1 //===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines an instruction selector for the SystemZ target.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "SystemZTargetMachine.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/CodeGen/SelectionDAGISel.h"
17 #include "llvm/Support/Debug.h"
18 #include "llvm/Support/raw_ostream.h"
19
20 using namespace llvm;
21
22 #define DEBUG_TYPE "systemz-isel"
23
24 namespace {
25 // Used to build addressing modes.
26 struct SystemZAddressingMode {
27 // The shape of the address.
28 enum AddrForm {
29 // base+displacement
30 FormBD,
31
32 // base+displacement+index for load and store operands
33 FormBDXNormal,
34
35 // base+displacement+index for load address operands
36 FormBDXLA,
37
38 // base+displacement+index+ADJDYNALLOC
39 FormBDXDynAlloc
40 };
41 AddrForm Form;
42
43 // The type of displacement. The enum names here correspond directly
44 // to the definitions in SystemZOperand.td. We could split them into
45 // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it.
46 enum DispRange {
47 Disp12Only,
48 Disp12Pair,
49 Disp20Only,
50 Disp20Only128,
51 Disp20Pair
52 };
53 DispRange DR;
54
55 // The parts of the address. The address is equivalent to:
56 //
57 // Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0)
58 SDValue Base;
59 int64_t Disp;
60 SDValue Index;
61 bool IncludesDynAlloc;
62
SystemZAddressingMode__anonc996305d0111::SystemZAddressingMode63 SystemZAddressingMode(AddrForm form, DispRange dr)
64 : Form(form), DR(dr), Base(), Disp(0), Index(),
65 IncludesDynAlloc(false) {}
66
67 // True if the address can have an index register.
hasIndexField__anonc996305d0111::SystemZAddressingMode68 bool hasIndexField() { return Form != FormBD; }
69
70 // True if the address can (and must) include ADJDYNALLOC.
isDynAlloc__anonc996305d0111::SystemZAddressingMode71 bool isDynAlloc() { return Form == FormBDXDynAlloc; }
72
dump__anonc996305d0111::SystemZAddressingMode73 void dump() {
74 errs() << "SystemZAddressingMode " << this << '\n';
75
76 errs() << " Base ";
77 if (Base.getNode())
78 Base.getNode()->dump();
79 else
80 errs() << "null\n";
81
82 if (hasIndexField()) {
83 errs() << " Index ";
84 if (Index.getNode())
85 Index.getNode()->dump();
86 else
87 errs() << "null\n";
88 }
89
90 errs() << " Disp " << Disp;
91 if (IncludesDynAlloc)
92 errs() << " + ADJDYNALLOC";
93 errs() << '\n';
94 }
95 };
96
97 // Return a mask with Count low bits set.
allOnes(unsigned int Count)98 static uint64_t allOnes(unsigned int Count) {
99 assert(Count <= 64);
100 if (Count > 63)
101 return UINT64_MAX;
102 return (uint64_t(1) << Count) - 1;
103 }
104
105 // Represents operands 2 to 5 of the ROTATE AND ... SELECTED BITS operation
106 // given by Opcode. The operands are: Input (R2), Start (I3), End (I4) and
107 // Rotate (I5). The combined operand value is effectively:
108 //
109 // (or (rotl Input, Rotate), ~Mask)
110 //
111 // for RNSBG and:
112 //
113 // (and (rotl Input, Rotate), Mask)
114 //
115 // otherwise. The output value has BitSize bits, although Input may be
116 // narrower (in which case the upper bits are don't care), or wider (in which
117 // case the result will be truncated as part of the operation).
118 struct RxSBGOperands {
RxSBGOperands__anonc996305d0111::RxSBGOperands119 RxSBGOperands(unsigned Op, SDValue N)
120 : Opcode(Op), BitSize(N.getValueType().getSizeInBits()),
121 Mask(allOnes(BitSize)), Input(N), Start(64 - BitSize), End(63),
122 Rotate(0) {}
123
124 unsigned Opcode;
125 unsigned BitSize;
126 uint64_t Mask;
127 SDValue Input;
128 unsigned Start;
129 unsigned End;
130 unsigned Rotate;
131 };
132
133 class SystemZDAGToDAGISel : public SelectionDAGISel {
134 const SystemZSubtarget *Subtarget;
135
136 // Used by SystemZOperands.td to create integer constants.
getImm(const SDNode * Node,uint64_t Imm) const137 inline SDValue getImm(const SDNode *Node, uint64_t Imm) const {
138 return CurDAG->getTargetConstant(Imm, SDLoc(Node), Node->getValueType(0));
139 }
140
getTargetMachine() const141 const SystemZTargetMachine &getTargetMachine() const {
142 return static_cast<const SystemZTargetMachine &>(TM);
143 }
144
getInstrInfo() const145 const SystemZInstrInfo *getInstrInfo() const {
146 return Subtarget->getInstrInfo();
147 }
148
149 // Try to fold more of the base or index of AM into AM, where IsBase
150 // selects between the base and index.
151 bool expandAddress(SystemZAddressingMode &AM, bool IsBase) const;
152
153 // Try to describe N in AM, returning true on success.
154 bool selectAddress(SDValue N, SystemZAddressingMode &AM) const;
155
156 // Extract individual target operands from matched address AM.
157 void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
158 SDValue &Base, SDValue &Disp) const;
159 void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
160 SDValue &Base, SDValue &Disp, SDValue &Index) const;
161
162 // Try to match Addr as a FormBD address with displacement type DR.
163 // Return true on success, storing the base and displacement in
164 // Base and Disp respectively.
165 bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
166 SDValue &Base, SDValue &Disp) const;
167
168 // Try to match Addr as a FormBDX address with displacement type DR.
169 // Return true on success and if the result had no index. Store the
170 // base and displacement in Base and Disp respectively.
171 bool selectMVIAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
172 SDValue &Base, SDValue &Disp) const;
173
174 // Try to match Addr as a FormBDX* address of form Form with
175 // displacement type DR. Return true on success, storing the base,
176 // displacement and index in Base, Disp and Index respectively.
177 bool selectBDXAddr(SystemZAddressingMode::AddrForm Form,
178 SystemZAddressingMode::DispRange DR, SDValue Addr,
179 SDValue &Base, SDValue &Disp, SDValue &Index) const;
180
181 // PC-relative address matching routines used by SystemZOperands.td.
selectPCRelAddress(SDValue Addr,SDValue & Target) const182 bool selectPCRelAddress(SDValue Addr, SDValue &Target) const {
183 if (SystemZISD::isPCREL(Addr.getOpcode())) {
184 Target = Addr.getOperand(0);
185 return true;
186 }
187 return false;
188 }
189
190 // BD matching routines used by SystemZOperands.td.
selectBDAddr12Only(SDValue Addr,SDValue & Base,SDValue & Disp) const191 bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
192 return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp);
193 }
selectBDAddr12Pair(SDValue Addr,SDValue & Base,SDValue & Disp) const194 bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
195 return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
196 }
selectBDAddr20Only(SDValue Addr,SDValue & Base,SDValue & Disp) const197 bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
198 return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp);
199 }
selectBDAddr20Pair(SDValue Addr,SDValue & Base,SDValue & Disp) const200 bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
201 return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
202 }
203
204 // MVI matching routines used by SystemZOperands.td.
