1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SystemZTargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SystemZISelLowering.h"
15 #include "SystemZCallingConv.h"
16 #include "SystemZConstantPoolValue.h"
17 #include "SystemZMachineFunctionInfo.h"
18 #include "SystemZTargetMachine.h"
19 #include "llvm/CodeGen/CallingConvLower.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include <cctype>
25 
26 using namespace llvm;
27 
28 #define DEBUG_TYPE "systemz-lower"
29 
30 namespace {
31 // Represents a sequence for extracting a 0/1 value from an IPM result:
32 // (((X ^ XORValue) + AddValue) >> Bit)
33 struct IPMConversion {
IPMConversion__anon1643df490111::IPMConversion34   IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit)
35     : XORValue(xorValue), AddValue(addValue), Bit(bit) {}
36 
37   int64_t XORValue;
38   int64_t AddValue;
39   unsigned Bit;
40 };
41 
42 // Represents information about a comparison.
43 struct Comparison {
Comparison__anon1643df490111::Comparison44   Comparison(SDValue Op0In, SDValue Op1In)
45     : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
46 
47   // The operands to the comparison.
48   SDValue Op0, Op1;
49 
50   // The opcode that should be used to compare Op0 and Op1.
51   unsigned Opcode;
52 
53   // A SystemZICMP value.  Only used for integer comparisons.
54   unsigned ICmpType;
55 
56   // The mask of CC values that Opcode can produce.
57   unsigned CCValid;
58 
59   // The mask of CC values for which the original condition is true.
60   unsigned CCMask;
61 };
62 } // end anonymous namespace
63 
64 // Classify VT as either 32 or 64 bit.
is32Bit(EVT VT)65 static bool is32Bit(EVT VT) {
66   switch (VT.getSimpleVT().SimpleTy) {
67   case MVT::i32:
68     return true;
69   case MVT::i64:
70     return false;
71   default:
72     llvm_unreachable("Unsupported type");
73   }
74 }
75 
76 // Return a version of MachineOperand that can be safely used before the
77 // final use.
earlyUseOperand(MachineOperand Op)78 static MachineOperand earlyUseOperand(MachineOperand Op) {
79   if (Op.isReg())
80     Op.setIsKill(false);
81   return Op;
82 }
83 
SystemZTargetLowering(const TargetMachine & TM,const SystemZSubtarget & STI)84 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
85                                              const SystemZSubtarget &STI)
86     : TargetLowering(TM), Subtarget(STI) {
87   MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize());
88 
89   // Set up the register classes.
90   if (Subtarget.hasHighWord())
91     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
92   else
93     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
94   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
95   if (Subtarget.hasVector()) {
96     addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
97     addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
98   } else {
99     addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
100     addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
101   }
102   addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
103 
104   if (Subtarget.hasVector()) {
105     addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
106     addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
107     addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
108     addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
109     addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
110     addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
111   }
112 
113   // Compute derived properties from the register classes
114   computeRegisterProperties(Subtarget.getRegisterInfo());
115 
116   // Set up special registers.
117   setStackPointerRegisterToSaveRestore(SystemZ::R15D);
118 
119   // TODO: It may be better to default to latency-oriented scheduling, however
120   // LLVM's current latency-oriented scheduler can't handle physreg definitions
121   // such as SystemZ has with CC, so set this to the register-pressure
122   // scheduler, because it can.
123   setSchedulingPreference(Sched::RegPressure);
124 
125   setBooleanContents(ZeroOrOneBooleanContent);
126   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
127 
128   // Instructions are strings of 2-byte aligned 2-byte values.
129   setMinFunctionAlignment(2);
130 
131   // Handle operations that are handled in a similar way for all types.
132   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
133        I <= MVT::LAST_FP_VALUETYPE;
134        ++I) {
135     MVT VT = MVT::SimpleValueType(I);
136     if (isTypeLegal(VT)) {
137       // Lower SET_CC into an IPM-based sequence.
138       setOperationAction(ISD::SETCC, VT, Custom);
139 
140       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
141       setOperationAction(ISD::SELECT, VT, Expand);
142 
143       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
144       setOperationAction(ISD::SELECT_CC, VT, Custom);
145       setOperationAction(ISD::BR_CC,     VT, Custom);
146     }
147   }
148 
149   // Expand jump table branches as address arithmetic followed by an
150   // indirect jump.
151   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
152 
153   // Expand BRCOND into a BR_CC (see above).
154   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
155 
156   // Handle integer types.
157   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
158        I <= MVT::LAST_INTEGER_VALUETYPE;
159        ++I) {
160     MVT VT = MVT::SimpleValueType(I);
161     if (isTypeLegal(VT)) {
162       // Expand individual DIV and REMs into DIVREMs.
163       setOperationAction(ISD::SDIV, VT, Expand);
164       setOperationAction(ISD::UDIV, VT, Expand);
165       setOperationAction(ISD::SREM, VT, Expand);
166       setOperationAction(ISD::UREM, VT, Expand);
167       setOperationAction(ISD::SDIVREM, VT, Custom);
168       setOperationAction(ISD::UDIVREM, VT, Custom);
169 
170       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
171       // stores, putting a serialization instruction after the stores.
172       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
173       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
174 
175       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
176       // available, or if the operand is constant.
177       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
178 
179       // Use POPCNT on z196 and above.
180       if (Subtarget.hasPopulationCount())
181         setOperationAction(ISD::CTPOP, VT, Custom);
182       else
183         setOperationAction(ISD::CTPOP, VT, Expand);
184 
185       // No special instructions for these.
186       setOperationAction(ISD::CTTZ,            VT, Expand);
187       setOperationAction(ISD::ROTR,            VT, Expand);
188 
189       // Use *MUL_LOHI where possible instead of MULH*.
190       setOperationAction(ISD::MULHS, VT, Expand);
191       setOperationAction(ISD::MULHU, VT, Expand);
192       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
193       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
194 
195       // Only z196 and above have native support for conversions to unsigned.
196       if (!Subtarget.hasFPExtension())
197         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
198     }
199   }
200 
201   // Type legalization will convert 8- and 16-bit atomic operations into
202   // forms that operate on i32s (but still keeping the original memory VT).
203   // Lower them into full i32 operations.
204   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
205   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
206   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
207   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
208   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
209   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
210   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
211   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
212   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
213   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
214   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
215   setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Custom);
216 
217   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
218 
219   // Traps are legal, as we will convert them to "j .+2".
220   setOperationAction(ISD::TRAP, MVT::Other, Legal);
221 
222   // z10 has instructions for signed but not unsigned FP conversion.
223   // Handle unsigned 32-bit types as signed 64-bit types.
224   if (!Subtarget.hasFPExtension()) {
225     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
226     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
227   }
228 
229   // We have native support for a 64-bit CTLZ, via FLOGR.
230   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
231   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
232 
233   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
234   setOperationAction(ISD::OR, MVT::i64, Custom);
235 
236   // FIXME: Can we support these natively?
237   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
238   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
239   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
240 
241   // We have native instructions for i8, i16 and i32 extensions, but not i1.
242   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
243   for (MVT VT : MVT::integer_valuetypes()) {
244     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
245     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
246     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
247   }
248 
249   // Handle the various types of symbolic address.
250   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
251   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
252   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
253   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
254   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
255 
256   // We need to handle dynamic allocations specially because of the
257   // 160-byte area at the bottom of the stack.
258   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
259   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
260 
261   // Use custom expanders so that we can force the function to use
262   // a frame pointer.
263   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
264   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
265 
266   // Handle prefetches with PFD or PFDRL.
267   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
268 
269   for (MVT VT : MVT::vector_valuetypes()) {
270     // Assume by default that all vector operations need to be expanded.
271     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
272       if (getOperationAction(Opcode, VT) == Legal)
273         setOperationAction(Opcode, VT, Expand);
274 
275     // Likewise all truncating stores and extending loads.
276     for (MVT InnerVT : MVT::vector_valuetypes()) {
277       setTruncStoreAction(VT, InnerVT, Expand);
278       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
279       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
280       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
281     }
282 
283     if (isTypeLegal(VT)) {
284       // These operations are legal for anything that can be stored in a
285       // vector register, even if there is no native support for the format
286       // as such.  In particular, we can do these for v4f32 even though there
287       // are no specific instructions for that format.
288       setOperationAction(ISD::LOAD, VT, Legal);
289       setOperationAction(ISD::STORE, VT, Legal);
290       setOperationAction(ISD::VSELECT, VT, Legal);
291       setOperationAction(ISD::BITCAST, VT, Legal);
292       setOperationAction(ISD::UNDEF, VT, Legal);
293 
294       // Likewise, except that we need to replace the nodes with something
295       // more specific.
296       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
297       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
298     }
299   }
300 
301   // Handle integer vector types.
302   for (MVT VT : MVT::integer_vector_valuetypes()) {
303     if (isTypeLegal(VT)) {
304       // These operations have direct equivalents.
305       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
306       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
307       setOperationAction(ISD::ADD, VT, Legal);
308       setOperationAction(ISD::SUB, VT, Legal);
309       if (VT != MVT::v2i64)
310         setOperationAction(ISD::MUL, VT, Legal);
311       setOperationAction(ISD::AND, VT, Legal);
312       setOperationAction(ISD::OR, VT, Legal);
313       setOperationAction(ISD::XOR, VT, Legal);
314       setOperationAction(ISD::CTPOP, VT, Custom);
315       setOperationAction(ISD::CTTZ, VT, Legal);
316       setOperationAction(ISD::CTLZ, VT, Legal);
317 
318       // Convert a GPR scalar to a vector by inserting it into element 0.
319       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
320 
321       // Use a series of unpacks for extensions.
322       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
323       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
324 
325       // Detect shifts by a scalar amount and convert them into
326       // V*_BY_SCALAR.
327       setOperationAction(ISD::SHL, VT, Custom);
328       setOperationAction(ISD::SRA, VT, Custom);
329       setOperationAction(ISD::SRL, VT, Custom);
330 
331       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
332       // converted into ROTL.
333       setOperationAction(ISD::ROTL, VT, Expand);
334       setOperationAction(ISD::ROTR, VT, Expand);
335 
336       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
337       // and inverting the result as necessary.
338       setOperationAction(ISD::SETCC, VT, Custom);
339     }
340   }
341 
342   if (Subtarget.hasVector()) {
343     // There should be no need to check for float types other than v2f64
344     // since <2 x f32> isn't a legal type.
345     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
346     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
347     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
348     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
349   }
350 
351   // Handle floating-point types.
352   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
353        I <= MVT::LAST_FP_VALUETYPE;
354        ++I) {
355     MVT VT = MVT::SimpleValueType(I);
356     if (isTypeLegal(VT)) {
357       // We can use FI for FRINT.
358       setOperationAction(ISD::FRINT, VT, Legal);
359 
360       // We can use the extended form of FI for other rounding operations.
361       if (Subtarget.hasFPExtension()) {
362         setOperationAction(ISD::FNEARBYINT, VT, Legal);
363         setOperationAction(ISD::FFLOOR, VT, Legal);
364         setOperationAction(ISD::FCEIL, VT, Legal);
365         setOperationAction(ISD::FTRUNC, VT, Legal);
366         setOperationAction(ISD::FROUND, VT, Legal);
367       }
368 
369       // No special instructions for these.
370       setOperationAction(ISD::FSIN, VT, Expand);
371       setOperationAction(ISD::FCOS, VT, Expand);
372       setOperationAction(ISD::FSINCOS, VT, Expand);
373       setOperationAction(ISD::FREM, VT, Expand);
374       setOperationAction(ISD::FPOW, VT, Expand);
375     }
376   }
377 
378   // Handle floating-point vector types.
379   if (Subtarget.hasVector()) {
380     // Scalar-to-vector conversion is just a subreg.
381     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
382     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
383 
384     // Some insertions and extractions can be done directly but others
385     // need to go via integers.
386     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
387     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
388     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
389     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
390 
391     // These operations have direct equivalents.
392     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
393     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
394     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
395     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
396     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
397     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
398     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
399     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
400     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
401     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
402     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
403     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
404     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
405     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
406   }
407 
408   // We have fused multiply-addition for f32 and f64 but not f128.
409   setOperationAction(ISD::FMA, MVT::f32,  Legal);
410   setOperationAction(ISD::FMA, MVT::f64,  Legal);
411   setOperationAction(ISD::FMA, MVT::f128, Expand);
412 
413   // Needed so that we don't try to implement f128 constant loads using
414   // a load-and-extend of a f80 constant (in cases where the constant
415   // would fit in an f80).
416   for (MVT VT : MVT::fp_valuetypes())
417     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
418 
419   // Floating-point truncation and stores need to be done separately.
420   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
421   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
422   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
423 
424   // We have 64-bit FPR<->GPR moves, but need special handling for
425   // 32-bit forms.
426   if (!Subtarget.hasVector()) {
427     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
428     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
429   }
430 
431   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
432   // structure, but VAEND is a no-op.
433   setOperationAction(ISD::VASTART, MVT::Other, Custom);
434   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
435   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
436 
437   // Codes for which we want to perform some z-specific combinations.
438   setTargetDAGCombine(ISD::SIGN_EXTEND);
439   setTargetDAGCombine(ISD::STORE);
440   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
441   setTargetDAGCombine(ISD::FP_ROUND);
442   setTargetDAGCombine(ISD::BSWAP);
443   setTargetDAGCombine(ISD::SHL);
444   setTargetDAGCombine(ISD::SRA);
445   setTargetDAGCombine(ISD::SRL);
446   setTargetDAGCombine(ISD::ROTL);
447 
448   // Handle intrinsics.
449   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
450   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
451 
452   // We want to use MVC in preference to even a single load/store pair.
453   MaxStoresPerMemcpy = 0;
454   MaxStoresPerMemcpyOptSize = 0;
455 
456   // The main memset sequence is a byte store followed by an MVC.
457   // Two STC or MV..I stores win over that, but the kind of fused stores
458   // generated by target-independent code don't when the byte value is
459   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
460   // than "STC;MVC".  Handle the choice in target-specific code instead.
461   MaxStoresPerMemset = 0;
462   MaxStoresPerMemsetOptSize = 0;
463 }
464 
getSetCCResultType(const DataLayout & DL,LLVMContext &,EVT VT) const465 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
466                                               LLVMContext &, EVT VT) const {
467   if (!VT.isVector())
468     return MVT::i32;
469   return VT.changeVectorElementTypeToInteger();
470 }
471 
isFMAFasterThanFMulAndFAdd(EVT VT) const472 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
473   VT = VT.getScalarType();
474 
475   if (!VT.isSimple())
476     return false;
477 
478   switch (VT.getSimpleVT().SimpleTy) {
479   case MVT::f32:
480   case MVT::f64:
481     return true;
482   case MVT::f128:
483     return false;
484   default:
485     break;
486   }
487 
488   return false;
489 }
490 
isFPImmLegal(const APFloat & Imm,EVT VT) const491 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
492   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
493   return Imm.isZero() || Imm.isNegZero();
494 }
495 
isLegalICmpImmediate(int64_t Imm) const496 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
497   // We can use CGFI or CLGFI.
498   return isInt<32>(Imm) || isUInt<32>(Imm);
499 }
500 
isLegalAddImmediate(int64_t Imm) const501 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
502   // We can use ALGFI or SLGFI.
503   return isUInt<32>(Imm) || isUInt<32>(-Imm);
504 }
505 
allowsMisalignedMemoryAccesses(EVT VT,unsigned,unsigned,bool * Fast) const506 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
507                                                            unsigned,
508                                                            unsigned,
509                                                            bool *Fast) const {
510   // Unaligned accesses should never be slower than the expanded version.
511   // We check specifically for aligned accesses in the few cases where
512   // they are required.
513   if (Fast)
514     *Fast = true;
515   return true;
516 }
517 
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS) const518 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
519                                                   const AddrMode &AM, Type *Ty,
520                                                   unsigned AS) const {
521   // Punt on globals for now, although they can be used in limited
522   // RELATIVE LONG cases.
523   if (AM.BaseGV)
524     return false;
525 
526   // Require a 20-bit signed offset.
527   if (!isInt<20>(AM.BaseOffs))
528     return false;
529 
530   // Indexing is OK but no scale factor can be applied.
531   return AM.Scale == 0 || AM.Scale == 1;
532 }
533 
isTruncateFree(Type * FromType,Type * ToType) const534 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
535   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
536     return false;
537   unsigned FromBits = FromType->getPrimitiveSizeInBits();
538   unsigned ToBits = ToType->getPrimitiveSizeInBits();
539   return FromBits > ToBits;
540 }
541 
isTruncateFree(EVT FromVT,EVT ToVT) const542 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
543   if (!FromVT.isInteger() || !ToVT.isInteger())
544     return false;
545   unsigned FromBits = FromVT.getSizeInBits();
546   unsigned ToBits = ToVT.getSizeInBits();
547   return FromBits > ToBits;
548 }
549 
550 //===----------------------------------------------------------------------===//
551 // Inline asm support
552 //===----------------------------------------------------------------------===//
553 
554 TargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const555 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
556   if (Constraint.size() == 1) {
557     switch (Constraint[0]) {
558     case 'a': // Address register
559     case 'd': // Data register (equivalent to 'r')
560     case 'f': // Floating-point register
561     case 'h': // High-part register
562     case 'r': // General-purpose register
563       return C_RegisterClass;
564 
565     case 'Q': // Memory with base and unsigned 12-bit displacement
566     case 'R': // Likewise, plus an index
567     case 'S': // Memory with base and signed 20-bit displacement
568     case 'T': // Likewise, plus an index
569     case 'm': // Equivalent to 'T'.
570       return C_Memory;
571 
572     case 'I': // Unsigned 8-bit constant
573     case 'J': // Unsigned 12-bit constant
574     case 'K': // Signed 16-bit constant
575     case 'L': // Signed 20-bit displacement (on all targets we support)
576     case 'M': // 0x7fffffff
577       return C_Other;
578 
579     default:
580       break;
581     }
582   }
583   return TargetLowering::getConstraintType(Constraint);
584 }
585 
586 TargetLowering::ConstraintWeight SystemZTargetLowering::
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const587 getSingleConstraintMatchWeight(AsmOperandInfo &info,
588                                const char *constraint) const {
589   ConstraintWeight weight = CW_Invalid;
590   Value *CallOperandVal = info.CallOperandVal;
591   // If we don't have a value, we can't do a match,
592   // but allow it at the lowest weight.
