZ  : FMOVR<0b011, "lz">;
421  defm FMOVRNZ  : FMOVR<0b101, "nz">;
422  defm FMOVRGZ  : FMOVR<0b110, "gz">;
423  defm FMOVRGEZ : FMOVR<0b111, "gez">;
424}
425
426//===----------------------------------------------------------------------===//
427// 64-bit Floating Point Conversions.
428//===----------------------------------------------------------------------===//
429
430let Predicates = [Is64Bit] in {
431
432def FXTOS : F3_3u<2, 0b110100, 0b010000100,
433                 (outs FPRegs:$rd), (ins DFPRegs:$rs2),
434                 "fxtos $rs2, $rd",
435                 [(set FPRegs:$rd, (SPxtof DFPRegs:$rs2))]>;
436def FXTOD : F3_3u<2, 0b110100, 0b010001000,
437                 (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
438                 "fxtod $rs2, $rd",
439                 [(set DFPRegs:$rd, (SPxtof DFPRegs:$rs2))]>;
440def FXTOQ : F3_3u<2, 0b110100, 0b010001100,
441                 (outs QFPRegs:$rd), (ins DFPRegs:$rs2),
442                 "fxtoq $rs2, $rd",
443                 [(set QFPRegs:$rd, (SPxtof DFPRegs:$rs2))]>,
444                 Requires<[HasHardQuad]>;
445
446def FSTOX : F3_3u<2, 0b110100, 0b010000001,
447                 (outs DFPRegs:$rd), (ins FPRegs:$rs2),
448                 "fstox $rs2, $rd",
449                 [(set DFPRegs:$rd, (SPftox FPRegs:$rs2))]>;
450def FDTOX : F3_3u<2, 0b110100, 0b010000010,
451                 (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
452                 "fdtox $rs2, $rd",
453                 [(set DFPRegs:$rd, (SPftox DFPRegs:$rs2))]>;
454def FQTOX : F3_3u<2, 0b110100, 0b010000011,
455                 (outs DFPRegs:$rd), (ins QFPRegs:$rs2),
456                 "fqtox $rs2, $rd",
457                 [(set DFPRegs:$rd, (SPftox QFPRegs:$rs2))]>,
458                 Requires<[HasHardQuad]>;
459
460} // Predicates = [Is64Bit]
461
462def : Pat<(SPselectxcc i64:$t, i64:$f, imm:$cond),
463          (MOVXCCrr $t, $f, imm:$cond)>;
464def : Pat<(SPselectxcc (i64 simm11:$t), i64:$f, imm:$cond),
465          (MOVXCCri (as_i32imm $t), $f, imm:$cond)>;
466
467def : Pat<(SPselecticc i64:$t, i64:$f, imm:$cond),
468          (MOVICCrr $t, $f, imm:$cond)>;
469def : Pat<(SPselecticc (i64 simm11:$t), i64:$f, imm:$cond),
470          (MOVICCri (as_i32imm $t), $f, imm:$cond)>;
471
472def : Pat<(SPselectfcc i64:$t, i64:$f, imm:$cond),
473          (MOVFCCrr $t, $f, imm:$cond)>;
474def : Pat<(SPselectfcc (i64 simm11:$t), i64:$f, imm:$cond),
475          (MOVFCCri (as_i32imm $t), $f, imm:$cond)>;
476
477} // Predicates = [Is64Bit]
478
479
480// 64 bit SETHI
481let Predicates = [Is64Bit], isCodeGenOnly = 1 in {
482def SETHIXi : F2_1<0b100,
483                   (outs IntRegs:$rd), (ins i64imm:$imm22),
484                   "sethi $imm22, $rd",
485                   [(set i64:$rd, SETHIimm:$imm22)]>;
486}
487
488// ATOMICS.
489let Predicates = [Is64Bit], Constraints = "$swap = $rd", asi = 0b10000000 in {
490  def CASXrr: F3_1_asi<3, 0b111110,
491                (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2,
492                                     I64Regs:$swap),
493                 "casx [$rs1], $rs2, $rd",
494                 [(set i64:$rd,
495                     (atomic_cmp_swap_64 i64:$rs1, i64:$rs2, i64:$swap))]>;
496
497} // Predicates = [Is64Bit], Constraints = ...
498
499let Predicates = [Is64Bit] in {
500
501def : Pat<(atomic_fence imm, imm), (MEMBARi 0xf)>;
502
503// atomic_load_64 addr -> load addr
504def : Pat<(i64 (atomic_load_64 ADDRrr:$src)), (LDXrr ADDRrr:$src)>;
505def : Pat<(i64 (atomic_load_64 ADDRri:$src)), (LDXri ADDRri:$src)>;
506
507// atomic_store_64 val, addr -> store val, addr
508def : Pat<(atomic_store_64 ADDRrr:$dst, i64:$val), (STXrr ADDRrr:$dst, $val)>;
509def : Pat<(atomic_store_64 ADDRri:$dst, i64:$val), (STXri ADDRri:$dst, $val)>;
510
511} // Predicates = [Is64Bit]
512
513let Predicates = [Is64Bit], hasSideEffects = 1, Uses = [ICC], cc = 0b10 in
514 defm TXCC : TRAP<"%xcc">;
515
516// Global addresses, constant pool entries
517let Predicates = [Is64Bit] in {
518
519def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
520def : Pat<(SPlo tglobaladdr:$in), (ORXri (i64 G0), tglobaladdr:$in)>;
521def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
522def : Pat<(SPlo tconstpool:$in), (ORXri (i64 G0), tconstpool:$in)>;
523
524// GlobalTLS addresses
525def : Pat<(SPhi tglobaltlsaddr:$in), (SETHIi tglobaltlsaddr:$in)>;
526def : Pat<(SPlo tglobaltlsaddr:$in), (ORXri (i64 G0), tglobaltlsaddr:$in)>;
527def : Pat<(add (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
528          (ADDXri (SETHIXi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
529def : Pat<(xor (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
530          (XORXri  (SETHIXi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
531
532// Blockaddress
533def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>;
534def : Pat<(SPlo tblockaddress:$in), (ORXri (i64 G0), tblockaddress:$in)>;
535
536// Add reg, lo.  This is used when taking the addr of a global/constpool entry.
537def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDXri $r, tglobaladdr:$in)>;
538def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)),  (ADDXri $r, tconstpool:$in)>;
539def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)),
540                        (ADDXri $r, tblockaddress:$in)>;
541}
542