selectMVIAddr12Pair(SDValue Addr,SDValue & Base,SDValue & Disp) const205 bool selectMVIAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
206 return selectMVIAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
207 }
selectMVIAddr20Pair(SDValue Addr,SDValue & Base,SDValue & Disp) const208 bool selectMVIAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
209 return selectMVIAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
210 }
211
212 // BDX matching routines used by SystemZOperands.td.
selectBDXAddr12Only(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const213 bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
214 SDValue &Index) const {
215 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
216 SystemZAddressingMode::Disp12Only,
217 Addr, Base, Disp, Index);
218 }
selectBDXAddr12Pair(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const219 bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
220 SDValue &Index) const {
221 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
222 SystemZAddressingMode::Disp12Pair,
223 Addr, Base, Disp, Index);
224 }
selectDynAlloc12Only(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const225 bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
226 SDValue &Index) const {
227 return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc,
228 SystemZAddressingMode::Disp12Only,
229 Addr, Base, Disp, Index);
230 }
selectBDXAddr20Only(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const231 bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp,
232 SDValue &Index) const {
233 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
234 SystemZAddressingMode::Disp20Only,
235 Addr, Base, Disp, Index);
236 }
selectBDXAddr20Only128(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const237 bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp,
238 SDValue &Index) const {
239 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
240 SystemZAddressingMode::Disp20Only128,
241 Addr, Base, Disp, Index);
242 }
selectBDXAddr20Pair(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const243 bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
244 SDValue &Index) const {
245 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
246 SystemZAddressingMode::Disp20Pair,
247 Addr, Base, Disp, Index);
248 }
selectLAAddr12Pair(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const249 bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
250 SDValue &Index) const {
251 return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
252 SystemZAddressingMode::Disp12Pair,
253 Addr, Base, Disp, Index);
254 }
selectLAAddr20Pair(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const255 bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
256 SDValue &Index) const {
257 return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
258 SystemZAddressingMode::Disp20Pair,
259 Addr, Base, Disp, Index);
260 }
261
262 // Try to match Addr as an address with a base, 12-bit displacement
263 // and index, where the index is element Elem of a vector.
264 // Return true on success, storing the base, displacement and vector
265 // in Base, Disp and Index respectively.
266 bool selectBDVAddr12Only(SDValue Addr, SDValue Elem, SDValue &Base,
267 SDValue &Disp, SDValue &Index) const;
268
269 // Check whether (or Op (and X InsertMask)) is effectively an insertion
270 // of X into bits InsertMask of some Y != Op. Return true if so and
271 // set Op to that Y.
272 bool detectOrAndInsertion(SDValue &Op, uint64_t InsertMask) const;
273
274 // Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used.
275 // Return true on success.
276 bool refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask) const;
277
278 // Try to fold some of RxSBG.Input into other fields of RxSBG.
279 // Return true on success.
280 bool expandRxSBG(RxSBGOperands &RxSBG) const;
281
282 // Return an undefined value of type VT.
283 SDValue getUNDEF(const SDLoc &DL, EVT VT) const;
284
285 // Convert N to VT, if it isn't already.
286 SDValue convertTo(const SDLoc &DL, EVT VT, SDValue N) const;
287
288 // Try to implement AND or shift node N using RISBG with the zero flag set.
289 // Return the selected node on success, otherwise return null.
290 bool tryRISBGZero(SDNode *N);
291
292 // Try to use RISBG or Opcode to implement OR or XOR node N.
293 // Return the selected node on success, otherwise return null.
294 bool tryRxSBG(SDNode *N, unsigned Opcode);
295
296 // If Op0 is null, then Node is a constant that can be loaded using:
297 //
298 // (Opcode UpperVal LowerVal)
299 //
300 // If Op0 is nonnull, then Node can be implemented using:
301 //
302 // (Opcode (Opcode Op0 UpperVal) LowerVal)
303 void splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0,
304 uint64_t UpperVal, uint64_t LowerVal);
305
306 // Try to use gather instruction Opcode to implement vector insertion N.
307 bool tryGather(SDNode *N, unsigned Opcode);
308
309 // Try to use scatter instruction Opcode to implement store Store.
310 bool tryScatter(StoreSDNode *Store, unsigned Opcode);
311
312 // Return true if Load and Store are loads and stores of the same size
313 // and are guaranteed not to overlap. Such operations can be implemented
314 // using block (SS-format) instructions.
315 //
316 // Partial overlap would lead to incorrect code, since the block operations
317 // are logically bytewise, even though they have a fast path for the
318 // non-overlapping case. We also need to avoid full overlap (i.e. two
319 // addresses that might be equal at run time) because although that case
320 // would be handled correctly, it might be implemented by millicode.
321 bool canUseBlockOperation(StoreSDNode *Store, LoadSDNode *Load) const;
322
323 // N is a (store (load Y), X) pattern. Return true if it can use an MVC
324 // from Y to X.
325 bool storeLoadCanUseMVC(SDNode *N) const;
326
327 // N is a (store (op (load A[0]), (load A[1])), X) pattern. Return true
328 // if A[1 - I] == X and if N can use a block operation like NC from A[I]
329 // to X.
330 bool storeLoadCanUseBlockBinary(SDNode *N, unsigned I) const;
331
332 public:
SystemZDAGToDAGISel(SystemZTargetMachine & TM,CodeGenOpt::Level OptLevel)333 SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
334 : SelectionDAGISel(TM, OptLevel) {}
335
runOnMachineFunction(MachineFunction & MF)336 bool runOnMachineFunction(MachineFunction &MF) override {
337 Subtarget = &MF.getSubtarget<SystemZSubtarget>();
338 return SelectionDAGISel::runOnMachineFunction(MF);
339 }
340
341 // Override MachineFunctionPass.
getPassName() const342 const char *getPassName() const override {
343 return "SystemZ DAG->DAG Pattern Instruction Selection";
344 }
345
346 // Override SelectionDAGISel.
347 void Select(SDNode *Node) override;
348 bool SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
349 std::vector<SDValue> &OutOps) override;
350
351 // Include the pieces autogenerated from the target description.
352 #include "SystemZGenDAGISel.inc"
353 };
354 } // end anonymous namespace
355
createSystemZISelDag(SystemZTargetMachine & TM,CodeGenOpt::Level OptLevel)356 FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
357 CodeGenOpt::Level OptLevel) {
358 return new SystemZDAGToDAGISel(TM, OptLevel);
359 }
360
361 // Return true if Val should be selected as a displacement for an address
362 // with range DR. Here we're interested in the range of both the instruction
363 // described by DR and of any pairing instruction.
selectDisp(SystemZAddressingMode::DispRange DR,int64_t Val)364 static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
365 switch (DR) {
366 case SystemZAddressingMode::Disp12Only:
367 return isUInt<12>(Val);
368
369 case SystemZAddressingMode::Disp12Pair:
370 case SystemZAddressingMode::Disp20Only:
371 case SystemZAddressingMode::Disp20Pair:
372 return isInt<20>(Val);
373
374 case SystemZAddressingMode::Disp20Only128:
375 return isInt<20>(Val) && isInt<20>(Val + 8);
376 }
377 llvm_unreachable("Unhandled displacement range");
378 }
379
380 // Change the base or index in AM to Value, where IsBase selects
381 // between the base and index.