593   if (!CallOperandVal)
594     return CW_Default;
595   Type *type = CallOperandVal->getType();
596   // Look at the constraint type.
597   switch (*constraint) {
598   default:
599     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
600     break;
601 
602   case 'a': // Address register
603   case 'd': // Data register (equivalent to 'r')
604   case 'h': // High-part register
605   case 'r': // General-purpose register
606     if (CallOperandVal->getType()->isIntegerTy())
607       weight = CW_Register;
608     break;
609 
610   case 'f': // Floating-point register
611     if (type->isFloatingPointTy())
612       weight = CW_Register;
613     break;
614 
615   case 'I': // Unsigned 8-bit constant
616     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
617       if (isUInt<8>(C->getZExtValue()))
618         weight = CW_Constant;
619     break;
620 
621   case 'J': // Unsigned 12-bit constant
622     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
623       if (isUInt<12>(C->getZExtValue()))
624         weight = CW_Constant;
625     break;
626 
627   case 'K': // Signed 16-bit constant
628     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
629       if (isInt<16>(C->getSExtValue()))
630         weight = CW_Constant;
631     break;
632 
633   case 'L': // Signed 20-bit displacement (on all targets we support)
634     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
635       if (isInt<20>(C->getSExtValue()))
636         weight = CW_Constant;
637     break;
638 
639   case 'M': // 0x7fffffff
640     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
641       if (C->getZExtValue() == 0x7fffffff)
642         weight = CW_Constant;
643     break;
644   }
645   return weight;
646 }
647 
648 // Parse a "{tNNN}" register constraint for which the register type "t"
649 // has already been verified.  MC is the class associated with "t" and
650 // Map maps 0-based register numbers to LLVM register numbers.
651 static std::pair<unsigned, const TargetRegisterClass *>
parseRegisterNumber(StringRef Constraint,const TargetRegisterClass * RC,const unsigned * Map)652 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
653                     const unsigned *Map) {
654   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
655   if (isdigit(Constraint[2])) {
656     unsigned Index;
657     bool Failed =
658         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
659     if (!Failed && Index < 16 && Map[Index])
660       return std::make_pair(Map[Index], RC);
661   }
662   return std::make_pair(0U, nullptr);
663 }
664 
665 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const666 SystemZTargetLowering::getRegForInlineAsmConstraint(
667     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
668   if (Constraint.size() == 1) {
669     // GCC Constraint Letters
670     switch (Constraint[0]) {
671     default: break;
672     case 'd': // Data register (equivalent to 'r')
673     case 'r': // General-purpose register
674       if (VT == MVT::i64)
675         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
676       else if (VT == MVT::i128)
677         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
678       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
679 
680     case 'a': // Address register
681       if (VT == MVT::i64)
682         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
683       else if (VT == MVT::i128)
684         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
685       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
686 
687     case 'h': // High-part register (an LLVM extension)
688       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
689 
690     case 'f': // Floating-point register
691       if (VT == MVT::f64)
692         return std::make_pair(0U, &SystemZ::FP64BitRegClass);
693       else if (VT == MVT::f128)
694         return std::make_pair(0U, &SystemZ::FP128BitRegClass);
695       return std::make_pair(0U, &SystemZ::FP32BitRegClass);
696     }
697   }
698   if (Constraint.size() > 0 && Constraint[0] == '{') {
699     // We need to override the default register parsing for GPRs and FPRs
700     // because the interpretation depends on VT.  The internal names of
701     // the registers are also different from the external names
702     // (F0D and F0S instead of F0, etc.).
703     if (Constraint[1] == 'r') {
704       if (VT == MVT::i32)
705         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
706                                    SystemZMC::GR32Regs);
707       if (VT == MVT::i128)
708         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
709                                    SystemZMC::GR128Regs);
710       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
711                                  SystemZMC::GR64Regs);
712     }
713     if (Constraint[1] == 'f') {
714       if (VT == MVT::f32)
715         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
716                                    SystemZMC::FP32Regs);
717       if (VT == MVT::f128)
718         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
719                                    SystemZMC::FP128Regs);
720       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
721                                  SystemZMC::FP64Regs);
722     }
723   }
724   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
725 }
726 
727 void SystemZTargetLowering::
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const728 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
729                              std::vector<SDValue> &Ops,
730                              SelectionDAG &DAG) const {
731   // Only support length 1 constraints for now.
732   if (Constraint.length() == 1) {
733     switch (Constraint[0]) {
734     case 'I': // Unsigned 8-bit constant
735       if (auto *C = dyn_cast<ConstantSDNode>(Op))
736         if (isUInt<8>(C->getZExtValue()))
737           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
738                                               Op.getValueType()));
739       return;
740 
741     case 'J': // Unsigned 12-bit constant
742       if (auto *C = dyn_cast<ConstantSDNode>(Op))
743         if (isUInt<12>(C->getZExtValue()))
744           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
745                                               Op.getValueType()));
746       return;
747 
748     case 'K': // Signed 16-bit constant
749       if (auto *C = dyn_cast<ConstantSDNode>(Op))
750         if (isInt<16>(C->getSExtValue()))
751           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
752                                               Op.getValueType()));
753       return;
754 
755     case 'L': // Signed 20-bit displacement (on all targets we support)
756       if (auto *C = dyn_cast<ConstantSDNode>(Op))
757         if (isInt<20>(C->getSExtValue()))
758           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
759                                               Op.getValueType()));
760       return;
761 
762     case 'M': // 0x7fffffff
763       if (auto *C = dyn_cast<ConstantSDNode>(Op))
764         if (C->getZExtValue() == 0x7fffffff)
765           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
766                                               Op.getValueType()));
767       return;
768     }
769   }
770   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
771 }
772 
773 //===----------------------------------------------------------------------===//
774 // Calling conventions
775 //===----------------------------------------------------------------------===//
776 
777 #include "SystemZGenCallingConv.inc"
778 
allowTruncateForTailCall(Type * FromType,Type * ToType) const779 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
780                                                      Type *ToType) const {
781   return isTruncateFree(FromType, ToType);
782 }
783 
mayBeEmittedAsTailCall(CallInst * CI) const784 bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
785   return CI->isTailCall();
786 }
787 
788 // We do not yet support 128-bit single-element vector types.  If the user
789 // attempts to use such types as function argument or return type, prefer
790 // to error out instead of emitting code violating the ABI.
VerifyVectorType(MVT VT,EVT ArgVT)791 static void VerifyVectorType(MVT VT, EVT ArgVT) {
792   if (ArgVT.isVector() && !VT.isVector())
793     report_fatal_error("Unsupported vector argument or return type");
794 }
795 
VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> & Ins)796 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
797   for (unsigned i = 0; i < Ins.size(); ++i)
798     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
799 }
800 
VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> & Outs)801 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
802   for (unsigned i = 0; i < Outs.size(); ++i)
803     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
804 }
805 
806 // Value is a value that has been passed to us in the location described by VA
807 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
808 // any loads onto Chain.
convertLocVTToValVT(SelectionDAG & DAG,const SDLoc & DL,CCValAssign & VA,SDValue Chain,SDValue Value)809 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
810                                    CCValAssign &VA, SDValue Chain,
811                                    SDValue Value) {
812   // If the argument has been promoted from a smaller type, insert an
813   // assertion to capture this.
814   if (VA.getLocInfo() == CCValAssign::SExt)
815     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
816                         DAG.getValueType(VA.getValVT()));
817   else if (VA.getLocInfo() == CCValAssign::ZExt)
818     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
819                         DAG.getValueType(VA.getValVT()));
820 
821   if (VA.isExtInLoc())
822     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
823   else if (VA.getLocInfo() == CCValAssign::BCvt) {
824     // If this is a short vector argument loaded from the stack,
825     // extend from i64 to full vector size and then bitcast.
826     assert(VA.getLocVT() == MVT::i64);
827     assert(VA.getValVT().isVector());
828     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
829     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
830   } else
831     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
832   return Value;
833 }
834 
835 // Value is a value of type VA.getValVT() that we need to copy into
836 // the location described by VA.  Return a copy of Value converted to
837 // VA.getValVT().  The caller is responsible for handling indirect values.
convertValVTToLocVT(SelectionDAG & DAG,const SDLoc & DL,CCValAssign & VA,SDValue Value)838 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
839                                    CCValAssign &VA, SDValue Value) {
840   switch (VA.getLocInfo()) {
841   case CCValAssign::SExt:
842     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
843   case CCValAssign::ZExt:
844     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
845   case CCValAssign::AExt:
846     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
847   case CCValAssign::BCvt:
848     // If this is a short vector argument to be stored to the stack,
849     // bitcast to v2i64 and then extract first element.
850     assert(VA.getLocVT() == MVT::i64);
851     assert(VA.getValVT().isVector());
852     Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
853     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
854                        DAG.getConstant(0, DL, MVT::i32));
855   case CCValAssign::Full:
856     return Value;
857   default:
858     llvm_unreachable("Unhandled getLocInfo()");
859   }
860 }
861 
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const862 SDValue SystemZTargetLowering::LowerFormalArguments(
863     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
864     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
865     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
866   MachineFunction &MF = DAG.getMachineFunction();
867   MachineFrameInfo *MFI = MF.getFrameInfo();
868   MachineRegisterInfo &MRI = MF.getRegInfo();
869   SystemZMachineFunctionInfo *FuncInfo =
870       MF.getInfo<SystemZMachineFunctionInfo>();
871   auto *TFL =
872       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
873   EVT PtrVT = getPointerTy(DAG.getDataLayout());
874 
875   // Detect unsupported vector argument types.
876   if (Subtarget.hasVector())
877     VerifyVectorTypes(Ins);
878 
879   // Assign locations to all of the incoming arguments.
880   SmallVector<CCValAssign, 16> ArgLocs;
881   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
882   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
883 
884   unsigned NumFixedGPRs = 0;
885   unsigned NumFixedFPRs = 0;
886   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
887     SDValue ArgValue;
888     CCValAssign &VA = ArgLocs[I];
889     EVT LocVT = VA.getLocVT();
890     if (VA.isRegLoc()) {
891       // Arguments passed in registers
892       const TargetRegisterClass *RC;
893       switch (LocVT.getSimpleVT().SimpleTy) {
894       default:
895         // Integers smaller than i64 should be promoted to i64.
896         llvm_unreachable("Unexpected argument type");
897       case MVT::i32:
898         NumFixedGPRs += 1;
899         RC = &SystemZ::GR32BitRegClass;
900         break;
901       case MVT::i64:
902         NumFixedGPRs += 1;
903         RC = &SystemZ::GR64BitRegClass;
904         break;
905       case MVT::f32:
906         NumFixedFPRs += 1;
907         RC = &SystemZ::FP32BitRegClass;
908         break;
909       case MVT::f64:
910         NumFixedFPRs += 1;
911         RC = &SystemZ::FP64BitRegClass;
912         break;
913       case MVT::v16i8:
914       case MVT::v8i16:
915       case MVT::v4i32:
916       case MVT::v2i64:
917       case MVT::v4f32:
918       case MVT::v2f64:
919         RC = &SystemZ::VR128BitRegClass;
920         break;
921       }
922 
923       unsigned VReg = MRI.createVirtualRegister(RC);
924       MRI.addLiveIn(VA.getLocReg(), VReg);
925       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
926     } else {
927       assert(VA.isMemLoc() && "Argument not register or memory");
928 
929       // Create the frame index object for this incoming parameter.
930       int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8,
931                                       VA.getLocMemOffset(), true);
932 
933       // Create the SelectionDAG nodes corresponding to a load
934       // from this parameter.  Unpromoted ints and floats are
935       // passed as right-justified 8-byte values.
936       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
937       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
938         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
939                           DAG.getIntPtrConstant(4, DL));
940       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
941                              MachinePointerInfo::getFixedStack(MF, FI), false,
942                              false, false, 0);
943     }
944 
945     // Convert the value of the argument register into the value that's
946     // being passed.
947     if (VA.getLocInfo() == CCValAssign::Indirect) {
948       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain,
949                                    ArgValue, MachinePointerInfo(),
950                                    false, false, false, 0));
951       // If the original argument was split (e.g. i128), we need
952       // to load all parts of it here (using the same address).
953       unsigned ArgIndex = Ins[I].OrigArgIndex;
954       assert (Ins[I].PartOffset == 0);
955       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
956         CCValAssign &PartVA = ArgLocs[I + 1];
957         unsigned PartOffset = Ins[I + 1].PartOffset;
958         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
959                                       DAG.getIntPtrConstant(PartOffset, DL));
960         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain,
961                                      Address, MachinePointerInfo(),
962                                      false, false, false, 0));
963         ++I;
964       }
965     } else
966       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
967   }
968 
969   if (IsVarArg) {
970     // Save the number of non-varargs registers for later use by va_start, etc.
971     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
972     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
973 
974     // Likewise the address (in the form of a frame index) of where the
975     // first stack vararg would be.  The 1-byte size here is arbitrary.
976     int64_t StackSize = CCInfo.getNextStackOffset();
977     FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true));
978 
979     // ...and a similar frame index for the caller-allocated save area
980     // that will be used to store the incoming registers.
981     int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
982     unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true);
983     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
984 
985     // Store the FPR varargs in the reserved frame slots.  (We store the
986     // GPRs as part of the prologue.)
987     if (NumFixedFPRs < SystemZ::NumArgFPRs) {
988       SDValue MemOps[SystemZ::NumArgFPRs];
989       for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
990         unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
991         int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true);
992         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
993         unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
994                                      &SystemZ::FP64BitRegClass);
995         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
996         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
997                                  MachinePointerInfo::getFixedStack(MF, FI),
998                                  false, false, 0);
999       }
1000       // Join the stores, which are independent of one another.
1001       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1002                           makeArrayRef(&MemOps[NumFixedFPRs],
1003                                        SystemZ::NumArgFPRs-NumFixedFPRs));
1004     }
1005   }
1006 
1007   return Chain;
1008 }
1009 
canUseSiblingCall(const CCState & ArgCCInfo,SmallVectorImpl<CCValAssign> & ArgLocs,SmallVectorImpl<ISD::OutputArg> & Outs)1010 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1011                               SmallVectorImpl<CCValAssign> &ArgLocs,
1012                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1013   // Punt if there are any indirect or stack arguments, or if the call
1014   // needs the callee-saved argument register R6, or if the call uses
1015   // the callee-saved register arguments SwiftSelf and SwiftError.
1016   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1017     CCValAssign &VA = ArgLocs[I];
1018     if (VA.getLocInfo() == CCValAssign::Indirect)
1019       return false;
1020     if (!VA.isRegLoc())
1021       return false;
1022     unsigned Reg = VA.getLocReg();
1023     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1024       return false;
1025     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1026       return false;
1027   }
1028   return true;
1029 }
1030 
1031 SDValue
LowerCall(CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const1032 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1033                                  SmallVectorImpl<SDValue> &InVals) const {
1034   SelectionDAG &DAG = CLI.DAG;
1035   SDLoc &DL = CLI.DL;
1036   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1037   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1038   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1039   SDValue Chain = CLI.Chain;
1040   SDValue Callee = CLI.Callee;
1041   bool &IsTailCall = CLI.IsTailCall;
1042   CallingConv::ID CallConv = CLI.CallConv;
1043   bool IsVarArg = CLI.IsVarArg;
1044   MachineFunction &MF = DAG.getMachineFunction();
1045   EVT PtrVT = getPointerTy(MF.getDataLayout());
1046 
1047   // Detect unsupported vector argument and return types.
1048   if (Subtarget.hasVector()) {
1049     VerifyVectorTypes(Outs);
1050     VerifyVectorTypes(Ins);
1051   }
1052 
1053   // Analyze the operands of the call, assigning locations to each operand.
1054   SmallVector<CCValAssign, 16> ArgLocs;
1055   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1056   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1057 
1058   // We don't support GuaranteedTailCallOpt, only automatically-detected
1059   // sibling calls.
1060   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1061     IsTailCall = false;
1062 
1063   // Get a count of how many bytes are to be pushed on the stack.
1064   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1065 
1066   // Mark the start of the call.
1067   if (!IsTailCall)
1068     Chain = DAG.getCALLSEQ_START(Chain,
1069                                  DAG.getConstant(NumBytes, DL, PtrVT, true),
1070                                  DL);
1071 
1072   // Copy argument values to their designated locations.
1073   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1074   SmallVector<SDValue, 8> MemOpChains;
1075   SDValue StackPtr;
1076   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1077     CCValAssign &VA = ArgLocs[I];
1078     SDValue ArgValue = OutVals[I];
1079 
1080     if (VA.getLocInfo() == CCValAssign::Indirect) {
1081       // Store the argument in a stack slot and pass its address.
1082       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT);
1083       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1084       MemOpChains.push_back(DAG.getStore(
1085           Chain, DL, ArgValue, SpillSlot,
1086           MachinePointerInfo::getFixedStack(MF, FI), false, false, 0));
1087       // If the original argument was split (e.g. i128), we need
1088       // to store all parts of it here (and pass just one address).
1089       unsigned ArgIndex = Outs[I].OrigArgIndex;
1090       assert (Outs[I].PartOffset == 0);
1091       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1092         SDValue PartValue = OutVals[I + 1];
1093         unsigned PartOffset = Outs[I + 1].PartOffset;
1094         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1095                                       DAG.getIntPtrConstant(PartOffset, DL));
1096         MemOpChains.push_back(DAG.getStore(
1097             Chain, DL, PartValue, Address,
1098             MachinePointerInfo::getFixedStack(MF, FI), false, false, 0));
1099         ++I;
1100       }
1101       ArgValue = SpillSlot;
1102     } else
1103       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1104 
1105     if (VA.isRegLoc())
1106       // Queue up the argument copies and emit them at the end.
1107       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1108     else {
1109       assert(VA.isMemLoc() && "Argument not register or memory");
1110 
1111       // Work out the address of the stack slot.  Unpromoted ints and
1112       // floats are passed as right-justified 8-byte values.
1113       if (!StackPtr.getNode())
1114         StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
1115       unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
1116       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1117         Offset += 4;
1118       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1119                                     DAG.getIntPtrConstant(Offset, DL));
1120 
1121       // Emit the store.