changeComponent(SystemZAddressingMode & AM,bool IsBase,SDValue Value)382 static void changeComponent(SystemZAddressingMode &AM, bool IsBase,
383 SDValue Value) {
384 if (IsBase)
385 AM.Base = Value;
386 else
387 AM.Index = Value;
388 }
389
390 // The base or index of AM is equivalent to Value + ADJDYNALLOC,
391 // where IsBase selects between the base and index. Try to fold the
392 // ADJDYNALLOC into AM.
expandAdjDynAlloc(SystemZAddressingMode & AM,bool IsBase,SDValue Value)393 static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase,
394 SDValue Value) {
395 if (AM.isDynAlloc() && !AM.IncludesDynAlloc) {
396 changeComponent(AM, IsBase, Value);
397 AM.IncludesDynAlloc = true;
398 return true;
399 }
400 return false;
401 }
402
403 // The base of AM is equivalent to Base + Index. Try to use Index as
404 // the index register.
expandIndex(SystemZAddressingMode & AM,SDValue Base,SDValue Index)405 static bool expandIndex(SystemZAddressingMode &AM, SDValue Base,
406 SDValue Index) {
407 if (AM.hasIndexField() && !AM.Index.getNode()) {
408 AM.Base = Base;
409 AM.Index = Index;
410 return true;
411 }
412 return false;
413 }
414
415 // The base or index of AM is equivalent to Op0 + Op1, where IsBase selects
416 // between the base and index. Try to fold Op1 into AM's displacement.
expandDisp(SystemZAddressingMode & AM,bool IsBase,SDValue Op0,uint64_t Op1)417 static bool expandDisp(SystemZAddressingMode &AM, bool IsBase,
418 SDValue Op0, uint64_t Op1) {
419 // First try adjusting the displacement.
420 int64_t TestDisp = AM.Disp + Op1;
421 if (selectDisp(AM.DR, TestDisp)) {
422 changeComponent(AM, IsBase, Op0);
423 AM.Disp = TestDisp;
424 return true;
425 }
426
427 // We could consider forcing the displacement into a register and
428 // using it as an index, but it would need to be carefully tuned.
429 return false;
430 }
431
expandAddress(SystemZAddressingMode & AM,bool IsBase) const432 bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM,
433 bool IsBase) const {
434 SDValue N = IsBase ? AM.Base : AM.Index;
435 unsigned Opcode = N.getOpcode();
436 if (Opcode == ISD::TRUNCATE) {
437 N = N.getOperand(0);
438 Opcode = N.getOpcode();
439 }
440 if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) {
441 SDValue Op0 = N.getOperand(0);
442 SDValue Op1 = N.getOperand(1);
443
444 unsigned Op0Code = Op0->getOpcode();
445 unsigned Op1Code = Op1->getOpcode();
446
447 if (Op0Code == SystemZISD::ADJDYNALLOC)
448 return expandAdjDynAlloc(AM, IsBase, Op1);
449 if (Op1Code == SystemZISD::ADJDYNALLOC)
450 return expandAdjDynAlloc(AM, IsBase, Op0);
451
452 if (Op0Code == ISD::Constant)
453 return expandDisp(AM, IsBase, Op1,
454 cast<ConstantSDNode>(Op0)->getSExtValue());
455 if (Op1Code == ISD::Constant)
456 return expandDisp(AM, IsBase, Op0,
457 cast<ConstantSDNode>(Op1)->getSExtValue());
458
459 if (IsBase && expandIndex(AM, Op0, Op1))
460 return true;
461 }
462 if (Opcode == SystemZISD::PCREL_OFFSET) {
463 SDValue Full = N.getOperand(0);
464 SDValue Base = N.getOperand(1);
465 SDValue Anchor = Base.getOperand(0);
466 uint64_t Offset = (cast<GlobalAddressSDNode>(Full)->getOffset() -
467 cast<GlobalAddressSDNode>(Anchor)->getOffset());
468 return expandDisp(AM, IsBase, Base, Offset);
469 }
470 return false;
471 }
472
473 // Return true if an instruction with displacement range DR should be
474 // used for displacement value Val. selectDisp(DR, Val) must already hold.
isValidDisp(SystemZAddressingMode::DispRange DR,int64_t Val)475 static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
476 assert(selectDisp(DR, Val) && "Invalid displacement");
477 switch (DR) {
478 case SystemZAddressingMode::Disp12Only:
479 case SystemZAddressingMode::Disp20Only:
480 case SystemZAddressingMode::Disp20Only128:
481 return true;
482
483 case SystemZAddressingMode::Disp12Pair:
484 // Use the other instruction if the displacement is too large.
485 return isUInt<12>(Val);
486
487 case SystemZAddressingMode::Disp20Pair:
488 // Use the other instruction if the displacement is small enough.
489 return !isUInt<12>(Val);
490 }
491 llvm_unreachable("Unhandled displacement range");
492 }
493
494 // Return true if Base + Disp + Index should be performed by LA(Y).
shouldUseLA(SDNode * Base,int64_t Disp,SDNode * Index)495 static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) {
496 // Don't use LA(Y) for constants.
497 if (!Base)
498 return false;
499
500 // Always use LA(Y) for frame addresses, since we know that the destination
501 // register is almost always (perhaps always) going to be different from
502 // the frame register.
503 if (Base->getOpcode() == ISD::FrameIndex)
504 return true;
505
506 if (Disp) {
507 // Always use LA(Y) if there is a base, displacement and index.
508 if (Index)
509 return true;
510
511 // Always use LA if the displacement is small enough. It should always
512 // be no worse than AGHI (and better if it avoids a move).
513 if (isUInt<12>(Disp))
514 return true;
515
516 // For similar reasons, always use LAY if the constant is too big for AGHI.
517 // LAY should be no worse than AGFI.
518 if (!isInt<16>(Disp))
519 return true;
520 } else {
521 // Don't use LA for plain registers.
522 if (!Index)
523 return false;
524
525 // Don't use LA for plain addition if the index operand is only used
526 // once. It should be a natural two-operand addition in that case.
527 if (Index->hasOneUse())
528 return false;
529
530 // Prefer addition if the second operation is sign-extended, in the
531 // hope of using AGF.
532 unsigned IndexOpcode = Index->getOpcode();
533 if (IndexOpcode == ISD::SIGN_EXTEND ||
534 IndexOpcode == ISD::SIGN_EXTEND_INREG)
535 return false;
536 }
537
538 // Don't use LA for two-operand addition if either operand is only
539 // used once. The addition instructions are better in that case.
540 if (Base->hasOneUse())
541 return false;
542
543 return true;
544 }
545
546 // Return true if Addr is suitable for AM, updating AM if so.
selectAddress(SDValue Addr,SystemZAddressingMode & AM) const547 bool SystemZDAGToDAGISel::selectAddress(SDValue Addr,
548 SystemZAddressingMode &AM) const {
549 // Start out assuming that the address will need to be loaded separately,
550 // then try to extend it as much as we can.
551 AM.Base = Addr;
552
553 // First try treating the address as a constant.
554 if (Addr.getOpcode() == ISD::Constant &&
555 expandDisp(AM, true, SDValue(),
556 cast<ConstantSDNode>(Addr)->getSExtValue()))
557 ;
558 // Also see if it's a bare ADJDYNALLOC.
559 else if (Addr.getOpcode() == SystemZISD::ADJDYNALLOC &&
560 expandAdjDynAlloc(AM, true, SDValue()))
561 ;
562 else
563 // Otherwise try expanding each component.
564 while (expandAddress(AM, true) ||
565 (AM.Index.getNode() && expandAddress(AM, false)))
566 continue;
567
568 // Reject cases where it isn't profitable to use LA(Y).
569 if (AM.Form == SystemZAddressingMode::FormBDXLA &&
570 !shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode()))
571 return false;
572
573 // Reject cases where the other instruction in a pair should be used.
574 if (!isValidDisp(AM.DR, AM.Disp))
575 return false;
576
577 // Make sure that ADJDYNALLOC is included where necessary.
578 if (AM.isDynAlloc() && !AM.IncludesDynAlloc)
579 return false;
580
581 DEBUG(AM.dump());
582 return true;
583 }
584
585 // Insert a node into the DAG at least before Pos. This will reposition
586 // the node as needed, and will assign it a node ID that is <= Pos's ID.
587 // Note that this does *not* preserve the uniqueness of node IDs!
588 // The selection DAG must no longer depend on their uniqueness when this
589 // function is used.
insertDAGNode(SelectionDAG * DAG,SDNode * Pos,SDValue N)590 static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) {
591 if (N.getNode()->getNodeId() == -1 ||
592 N.getNode()->getNodeId() > Pos->getNodeId()) {
593 DAG->RepositionNode(Pos->getIterator(), N.getNode());
594 N.getNode()->setNodeId(Pos->getNodeId());
595 }
596 }
597
getAddressOperands(const SystemZAddressingMode & AM,EVT VT,SDValue & Base,SDValue & Disp) const598 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
599 EVT VT, SDValue &Base,
600 SDValue &Disp) const {
601 Base = AM.Base;
602 if (!Base.getNode())
603 // Register 0 means "no base". This is mostly useful for shifts.
604 Base = CurDAG->getRegister(0, VT);
605 else if (Base.getOpcode() == ISD::FrameIndex) {
606 // Lower a FrameIndex to a TargetFrameIndex.
607 int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex();
608 Base = CurDAG->getTargetFrameIndex(FrameIndex, VT);
609 } else if (Base.getValueType() != VT) {
610 // Truncate values from i64 to i32, for shifts.
611 assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 &&
612 "Unexpected truncation");
613 SDLoc DL(Base);
614 SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base);
615 insertDAGNode(CurDAG, Base.getNode(), Trunc);
616 Base = Trunc;
617 }
618
619 // Lower the displacement to a TargetConstant.
620 Disp = CurDAG->getTargetConstant(AM.Disp, SDLoc(Base), VT);
621 }
622
getAddressOperands(const SystemZAddressingMode & AM,EVT VT,SDValue & Base,SDValue & Disp,SDValue & Index) const623 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
624 EVT VT, SDValue &Base,
625 SDValue &Disp,
626 SDValue &Index) const {
627 getAddressOperands(AM, VT, Base, Disp);
628
629 Index = AM.Index;
630 if (!Index.getNode())
631 // Register 0 means "no index".
632 Index = CurDAG->getRegister(0, VT);
633 }
634
selectBDAddr(SystemZAddressingMode::DispRange DR,SDValue Addr,SDValue & Base,SDValue & Disp) const635 bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR,
636 SDValue Addr, SDValue &Base,
637 SDValue &Disp) const {
638 SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR);
639 if (!selectAddress(Addr, AM))
640 return false;
641
642 getAddressOperands(AM, Addr.getValueType(), Base, Disp);
643 return true;
644 }
645
selectMVIAddr(SystemZAddressingMode::DispRange DR,SDValue Addr,SDValue & Base,SDValue & Disp) const646 bool SystemZDAGToDAGISel::selectMVIAddr(SystemZAddressingMode::DispRange DR,
647 SDValue Addr, SDValue &Base,
648 SDValue &Disp) const {
649 SystemZAddressingMode AM(SystemZAddressingMode::FormBDXNormal, DR);
650 if (!selectAddress(Addr, AM) || AM.Index.getNode())
651 return false;
652
653 getAddressOperands(AM, Addr.getValueType(), Base, Disp);
654 return true;
655 }
656
selectBDXAddr(SystemZAddressingMode::AddrForm Form,SystemZAddressingMode::DispRange DR,SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const657 bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form,
658 SystemZAddressingMode::DispRange DR,
659 SDValue Addr, SDValue &Base,
660 SDValue &Disp, SDValue &Index) const {
661 SystemZAddressingMode AM(Form, DR);
662 if (!selectAddress(Addr, AM))
663 return false;
664
665 getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index);
666 return true;
667 }
668
selectBDVAddr12Only(SDValue Addr,SDValue Elem,SDValue & Base,SDValue & Disp,SDValue & Index) const669 bool SystemZDAGToDAGISel::selectBDVAddr12Only(SDValue Addr, SDValue Elem,
670 SDValue &Base,
671 SDValue &Disp,
672 SDValue &Index) const {
673 SDValue Regs[2];
674 if (selectBDXAddr12Only(Addr, Regs[0], Disp, Regs[1]) &&
675 Regs[0].getNode() && Regs[1].getNode()) {
676 for (unsigned int I = 0; I < 2; ++I) {
677 Base = Regs[I];
678 Index = Regs[1 - I];
679 // We can't tell here whether the index vector has the right type
680 // for the access; the caller needs to do that instead.
681 if (Index.getOpcode() == ISD::ZERO_EXTEND)
682 Index = Index.getOperand(0);
683 if (Index.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
684 Index.getOperand(1) == Elem) {
685 Index = Index.getOperand(0);
686 return true;
687 }
688 }
689 }
690 return false;
691 }
692
detectOrAndInsertion(SDValue & Op,uint64_t InsertMask) const693 bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue &Op,
694 uint64_t InsertMask) const {
695 // We're only interested in cases where the insertion is into some operand
696 // of Op, rather than into Op itself. The only useful case is an AND.
697 if (Op.getOpcode() != ISD::AND)
698 return false;
699
700 // We need a constant mask.
701 auto *MaskNode = dyn_cast<ConstantSDNode>(Op.getOperand(1).getNode());
702 if (!MaskNode)
703 return false;
704
705 // It's not an insertion of Op.getOperand(0) if the two masks overlap.
706 uint64_t AndMask = MaskNode->getZExtValue();
707 if (InsertMask & AndMask)
708 return false;
709
710 // It's only an insertion if all bits are covered or are known to be zero.
711 // The inner check covers all cases but is more expensive.