1122       MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address,
1123                                          MachinePointerInfo(),
1124                                          false, false, 0));
1125     }
1126   }
1127 
1128   // Join the stores, which are independent of one another.
1129   if (!MemOpChains.empty())
1130     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1131 
1132   // Accept direct calls by converting symbolic call addresses to the
1133   // associated Target* opcodes.  Force %r1 to be used for indirect
1134   // tail calls.
1135   SDValue Glue;
1136   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1137     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1138     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1139   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1140     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1141     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1142   } else if (IsTailCall) {
1143     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1144     Glue = Chain.getValue(1);
1145     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1146   }
1147 
1148   // Build a sequence of copy-to-reg nodes, chained and glued together.
1149   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1150     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1151                              RegsToPass[I].second, Glue);
1152     Glue = Chain.getValue(1);
1153   }
1154 
1155   // The first call operand is the chain and the second is the target address.
1156   SmallVector<SDValue, 8> Ops;
1157   Ops.push_back(Chain);
1158   Ops.push_back(Callee);
1159 
1160   // Add argument registers to the end of the list so that they are
1161   // known live into the call.
1162   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1163     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1164                                   RegsToPass[I].second.getValueType()));
1165 
1166   // Add a register mask operand representing the call-preserved registers.
1167   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1168   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1169   assert(Mask && "Missing call preserved mask for calling convention");
1170   Ops.push_back(DAG.getRegisterMask(Mask));
1171 
1172   // Glue the call to the argument copies, if any.
1173   if (Glue.getNode())
1174     Ops.push_back(Glue);
1175 
1176   // Emit the call.
1177   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1178   if (IsTailCall)
1179     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1180   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1181   Glue = Chain.getValue(1);
1182 
1183   // Mark the end of the call, which is glued to the call itself.
1184   Chain = DAG.getCALLSEQ_END(Chain,
1185                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1186                              DAG.getConstant(0, DL, PtrVT, true),
1187                              Glue, DL);
1188   Glue = Chain.getValue(1);
1189 
1190   // Assign locations to each value returned by this call.
1191   SmallVector<CCValAssign, 16> RetLocs;
1192   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1193   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1194 
1195   // Copy all of the result registers out of their specified physreg.
1196   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1197     CCValAssign &VA = RetLocs[I];
1198 
1199     // Copy the value out, gluing the copy to the end of the call sequence.
1200     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1201                                           VA.getLocVT(), Glue);
1202     Chain = RetValue.getValue(1);
1203     Glue = RetValue.getValue(2);
1204 
1205     // Convert the value of the return register into the value that's
1206     // being returned.
1207     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1208   }
1209 
1210   return Chain;
1211 }
1212 
1213 bool SystemZTargetLowering::
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const1214 CanLowerReturn(CallingConv::ID CallConv,
1215                MachineFunction &MF, bool isVarArg,
1216                const SmallVectorImpl<ISD::OutputArg> &Outs,
1217                LLVMContext &Context) const {
1218   // Detect unsupported vector return types.
1219   if (Subtarget.hasVector())
1220     VerifyVectorTypes(Outs);
1221 
1222   // Special case that we cannot easily detect in RetCC_SystemZ since
1223   // i128 is not a legal type.
1224   for (auto &Out : Outs)
1225     if (Out.ArgVT == MVT::i128)
1226       return false;
1227 
1228   SmallVector<CCValAssign, 16> RetLocs;
1229   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1230   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1231 }
1232 
1233 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & DL,SelectionDAG & DAG) const1234 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1235                                    bool IsVarArg,
1236                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1237                                    const SmallVectorImpl<SDValue> &OutVals,
1238                                    const SDLoc &DL, SelectionDAG &DAG) const {
1239   MachineFunction &MF = DAG.getMachineFunction();
1240 
1241   // Detect unsupported vector return types.
1242   if (Subtarget.hasVector())
1243     VerifyVectorTypes(Outs);
1244 
1245   // Assign locations to each returned value.
1246   SmallVector<CCValAssign, 16> RetLocs;
1247   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1248   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1249 
1250   // Quick exit for void returns
1251   if (RetLocs.empty())
1252     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1253 
1254   // Copy the result values into the output registers.
1255   SDValue Glue;
1256   SmallVector<SDValue, 4> RetOps;
1257   RetOps.push_back(Chain);
1258   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1259     CCValAssign &VA = RetLocs[I];
1260     SDValue RetValue = OutVals[I];
1261 
1262     // Make the return register live on exit.
1263     assert(VA.isRegLoc() && "Can only return in registers!");
1264 
1265     // Promote the value as required.
1266     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1267 
1268     // Chain and glue the copies together.
1269     unsigned Reg = VA.getLocReg();
1270     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1271     Glue = Chain.getValue(1);
1272     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1273   }
1274 
1275   // Update chain and glue.
1276   RetOps[0] = Chain;
1277   if (Glue.getNode())
1278     RetOps.push_back(Glue);
1279 
1280   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1281 }
1282 
prepareVolatileOrAtomicLoad(SDValue Chain,const SDLoc & DL,SelectionDAG & DAG) const1283 SDValue SystemZTargetLowering::prepareVolatileOrAtomicLoad(
1284     SDValue Chain, const SDLoc &DL, SelectionDAG &DAG) const {
1285   return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain);
1286 }
1287 
1288 // Return true if Op is an intrinsic node with chain that returns the CC value
1289 // as its only (other) argument.  Provide the associated SystemZISD opcode and
1290 // the mask of valid CC values if so.
isIntrinsicWithCCAndChain(SDValue Op,unsigned & Opcode,unsigned & CCValid)1291 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1292                                       unsigned &CCValid) {
1293   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1294   switch (Id) {
1295   case Intrinsic::s390_tbegin:
1296     Opcode = SystemZISD::TBEGIN;
1297     CCValid = SystemZ::CCMASK_TBEGIN;
1298     return true;
1299 
1300   case Intrinsic::s390_tbegin_nofloat:
1301     Opcode = SystemZISD::TBEGIN_NOFLOAT;
1302     CCValid = SystemZ::CCMASK_TBEGIN;
1303     return true;
1304 
1305   case Intrinsic::s390_tend:
1306     Opcode = SystemZISD::TEND;
1307     CCValid = SystemZ::CCMASK_TEND;
1308     return true;
1309 
1310   default:
1311     return false;
1312   }
1313 }
1314 
1315 // Return true if Op is an intrinsic node without chain that returns the
1316 // CC value as its final argument.  Provide the associated SystemZISD
1317 // opcode and the mask of valid CC values if so.
isIntrinsicWithCC(SDValue Op,unsigned & Opcode,unsigned & CCValid)1318 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1319   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1320   switch (Id) {
1321   case Intrinsic::s390_vpkshs:
1322   case Intrinsic::s390_vpksfs:
1323   case Intrinsic::s390_vpksgs:
1324     Opcode = SystemZISD::PACKS_CC;
1325     CCValid = SystemZ::CCMASK_VCMP;
1326     return true;
1327 
1328   case Intrinsic::s390_vpklshs:
1329   case Intrinsic::s390_vpklsfs:
1330   case Intrinsic::s390_vpklsgs:
1331     Opcode = SystemZISD::PACKLS_CC;
1332     CCValid = SystemZ::CCMASK_VCMP;
1333     return true;
1334 
1335   case Intrinsic::s390_vceqbs:
1336   case Intrinsic::s390_vceqhs:
1337   case Intrinsic::s390_vceqfs:
1338   case Intrinsic::s390_vceqgs:
1339     Opcode = SystemZISD::VICMPES;
1340     CCValid = SystemZ::CCMASK_VCMP;
1341     return true;
1342 
1343   case Intrinsic::s390_vchbs:
1344   case Intrinsic::s390_vchhs:
1345   case Intrinsic::s390_vchfs:
1346   case Intrinsic::s390_vchgs:
1347     Opcode = SystemZISD::VICMPHS;
1348     CCValid = SystemZ::CCMASK_VCMP;
1349     return true;
1350 
1351   case Intrinsic::s390_vchlbs:
1352   case Intrinsic::s390_vchlhs:
1353   case Intrinsic::s390_vchlfs:
1354   case Intrinsic::s390_vchlgs:
1355     Opcode = SystemZISD::VICMPHLS;
1356     CCValid = SystemZ::CCMASK_VCMP;
1357     return true;
1358 
1359   case Intrinsic::s390_vtm:
1360     Opcode = SystemZISD::VTM;
1361     CCValid = SystemZ::CCMASK_VCMP;
1362     return true;
1363 
1364   case Intrinsic::s390_vfaebs:
1365   case Intrinsic::s390_vfaehs:
1366   case Intrinsic::s390_vfaefs:
1367     Opcode = SystemZISD::VFAE_CC;
1368     CCValid = SystemZ::CCMASK_ANY;
1369     return true;
1370 
1371   case Intrinsic::s390_vfaezbs:
1372   case Intrinsic::s390_vfaezhs:
1373   case Intrinsic::s390_vfaezfs:
1374     Opcode = SystemZISD::VFAEZ_CC;
1375     CCValid = SystemZ::CCMASK_ANY;
1376     return true;
1377 
1378   case Intrinsic::s390_vfeebs:
1379   case Intrinsic::s390_vfeehs:
1380   case Intrinsic::s390_vfeefs:
1381     Opcode = SystemZISD::VFEE_CC;
1382     CCValid = SystemZ::CCMASK_ANY;
1383     return true;
1384 
1385   case Intrinsic::s390_vfeezbs:
1386   case Intrinsic::s390_vfeezhs:
1387   case Intrinsic::s390_vfeezfs:
1388     Opcode = SystemZISD::VFEEZ_CC;
1389     CCValid = SystemZ::CCMASK_ANY;
1390     return true;
1391 
1392   case Intrinsic::s390_vfenebs:
1393   case Intrinsic::s390_vfenehs:
1394   case Intrinsic::s390_vfenefs:
1395     Opcode = SystemZISD::VFENE_CC;
1396     CCValid = SystemZ::CCMASK_ANY;
1397     return true;
1398 
1399   case Intrinsic::s390_vfenezbs:
1400   case Intrinsic::s390_vfenezhs:
1401   case Intrinsic::s390_vfenezfs:
1402     Opcode = SystemZISD::VFENEZ_CC;
1403     CCValid = SystemZ::CCMASK_ANY;
1404     return true;
1405 
1406   case Intrinsic::s390_vistrbs:
1407   case Intrinsic::s390_vistrhs:
1408   case Intrinsic::s390_vistrfs:
1409     Opcode = SystemZISD::VISTR_CC;
1410     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
1411     return true;
1412 
1413   case Intrinsic::s390_vstrcbs:
1414   case Intrinsic::s390_vstrchs:
1415   case Intrinsic::s390_vstrcfs:
1416     Opcode = SystemZISD::VSTRC_CC;
1417     CCValid = SystemZ::CCMASK_ANY;
1418     return true;
1419 
1420   case Intrinsic::s390_vstrczbs:
1421   case Intrinsic::s390_vstrczhs:
1422   case Intrinsic::s390_vstrczfs:
1423     Opcode = SystemZISD::VSTRCZ_CC;
1424     CCValid = SystemZ::CCMASK_ANY;
1425     return true;
1426 
1427   case Intrinsic::s390_vfcedbs:
1428     Opcode = SystemZISD::VFCMPES;
1429     CCValid = SystemZ::CCMASK_VCMP;
1430     return true;
1431 
1432   case Intrinsic::s390_vfchdbs:
1433     Opcode = SystemZISD::VFCMPHS;
1434     CCValid = SystemZ::CCMASK_VCMP;
1435     return true;
1436 
1437   case Intrinsic::s390_vfchedbs:
1438     Opcode = SystemZISD::VFCMPHES;
1439     CCValid = SystemZ::CCMASK_VCMP;
1440     return true;
1441 
1442   case Intrinsic::s390_vftcidb:
1443     Opcode = SystemZISD::VFTCI;
1444     CCValid = SystemZ::CCMASK_VCMP;
1445     return true;
1446 
1447   case Intrinsic::s390_tdc:
1448     Opcode = SystemZISD::TDC;
1449     CCValid = SystemZ::CCMASK_TDC;
1450     return true;
1451 
1452   default:
1453     return false;
1454   }
1455 }
1456 
1457 // Emit an intrinsic with chain with a glued value instead of its CC result.
emitIntrinsicWithChainAndGlue(SelectionDAG & DAG,SDValue Op,unsigned Opcode)1458 static SDValue emitIntrinsicWithChainAndGlue(SelectionDAG &DAG, SDValue Op,
1459                                              unsigned Opcode) {
1460   // Copy all operands except the intrinsic ID.
1461   unsigned NumOps = Op.getNumOperands();
1462   SmallVector<SDValue, 6> Ops;
1463   Ops.reserve(NumOps - 1);
1464   Ops.push_back(Op.getOperand(0));
1465   for (unsigned I = 2; I < NumOps; ++I)
1466     Ops.push_back(Op.getOperand(I));
1467 
1468   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
1469   SDVTList RawVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1470   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1471   SDValue OldChain = SDValue(Op.getNode(), 1);
1472   SDValue NewChain = SDValue(Intr.getNode(), 0);
1473   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
1474   return Intr;
1475 }
1476 
1477 // Emit an intrinsic with a glued value instead of its CC result.
emitIntrinsicWithGlue(SelectionDAG & DAG,SDValue Op,unsigned Opcode)1478 static SDValue emitIntrinsicWithGlue(SelectionDAG &DAG, SDValue Op,
1479                                      unsigned Opcode) {
1480   // Copy all operands except the intrinsic ID.
1481   unsigned NumOps = Op.getNumOperands();
1482   SmallVector<SDValue, 6> Ops;
1483   Ops.reserve(NumOps - 1);
1484   for (unsigned I = 1; I < NumOps; ++I)
1485     Ops.push_back(Op.getOperand(I));
1486 
1487   if (Op->getNumValues() == 1)
1488     return DAG.getNode(Opcode, SDLoc(Op), MVT::Glue, Ops);
1489   assert(Op->getNumValues() == 2 && "Expected exactly one non-CC result");
1490   SDVTList RawVTs = DAG.getVTList(Op->getValueType(0), MVT::Glue);
1491   return DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1492 }
1493 
1494 // CC is a comparison that will be implemented using an integer or
1495 // floating-point comparison.  Return the condition code mask for
1496 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
1497 // unsigned comparisons and clear for signed ones.  In the floating-point
1498 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
CCMaskForCondCode(ISD::CondCode CC)1499 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
1500 #define CONV(X) \
1501   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
1502   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
1503   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
1504 
1505   switch (CC) {
1506   default:
1507     llvm_unreachable("Invalid integer condition!");
1508 
1509   CONV(EQ);
1510   CONV(NE);
1511   CONV(GT);
1512   CONV(GE);
1513   CONV(LT);
1514   CONV(LE);
1515 
1516   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
1517   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
1518   }
1519 #undef CONV
1520 }
1521 
1522 // Return a sequence for getting a 1 from an IPM result when CC has a
1523 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
1524 // The handling of CC values outside CCValid doesn't matter.
getIPMConversion(unsigned CCValid,unsigned CCMask)1525 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) {
1526   // Deal with cases where the result can be taken directly from a bit
1527   // of the IPM result.
1528   if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3)))
1529     return IPMConversion(0, 0, SystemZ::IPM_CC);
1530   if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3)))
1531     return IPMConversion(0, 0, SystemZ::IPM_CC + 1);
1532 
1533   // Deal with cases where we can add a value to force the sign bit
1534   // to contain the right value.  Putting the bit in 31 means we can
1535   // use SRL rather than RISBG(L), and also makes it easier to get a
1536   // 0/-1 value, so it has priority over the other tests below.
1537   //
1538   // These sequences rely on the fact that the upper two bits of the
1539   // IPM result are zero.
1540   uint64_t TopBit = uint64_t(1) << 31;
1541   if (CCMask == (CCValid & SystemZ::CCMASK_0))
1542     return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31);
1543   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1)))
1544     return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31);
1545   if (CCMask == (CCValid & (SystemZ::CCMASK_0
1546                             | SystemZ::CCMASK_1
1547                             | SystemZ::CCMASK_2)))
1548     return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31);
1549   if (CCMask == (CCValid & SystemZ::CCMASK_3))
1550     return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31);
1551   if (CCMask == (CCValid & (SystemZ::CCMASK_1
1552                             | SystemZ::CCMASK_2
1553                             | SystemZ::CCMASK_3)))
1554     return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31);
1555 
1556   // Next try inverting the value and testing a bit.  0/1 could be
1557   // handled this way too, but we dealt with that case above.
1558   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2)))
1559     return IPMConversion(-1, 0, SystemZ::IPM_CC);
1560 
1561   // Handle cases where adding a value forces a non-sign bit to contain
1562   // the right value.
1563   if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2)))
1564     return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1);
1565   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3)))
1566     return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1);
1567 
1568   // The remaining cases are 1, 2, 0/1/3 and 0/2/3.  All these are
1569   // can be done by inverting the low CC bit and applying one of the
1570   // sign-based extractions above.
1571   if (CCMask == (CCValid & SystemZ::CCMASK_1))
1572     return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31);
1573   if (CCMask == (CCValid & SystemZ::CCMASK_2))
1574     return IPMConversion(1 << SystemZ::IPM_CC,
1575                          TopBit - (3 << SystemZ::IPM_CC), 31);
1576   if (CCMask == (CCValid & (SystemZ::CCMASK_0
1577                             | SystemZ::CCMASK_1
1578                             | SystemZ::CCMASK_3)))
1579     return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31);
1580   if (CCMask == (CCValid & (SystemZ::CCMASK_0
1581                             | SystemZ::CCMASK_2
1582                             | SystemZ::CCMASK_3)))
1583     return IPMConversion(1 << SystemZ::IPM_CC,
1584                          TopBit - (1 << SystemZ::IPM_CC), 31);
1585 
1586   llvm_unreachable("Unexpected CC combination");
1587 }
1588 
1589 // If C can be converted to a comparison against zero, adjust the operands
1590 // as necessary.
adjustZeroCmp(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)1591 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
1592   if (C.ICmpType == SystemZICMP::UnsignedOnly)
1593     return;
1594 
1595   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
1596   if (!ConstOp1)
1597     return;
1598 
1599   int64_t Value = ConstOp1->getSExtValue();
1600   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
1601       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
1602       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
1603       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
1604     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
1605     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
1606   }
1607 }
1608 
1609 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
1610 // adjust the operands as necessary.
adjustSubwordCmp(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)1611 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
1612                              Comparison &C) {
1613   // For us to make any changes, it must a comparison between a single-use
1614   // load and a constant.