712 uint64_t Used = allOnes(Op.getValueType().getSizeInBits());
713 if (Used != (AndMask | InsertMask)) {
714 APInt KnownZero, KnownOne;
715 CurDAG->computeKnownBits(Op.getOperand(0), KnownZero, KnownOne);
716 if (Used != (AndMask | InsertMask | KnownZero.getZExtValue()))
717 return false;
718 }
719
720 Op = Op.getOperand(0);
721 return true;
722 }
723
refineRxSBGMask(RxSBGOperands & RxSBG,uint64_t Mask) const724 bool SystemZDAGToDAGISel::refineRxSBGMask(RxSBGOperands &RxSBG,
725 uint64_t Mask) const {
726 const SystemZInstrInfo *TII = getInstrInfo();
727 if (RxSBG.Rotate != 0)
728 Mask = (Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate));
729 Mask &= RxSBG.Mask;
730 if (TII->isRxSBGMask(Mask, RxSBG.BitSize, RxSBG.Start, RxSBG.End)) {
731 RxSBG.Mask = Mask;
732 return true;
733 }
734 return false;
735 }
736
737 // Return true if any bits of (RxSBG.Input & Mask) are significant.
maskMatters(RxSBGOperands & RxSBG,uint64_t Mask)738 static bool maskMatters(RxSBGOperands &RxSBG, uint64_t Mask) {
739 // Rotate the mask in the same way as RxSBG.Input is rotated.
740 if (RxSBG.Rotate != 0)
741 Mask = ((Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate)));
742 return (Mask & RxSBG.Mask) != 0;
743 }
744
expandRxSBG(RxSBGOperands & RxSBG) const745 bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands &RxSBG) const {
746 SDValue N = RxSBG.Input;
747 unsigned Opcode = N.getOpcode();
748 switch (Opcode) {
749 case ISD::TRUNCATE: {
750 if (RxSBG.Opcode == SystemZ::RNSBG)
751 return false;
752 uint64_t BitSize = N.getValueType().getSizeInBits();
753 uint64_t Mask = allOnes(BitSize);
754 if (!refineRxSBGMask(RxSBG, Mask))
755 return false;
756 RxSBG.Input = N.getOperand(0);
757 return true;
758 }
759 case ISD::AND: {
760 if (RxSBG.Opcode == SystemZ::RNSBG)
761 return false;
762
763 auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
764 if (!MaskNode)
765 return false;
766
767 SDValue Input = N.getOperand(0);
768 uint64_t Mask = MaskNode->getZExtValue();
769 if (!refineRxSBGMask(RxSBG, Mask)) {
770 // If some bits of Input are already known zeros, those bits will have
771 // been removed from the mask. See if adding them back in makes the
772 // mask suitable.
773 APInt KnownZero, KnownOne;
774 CurDAG->computeKnownBits(Input, KnownZero, KnownOne);
775 Mask |= KnownZero.getZExtValue();
776 if (!refineRxSBGMask(RxSBG, Mask))
777 return false;
778 }
779 RxSBG.Input = Input;
780 return true;
781 }
782
783 case ISD::OR: {
784 if (RxSBG.Opcode != SystemZ::RNSBG)
785 return false;
786
787 auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
788 if (!MaskNode)
789 return false;
790
791 SDValue Input = N.getOperand(0);
792 uint64_t Mask = ~MaskNode->getZExtValue();
793 if (!refineRxSBGMask(RxSBG, Mask)) {
794 // If some bits of Input are already known ones, those bits will have
795 // been removed from the mask. See if adding them back in makes the
796 // mask suitable.
797 APInt KnownZero, KnownOne;
798 CurDAG->computeKnownBits(Input, KnownZero, KnownOne);
799 Mask &= ~KnownOne.getZExtValue();
800 if (!refineRxSBGMask(RxSBG, Mask))
801 return false;
802 }
803 RxSBG.Input = Input;
804 return true;
805 }
806
807 case ISD::ROTL: {
808 // Any 64-bit rotate left can be merged into the RxSBG.
809 if (RxSBG.BitSize != 64 || N.getValueType() != MVT::i64)
810 return false;
811 auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
812 if (!CountNode)
813 return false;
814
815 RxSBG.Rotate = (RxSBG.Rotate + CountNode->getZExtValue()) & 63;
816 RxSBG.Input = N.getOperand(0);
817 return true;
818 }
819
820 case ISD::ANY_EXTEND:
821 // Bits above the extended operand are don't-care.
822 RxSBG.Input = N.getOperand(0);
823 return true;
824
825 case ISD::ZERO_EXTEND:
826 if (RxSBG.Opcode != SystemZ::RNSBG) {
827 // Restrict the mask to the extended operand.
828 unsigned InnerBitSize = N.getOperand(0).getValueType().getSizeInBits();
829 if (!refineRxSBGMask(RxSBG, allOnes(InnerBitSize)))
830 return false;
831
832 RxSBG.Input = N.getOperand(0);
833 return true;
834 }
835 // Fall through.
836
837 case ISD::SIGN_EXTEND: {
838 // Check that the extension bits are don't-care (i.e. are masked out
839 // by the final mask).
840 unsigned InnerBitSize = N.getOperand(0).getValueType().getSizeInBits();
841 if (maskMatters(RxSBG, allOnes(RxSBG.BitSize) - allOnes(InnerBitSize)))
842 return false;
843
844 RxSBG.Input = N.getOperand(0);
845 return true;
846 }
847
848 case ISD::SHL: {
849 auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
850 if (!CountNode)
851 return false;
852
853 uint64_t Count = CountNode->getZExtValue();
854 unsigned BitSize = N.getValueType().getSizeInBits();
855 if (Count < 1 || Count >= BitSize)
856 return false;
857
858 if (RxSBG.Opcode == SystemZ::RNSBG) {
859 // Treat (shl X, count) as (rotl X, size-count) as long as the bottom
860 // count bits from RxSBG.Input are ignored.
861 if (maskMatters(RxSBG, allOnes(Count)))
862 return false;
863 } else {
864 // Treat (shl X, count) as (and (rotl X, count), ~0<<count).
865 if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count) << Count))
866 return false;
867 }
868
869 RxSBG.Rotate = (RxSBG.Rotate + Count) & 63;
870 RxSBG.Input = N.getOperand(0);
871 return true;
872 }
873
874 case ISD::SRL:
875 case ISD::SRA: {
876 auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
877 if (!CountNode)
878 return false;
879
880 uint64_t Count = CountNode->getZExtValue();
881 unsigned BitSize = N.getValueType().getSizeInBits();
882 if (Count < 1 || Count >= BitSize)
883 return false;
884
885 if (RxSBG.Opcode == SystemZ::RNSBG || Opcode == ISD::SRA) {
886 // Treat (srl|sra X, count) as (rotl X, size-count) as long as the top
887 // count bits from RxSBG.Input are ignored.
888 if (maskMatters(RxSBG, allOnes(Count) << (BitSize - Count)))
889 return false;
890 } else {
891 // Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count),
892 // which is similar to SLL above.
893 if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count)))
894 return false;
895 }
896
897 RxSBG.Rotate = (RxSBG.Rotate - Count) & 63;
898 RxSBG.Input = N.getOperand(0);
899 return true;
900 }
901 default:
902 return false;
903 }
904 }
905
getUNDEF(const SDLoc & DL,EVT VT) const906 SDValue SystemZDAGToDAGISel::getUNDEF(const SDLoc &DL, EVT VT) const {
907 SDNode *N = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, VT);
908 return SDValue(N, 0);
909 }
910
convertTo(const SDLoc & DL,EVT VT,SDValue N) const911 SDValue SystemZDAGToDAGISel::convertTo(const SDLoc &DL, EVT VT,
912 SDValue N) const {
913 if (N.getValueType() == MVT::i32 && VT == MVT::i64)
914 return CurDAG->getTargetInsertSubreg(SystemZ::subreg_l32,
915 DL, VT, getUNDEF(DL, MVT::i64), N);
916 if (N.getValueType() == MVT::i64 && VT == MVT::i32)
917 return CurDAG->getTargetExtractSubreg(SystemZ::subreg_l32, DL, VT, N);
918 assert(N.getValueType() == VT && "Unexpected value types");
919 return N;
920 }
921
tryRISBGZero(SDNode * N)922 bool SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) {
923 SDLoc DL(N);
924 EVT VT = N->getValueType(0);
925 if (!VT.isInteger() || VT.getSizeInBits() > 64)
926 return false;
927 RxSBGOperands RISBG(SystemZ::RISBG, SDValue(N, 0));
928 unsigned Count = 0;
929 while (expandRxSBG(RISBG))
930 // The widening or narrowing is expected to be free.