1615   if (!C.Op0.hasOneUse() ||
1616       C.Op0.getOpcode() != ISD::LOAD ||
1617       C.Op1.getOpcode() != ISD::Constant)
1618     return;
1619 
1620   // We must have an 8- or 16-bit load.
1621   auto *Load = cast<LoadSDNode>(C.Op0);
1622   unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
1623   if (NumBits != 8 && NumBits != 16)
1624     return;
1625 
1626   // The load must be an extending one and the constant must be within the
1627   // range of the unextended value.
1628   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
1629   uint64_t Value = ConstOp1->getZExtValue();
1630   uint64_t Mask = (1 << NumBits) - 1;
1631   if (Load->getExtensionType() == ISD::SEXTLOAD) {
1632     // Make sure that ConstOp1 is in range of C.Op0.
1633     int64_t SignedValue = ConstOp1->getSExtValue();
1634     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
1635       return;
1636     if (C.ICmpType != SystemZICMP::SignedOnly) {
1637       // Unsigned comparison between two sign-extended values is equivalent
1638       // to unsigned comparison between two zero-extended values.
1639       Value &= Mask;
1640     } else if (NumBits == 8) {
1641       // Try to treat the comparison as unsigned, so that we can use CLI.
1642       // Adjust CCMask and Value as necessary.
1643       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
1644         // Test whether the high bit of the byte is set.
1645         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
1646       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
1647         // Test whether the high bit of the byte is clear.
1648         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
1649       else
1650         // No instruction exists for this combination.
1651         return;
1652       C.ICmpType = SystemZICMP::UnsignedOnly;
1653     }
1654   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
1655     if (Value > Mask)
1656       return;
1657     // If the constant is in range, we can use any comparison.
1658     C.ICmpType = SystemZICMP::Any;
1659   } else
1660     return;
1661 
1662   // Make sure that the first operand is an i32 of the right extension type.
1663   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
1664                               ISD::SEXTLOAD :
1665                               ISD::ZEXTLOAD);
1666   if (C.Op0.getValueType() != MVT::i32 ||
1667       Load->getExtensionType() != ExtType)
1668     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32,
1669                            Load->getChain(), Load->getBasePtr(),
1670                            Load->getPointerInfo(), Load->getMemoryVT(),
1671                            Load->isVolatile(), Load->isNonTemporal(),
1672                            Load->isInvariant(), Load->getAlignment());
1673 
1674   // Make sure that the second operand is an i32 with the right value.
1675   if (C.Op1.getValueType() != MVT::i32 ||
1676       Value != ConstOp1->getZExtValue())
1677     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
1678 }
1679 
1680 // Return true if Op is either an unextended load, or a load suitable
1681 // for integer register-memory comparisons of type ICmpType.
isNaturalMemoryOperand(SDValue Op,unsigned ICmpType)1682 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
1683   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
1684   if (Load) {
1685     // There are no instructions to compare a register with a memory byte.
1686     if (Load->getMemoryVT() == MVT::i8)
1687       return false;
1688     // Otherwise decide on extension type.
1689     switch (Load->getExtensionType()) {
1690     case ISD::NON_EXTLOAD:
1691       return true;
1692     case ISD::SEXTLOAD:
1693       return ICmpType != SystemZICMP::UnsignedOnly;
1694     case ISD::ZEXTLOAD:
1695       return ICmpType != SystemZICMP::SignedOnly;
1696     default:
1697       break;
1698     }
1699   }
1700   return false;
1701 }
1702 
1703 // Return true if it is better to swap the operands of C.
shouldSwapCmpOperands(const Comparison & C)1704 static bool shouldSwapCmpOperands(const Comparison &C) {
1705   // Leave f128 comparisons alone, since they have no memory forms.
1706   if (C.Op0.getValueType() == MVT::f128)
1707     return false;
1708 
1709   // Always keep a floating-point constant second, since comparisons with
1710   // zero can use LOAD TEST and comparisons with other constants make a
1711   // natural memory operand.
1712   if (isa<ConstantFPSDNode>(C.Op1))
1713     return false;
1714 
1715   // Never swap comparisons with zero since there are many ways to optimize
1716   // those later.
1717   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
1718   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
1719     return false;
1720 
1721   // Also keep natural memory operands second if the loaded value is
1722   // only used here.  Several comparisons have memory forms.
1723   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
1724     return false;
1725 
1726   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
1727   // In that case we generally prefer the memory to be second.
1728   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
1729     // The only exceptions are when the second operand is a constant and
1730     // we can use things like CHHSI.
1731     if (!ConstOp1)
1732       return true;
1733     // The unsigned memory-immediate instructions can handle 16-bit
1734     // unsigned integers.
1735     if (C.ICmpType != SystemZICMP::SignedOnly &&
1736         isUInt<16>(ConstOp1->getZExtValue()))
1737       return false;
1738     // The signed memory-immediate instructions can handle 16-bit
1739     // signed integers.
1740     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
1741         isInt<16>(ConstOp1->getSExtValue()))
1742       return false;
1743     return true;
1744   }
1745 
1746   // Try to promote the use of CGFR and CLGFR.
1747   unsigned Opcode0 = C.Op0.getOpcode();
1748   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
1749     return true;
1750   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
1751     return true;
1752   if (C.ICmpType != SystemZICMP::SignedOnly &&
1753       Opcode0 == ISD::AND &&
1754       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
1755       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
1756     return true;
1757 
1758   return false;
1759 }
1760 
1761 // Return a version of comparison CC mask CCMask in which the LT and GT
1762 // actions are swapped.
reverseCCMask(unsigned CCMask)1763 static unsigned reverseCCMask(unsigned CCMask) {
1764   return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
1765           (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
1766           (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
1767           (CCMask & SystemZ::CCMASK_CMP_UO));
1768 }
1769 
1770 // Check whether C tests for equality between X and Y and whether X - Y
1771 // or Y - X is also computed.  In that case it's better to compare the
1772 // result of the subtraction against zero.
adjustForSubtraction(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)1773 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
1774                                  Comparison &C) {
1775   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
1776       C.CCMask == SystemZ::CCMASK_CMP_NE) {
1777     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
1778       SDNode *N = *I;
1779       if (N->getOpcode() == ISD::SUB &&
1780           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
1781            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
1782         C.Op0 = SDValue(N, 0);
1783         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
1784         return;
1785       }
1786     }
1787   }
1788 }
1789 
1790 // Check whether C compares a floating-point value with zero and if that
1791 // floating-point value is also negated.  In this case we can use the
1792 // negation to set CC, so avoiding separate LOAD AND TEST and
1793 // LOAD (NEGATIVE/COMPLEMENT) instructions.
adjustForFNeg(Comparison & C)1794 static void adjustForFNeg(Comparison &C) {
1795   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
1796   if (C1 && C1->isZero()) {
1797     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
1798       SDNode *N = *I;
1799       if (N->getOpcode() == ISD::FNEG) {
1800         C.Op0 = SDValue(N, 0);
1801         C.CCMask = reverseCCMask(C.CCMask);
1802         return;
1803       }
1804     }
1805   }
1806 }
1807 
1808 // Check whether C compares (shl X, 32) with 0 and whether X is
1809 // also sign-extended.  In that case it is better to test the result
1810 // of the sign extension using LTGFR.
1811 //
1812 // This case is important because InstCombine transforms a comparison
1813 // with (sext (trunc X)) into a comparison with (shl X, 32).
adjustForLTGFR(Comparison & C)1814 static void adjustForLTGFR(Comparison &C) {
1815   // Check for a comparison between (shl X, 32) and 0.
1816   if (C.Op0.getOpcode() == ISD::SHL &&
1817       C.Op0.getValueType() == MVT::i64 &&
1818       C.Op1.getOpcode() == ISD::Constant &&
1819       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1820     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
1821     if (C1 && C1->getZExtValue() == 32) {
1822       SDValue ShlOp0 = C.Op0.getOperand(0);
1823       // See whether X has any SIGN_EXTEND_INREG uses.
1824       for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
1825         SDNode *N = *I;
1826         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
1827             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
1828           C.Op0 = SDValue(N, 0);
1829           return;
1830         }
1831       }
1832     }
1833   }
1834 }
1835 
1836 // If C compares the truncation of an extending load, try to compare
1837 // the untruncated value instead.  This exposes more opportunities to
1838 // reuse CC.
adjustICmpTruncate(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)1839 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
1840                                Comparison &C) {
1841   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
1842       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
1843       C.Op1.getOpcode() == ISD::Constant &&
1844       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1845     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
1846     if (L->getMemoryVT().getStoreSizeInBits()
1847         <= C.Op0.getValueType().getSizeInBits()) {
1848       unsigned Type = L->getExtensionType();
1849       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
1850           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
1851         C.Op0 = C.Op0.getOperand(0);
1852         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
1853       }
1854     }
1855   }
1856 }
1857 
1858 // Return true if shift operation N has an in-range constant shift value.
1859 // Store it in ShiftVal if so.
isSimpleShift(SDValue N,unsigned & ShiftVal)1860 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
1861   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
1862   if (!Shift)
1863     return false;
1864 
1865   uint64_t Amount = Shift->getZExtValue();
1866   if (Amount >= N.getValueType().getSizeInBits())
1867     return false;
1868 
1869   ShiftVal = Amount;
1870   return true;
1871 }
1872 
1873 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
1874 // instruction and whether the CC value is descriptive enough to handle
1875 // a comparison of type Opcode between the AND result and CmpVal.
1876 // CCMask says which comparison result is being tested and BitSize is
1877 // the number of bits in the operands.  If TEST UNDER MASK can be used,
1878 // return the corresponding CC mask, otherwise return 0.
getTestUnderMaskCond(unsigned BitSize,unsigned CCMask,uint64_t Mask,uint64_t CmpVal,unsigned ICmpType)1879 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
1880                                      uint64_t Mask, uint64_t CmpVal,
1881                                      unsigned ICmpType) {
1882   assert(Mask != 0 && "ANDs with zero should have been removed by now");
1883 
1884   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
1885   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
1886       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
1887     return 0;
1888 
1889   // Work out the masks for the lowest and highest bits.
1890   unsigned HighShift = 63 - countLeadingZeros(Mask);
1891   uint64_t High = uint64_t(1) << HighShift;
1892   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
1893 
1894   // Signed ordered comparisons are effectively unsigned if the sign
1895   // bit is dropped.
1896   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
1897 
1898   // Check for equality comparisons with 0, or the equivalent.
1899   if (CmpVal == 0) {
1900     if (CCMask == SystemZ::CCMASK_CMP_EQ)
1901       return SystemZ::CCMASK_TM_ALL_0;
1902     if (CCMask == SystemZ::CCMASK_CMP_NE)
1903       return SystemZ::CCMASK_TM_SOME_1;
1904   }
1905   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
1906     if (CCMask == SystemZ::CCMASK_CMP_LT)
1907       return SystemZ::CCMASK_TM_ALL_0;
1908     if (CCMask == SystemZ::CCMASK_CMP_GE)
1909       return SystemZ::CCMASK_TM_SOME_1;
1910   }
1911   if (EffectivelyUnsigned && CmpVal < Low) {
1912     if (CCMask == SystemZ::CCMASK_CMP_LE)
1913       return SystemZ::CCMASK_TM_ALL_0;
1914     if (CCMask == SystemZ::CCMASK_CMP_GT)
1915       return SystemZ::CCMASK_TM_SOME_1;
1916   }
1917 
1918   // Check for equality comparisons with the mask, or the equivalent.
1919   if (CmpVal == Mask) {
1920     if (CCMask == SystemZ::CCMASK_CMP_EQ)
1921       return SystemZ::CCMASK_TM_ALL_1;
1922     if (CCMask == SystemZ::CCMASK_CMP_NE)
1923       return SystemZ::CCMASK_TM_SOME_0;
1924   }
1925   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
1926     if (CCMask == SystemZ::CCMASK_CMP_GT)
1927       return SystemZ::CCMASK_TM_ALL_1;
1928     if (CCMask == SystemZ::CCMASK_CMP_LE)
1929       return SystemZ::CCMASK_TM_SOME_0;
1930   }
1931   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
1932     if (CCMask == SystemZ::CCMASK_CMP_GE)
1933       return SystemZ::CCMASK_TM_ALL_1;
1934     if (CCMask == SystemZ::CCMASK_CMP_LT)
1935       return SystemZ::CCMASK_TM_SOME_0;
1936   }
1937 
1938   // Check for ordered comparisons with the top bit.
1939   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
1940     if (CCMask == SystemZ::CCMASK_CMP_LE)
1941       return SystemZ::CCMASK_TM_MSB_0;
1942     if (CCMask == SystemZ::CCMASK_CMP_GT)
1943       return SystemZ::CCMASK_TM_MSB_1;
1944   }
1945   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
1946     if (CCMask == SystemZ::CCMASK_CMP_LT)
1947       return SystemZ::CCMASK_TM_MSB_0;
1948     if (CCMask == SystemZ::CCMASK_CMP_GE)
1949       return SystemZ::CCMASK_TM_MSB_1;
1950   }
1951 
1952   // If there are just two bits, we can do equality checks for Low and High
1953   // as well.
1954   if (Mask == Low + High) {
1955     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
1956       return SystemZ::CCMASK_TM_MIXED_MSB_0;
1957     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
1958       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
1959     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
1960       return SystemZ::CCMASK_TM_MIXED_MSB_1;
1961     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
1962       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
1963   }
1964 
1965   // Looks like we've exhausted our options.
1966   return 0;
1967 }
1968 
1969 // See whether C can be implemented as a TEST UNDER MASK instruction.
1970 // Update the arguments with the TM version if so.
adjustForTestUnderMask(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)1971 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
1972                                    Comparison &C) {
1973   // Check that we have a comparison with a constant.
1974   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
1975   if (!ConstOp1)
1976     return;
1977   uint64_t CmpVal = ConstOp1->getZExtValue();
1978 
1979   // Check whether the nonconstant input is an AND with a constant mask.
1980   Comparison NewC(C);
1981   uint64_t MaskVal;
1982   ConstantSDNode *Mask = nullptr;
1983   if (C.Op0.getOpcode() == ISD::AND) {
1984     NewC.Op0 = C.Op0.getOperand(0);
1985     NewC.Op1 = C.Op0.getOperand(1);
1986     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
1987     if (!Mask)
1988       return;
1989     MaskVal = Mask->getZExtValue();
1990   } else {
1991     // There is no instruction to compare with a 64-bit immediate
1992     // so use TMHH instead if possible.  We need an unsigned ordered
1993     // comparison with an i64 immediate.
1994     if (NewC.Op0.getValueType() != MVT::i64 ||
1995         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
1996         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
1997         NewC.ICmpType == SystemZICMP::SignedOnly)
1998       return;
1999     // Convert LE and GT comparisons into LT and GE.
2000     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2001         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2002       if (CmpVal == uint64_t(-1))
2003         return;
2004       CmpVal += 1;
2005       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2006     }
2007     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2008     // be masked off without changing the result.
2009     MaskVal = -(CmpVal & -CmpVal);
2010     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2011   }
2012   if (!MaskVal)
2013     return;
2014 
2015   // Check whether the combination of mask, comparison value and comparison
2016   // type are suitable.
2017   unsigned BitSize = NewC.Op0.getValueType().getSizeInBits();
2018   unsigned NewCCMask, ShiftVal;
2019   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2020       NewC.Op0.getOpcode() == ISD::SHL &&
2021       isSimpleShift(NewC.Op0, ShiftVal) &&
2022       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2023                                         MaskVal >> ShiftVal,
2024                                         CmpVal >> ShiftVal,
2025                                         SystemZICMP::Any))) {
2026     NewC.Op0 = NewC.Op0.getOperand(0);
2027     MaskVal >>= ShiftVal;
2028   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2029              NewC.Op0.getOpcode() == ISD::SRL &&
2030              isSimpleShift(NewC.Op0, ShiftVal) &&
2031              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2032                                                MaskVal << ShiftVal,
2033                                                CmpVal << ShiftVal,
2034                                                SystemZICMP::UnsignedOnly))) {
2035     NewC.Op0 = NewC.Op0.getOperand(0);
2036     MaskVal <<= ShiftVal;
2037   } else {
2038     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2039                                      NewC.ICmpType);
2040     if (!NewCCMask)
2041       return;
2042   }
2043 
2044   // Go ahead and make the change.
2045   C.Opcode = SystemZISD::TM;
2046   C.Op0 = NewC.Op0;
2047   if (Mask && Mask->getZExtValue() == MaskVal)
2048     C.Op1 = SDValue(Mask, 0);
2049   else
2050     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2051   C.CCValid = SystemZ::CCMASK_TM;
2052   C.CCMask = NewCCMask;
2053 }
2054 
2055 // Return a Comparison that tests the condition-code result of intrinsic
2056 // node Call against constant integer CC using comparison code Cond.
2057 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2058 // and CCValid is the set of possible condition-code results.
getIntrinsicCmp(SelectionDAG & DAG,unsigned Opcode,SDValue Call,unsigned CCValid,uint64_t CC,ISD::CondCode Cond)2059 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2060                                   SDValue Call, unsigned CCValid, uint64_t CC,
2061                                   ISD::CondCode Cond) {
2062   Comparison C(Call, SDValue());
2063   C.Opcode = Opcode;
2064   C.CCValid = CCValid;
2065   if (Cond == ISD::SETEQ)
2066     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2067     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2068   else if (Cond == ISD::SETNE)
2069     // ...and the inverse of that.
2070     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2071   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2072     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2073     // always true for CC>3.
2074     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2075   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2076     // ...and the inverse of that.
2077     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2078   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2079     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2080     // always true for CC>3.
2081     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2082   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2083     // ...and the inverse of that.