931 // Counting widening or narrowing as a saved operation will result in
932 // preferring an R*SBG over a simple shift/logical instruction.
933 if (RISBG.Input.getOpcode() != ISD::ANY_EXTEND &&
934 RISBG.Input.getOpcode() != ISD::TRUNCATE)
935 Count += 1;
936 if (Count == 0)
937 return false;
938 if (Count == 1) {
939 // Prefer to use normal shift instructions over RISBG, since they can handle
940 // all cases and are sometimes shorter.
941 if (N->getOpcode() != ISD::AND)
942 return false;
943
944 // Prefer register extensions like LLC over RISBG. Also prefer to start
945 // out with normal ANDs if one instruction would be enough. We can convert
946 // these ANDs into an RISBG later if a three-address instruction is useful.
947 if (VT == MVT::i32 ||
948 RISBG.Mask == 0xff ||
949 RISBG.Mask == 0xffff ||
950 SystemZ::isImmLF(~RISBG.Mask) ||
951 SystemZ::isImmHF(~RISBG.Mask)) {
952 // Force the new mask into the DAG, since it may include known-one bits.
953 auto *MaskN = cast<ConstantSDNode>(N->getOperand(1).getNode());
954 if (MaskN->getZExtValue() != RISBG.Mask) {
955 SDValue NewMask = CurDAG->getConstant(RISBG.Mask, DL, VT);
956 N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), NewMask);
957 SelectCode(N);
958 return true;
959 }
960 return false;
961 }
962 }
963
964 // If the RISBG operands require no rotation and just masks the bottom
965 // 8/16 bits, attempt to convert this to a LLC zero extension.
966 if (RISBG.Rotate == 0 && (RISBG.Mask == 0xff || RISBG.Mask == 0xffff)) {
967 unsigned OpCode = (RISBG.Mask == 0xff ? SystemZ::LLGCR : SystemZ::LLGHR);
968 if (VT == MVT::i32) {
969 if (Subtarget->hasHighWord())
970 OpCode = (RISBG.Mask == 0xff ? SystemZ::LLCRMux : SystemZ::LLHRMux);
971 else
972 OpCode = (RISBG.Mask == 0xff ? SystemZ::LLCR : SystemZ::LLHR);
973 }
974
975 SDValue In = convertTo(DL, VT, RISBG.Input);
976 SDValue New = convertTo(
977 DL, VT, SDValue(CurDAG->getMachineNode(OpCode, DL, VT, In), 0));
978 ReplaceUses(N, New.getNode());
979 CurDAG->RemoveDeadNode(N);
980 return true;
981 }
982
983 unsigned Opcode = SystemZ::RISBG;
984 // Prefer RISBGN if available, since it does not clobber CC.
985 if (Subtarget->hasMiscellaneousExtensions())
986 Opcode = SystemZ::RISBGN;
987 EVT OpcodeVT = MVT::i64;
988 if (VT == MVT::i32 && Subtarget->hasHighWord()) {
989 Opcode = SystemZ::RISBMux;
990 OpcodeVT = MVT::i32;
991 RISBG.Start &= 31;
992 RISBG.End &= 31;
993 }
994 SDValue Ops[5] = {
995 getUNDEF(DL, OpcodeVT),
996 convertTo(DL, OpcodeVT, RISBG.Input),
997 CurDAG->getTargetConstant(RISBG.Start, DL, MVT::i32),
998 CurDAG->getTargetConstant(RISBG.End | 128, DL, MVT::i32),
999 CurDAG->getTargetConstant(RISBG.Rotate, DL, MVT::i32)
1000 };
1001 SDValue New = convertTo(
1002 DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, OpcodeVT, Ops), 0));
1003 ReplaceUses(N, New.getNode());
1004 CurDAG->RemoveDeadNode(N);
1005 return true;
1006 }
1007
tryRxSBG(SDNode * N,unsigned Opcode)1008 bool SystemZDAGToDAGISel::tryRxSBG(SDNode *N, unsigned Opcode) {
1009 SDLoc DL(N);
1010 EVT VT = N->getValueType(0);
1011 if (!VT.isInteger() || VT.getSizeInBits() > 64)
1012 return false;
1013 // Try treating each operand of N as the second operand of the RxSBG
1014 // and see which goes deepest.
1015 RxSBGOperands RxSBG[] = {
1016 RxSBGOperands(Opcode, N->getOperand(0)),
1017 RxSBGOperands(Opcode, N->getOperand(1))
1018 };
1019 unsigned Count[] = { 0, 0 };
1020 for (unsigned I = 0; I < 2; ++I)
1021 while (expandRxSBG(RxSBG[I]))
1022 // The widening or narrowing is expected to be free.
1023 // Counting widening or narrowing as a saved operation will result in
1024 // preferring an R*SBG over a simple shift/logical instruction.
1025 if (RxSBG[I].Input.getOpcode() != ISD::ANY_EXTEND &&
1026 RxSBG[I].Input.getOpcode() != ISD::TRUNCATE)
1027 Count[I] += 1;
1028
1029 // Do nothing if neither operand is suitable.
1030 if (Count[0] == 0 && Count[1] == 0)
1031 return false;
1032
1033 // Pick the deepest second operand.
1034 unsigned I = Count[0] > Count[1] ? 0 : 1;
1035 SDValue Op0 = N->getOperand(I ^ 1);
1036
1037 // Prefer IC for character insertions from memory.
1038 if (Opcode == SystemZ::ROSBG && (RxSBG[I].Mask & 0xff) == 0)
1039 if (auto *Load = dyn_cast<LoadSDNode>(Op0.getNode()))
1040 if (Load->getMemoryVT() == MVT::i8)
1041 return false;
1042
1043 // See whether we can avoid an AND in the first operand by converting
1044 // ROSBG to RISBG.
1045 if (Opcode == SystemZ::ROSBG && detectOrAndInsertion(Op0, RxSBG[I].Mask)) {
1046 Opcode = SystemZ::RISBG;
1047 // Prefer RISBGN if available, since it does not clobber CC.