2084     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2085   else
2086     llvm_unreachable("Unexpected integer comparison type");
2087   C.CCMask &= CCValid;
2088   return C;
2089 }
2090 
2091 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
getCmp(SelectionDAG & DAG,SDValue CmpOp0,SDValue CmpOp1,ISD::CondCode Cond,const SDLoc & DL)2092 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2093                          ISD::CondCode Cond, const SDLoc &DL) {
2094   if (CmpOp1.getOpcode() == ISD::Constant) {
2095     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2096     unsigned Opcode, CCValid;
2097     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2098         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2099         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2100       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2101     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2102         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2103         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2104       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2105   }
2106   Comparison C(CmpOp0, CmpOp1);
2107   C.CCMask = CCMaskForCondCode(Cond);
2108   if (C.Op0.getValueType().isFloatingPoint()) {
2109     C.CCValid = SystemZ::CCMASK_FCMP;
2110     C.Opcode = SystemZISD::FCMP;
2111     adjustForFNeg(C);
2112   } else {
2113     C.CCValid = SystemZ::CCMASK_ICMP;
2114     C.Opcode = SystemZISD::ICMP;
2115     // Choose the type of comparison.  Equality and inequality tests can
2116     // use either signed or unsigned comparisons.  The choice also doesn't
2117     // matter if both sign bits are known to be clear.  In those cases we
2118     // want to give the main isel code the freedom to choose whichever
2119     // form fits best.
2120     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2121         C.CCMask == SystemZ::CCMASK_CMP_NE ||
2122         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2123       C.ICmpType = SystemZICMP::Any;
2124     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2125       C.ICmpType = SystemZICMP::UnsignedOnly;
2126     else
2127       C.ICmpType = SystemZICMP::SignedOnly;
2128     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2129     adjustZeroCmp(DAG, DL, C);
2130     adjustSubwordCmp(DAG, DL, C);
2131     adjustForSubtraction(DAG, DL, C);
2132     adjustForLTGFR(C);
2133     adjustICmpTruncate(DAG, DL, C);
2134   }
2135 
2136   if (shouldSwapCmpOperands(C)) {
2137     std::swap(C.Op0, C.Op1);
2138     C.CCMask = reverseCCMask(C.CCMask);
2139   }
2140 
2141   adjustForTestUnderMask(DAG, DL, C);
2142   return C;
2143 }
2144 
2145 // Emit the comparison instruction described by C.
emitCmp(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)2146 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2147   if (!C.Op1.getNode()) {
2148     SDValue Op;
2149     switch (C.Op0.getOpcode()) {
2150     case ISD::INTRINSIC_W_CHAIN:
2151       Op = emitIntrinsicWithChainAndGlue(DAG, C.Op0, C.Opcode);
2152       break;
2153     case ISD::INTRINSIC_WO_CHAIN:
2154       Op = emitIntrinsicWithGlue(DAG, C.Op0, C.Opcode);
2155       break;
2156     default:
2157       llvm_unreachable("Invalid comparison operands");
2158     }
2159     return SDValue(Op.getNode(), Op->getNumValues() - 1);
2160   }
2161   if (C.Opcode == SystemZISD::ICMP)
2162     return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1,
2163                        DAG.getConstant(C.ICmpType, DL, MVT::i32));
2164   if (C.Opcode == SystemZISD::TM) {
2165     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2166                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2167     return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1,
2168                        DAG.getConstant(RegisterOnly, DL, MVT::i32));
2169   }
2170   return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1);
2171 }
2172 
2173 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2174 // 64 bits.  Extend is the extension type to use.  Store the high part
2175 // in Hi and the low part in Lo.
lowerMUL_LOHI32(SelectionDAG & DAG,const SDLoc & DL,unsigned Extend,SDValue Op0,SDValue Op1,SDValue & Hi,SDValue & Lo)2176 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2177                             SDValue Op0, SDValue Op1, SDValue &Hi,
2178                             SDValue &Lo) {
2179   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2180   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2181   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2182   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2183                    DAG.getConstant(32, DL, MVT::i64));
2184   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2185   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2186 }
2187 
2188 // Lower a binary operation that produces two VT results, one in each
2189 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2190 // Extend extends Op0 to a GR128, and Opcode performs the GR128 operation
2191 // on the extended Op0 and (unextended) Op1.  Store the even register result
2192 // in Even and the odd register result in Odd.
lowerGR128Binary(SelectionDAG & DAG,const SDLoc & DL,EVT VT,unsigned Extend,unsigned Opcode,SDValue Op0,SDValue Op1,SDValue & Even,SDValue & Odd)2193 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2194                              unsigned Extend, unsigned Opcode, SDValue Op0,
2195                              SDValue Op1, SDValue &Even, SDValue &Odd) {
2196   SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0);
2197   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped,
2198                                SDValue(In128, 0), Op1);
2199   bool Is32Bit = is32Bit(VT);
2200   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2201   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2202 }
2203 
2204 // Return an i32 value that is 1 if the CC value produced by Glue is
2205 // in the mask CCMask and 0 otherwise.  CC is known to have a value
2206 // in CCValid, so other values can be ignored.
emitSETCC(SelectionDAG & DAG,const SDLoc & DL,SDValue Glue,unsigned CCValid,unsigned CCMask)2207 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue Glue,
2208                          unsigned CCValid, unsigned CCMask) {
2209   IPMConversion Conversion = getIPMConversion(CCValid, CCMask);
2210   SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
2211 
2212   if (Conversion.XORValue)
2213     Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result,
2214                          DAG.getConstant(Conversion.XORValue, DL, MVT::i32));
2215 
2216   if (Conversion.AddValue)
2217     Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result,
2218                          DAG.getConstant(Conversion.AddValue, DL, MVT::i32));
2219 
2220   // The SHR/AND sequence should get optimized to an RISBG.
2221   Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result,
2222                        DAG.getConstant(Conversion.Bit, DL, MVT::i32));
2223   if (Conversion.Bit != 31)
2224     Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result,
2225                          DAG.getConstant(1, DL, MVT::i32));
2226   return Result;
2227 }
2228 
2229 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2230 // be done directly.  IsFP is true if CC is for a floating-point rather than
2231 // integer comparison.
getVectorComparison(ISD::CondCode CC,bool IsFP)2232 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) {
2233   switch (CC) {
2234   case ISD::SETOEQ:
2235   case ISD::SETEQ:
2236     return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE;
2237 
2238   case ISD::SETOGE:
2239   case ISD::SETGE:
2240     return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0);
2241 
2242   case ISD::SETOGT:
2243   case ISD::SETGT:
2244     return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH;
2245 
2246   case ISD::SETUGT:
2247     return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL;
2248 
2249   default:
2250     return 0;
2251   }
2252 }
2253 
2254 // Return the SystemZISD vector comparison operation for CC or its inverse,
2255 // or 0 if neither can be done directly.  Indicate in Invert whether the
2256 // result is for the inverse of CC.  IsFP is true if CC is for a
2257 // floating-point rather than integer comparison.
getVectorComparisonOrInvert(ISD::CondCode CC,bool IsFP,bool & Invert)2258 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP,
2259                                             bool &Invert) {
2260   if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
2261     Invert = false;
2262     return Opcode;
2263   }
2264 
2265   CC = ISD::getSetCCInverse(CC, !IsFP);
2266   if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
2267     Invert = true;
2268     return Opcode;
2269   }
2270 
2271   return 0;
2272 }
2273 
2274 // Return a v2f64 that contains the extended form of elements Start and Start+1
2275 // of v4f32 value Op.
expandV4F32ToV2F64(SelectionDAG & DAG,int Start,const SDLoc & DL,SDValue Op)2276 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2277                                   SDValue Op) {
2278   int Mask[] = { Start, -1, Start + 1, -1 };
2279   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2280   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2281 }
2282 
2283 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2284 // producing a result of type VT.
getVectorCmp(SelectionDAG & DAG,unsigned Opcode,const SDLoc & DL,EVT VT,SDValue CmpOp0,SDValue CmpOp1)2285 static SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &DL,
2286                             EVT VT, SDValue CmpOp0, SDValue CmpOp1) {
2287   // There is no hardware support for v4f32, so extend the vector into
2288   // two v2f64s and compare those.
2289   if (CmpOp0.getValueType() == MVT::v4f32) {
2290     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0);
2291     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0);
2292     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1);
2293     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1);
2294     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2295     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2296     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2297   }
2298   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2299 }
2300 
2301 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2302 // an integer mask of type VT.
lowerVectorSETCC(SelectionDAG & DAG,const SDLoc & DL,EVT VT,ISD::CondCode CC,SDValue CmpOp0,SDValue CmpOp1)2303 static SDValue lowerVectorSETCC(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2304                                 ISD::CondCode CC, SDValue CmpOp0,
2305                                 SDValue CmpOp1) {
2306   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2307   bool Invert = false;
2308   SDValue Cmp;
2309   switch (CC) {
2310     // Handle tests for order using (or (ogt y x) (oge x y)).
2311   case ISD::SETUO:
2312     Invert = true;
2313   case ISD::SETO: {
2314     assert(IsFP && "Unexpected integer comparison");
2315     SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2316     SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1);
2317     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2318     break;
2319   }
2320 
2321     // Handle <> tests using (or (ogt y x) (ogt x y)).
2322   case ISD::SETUEQ:
2323     Invert = true;
2324   case ISD::SETONE: {
2325     assert(IsFP && "Unexpected integer comparison");
2326     SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2327     SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1);
2328     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2329     break;
2330   }
2331 
2332     // Otherwise a single comparison is enough.  It doesn't really
2333     // matter whether we try the inversion or the swap first, since
2334     // there are no cases where both work.
2335   default:
2336     if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
2337       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1);
2338     else {
2339       CC = ISD::getSetCCSwappedOperands(CC);
2340       if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
2341         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0);
2342       else
2343         llvm_unreachable("Unhandled comparison");
2344     }
2345     break;
2346   }
2347   if (Invert) {
2348     SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
2349                                DAG.getConstant(65535, DL, MVT::i32));
2350     Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask);
2351     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
2352   }
2353   return Cmp;
2354 }
2355 
lowerSETCC(SDValue Op,SelectionDAG & DAG) const2356 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
2357                                           SelectionDAG &DAG) const {
2358   SDValue CmpOp0   = Op.getOperand(0);
2359   SDValue CmpOp1   = Op.getOperand(1);
2360   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2361   SDLoc DL(Op);
2362   EVT VT = Op.getValueType();
2363   if (VT.isVector())
2364     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
2365 
2366   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2367   SDValue Glue = emitCmp(DAG, DL, C);
2368   return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
2369 }
2370 
lowerBR_CC(SDValue Op,SelectionDAG & DAG) const2371 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2372   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2373   SDValue CmpOp0   = Op.getOperand(2);
2374   SDValue CmpOp1   = Op.getOperand(3);
2375   SDValue Dest     = Op.getOperand(4);
2376   SDLoc DL(Op);
2377 
2378   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2379   SDValue Glue = emitCmp(DAG, DL, C);
2380   return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
2381                      Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32),
2382                      DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, Glue);
2383 }
2384 
2385 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
2386 // allowing Pos and Neg to be wider than CmpOp.
isAbsolute(SDValue CmpOp,SDValue Pos,SDValue Neg)2387 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
2388   return (Neg.getOpcode() == ISD::SUB &&
2389           Neg.getOperand(0).getOpcode() == ISD::Constant &&
2390           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
2391           Neg.getOperand(1) == Pos &&
2392           (Pos == CmpOp ||
2393            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
2394             Pos.getOperand(0) == CmpOp)));
2395 }
2396 
2397 // Return the absolute or negative absolute of Op; IsNegative decides which.
getAbsolute(SelectionDAG & DAG,const SDLoc & DL,SDValue Op,bool IsNegative)2398 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
2399                            bool IsNegative) {
2400   Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
2401   if (IsNegative)
2402     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
2403                      DAG.getConstant(0, DL, Op.getValueType()), Op);
2404   return Op;
2405 }
2406 
lowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const2407 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
2408                                               SelectionDAG &DAG) const {
2409   SDValue CmpOp0   = Op.getOperand(0);
2410   SDValue CmpOp1   = Op.getOperand(1);
2411   SDValue TrueOp   = Op.getOperand(2);
2412   SDValue FalseOp  = Op.getOperand(3);
2413   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2414   SDLoc DL(Op);
2415 
2416   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2417 
2418   // Check for absolute and negative-absolute selections, including those
2419   // where the comparison value is sign-extended (for LPGFR and LNGFR).
2420   // This check supplements the one in DAGCombiner.
2421   if (C.Opcode == SystemZISD::ICMP &&
2422       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
2423       C.CCMask != SystemZ::CCMASK_CMP_NE &&
2424       C.Op1.getOpcode() == ISD::Constant &&
2425       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2426     if (isAbsolute(C.Op0, TrueOp, FalseOp))
2427       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
2428     if (isAbsolute(C.Op0, FalseOp, TrueOp))
2429       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
2430   }
2431 
2432   SDValue Glue = emitCmp(DAG, DL, C);
2433 
2434   // Special case for handling -1/0 results.  The shifts we use here
2435   // should get optimized with the IPM conversion sequence.
2436   auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp);
2437   auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp);
2438   if (TrueC && FalseC) {
2439     int64_t TrueVal = TrueC->getSExtValue();
2440     int64_t FalseVal = FalseC->getSExtValue();
2441     if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) {
2442       // Invert the condition if we want -1 on false.
2443       if (TrueVal == 0)
2444         C.CCMask ^= C.CCValid;
2445       SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
2446       EVT VT = Op.getValueType();
2447       // Extend the result to VT.  Upper bits are ignored.
2448       if (!is32Bit(VT))
2449         Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result);
2450       // Sign-extend from the low bit.
2451       SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, DL, MVT::i32);
2452       SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt);
2453       return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt);
2454     }
2455   }
2456 
2457   SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32),
2458                    DAG.getConstant(C.CCMask, DL, MVT::i32), Glue};
2459 
2460   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
2461   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops);
2462 }
2463 
lowerGlobalAddress(GlobalAddressSDNode * Node,SelectionDAG & DAG) const2464 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
2465                                                   SelectionDAG &DAG) const {
2466   SDLoc DL(Node);
2467   const GlobalValue *GV = Node->getGlobal();
2468   int64_t Offset = Node->getOffset();
2469   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2470   CodeModel::Model CM = DAG.getTarget().getCodeModel();
2471 
2472   SDValue Result;
2473   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
2474     // Assign anchors at 1<<12 byte boundaries.
2475     uint64_t Anchor = Offset & ~uint64_t(0xfff);
2476     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
2477     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2478 
2479     // The offset can be folded into the address if it is aligned to a halfword.
2480     Offset -= Anchor;
2481     if (Offset != 0 && (Offset & 1) == 0) {
2482       SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
2483       Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
2484       Offset = 0;
2485     }
2486   } else {
2487     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
2488     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2489     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
2490                          MachinePointerInfo::getGOT(DAG.getMachineFunction()),
2491                          false, false, false, 0);
2492   }
2493 
2494   // If there was a non-zero offset that we didn't fold, create an explicit
2495   // addition for it.
2496   if (Offset != 0)
2497     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
2498                          DAG.getConstant(Offset, DL, PtrVT));
2499 
2500   return Result;
2501 }
2502 
lowerTLSGetOffset(GlobalAddressSDNode * Node,SelectionDAG & DAG,unsigned Opcode,SDValue GOTOffset) const2503 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
2504                                                  SelectionDAG &DAG,
2505                                                  unsigned Opcode,
2506                                                  SDValue GOTOffset) const {
2507   SDLoc DL(Node);
2508   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2509   SDValue Chain = DAG.getEntryNode();
2510   SDValue Glue;
2511 
2512   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
2513   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2514   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
2515   Glue = Chain.getValue(1);
2516   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
2517   Glue = Chain.getValue(1);
2518 
2519   // The first call operand is the chain and the second is the TLS symbol.
2520   SmallVector<SDValue, 8> Ops;
2521   Ops.push_back(Chain);
2522   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
2523                                            Node->getValueType(0),
2524                                            0, 0));
2525 
2526   // Add argument registers to the end of the list so that they are
2527   // known live into the call.
2528   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
2529   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
2530 
2531   // Add a register mask operand representing the call-preserved registers.
2532   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2533   const uint32_t *Mask =
2534       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
2535   assert(Mask && "Missing call preserved mask for calling convention");
2536   Ops.push_back(DAG.getRegisterMask(Mask));
2537 
2538   // Glue the call to the argument copies.
2539   Ops.push_back(Glue);
2540 
2541   // Emit the call.
2542   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2543   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
2544   Glue = Chain.getValue(1);
2545 
2546   // Copy the return value from %r2.
2547   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
2548 }
2549 
lowerThreadPointer(const SDLoc & DL,SelectionDAG & DAG) const2550 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
2551                                                   SelectionDAG &DAG) const {
2552   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2553 
2554   // The high part of the thread pointer is in access register 0.
2555   SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
2556                              DAG.getConstant(0, DL, MVT::i32));
2557   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
2558 
2559   // The low part of the thread pointer is in access register 1.
2560   SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
2561                              DAG.getConstant(1, DL, MVT::i32));
2562   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
2563 
2564   // Merge them into a single 64-bit address.
2565   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
2566                                     DAG.getConstant(32, DL, PtrVT));
2567   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
2568 }
2569 
lowerGlobalTLSAddress(GlobalAddressSDNode * Node,SelectionDAG & DAG) const2570 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
2571                                                      SelectionDAG &DAG) const {
2572   if (DAG.getTarget().Options.EmulatedTLS)
2573     return LowerToTLSEmulatedModel(Node, DAG);
2574   SDLoc DL(Node);
2575   const GlobalValue *GV = Node->getGlobal();
2576   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2577   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
2578 
2579   SDValue TP = lowerThreadPointer(DL, DAG);
2580 
2581   // Get the offset of GA from the thread pointer, based on the TLS model.
2582   SDValue Offset;
2583   switch (model) {
2584     case TLSModel::GeneralDynamic: {
2585       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
2586       SystemZConstantPoolValue *CPV =
2587         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
2588 
2589       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2590       Offset = DAG.getLoad(
2591           PtrVT, DL, DAG.getEntryNode(), Offset,
2592           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
2593           false, false, 0);
2594 
2595       // Call __tls_get_offset to retrieve the offset.
2596       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
2597       break;
2598     }
2599 
2600     case TLSModel::LocalDynamic: {
2601       // Load the GOT offset of the module ID.
2602       SystemZConstantPoolValue *CPV =
2603         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
2604 
2605       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2606       Offset = DAG.getLoad(
2607           PtrVT, DL, DAG.getEntryNode(), Offset,
2608           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
2609           false, false, 0);
2610 
2611       // Call __tls_get_offset to retrieve the module base offset.
2612       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
2613 
2614       // Note: The SystemZLDCleanupPass will remove redundant computations
2615       // of the module base offset.  Count total number of local-dynamic
2616       // accesses to trigger execution of that pass.
2617       SystemZMachineFunctionInfo* MFI =
2618         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
2619       MFI->incNumLocalDynamicTLSAccesses();
2620 
2621       // Add the per-symbol offset.
2622       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
2623 
2624       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8);
2625       DTPOffset = DAG.getLoad(
2626           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
2627           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
2628           false, false, 0);
2629 
2630       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
2631       break;
2632     }
2633 
2634     case TLSModel::InitialExec: {
2635       // Load the offset from the GOT.
2636       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2637                                           SystemZII::MO_INDNTPOFF);
2638       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
2639       Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
2640                            MachinePointerInfo::getGOT(DAG.getMachineFunction()),
2641                            false, false, false, 0);
2642       break;
2643     }
2644 
2645     case TLSModel::LocalExec: {
2646       // Force the offset into the constant pool and load it from there.
2647       SystemZConstantPoolValue *CPV =
2648         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
2649 
2650       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2651       Offset = DAG.getLoad(
2652           PtrVT, DL, DAG.getEntryNode(), Offset,
2653           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
2654           false, false, 0);
2655       break;
2656     }
2657   }
2658 
2659   // Add the base and offset together.
2660   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
2661 }
2662 
lowerBlockAddress(BlockAddressSDNode * Node,SelectionDAG & DAG) const2663 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
2664                                                  SelectionDAG &DAG) const {
2665   SDLoc DL(Node);
2666   const BlockAddress *BA = Node->getBlockAddress();
2667   int64_t Offset = Node->getOffset();
2668   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2669 
2670   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
2671   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2672   return Result;
2673 }
2674 
lowerJumpTable(JumpTableSDNode * JT,SelectionDAG & DAG) const2675 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
2676                                               SelectionDAG &DAG) const {
2677   SDLoc DL(JT);
2678   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2679   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2680 
2681   // Use LARL to load the address of the table.
2682   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2683 }
2684 
lowerConstantPool(ConstantPoolSDNode * CP,SelectionDAG & DAG) const2685 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
2686                                                  SelectionDAG &DAG) const {
2687   SDLoc DL(CP);
2688   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2689 
2690   SDValue Result;
2691   if (CP->isMachineConstantPoolEntry())
2692     Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2693                                        CP->getAlignment());
2694   else
2695     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2696                                        CP->getAlignment(), CP->getOffset());
2697 
2698   // Use LARL to load the address of the constant pool entry.
2699   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2700 }
2701 
lowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const2702 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
2703                                               SelectionDAG &DAG) const {
2704   MachineFunction &MF = DAG.getMachineFunction();
2705   MachineFrameInfo *MFI = MF.getFrameInfo();
2706   MFI->setFrameAddressIsTaken(true);
2707 
2708   SDLoc DL(Op);
2709   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2710   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2711 
2712   // If the back chain frame index has not been allocated yet, do so.
2713   SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>();
2714   int BackChainIdx = FI->getFramePointerSaveIndex();
2715   if (!BackChainIdx) {
2716     // By definition, the frame address is the address of the back chain.
2717     BackChainIdx = MFI->CreateFixedObject(8, -SystemZMC::CallFrameSize, false);
2718     FI->setFramePointerSaveIndex(BackChainIdx);
2719   }
2720   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
2721 
2722   // FIXME The frontend should detect this case.
2723   if (Depth > 0) {
2724     report_fatal_error("Unsupported stack frame traversal count");
2725   }
2726 
2727   return BackChain;
2728 }
2729 
lowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const2730 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
2731                                                SelectionDAG &DAG) const {
2732   MachineFunction &MF = DAG.getMachineFunction();
2733   MachineFrameInfo *MFI = MF.getFrameInfo();
2734   MFI->setReturnAddressIsTaken(true);
2735 
2736   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
2737     return SDValue();
2738 
2739   SDLoc DL(Op);
2740   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2741   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2742 
2743   // FIXME The frontend should detect this case.
2744   if (Depth > 0) {
2745     report_fatal_error("Unsupported stack frame traversal count");
2746   }
2747 
2748   // Return R14D, which has the return address. Mark it an implicit live-in.
2749   unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
2750   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
2751 }
2752 
lowerBITCAST(SDValue Op,SelectionDAG & DAG) const2753 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
2754                                             SelectionDAG &DAG) const {
2755   SDLoc DL(Op);
2756   SDValue In = Op.getOperand(0);
2757   EVT InVT = In.getValueType();
2758   EVT ResVT = Op.getValueType();
2759 
2760   // Convert loads directly.  This is normally done by DAGCombiner,
2761   // but we need this case for bitcasts that are created during lowering
2762   // and which are then lowered themselves.
2763   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
2764     return DAG.getLoad(ResVT, DL, LoadN->getChain(), LoadN->getBasePtr(),
2765                        LoadN->getMemOperand());
2766 
2767   if (InVT == MVT::i32 && ResVT == MVT::f32) {
2768     SDValue In64;
2769     if (Subtarget.hasHighWord()) {
2770       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
2771                                        MVT::i64);
2772       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
2773                                        MVT::i64, SDValue(U64, 0), In);
2774     } else {
2775       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
2776       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
2777                          DAG.getConstant(32, DL, MVT::i64));
2778     }
2779     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
2780     return DAG.getTargetExtractSubreg(SystemZ::subreg_r32,
2781                                       DL, MVT::f32, Out64);
2782   }
2783   if (InVT == MVT::f32 && ResVT == MVT::i32) {
2784     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
2785     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL,
2786                                              MVT::f64, SDValue(U64, 0), In);
2787     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
2788     if (Subtarget.hasHighWord())
2789       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
2790                                         MVT::i32, Out64);
2791     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
2792                                 DAG.getConstant(32, DL, MVT::i64));
2793     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
2794   }
2795   llvm_unreachable("Unexpected bitcast combination");
2796 }
2797 
lowerVASTART(SDValue Op,SelectionDAG & DAG) const2798 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
2799                                             SelectionDAG &DAG) const {
2800   MachineFunction &MF = DAG.getMachineFunction();
2801   SystemZMachineFunctionInfo *FuncInfo =
2802     MF.getInfo<SystemZMachineFunctionInfo>();
2803   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2804 
2805   SDValue Chain   = Op.getOperand(0);
2806   SDValue Addr    = Op.getOperand(1);
2807   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2808   SDLoc DL(Op);
2809 
2810   // The initial values of each field.
2811   const unsigned NumFields = 4;
2812   SDValue Fields[NumFields] = {
2813     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
2814     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
2815     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
2816     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
2817   };
2818 
2819   // Store each field into its respective slot.
2820   SDValue MemOps[NumFields];
2821   unsigned Offset = 0;
2822   for (unsigned I = 0; I < NumFields; ++I) {
2823     SDValue FieldAddr = Addr;
2824     if (Offset != 0)
2825       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
2826                               DAG.getIntPtrConstant(Offset, DL));
2827     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
2828                              MachinePointerInfo(SV, Offset),
2829                              false, false, 0);
2830     Offset += 8;
2831   }
2832   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
2833 }
2834 
lowerVACOPY(SDValue Op,SelectionDAG & DAG) const2835 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
2836                                            SelectionDAG &DAG) const {
2837   SDValue Chain      = Op.getOperand(0);
2838   SDValue DstPtr     = Op.getOperand(1);
2839   SDValue SrcPtr     = Op.getOperand(2);
2840   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
2841   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
2842   SDLoc DL(Op);
2843 
2844   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
2845                        /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
2846                        /*isTailCall*/false,
2847                        MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
2848 }
2849 
2850 SDValue SystemZTargetLowering::
lowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const2851 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
2852   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
2853   MachineFunction &MF = DAG.getMachineFunction();
2854   bool RealignOpt = !MF.getFunction()-> hasFnAttribute("no-realign-stack");
2855   bool StoreBackchain = MF.getFunction()->hasFnAttribute("backchain");
2856 
2857   SDValue Chain = Op.getOperand(0);
2858   SDValue Size  = Op.getOperand(1);
2859   SDValue Align = Op.getOperand(2);
2860   SDLoc DL(Op);
2861 
2862   // If user has set the no alignment function attribute, ignore
2863   // alloca alignments.
2864   uint64_t AlignVal = (RealignOpt ?
2865                        dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0);
2866 
2867   uint64_t StackAlign = TFI->getStackAlignment();
2868   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
2869   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
2870 
2871   unsigned SPReg = getStackPointerRegisterToSaveRestore();
2872   SDValue NeededSpace = Size;
2873 
2874   // Get a reference to the stack pointer.
2875   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
2876 
2877   // If we need a backchain, save it now.
2878   SDValue Backchain;
2879   if (StoreBackchain)
2880     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo(),
2881                             false, false, false, 0);
2882 
2883   // Add extra space for alignment if needed.
2884   if (ExtraAlignSpace)
2885     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
2886                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
2887 
2888   // Get the new stack pointer value.
2889   SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
2890 
2891   // Copy the new stack pointer back.
2892   Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
2893 
2894   // The allocated data lives above the 160 bytes allocated for the standard
2895   // frame, plus any outgoing stack arguments.  We don't know how much that
2896   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
2897   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
2898   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
2899 
2900   // Dynamically realign if needed.
2901   if (RequiredAlign > StackAlign) {
2902     Result =
2903       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
2904                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
2905     Result =
2906       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
2907                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
2908   }
2909 
2910   if (StoreBackchain)
2911     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo(),
2912                          false, false, 0);
2913 
2914   SDValue Ops[2] = { Result, Chain };
2915   return DAG.getMergeValues(Ops, DL);
2916 }
2917 
lowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,SelectionDAG & DAG) const2918 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
2919     SDValue Op, SelectionDAG &DAG) const {
2920   SDLoc DL(Op);
2921 
2922   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
2923 }
2924 
lowerSMUL_LOHI(SDValue Op,SelectionDAG & DAG) const2925 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
2926                                               SelectionDAG &DAG) const {
2927   EVT VT = Op.getValueType();
2928   SDLoc DL(Op);
2929   SDValue Ops[2];
2930   if (is32Bit(VT))
2931     // Just do a normal 64-bit multiplication and extract the results.
2932     // We define this so that it can be used for constant division.
2933     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
2934                     Op.getOperand(1), Ops[1], Ops[0]);
2935   else {
2936     // Do a full 128-bit multiplication based on UMUL_LOHI64:
2937     //
2938     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
2939     //
2940     // but using the fact that the upper halves are either all zeros
2941     // or all ones:
2942     //
2943     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
2944     //
2945     // and grouping the right terms together since they are quicker than the
2946     // multiplication:
2947     //
2948     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
2949     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
2950     SDValue LL = Op.getOperand(0);
2951     SDValue RL = Op.getOperand(1);
2952     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
2953     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
2954     // UMUL_LOHI64 returns the low result in the odd register and the high
2955     // result in the even register.  SMUL_LOHI is defined to return the
2956     // low half first, so the results are in reverse order.
2957     lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
2958                      LL, RL, Ops[1], Ops[0]);
2959     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
2960     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
2961     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
2962     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
2963   }
2964   return DAG.getMergeValues(Ops, DL);
2965 }
2966 
lowerUMUL_LOHI(SDValue Op,SelectionDAG & DAG) const2967 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
2968                                               SelectionDAG &DAG) const {
2969   EVT VT = Op.getValueType();
2970   SDLoc DL(Op);
2971   SDValue Ops[2];
2972   if (is32Bit(VT))
2973     // Just do a normal 64-bit multiplication and extract the results.
2974     // We define this so that it can be used for constant division.
2975     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
2976                     Op.getOperand(1), Ops[1], Ops[0]);
2977   else
2978     // UMUL_LOHI64 returns the low result in the odd register and the high
2979     // result in the even register.  UMUL_LOHI is defined to return the
2980     // low half first, so the results are in reverse order.
2981     lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
2982                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
2983   return DAG.getMergeValues(Ops, DL);
2984 }
2985 
lowerSDIVREM(SDValue Op,SelectionDAG & DAG) const2986 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
2987                                             SelectionDAG &DAG) const {
2988   SDValue Op0 = Op.getOperand(0);
2989   SDValue Op1 = Op.getOperand(1);
2990   EVT VT = Op.getValueType();
2991   SDLoc DL(Op);
2992   unsigned Opcode;
2993 
2994   // We use DSGF for 32-bit division.
2995   if (is32Bit(VT)) {
2996     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
2997     Opcode = SystemZISD::SDIVREM32;
2998   } else if (DAG.ComputeNumSignBits(Op1) > 32) {
2999     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3000     Opcode = SystemZISD::SDIVREM32;
3001   } else
3002     Opcode = SystemZISD::SDIVREM64;
3003 
3004   // DSG(F) takes a 64-bit dividend, so the even register in the GR128
3005   // input is "don't care".  The instruction returns the remainder in
3006   // the even register and the quotient in the odd register.
3007   SDValue Ops[2];
3008   lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode,
3009                    Op0, Op1, Ops[1], Ops[0]);
3010   return DAG.getMergeValues(Ops, DL);
3011 }
3012 
lowerUDIVREM(SDValue Op,SelectionDAG & DAG) const3013 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3014                                             SelectionDAG &DAG) const {
3015   EVT VT = Op.getValueType();
3016   SDLoc DL(Op);
3017 
3018   // DL(G) uses a double-width dividend, so we need to clear the even
3019   // register in the GR128 input.  The instruction returns the remainder
3020   // in the even register and the quotient in the odd register.
3021   SDValue Ops[2];
3022   if (is32Bit(VT))
3023     lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32,
3024                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3025   else
3026     lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64,
3027                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3028   return DAG.getMergeValues(Ops, DL);
3029 }
3030 
lowerOR(SDValue Op,SelectionDAG & DAG) const3031 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3032   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3033 
3034   // Get the known-zero masks for each operand.
3035   SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
3036   APInt KnownZero[2], KnownOne[2];
3037   DAG.computeKnownBits(Ops[0], KnownZero[0], KnownOne[0]);
3038   DAG.computeKnownBits(Ops[1], KnownZero[1], KnownOne[1]);
3039 
3040   // See if the upper 32 bits of one operand and the lower 32 bits of the
3041   // other are known zero.  They are the low and high operands respectively.
3042   uint64_t Masks[] = { KnownZero[0].getZExtValue(),
3043                        KnownZero[1].getZExtValue() };
3044   unsigned High, Low;
3045   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3046     High = 1, Low = 0;
3047   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3048     High = 0, Low = 1;
3049   else
3050     return Op;
3051 
3052   SDValue LowOp = Ops[Low];
3053   SDValue HighOp = Ops[High];
3054 
3055   // If the high part is a constant, we're better off using IILH.
3056   if (HighOp.getOpcode() == ISD::Constant)
3057     return Op;
3058 
3059   // If the low part is a constant that is outside the range of LHI,
3060   // then we're better off using IILF.
3061   if (LowOp.getOpcode() == ISD::Constant) {
3062     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3063     if (!isInt<16>(Value))
3064       return Op;
3065   }
3066 
3067   // Check whether the high part is an AND that doesn't change the
3068   // high 32 bits and just masks out low bits.  We can skip it if so.
3069   if (HighOp.getOpcode() == ISD::AND &&
3070       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3071     SDValue HighOp0 = HighOp.getOperand(0);
3072     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3073     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3074       HighOp = HighOp0;
3075   }
3076 
3077   // Take advantage of the fact that all GR32 operations only change the
3078   // low 32 bits by truncating Low to an i32 and inserting it directly
3079   // using a subreg.  The interesting cases are those where the truncation
3080   // can be folded.
3081   SDLoc DL(Op);
3082   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3083   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3084                                    MVT::i64, HighOp, Low32);
3085 }
3086 
lowerCTPOP(SDValue Op,SelectionDAG & DAG) const3087 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
3088                                           SelectionDAG &DAG) const {
3089   EVT VT = Op.getValueType();
3090   SDLoc DL(Op);
3091   Op = Op.getOperand(0);
3092 
3093   // Handle vector types via VPOPCT.
3094   if (VT.isVector()) {
3095     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
3096     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
3097     switch (VT.getVectorElementType().getSizeInBits()) {
3098     case 8:
3099       break;
3100     case 16: {
3101       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
3102       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
3103       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
3104       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3105       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
3106       break;
3107     }
3108     case 32: {
3109       SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
3110                                 DAG.getConstant(0, DL, MVT::i32));
3111       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3112       break;
3113     }
3114     case 64: {
3115       SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
3116                                 DAG.getConstant(0, DL, MVT::i32));
3117       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
3118       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3119       break;
3120     }
3121     default:
3122       llvm_unreachable("Unexpected type");
3123     }
3124     return Op;
3125   }
3126 
3127   // Get the known-zero mask for the operand.
3128   APInt KnownZero, KnownOne;
3129   DAG.computeKnownBits(Op, KnownZero, KnownOne);
3130   unsigned NumSignificantBits = (~KnownZero).getActiveBits();
3131   if (NumSignificantBits == 0)
3132     return DAG.getConstant(0, DL, VT);
3133 
3134   // Skip known-zero high parts of the operand.
3135   int64_t OrigBitSize = VT.getSizeInBits();
3136   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3137   BitSize = std::min(BitSize, OrigBitSize);
3138 
3139   // The POPCNT instruction counts the number of bits in each byte.
3140   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3141   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3142   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3143 
3144   // Add up per-byte counts in a binary tree.  All bits of Op at
3145   // position larger than BitSize remain zero throughout.
3146   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
3147     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
3148     if (BitSize != OrigBitSize)
3149       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
3150                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
3151     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3152   }
3153 
3154   // Extract overall result from high byte.