1048 if (Subtarget->hasMiscellaneousExtensions())
1049 Opcode = SystemZ::RISBGN;
1050 }
1051
1052 SDValue Ops[5] = {
1053 convertTo(DL, MVT::i64, Op0),
1054 convertTo(DL, MVT::i64, RxSBG[I].Input),
1055 CurDAG->getTargetConstant(RxSBG[I].Start, DL, MVT::i32),
1056 CurDAG->getTargetConstant(RxSBG[I].End, DL, MVT::i32),
1057 CurDAG->getTargetConstant(RxSBG[I].Rotate, DL, MVT::i32)
1058 };
1059 SDValue New = convertTo(
1060 DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, MVT::i64, Ops), 0));
1061 ReplaceNode(N, New.getNode());
1062 return true;
1063 }
1064
splitLargeImmediate(unsigned Opcode,SDNode * Node,SDValue Op0,uint64_t UpperVal,uint64_t LowerVal)1065 void SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node,
1066 SDValue Op0, uint64_t UpperVal,
1067 uint64_t LowerVal) {
1068 EVT VT = Node->getValueType(0);
1069 SDLoc DL(Node);
1070 SDValue Upper = CurDAG->getConstant(UpperVal, DL, VT);
1071 if (Op0.getNode())
1072 Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper);
1073
1074 {
1075 // When we haven't passed in Op0, Upper will be a constant. In order to
1076 // prevent folding back to the large immediate in `Or = getNode(...)` we run
1077 // SelectCode first and end up with an opaque machine node. This means that
1078 // we need to use a handle to keep track of Upper in case it gets CSE'd by
1079 // SelectCode.
1080 //
1081 // Note that in the case where Op0 is passed in we could just call
1082 // SelectCode(Upper) later, along with the SelectCode(Or), and avoid needing
1083 // the handle at all, but it's fine to do it here.
1084 //
1085 // TODO: This is a pretty hacky way to do this. Can we do something that
1086 // doesn't require a two paragraph explanation?
1087 HandleSDNode Handle(Upper);
1088 SelectCode(Upper.getNode());
1089 Upper = Handle.getValue();
1090 }
1091
1092 SDValue Lower = CurDAG->getConstant(LowerVal, DL, VT);
1093 SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower);
1094
1095 ReplaceUses(Node, Or.getNode());
1096 CurDAG->RemoveDeadNode(Node);
1097
1098 SelectCode(Or.getNode());
1099 }
1100
tryGather(SDNode * N,unsigned Opcode)1101 bool SystemZDAGToDAGISel::tryGather(SDNode *N, unsigned Opcode) {
1102 SDValue ElemV = N->getOperand(2);
1103 auto *ElemN = dyn_cast<ConstantSDNode>(ElemV);
1104 if (!ElemN)
1105 return false;
1106
1107 unsigned Elem = ElemN->getZExtValue();
1108 EVT VT = N->getValueType(0);
1109 if (Elem >= VT.getVectorNumElements())
1110 return false;
1111
1112 auto *Load = dyn_cast<LoadSDNode>(N->getOperand(1));
1113 if (!Load || !Load->hasOneUse())
1114 return false;
1115 if (Load->getMemoryVT().getSizeInBits() !=
1116 Load->getValueType(0).getSizeInBits())
1117 return false;
1118
1119 SDValue Base, Disp, Index;
1120 if (!selectBDVAddr12Only(Load->getBasePtr(), ElemV, Base, Disp, Index) ||
1121 Index.getValueType() != VT.changeVectorElementTypeToInteger())
1122 return false;
1123
1124 SDLoc DL(Load);
1125 SDValue Ops[] = {
1126 N->getOperand(0), Base, Disp, Index,
1127 CurDAG->getTargetConstant(Elem, DL, MVT::i32), Load->getChain()
1128 };
1129 SDNode *Res = CurDAG->getMachineNode(Opcode, DL, VT, MVT::Other, Ops);
1130 ReplaceUses(SDValue(Load, 1), SDValue(Res, 1));
1131 ReplaceNode(N, Res);
1132 return true;
1133 }
1134
tryScatter(StoreSDNode * Store,unsigned Opcode)1135 bool SystemZDAGToDAGISel::tryScatter(StoreSDNode *Store, unsigned Opcode) {
1136 SDValue Value = Store->getValue();
1137 if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1138 return false;
1139 if (Store->getMemoryVT().getSizeInBits() !=
1140 Value.getValueType().getSizeInBits())
1141 return false;
1142
1143 SDValue ElemV = Value.getOperand(1);
1144 auto *ElemN = dyn_cast<ConstantSDNode>(ElemV);
1145 if (!ElemN)
1146 return false;
1147
1148 SDValue Vec = Value.getOperand(0);
1149 EVT VT = Vec.getValueType();
1150 unsigned Elem = ElemN->getZExtValue();
1151 if (Elem >= VT.getVectorNumElements())
1152 return false;
1153
1154 SDValue Base, Disp, Index;
1155 if (!selectBDVAddr12Only(Store->getBasePtr(), ElemV, Base, Disp, Index) ||
1156 Index.getValueType() != VT.changeVectorElementTypeToInteger())
1157 return false;
1158
1159 SDLoc DL(Store);
1160 SDValue Ops[] = {
1161 Vec, Base, Disp, Index, CurDAG->getTargetConstant(Elem, DL, MVT::i32),
1162 Store->getChain()
1163 };
1164 ReplaceNode(Store, CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops));
1165 return true;
1166 }
1167
canUseBlockOperation(StoreSDNode * Store,LoadSDNode * Load) const1168 bool SystemZDAGToDAGISel::canUseBlockOperation(StoreSDNode *Store,
1169 LoadSDNode *Load) const {
1170 // Check that the two memory operands have the same size.
1171 if (Load->getMemoryVT() != Store->getMemoryVT())
1172 return false;
1173
1174 // Volatility stops an access from being decomposed.
1175 if (Load->isVolatile() || Store->isVolatile())
1176 return false;
1177
1178 // There's no chance of overlap if the load is invariant.
1179 if (Load->isInvariant())
1180 return true;
1181
1182 // Otherwise we need to check whether there's an alias.
1183 const Value *V1 = Load->getMemOperand()->getValue();
1184 const Value *V2 = Store->getMemOperand()->getValue();
1185 if (!V1 || !V2)
1186 return false;
1187
1188 // Reject equality.
1189 uint64_t Size = Load->getMemoryVT().getStoreSize();
1190 int64_t End1 = Load->getSrcValueOffset() + Size;
1191 int64_t End2 = Store->getSrcValueOffset() + Size;
1192 if (V1 == V2 && End1 == End2)
1193 return false;
1194
1195 return !AA->alias(MemoryLocation(V1, End1, Load->getAAInfo()),
1196 MemoryLocation(V2, End2, Store->getAAInfo()));
1197 }
1198
storeLoadCanUseMVC(SDNode * N) const1199 bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const {
1200 auto *Store = cast<StoreSDNode>(N);
1201 auto *Load = cast<LoadSDNode>(Store->getValue());
1202
1203 // Prefer not to use MVC if either address can use ... RELATIVE LONG
1204 // instructions.
1205 uint64_t Size = Load->getMemoryVT().getStoreSize();
1206 if (Size > 1 && Size <= 8) {
1207 // Prefer LHRL, LRL and LGRL.
1208 if (SystemZISD::isPCREL(Load->getBasePtr().getOpcode()))
1209 return false;
1210 // Prefer STHRL, STRL and STGRL.