3155   if (BitSize > 8)
3156     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3157                      DAG.getConstant(BitSize - 8, DL, VT));
3158 
3159   return Op;
3160 }
3161 
lowerATOMIC_FENCE(SDValue Op,SelectionDAG & DAG) const3162 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
3163                                                  SelectionDAG &DAG) const {
3164   SDLoc DL(Op);
3165   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
3166     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
3167   SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
3168     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
3169 
3170   // The only fence that needs an instruction is a sequentially-consistent
3171   // cross-thread fence.
3172   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
3173       FenceScope == CrossThread) {
3174     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
3175                                       Op.getOperand(0)),
3176                    0);
3177   }
3178 
3179   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3180   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
3181 }
3182 
3183 // Op is an atomic load.  Lower it into a normal volatile load.
lowerATOMIC_LOAD(SDValue Op,SelectionDAG & DAG) const3184 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3185                                                 SelectionDAG &DAG) const {
3186   auto *Node = cast<AtomicSDNode>(Op.getNode());
3187   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3188                         Node->getChain(), Node->getBasePtr(),
3189                         Node->getMemoryVT(), Node->getMemOperand());
3190 }
3191 
3192 // Op is an atomic store.  Lower it into a normal volatile store followed
3193 // by a serialization.
lowerATOMIC_STORE(SDValue Op,SelectionDAG & DAG) const3194 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3195                                                  SelectionDAG &DAG) const {
3196   auto *Node = cast<AtomicSDNode>(Op.getNode());
3197   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3198                                     Node->getBasePtr(), Node->getMemoryVT(),
3199                                     Node->getMemOperand());
3200   return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other,
3201                                     Chain), 0);
3202 }
3203 
3204 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
3205 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
lowerATOMIC_LOAD_OP(SDValue Op,SelectionDAG & DAG,unsigned Opcode) const3206 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3207                                                    SelectionDAG &DAG,
3208                                                    unsigned Opcode) const {
3209   auto *Node = cast<AtomicSDNode>(Op.getNode());
3210 
3211   // 32-bit operations need no code outside the main loop.
3212   EVT NarrowVT = Node->getMemoryVT();
3213   EVT WideVT = MVT::i32;
3214   if (NarrowVT == WideVT)
3215     return Op;
3216 
3217   int64_t BitSize = NarrowVT.getSizeInBits();
3218   SDValue ChainIn = Node->getChain();
3219   SDValue Addr = Node->getBasePtr();
3220   SDValue Src2 = Node->getVal();
3221   MachineMemOperand *MMO = Node->getMemOperand();
3222   SDLoc DL(Node);
3223   EVT PtrVT = Addr.getValueType();
3224 
3225   // Convert atomic subtracts of constants into additions.
3226   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
3227     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
3228       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
3229       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
3230     }
3231 
3232   // Get the address of the containing word.
3233   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3234                                     DAG.getConstant(-4, DL, PtrVT));
3235 
3236   // Get the number of bits that the word must be rotated left in order
3237   // to bring the field to the top bits of a GR32.
3238   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3239                                  DAG.getConstant(3, DL, PtrVT));
3240   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3241 
3242   // Get the complementing shift amount, for rotating a field in the top
3243   // bits back to its proper position.
3244   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3245                                     DAG.getConstant(0, DL, WideVT), BitShift);
3246 
3247   // Extend the source operand to 32 bits and prepare it for the inner loop.
3248   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
3249   // operations require the source to be shifted in advance.  (This shift
3250   // can be folded if the source is constant.)  For AND and NAND, the lower
3251   // bits must be set, while for other opcodes they should be left clear.
3252   if (Opcode != SystemZISD::ATOMIC_SWAPW)
3253     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
3254                        DAG.getConstant(32 - BitSize, DL, WideVT));
3255   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
3256       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
3257     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
3258                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
3259 
3260   // Construct the ATOMIC_LOADW_* node.
3261   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3262   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
3263                     DAG.getConstant(BitSize, DL, WideVT) };
3264   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
3265                                              NarrowVT, MMO);
3266 
3267   // Rotate the result of the final CS so that the field is in the lower
3268   // bits of a GR32, then truncate it.
3269   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
3270                                     DAG.getConstant(BitSize, DL, WideVT));
3271   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
3272 
3273   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
3274   return DAG.getMergeValues(RetOps, DL);
3275 }
3276 
3277 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
3278 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
3279 // operations into additions.
lowerATOMIC_LOAD_SUB(SDValue Op,SelectionDAG & DAG) const3280 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
3281                                                     SelectionDAG &DAG) const {
3282   auto *Node = cast<AtomicSDNode>(Op.getNode());
3283   EVT MemVT = Node->getMemoryVT();
3284   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
3285     // A full-width operation.
3286     assert(Op.getValueType() == MemVT && "Mismatched VTs");
3287     SDValue Src2 = Node->getVal();
3288     SDValue NegSrc2;
3289     SDLoc DL(Src2);
3290 
3291     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
3292       // Use an addition if the operand is constant and either LAA(G) is
3293       // available or the negative value is in the range of A(G)FHI.
3294       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
3295       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
3296         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
3297     } else if (Subtarget.hasInterlockedAccess1())
3298       // Use LAA(G) if available.
3299       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
3300                             Src2);
3301 
3302     if (NegSrc2.getNode())
3303       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
3304                            Node->getChain(), Node->getBasePtr(), NegSrc2,
3305                            Node->getMemOperand(), Node->getOrdering(),
3306                            Node->getSynchScope());
3307 
3308     // Use the node as-is.
3309     return Op;
3310   }
3311 
3312   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
3313 }
3314 
3315 // Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation.  Lower the first two
3316 // into a fullword ATOMIC_CMP_SWAPW operation.
lowerATOMIC_CMP_SWAP(SDValue Op,SelectionDAG & DAG) const3317 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
3318                                                     SelectionDAG &DAG) const {
3319   auto *Node = cast<AtomicSDNode>(Op.getNode());
3320 
3321   // We have native support for 32-bit compare and swap.
3322   EVT NarrowVT = Node->getMemoryVT();
3323   EVT WideVT = MVT::i32;
3324   if (NarrowVT == WideVT)
3325     return Op;
3326 
3327   int64_t BitSize = NarrowVT.getSizeInBits();
3328   SDValue ChainIn = Node->getOperand(0);
3329   SDValue Addr = Node->getOperand(1);
3330   SDValue CmpVal = Node->getOperand(2);
3331   SDValue SwapVal = Node->getOperand(3);
3332   MachineMemOperand *MMO = Node->getMemOperand();
3333   SDLoc DL(Node);
3334   EVT PtrVT = Addr.getValueType();
3335 
3336   // Get the address of the containing word.
3337   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3338                                     DAG.getConstant(-4, DL, PtrVT));
3339 
3340   // Get the number of bits that the word must be rotated left in order
3341   // to bring the field to the top bits of a GR32.
3342   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3343                                  DAG.getConstant(3, DL, PtrVT));
3344   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3345 
3346   // Get the complementing shift amount, for rotating a field in the top
3347   // bits back to its proper position.
3348   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3349                                     DAG.getConstant(0, DL, WideVT), BitShift);
3350 
3351   // Construct the ATOMIC_CMP_SWAPW node.
3352   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3353   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
3354                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
3355   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
3356                                              VTList, Ops, NarrowVT, MMO);
3357   return AtomicOp;
3358 }
3359 
lowerSTACKSAVE(SDValue Op,SelectionDAG & DAG) const3360 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
3361                                               SelectionDAG &DAG) const {
3362   MachineFunction &MF = DAG.getMachineFunction();
3363   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
3364   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
3365                             SystemZ::R15D, Op.getValueType());
3366 }
3367 
lowerSTACKRESTORE(SDValue Op,SelectionDAG & DAG) const3368 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
3369                                                  SelectionDAG &DAG) const {
3370   MachineFunction &MF = DAG.getMachineFunction();
3371   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
3372   bool StoreBackchain = MF.getFunction()->hasFnAttribute("backchain");
3373 
3374   SDValue Chain = Op.getOperand(0);
3375   SDValue NewSP = Op.getOperand(1);
3376   SDValue Backchain;
3377   SDLoc DL(Op);
3378 
3379   if (StoreBackchain) {
3380     SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64);
3381     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo(),
3382                             false, false, false, 0);
3383   }
3384 
3385   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP);
3386 
3387   if (StoreBackchain)
3388     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo(),
3389                          false, false, 0);
3390 
3391   return Chain;
3392 }
3393 
lowerPREFETCH(SDValue Op,SelectionDAG & DAG) const3394 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
3395                                              SelectionDAG &DAG) const {
3396   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
3397   if (!IsData)
3398     // Just preserve the chain.
3399     return Op.getOperand(0);
3400 
3401   SDLoc DL(Op);
3402   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
3403   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
3404   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
3405   SDValue Ops[] = {
3406     Op.getOperand(0),
3407     DAG.getConstant(Code, DL, MVT::i32),
3408     Op.getOperand(1)
3409   };
3410   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
3411                                  Node->getVTList(), Ops,
3412                                  Node->getMemoryVT(), Node->getMemOperand());
3413 }
3414 
3415 // Return an i32 that contains the value of CC immediately after After,
3416 // whose final operand must be MVT::Glue.
getCCResult(SelectionDAG & DAG,SDNode * After)3417 static SDValue getCCResult(SelectionDAG &DAG, SDNode *After) {
3418   SDLoc DL(After);
3419   SDValue Glue = SDValue(After, After->getNumValues() - 1);
3420   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
3421   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
3422                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
3423 }
3424 
3425 SDValue
lowerINTRINSIC_W_CHAIN(SDValue Op,SelectionDAG & DAG) const3426 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
3427                                               SelectionDAG &DAG) const {
3428   unsigned Opcode, CCValid;
3429   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
3430     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
3431     SDValue Glued = emitIntrinsicWithChainAndGlue(DAG, Op, Opcode);
3432     SDValue CC = getCCResult(DAG, Glued.getNode());
3433     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
3434     return SDValue();
3435   }
3436 
3437   return SDValue();
3438 }
3439 
3440 SDValue
lowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const3441 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
3442                                                SelectionDAG &DAG) const {
3443   unsigned Opcode, CCValid;
3444   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
3445     SDValue Glued = emitIntrinsicWithGlue(DAG, Op, Opcode);
3446     SDValue CC = getCCResult(DAG, Glued.getNode());
3447     if (Op->getNumValues() == 1)
3448       return CC;
3449     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
3450     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), Glued,
3451                        CC);
3452   }
3453 
3454   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3455   switch (Id) {
3456   case Intrinsic::thread_pointer:
3457     return lowerThreadPointer(SDLoc(Op), DAG);
3458 
3459   case Intrinsic::s390_vpdi:
3460     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
3461                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3462 
3463   case Intrinsic::s390_vperm:
3464     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
3465                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3466 
3467   case Intrinsic::s390_vuphb:
3468   case Intrinsic::s390_vuphh:
3469   case Intrinsic::s390_vuphf:
3470     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
3471                        Op.getOperand(1));
3472 
3473   case Intrinsic::s390_vuplhb:
3474   case Intrinsic::s390_vuplhh:
3475   case Intrinsic::s390_vuplhf:
3476     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
3477                        Op.getOperand(1));
3478 
3479   case Intrinsic::s390_vuplb:
3480   case Intrinsic::s390_vuplhw:
3481   case Intrinsic::s390_vuplf:
3482     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
3483                        Op.getOperand(1));
3484 
3485   case Intrinsic::s390_vupllb:
3486   case Intrinsic::s390_vupllh:
3487   case Intrinsic::s390_vupllf:
3488     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
3489                        Op.getOperand(1));
3490 
3491   case Intrinsic::s390_vsumb:
3492   case Intrinsic::s390_vsumh:
3493   case Intrinsic::s390_vsumgh:
3494   case Intrinsic::s390_vsumgf:
3495   case Intrinsic::s390_vsumqf:
3496   case Intrinsic::s390_vsumqg:
3497     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
3498                        Op.getOperand(1), Op.getOperand(2));
3499   }
3500 
3501   return SDValue();
3502 }
3503 
3504 namespace {
3505 // Says that SystemZISD operation Opcode can be used to perform the equivalent
3506 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
3507 // Operand is the constant third operand, otherwise it is the number of
3508 // bytes in each element of the result.
3509 struct Permute {
3510   unsigned Opcode;
3511   unsigned Operand;
3512   unsigned char Bytes[SystemZ::VectorBytes];
3513 };
3514 }
3515 
3516 static const Permute PermuteForms[] = {
3517   // VMRHG
3518   { SystemZISD::MERGE_HIGH, 8,
3519     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
3520   // VMRHF
3521   { SystemZISD::MERGE_HIGH, 4,
3522     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
3523   // VMRHH
3524   { SystemZISD::MERGE_HIGH, 2,
3525     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
3526   // VMRHB
3527   { SystemZISD::MERGE_HIGH, 1,
3528     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
3529   // VMRLG
3530   { SystemZISD::MERGE_LOW, 8,
3531     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
3532   // VMRLF
3533   { SystemZISD::MERGE_LOW, 4,
3534     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
3535   // VMRLH
3536   { SystemZISD::MERGE_LOW, 2,
3537     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
3538   // VMRLB
3539   { SystemZISD::MERGE_LOW, 1,
3540     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
3541   // VPKG
3542   { SystemZISD::PACK, 4,
3543     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
3544   // VPKF
3545   { SystemZISD::PACK, 2,
3546     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
3547   // VPKH
3548   { SystemZISD::PACK, 1,
3549     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
3550   // VPDI V1, V2, 4  (low half of V1, high half of V2)
3551   { SystemZISD::PERMUTE_DWORDS, 4,
3552     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
3553   // VPDI V1, V2, 1  (high half of V1, low half of V2)
3554   { SystemZISD::PERMUTE_DWORDS, 1,
3555     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
3556 };
3557 
3558 // Called after matching a vector shuffle against a particular pattern.
3559 // Both the original shuffle and the pattern have two vector operands.
3560 // OpNos[0] is the operand of the original shuffle that should be used for
3561 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
3562 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
3563 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
3564 // for operands 0 and 1 of the pattern.
chooseShuffleOpNos(int * OpNos,unsigned & OpNo0,unsigned & OpNo1)3565 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
3566   if (OpNos[0] < 0) {
3567     if (OpNos[1] < 0)
3568       return false;
3569     OpNo0 = OpNo1 = OpNos[1];
3570   } else if (OpNos[1] < 0) {
3571     OpNo0 = OpNo1 = OpNos[0];
3572   } else {
3573     OpNo0 = OpNos[0];
3574     OpNo1 = OpNos[1];
3575   }
3576   return true;
3577 }
3578 
3579 // Bytes is a VPERM-like permute vector, except that -1 is used for
3580 // undefined bytes.  Return true if the VPERM can be implemented using P.
3581 // When returning true set OpNo0 to the VPERM operand that should be
3582 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
3583 //
3584 // For example, if swapping the VPERM operands allows P to match, OpNo0
3585 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
3586 // operand, but rewriting it to use two duplicated operands allows it to
3587 // match P, then OpNo0 and OpNo1 will be the same.
matchPermute(const SmallVectorImpl<int> & Bytes,const Permute & P,unsigned & OpNo0,unsigned & OpNo1)3588 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
3589                          unsigned &OpNo0, unsigned &OpNo1) {
3590   int OpNos[] = { -1, -1 };
3591   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
3592     int Elt = Bytes[I];
3593     if (Elt >= 0) {
3594       // Make sure that the two permute vectors use the same suboperand
3595       // byte number.  Only the operand numbers (the high bits) are
3596       // allowed to differ.
3597       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
3598         return false;
3599       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
3600       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
3601       // Make sure that the operand mappings are consistent with previous
3602       // elements.
3603       if (OpNos[ModelOpNo] == 1 - RealOpNo)
3604         return false;
3605       OpNos[ModelOpNo] = RealOpNo;
3606     }
3607   }
3608   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
3609 }
3610 
3611 // As above, but search for a matching permute.
matchPermute(const SmallVectorImpl<int> & Bytes,unsigned & OpNo0,unsigned & OpNo1)3612 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
3613                                    unsigned &OpNo0, unsigned &OpNo1) {
3614   for (auto &P : PermuteForms)
3615     if (matchPermute(Bytes, P, OpNo0, OpNo1))
3616       return &P;
3617   return nullptr;
3618 }
3619 
3620 // Bytes is a VPERM-like permute vector, except that -1 is used for
3621 // undefined bytes.  This permute is an operand of an outer permute.
3622 // See whether redistributing the -1 bytes gives a shuffle that can be
3623 // implemented using P.  If so, set Transform to a VPERM-like permute vector
3624 // that, when applied to the result of P, gives the original permute in Bytes.
matchDoublePermute(const SmallVectorImpl<int> & Bytes,const Permute & P,SmallVectorImpl<int> & Transform)3625 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
3626                                const Permute &P,
3627                                SmallVectorImpl<int> &Transform) {
3628   unsigned To = 0;
3629   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
3630     int Elt = Bytes[From];
3631     if (Elt < 0)
3632       // Byte number From of the result is undefined.
3633       Transform[From] = -1;
3634     else {
3635       while (P.Bytes[To] != Elt) {
3636         To += 1;
3637         if (To == SystemZ::VectorBytes)
3638           return false;
3639       }
3640       Transform[From] = To;
3641     }
3642   }
3643   return true;
3644 }
3645 
3646 // As above, but search for a matching permute.
matchDoublePermute(const SmallVectorImpl<int> & Bytes,SmallVectorImpl<int> & Transform)3647 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
3648                                          SmallVectorImpl<int> &Transform) {
3649   for (auto &P : PermuteForms)
3650     if (matchDoublePermute(Bytes, P, Transform))
3651       return &P;
3652   return nullptr;
3653 }
3654 
3655 // Convert the mask of the given VECTOR_SHUFFLE into a byte-level mask,
3656 // as if it had type vNi8.
getVPermMask(ShuffleVectorSDNode * VSN,SmallVectorImpl<int> & Bytes)3657 static void getVPermMask(ShuffleVectorSDNode *VSN,
3658                          SmallVectorImpl<int> &Bytes) {
3659   EVT VT = VSN->getValueType(0);
3660   unsigned NumElements = VT.getVectorNumElements();
3661   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
3662   Bytes.resize(NumElements * BytesPerElement, -1);
3663   for (unsigned I = 0; I < NumElements; ++I) {
3664     int Index = VSN->getMaskElt(I);
3665     if (Index >= 0)
3666       for (unsigned J = 0; J < BytesPerElement; ++J)
3667         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
3668   }
3669 }
3670 
3671 // Bytes is a VPERM-like permute vector, except that -1 is used for
3672 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
3673 // the result come from a contiguous sequence of bytes from one input.