1211 if (SystemZISD::isPCREL(Store->getBasePtr().getOpcode()))
1212 return false;
1213 }
1214
1215 return canUseBlockOperation(Store, Load);
1216 }
1217
storeLoadCanUseBlockBinary(SDNode * N,unsigned I) const1218 bool SystemZDAGToDAGISel::storeLoadCanUseBlockBinary(SDNode *N,
1219 unsigned I) const {
1220 auto *StoreA = cast<StoreSDNode>(N);
1221 auto *LoadA = cast<LoadSDNode>(StoreA->getValue().getOperand(1 - I));
1222 auto *LoadB = cast<LoadSDNode>(StoreA->getValue().getOperand(I));
1223 return !LoadA->isVolatile() && canUseBlockOperation(StoreA, LoadB);
1224 }
1225
Select(SDNode * Node)1226 void SystemZDAGToDAGISel::Select(SDNode *Node) {
1227 // Dump information about the Node being selected
1228 DEBUG(errs() << "Selecting: "; Node->dump(CurDAG); errs() << "\n");
1229
1230 // If we have a custom node, we already have selected!
1231 if (Node->isMachineOpcode()) {
1232 DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
1233 Node->setNodeId(-1);
1234 return;
1235 }
1236
1237 unsigned Opcode = Node->getOpcode();
1238 switch (Opcode) {
1239 case ISD::OR:
1240 if (Node->getOperand(1).getOpcode() != ISD::Constant)
1241 if (tryRxSBG(Node, SystemZ::ROSBG))
1242 return;
1243 goto or_xor;
1244
1245 case ISD::XOR:
1246 if (Node->getOperand(1).getOpcode() != ISD::Constant)
1247 if (tryRxSBG(Node, SystemZ::RXSBG))
1248 return;
1249 // Fall through.
1250 or_xor:
1251 // If this is a 64-bit operation in which both 32-bit halves are nonzero,
1252 // split the operation into two.
1253 if (Node->getValueType(0) == MVT::i64)
1254 if (auto *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) {
1255 uint64_t Val = Op1->getZExtValue();
1256 if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val)) {
1257 splitLargeImmediate(Opcode, Node, Node->getOperand(0),
1258 Val - uint32_t(Val), uint32_t(Val));
1259 return;
1260 }
1261 }
1262 break;
1263
1264 case ISD::AND:
1265 if (Node->getOperand(1).getOpcode() != ISD::Constant)
1266 if (tryRxSBG(Node, SystemZ::RNSBG))
1267 return;
1268 // Fall through.
1269 case ISD::ROTL:
1270 case ISD::SHL:
1271 case ISD::SRL:
1272 case ISD::ZERO_EXTEND:
1273 if (tryRISBGZero(Node))
1274 return;
1275 break;
1276
1277 case ISD::Constant:
1278 // If this is a 64-bit constant that is out of the range of LLILF,
1279 // LLIHF and LGFI, split it into two 32-bit pieces.
1280 if (Node->getValueType(0) == MVT::i64) {
1281 uint64_t Val = cast<ConstantSDNode>(Node)->getZExtValue();
1282 if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val)) {
1283 splitLargeImmediate(ISD::OR, Node, SDValue(), Val - uint32_t(Val),
1284 uint32_t(Val));
1285 return;
1286 }
1287 }
1288 break;
1289
1290 case SystemZISD::SELECT_CCMASK: {
1291 SDValue Op0 = Node->getOperand(0);
1292 SDValue Op1 = Node->getOperand(1);
1293 // Prefer to put any load first, so that it can be matched as a
1294 // conditional load.
1295 if (Op1.getOpcode() == ISD::LOAD && Op0.getOpcode() != ISD::LOAD) {
1296 SDValue CCValid = Node->getOperand(2);
1297 SDValue CCMask = Node->getOperand(3);
1298 uint64_t ConstCCValid =
1299 cast<ConstantSDNode>(CCValid.getNode())->getZExtValue();
1300 uint64_t ConstCCMask =
1301 cast<ConstantSDNode>(CCMask.getNode())->getZExtValue();
1302 // Invert the condition.
1303 CCMask = CurDAG->getConstant(ConstCCValid ^ ConstCCMask, SDLoc(Node),
1304 CCMask.getValueType());
1305 SDValue Op4 = Node->getOperand(4);
1306 Node = CurDAG->UpdateNodeOperands(Node, Op1, Op0, CCValid, CCMask, Op4);
1307 }
1308 break;
1309 }
1310
1311 case ISD::INSERT_VECTOR_ELT: {
1312 EVT VT = Node->getValueType(0);
1313 unsigned ElemBitSize = VT.getVectorElementType().getSizeInBits();
1314 if (ElemBitSize == 32) {
1315 if (tryGather(Node, SystemZ::VGEF))
1316 return;
1317 } else if (ElemBitSize == 64) {
1318 if (tryGather(Node, SystemZ::VGEG))
1319 return;
1320 }
1321 break;
1322 }
1323
1324 case ISD::STORE: {
1325 auto *Store = cast<StoreSDNode>(Node);
1326 unsigned ElemBitSize = Store->getValue().getValueType().getSizeInBits();
1327 if (ElemBitSize == 32) {
1328 if (tryScatter(Store, SystemZ::VSCEF))
1329 return;
1330 } else if (ElemBitSize == 64) {
1331 if (tryScatter(Store, SystemZ::VSCEG))
1332 return;
1333 }
1334 break;
1335 }
1336 }
1337
1338 SelectCode(Node);
1339 }
1340
1341 bool SystemZDAGToDAGISel::
SelectInlineAsmMemoryOperand(const SDValue & Op,unsigned ConstraintID,std::vector<SDValue> & OutOps)1342 SelectInlineAsmMemoryOperand(const SDValue &Op,
1343 unsigned ConstraintID,
1344 std::vector<SDValue> &OutOps) {
1345 SystemZAddressingMode::AddrForm Form;
1346 SystemZAddressingMode::DispRange DispRange;
1347 SDValue Base, Disp, Index;
1348
1349 switch(ConstraintID) {
1350 default:
1351 llvm_unreachable("Unexpected asm memory constraint");
1352 case InlineAsm::Constraint_i:
1353 case InlineAsm::Constraint_Q:
1354 // Accept an address with a short displacement, but no index.
1355 Form = SystemZAddressingMode::FormBD;
1356 DispRange = SystemZAddressingMode::Disp12Only;
1357 break;
1358 case InlineAsm::Constraint_R:
1359 // Accept an address with a short displacement and an index.
1360 Form = SystemZAddressingMode::FormBDXNormal;
1361 DispRange = SystemZAddressingMode::Disp12Only;
1362 break;
1363 case InlineAsm::Constraint_S:
1364 // Accept an address with a long displacement, but no index.
1365 Form = SystemZAddressingMode::FormBD;
1366 DispRange = SystemZAddressingMode::Disp20Only;
1367 break;
1368 case InlineAsm::Constraint_T:
1369 case InlineAsm::Constraint_m:
1370 // Accept an address with a long displacement and an index.
1371 // m works the same as T, as this is the most general case.
1372 Form = SystemZAddressingMode::FormBDXNormal;
1373 DispRange = SystemZAddressingMode::Disp20Only;
1374 break;
1375 }
1376
1377 if (selectBDXAddr(Form, DispRange, Op, Base, Disp, Index)) {
1378 OutOps.push_back(Base);
1379 OutOps.push_back(Disp);
1380 OutOps.push_back(Index);
1381 return false;
1382 }
1383
1384 return true;
1385 }
1386