3674 // Set Base to the selector for the first byte if so.
getShuffleInput(const SmallVectorImpl<int> & Bytes,unsigned Start,unsigned BytesPerElement,int & Base)3675 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
3676                             unsigned BytesPerElement, int &Base) {
3677   Base = -1;
3678   for (unsigned I = 0; I < BytesPerElement; ++I) {
3679     if (Bytes[Start + I] >= 0) {
3680       unsigned Elem = Bytes[Start + I];
3681       if (Base < 0) {
3682         Base = Elem - I;
3683         // Make sure the bytes would come from one input operand.
3684         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
3685           return false;
3686       } else if (unsigned(Base) != Elem - I)
3687         return false;
3688     }
3689   }
3690   return true;
3691 }
3692 
3693 // Bytes is a VPERM-like permute vector, except that -1 is used for
3694 // undefined bytes.  Return true if it can be performed using VSLDI.
3695 // When returning true, set StartIndex to the shift amount and OpNo0
3696 // and OpNo1 to the VPERM operands that should be used as the first
3697 // and second shift operand respectively.
isShlDoublePermute(const SmallVectorImpl<int> & Bytes,unsigned & StartIndex,unsigned & OpNo0,unsigned & OpNo1)3698 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
3699                                unsigned &StartIndex, unsigned &OpNo0,
3700                                unsigned &OpNo1) {
3701   int OpNos[] = { -1, -1 };
3702   int Shift = -1;
3703   for (unsigned I = 0; I < 16; ++I) {
3704     int Index = Bytes[I];
3705     if (Index >= 0) {
3706       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
3707       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
3708       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
3709       if (Shift < 0)
3710         Shift = ExpectedShift;
3711       else if (Shift != ExpectedShift)
3712         return false;
3713       // Make sure that the operand mappings are consistent with previous
3714       // elements.
3715       if (OpNos[ModelOpNo] == 1 - RealOpNo)
3716         return false;
3717       OpNos[ModelOpNo] = RealOpNo;
3718     }
3719   }
3720   StartIndex = Shift;
3721   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
3722 }
3723 
3724 // Create a node that performs P on operands Op0 and Op1, casting the
3725 // operands to the appropriate type.  The type of the result is determined by P.
getPermuteNode(SelectionDAG & DAG,const SDLoc & DL,const Permute & P,SDValue Op0,SDValue Op1)3726 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
3727                               const Permute &P, SDValue Op0, SDValue Op1) {
3728   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
3729   // elements of a PACK are twice as wide as the outputs.
3730   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
3731                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
3732                       P.Operand);
3733   // Cast both operands to the appropriate type.
3734   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
3735                               SystemZ::VectorBytes / InBytes);
3736   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
3737   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
3738   SDValue Op;
3739   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
3740     SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32);
3741     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
3742   } else if (P.Opcode == SystemZISD::PACK) {
3743     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
3744                                  SystemZ::VectorBytes / P.Operand);
3745     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
3746   } else {
3747     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
3748   }
3749   return Op;
3750 }
3751 
3752 // Bytes is a VPERM-like permute vector, except that -1 is used for
3753 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
3754 // VSLDI or VPERM.
getGeneralPermuteNode(SelectionDAG & DAG,const SDLoc & DL,SDValue * Ops,const SmallVectorImpl<int> & Bytes)3755 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
3756                                      SDValue *Ops,
3757                                      const SmallVectorImpl<int> &Bytes) {
3758   for (unsigned I = 0; I < 2; ++I)
3759     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
3760 
3761   // First see whether VSLDI can be used.
3762   unsigned StartIndex, OpNo0, OpNo1;
3763   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
3764     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
3765                        Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32));
3766 
3767   // Fall back on VPERM.  Construct an SDNode for the permute vector.
3768   SDValue IndexNodes[SystemZ::VectorBytes];
3769   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
3770     if (Bytes[I] >= 0)
3771       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
3772     else
3773       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
3774   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
3775   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2);
3776 }
3777 
3778 namespace {
3779 // Describes a general N-operand vector shuffle.
3780 struct GeneralShuffle {
GeneralShuffle__anon1643df490311::GeneralShuffle3781   GeneralShuffle(EVT vt) : VT(vt) {}
3782   void addUndef();
3783   void add(SDValue, unsigned);
3784   SDValue getNode(SelectionDAG &, const SDLoc &);
3785 
3786   // The operands of the shuffle.
3787   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
3788 
3789   // Index I is -1 if byte I of the result is undefined.  Otherwise the
3790   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
3791   // Bytes[I] / SystemZ::VectorBytes.
3792   SmallVector<int, SystemZ::VectorBytes> Bytes;
3793 
3794   // The type of the shuffle result.
3795   EVT VT;
3796 };
3797 }
3798 
3799 // Add an extra undefined element to the shuffle.
addUndef()3800 void GeneralShuffle::addUndef() {
3801   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
3802   for (unsigned I = 0; I < BytesPerElement; ++I)
3803     Bytes.push_back(-1);
3804 }
3805 
3806 // Add an extra element to the shuffle, taking it from element Elem of Op.
3807 // A null Op indicates a vector input whose value will be calculated later;
3808 // there is at most one such input per shuffle and it always has the same
3809 // type as the result.
add(SDValue Op,unsigned Elem)3810 void GeneralShuffle::add(SDValue Op, unsigned Elem) {
3811   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
3812 
3813   // The source vector can have wider elements than the result,
3814   // either through an explicit TRUNCATE or because of type legalization.
3815   // We want the least significant part.
3816   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
3817   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
3818   assert(FromBytesPerElement >= BytesPerElement &&
3819          "Invalid EXTRACT_VECTOR_ELT");
3820   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
3821                    (FromBytesPerElement - BytesPerElement));
3822 
3823   // Look through things like shuffles and bitcasts.
3824   while (Op.getNode()) {
3825     if (Op.getOpcode() == ISD::BITCAST)
3826       Op = Op.getOperand(0);
3827     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
3828       // See whether the bytes we need come from a contiguous part of one
3829       // operand.
3830       SmallVector<int, SystemZ::VectorBytes> OpBytes;
3831       getVPermMask(cast<ShuffleVectorSDNode>(Op), OpBytes);
3832       int NewByte;
3833       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
3834         break;
3835       if (NewByte < 0) {
3836         addUndef();
3837         return;
3838       }
3839       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
3840       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
3841     } else if (Op.isUndef()) {
3842       addUndef();
3843       return;
3844     } else
3845       break;
3846   }
3847 
3848   // Make sure that the source of the extraction is in Ops.
3849   unsigned OpNo = 0;
3850   for (; OpNo < Ops.size(); ++OpNo)
3851     if (Ops[OpNo] == Op)
3852       break;
3853   if (OpNo == Ops.size())
3854     Ops.push_back(Op);
3855 
3856   // Add the element to Bytes.
3857   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
3858   for (unsigned I = 0; I < BytesPerElement; ++I)
3859     Bytes.push_back(Base + I);
3860 }
3861 
3862 // Return SDNodes for the completed shuffle.
getNode(SelectionDAG & DAG,const SDLoc & DL)3863 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
3864   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
3865 
3866   if (Ops.size() == 0)
3867     return DAG.getUNDEF(VT);
3868 
3869   // Make sure that there are at least two shuffle operands.
3870   if (Ops.size() == 1)
3871     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
3872 
3873   // Create a tree of shuffles, deferring root node until after the loop.
3874   // Try to redistribute the undefined elements of non-root nodes so that
3875   // the non-root shuffles match something like a pack or merge, then adjust
3876   // the parent node's permute vector to compensate for the new order.
3877   // Among other things, this copes with vectors like <2 x i16> that were
3878   // padded with undefined elements during type legalization.
3879   //
3880   // In the best case this redistribution will lead to the whole tree
3881   // using packs and merges.  It should rarely be a loss in other cases.
3882   unsigned Stride = 1;
3883   for (; Stride * 2 < Ops.size(); Stride *= 2) {
3884     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
3885       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
3886 
3887       // Create a mask for just these two operands.
3888       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
3889       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
3890         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
3891         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
3892         if (OpNo == I)
3893           NewBytes[J] = Byte;
3894         else if (OpNo == I + Stride)
3895           NewBytes[J] = SystemZ::VectorBytes + Byte;
3896         else
3897           NewBytes[J] = -1;
3898       }
3899       // See if it would be better to reorganize NewMask to avoid using VPERM.
3900       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
3901       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
3902         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
3903         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
3904         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
3905           if (NewBytes[J] >= 0) {
3906             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
3907                    "Invalid double permute");
3908             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
3909           } else
3910             assert(NewBytesMap[J] < 0 && "Invalid double permute");
3911         }
3912       } else {
3913         // Just use NewBytes on the operands.
3914         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
3915         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
3916           if (NewBytes[J] >= 0)
3917             Bytes[J] = I * SystemZ::VectorBytes + J;
3918       }
3919     }
3920   }
3921 
3922   // Now we just have 2 inputs.  Put the second operand in Ops[1].
3923   if (Stride > 1) {
3924     Ops[1] = Ops[Stride];
3925     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
3926       if (Bytes[I] >= int(SystemZ::VectorBytes))
3927         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
3928   }
3929 
3930   // Look for an instruction that can do the permute without resorting
3931   // to VPERM.
3932   unsigned OpNo0, OpNo1;
3933   SDValue Op;
3934   if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
3935     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
3936   else
3937     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
3938   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
3939 }
3940 
3941 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
isScalarToVector(SDValue Op)3942 static bool isScalarToVector(SDValue Op) {
3943   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
3944     if (!Op.getOperand(I).isUndef())
3945       return false;
3946   return true;
3947 }
3948 
3949 // Return a vector of type VT that contains Value in the first element.
3950 // The other elements don't matter.
buildScalarToVector(SelectionDAG & DAG,const SDLoc & DL,EVT VT,SDValue Value)3951 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
3952                                    SDValue Value) {
3953   // If we have a constant, replicate it to all elements and let the
3954   // BUILD_VECTOR lowering take care of it.
3955   if (Value.getOpcode() == ISD::Constant ||
3956       Value.getOpcode() == ISD::ConstantFP) {
3957     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
3958     return DAG.getBuildVector(VT, DL, Ops);
3959   }
3960   if (Value.isUndef())
3961     return DAG.getUNDEF(VT);
3962   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
3963 }
3964 
3965 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
3966 // element 1.  Used for cases in which replication is cheap.
buildMergeScalars(SelectionDAG & DAG,const SDLoc & DL,EVT VT,SDValue Op0,SDValue Op1)3967 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
3968                                  SDValue Op0, SDValue Op1) {
3969   if (Op0.isUndef()) {
3970     if (Op1.isUndef())
3971       return DAG.getUNDEF(VT);
3972     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
3973   }
3974   if (Op1.isUndef())
3975     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
3976   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
3977                      buildScalarToVector(DAG, DL, VT, Op0),
3978                      buildScalarToVector(DAG, DL, VT, Op1));
3979 }
3980 
3981 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
3982 // vector for them.
joinDwords(SelectionDAG & DAG,const SDLoc & DL,SDValue Op0,SDValue Op1)3983 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
3984                           SDValue Op1) {
3985   if (Op0.isUndef() && Op1.isUndef())
3986     return DAG.getUNDEF(MVT::v2i64);
3987   // If one of the two inputs is undefined then replicate the other one,
3988   // in order to avoid using another register unnecessarily.
3989   if (Op0.isUndef())
3990     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
3991   else if (Op1.isUndef())
3992     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
3993   else {
3994     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
3995     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
3996   }
3997   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
3998 }
3999 
4000 // Try to represent constant BUILD_VECTOR node BVN using a
4001 // SystemZISD::BYTE_MASK-style mask.  Store the mask value in Mask
4002 // on success.
tryBuildVectorByteMask(BuildVectorSDNode * BVN,uint64_t & Mask)4003 static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) {
4004   EVT ElemVT = BVN->getValueType(0).getVectorElementType();
4005   unsigned BytesPerElement = ElemVT.getStoreSize();
4006   for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) {
4007     SDValue Op = BVN->getOperand(I);
4008     if (!Op.isUndef()) {
4009       uint64_t Value;
4010       if (Op.getOpcode() == ISD::Constant)
4011         Value = dyn_cast<ConstantSDNode>(Op)->getZExtValue();
4012       else if (Op.getOpcode() == ISD::ConstantFP)
4013         Value = (dyn_cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()
4014                  .getZExtValue());
4015       else
4016         return false;
4017       for (unsigned J = 0; J < BytesPerElement; ++J) {
4018         uint64_t Byte = (Value >> (J * 8)) & 0xff;
4019         if (Byte == 0xff)
4020           Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J);
4021         else if (Byte != 0)
4022           return false;
4023       }
4024     }
4025   }
4026   return true;
4027 }
4028 
4029 // Try to load a vector constant in which BitsPerElement-bit value Value
4030 // is replicated to fill the vector.  VT is the type of the resulting
4031 // constant, which may have elements of a different size from BitsPerElement.
4032 // Return the SDValue of the constant on success, otherwise return
4033 // an empty value.
tryBuildVectorReplicate(SelectionDAG & DAG,const SystemZInstrInfo * TII,const SDLoc & DL,EVT VT,uint64_t Value,unsigned BitsPerElement)4034 static SDValue tryBuildVectorReplicate(SelectionDAG &DAG,
4035                                        const SystemZInstrInfo *TII,
4036                                        const SDLoc &DL, EVT VT, uint64_t Value,
4037                                        unsigned BitsPerElement) {
4038   // Signed 16-bit values can be replicated using VREPI.
4039   int64_t SignedValue = SignExtend64(Value, BitsPerElement);
4040   if (isInt<16>(SignedValue)) {
4041     MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
4042                                  SystemZ::VectorBits / BitsPerElement);
4043     SDValue Op = DAG.getNode(SystemZISD::REPLICATE, DL, VecVT,
4044                              DAG.getConstant(SignedValue, DL, MVT::i32));
4045     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4046   }
4047   // See whether rotating the constant left some N places gives a value that
4048   // is one less than a power of 2 (i.e. all zeros followed by all ones).
4049   // If so we can use VGM.
4050   unsigned Start, End;
4051   if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) {
4052     // isRxSBGMask returns the bit numbers for a full 64-bit value,
4053     // with 0 denoting 1 << 63 and 63 denoting 1.  Convert them to
4054     // bit numbers for an BitsPerElement value, so that 0 denotes
4055     // 1 << (BitsPerElement-1).
4056     Start -= 64 - BitsPerElement;
4057     End -= 64 - BitsPerElement;
4058     MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
4059                                  SystemZ::VectorBits / BitsPerElement);
4060     SDValue Op = DAG.getNode(SystemZISD::ROTATE_MASK, DL, VecVT,
4061                              DAG.getConstant(Start, DL, MVT::i32),
4062                              DAG.getConstant(End, DL, MVT::i32));
4063     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4064   }
4065   return SDValue();
4066 }
4067 
4068 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
4069 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
4070 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
4071 // would benefit from this representation and return it if so.
tryBuildVectorShuffle(SelectionDAG & DAG,BuildVectorSDNode * BVN)4072 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
4073                                      BuildVectorSDNode *BVN) {
4074   EVT VT = BVN->getValueType(0);
4075   unsigned NumElements = VT.getVectorNumElements();
4076 
4077   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
4078   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
4079   // need a BUILD_VECTOR, add an additional placeholder operand for that
4080   // BUILD_VECTOR and store its operands in ResidueOps.
4081   GeneralShuffle GS(VT);
4082   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
4083   bool FoundOne = false;
4084   for (unsigned I = 0; I < NumElements; ++I) {
4085     SDValue Op = BVN->getOperand(I);
4086     if (Op.getOpcode() == ISD::TRUNCATE)
4087       Op = Op.getOperand(0);
4088     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4089         Op.getOperand(1).getOpcode() == ISD::Constant) {
4090       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4091       GS.add(Op.getOperand(0), Elem);
4092       FoundOne = true;
4093     } else if (Op.isUndef()) {
4094       GS.addUndef();
4095     } else {
4096       GS.add(SDValue(), ResidueOps.size());
4097       ResidueOps.push_back(BVN->getOperand(I));
4098     }
4099   }
4100 
4101   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
4102   if (!FoundOne)
4103     return SDValue();
4104 
4105   // Create the BUILD_VECTOR for the remaining elements, if any.
4106   if (!ResidueOps.empty()) {
4107     while (ResidueOps.size() < NumElements)
4108       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
4109     for (auto &Op : GS.Ops) {
4110       if (!Op.getNode()) {
4111         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
4112         break;
4113       }
4114     }
4115   }
4116   return GS.getNode(DAG, SDLoc(BVN));
4117 }
4118 
4119 // Combine GPR scalar values Elems into a vector of type VT.
buildVector(SelectionDAG & DAG,const SDLoc & DL,EVT VT,SmallVectorImpl<SDValue> & Elems)4120 static SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4121                            SmallVectorImpl<SDValue> &Elems) {
4122   // See whether there is a single replicated value.
4123   SDValue Single;
4124   unsigned int NumElements = Elems.size();
4125   unsigned int Count = 0;
4126   for (auto Elem : Elems) {
4127     if (!Elem.isUndef()) {
4128       if (!Single.getNode())
4129         Single = Elem;
4130       else if (Elem != Single) {
4131         Single = SDValue();
4132         break;
4133       }
4134       Count += 1;
4135     }
4136   }
4137   // There are three cases here:
4138   //
4139   // - if the only defined element is a loaded one, the best sequence
4140   //   is a replicating load.
4141   //
4142   // - otherwise, if the only defined element is an i64 value, we will
4143   //   end up with the same VLVGP sequence regardless of whether we short-cut
4144   //   for replication or fall through to the later code.
4145   //
4146   // - otherwise, if the only defined element is an i32 or smaller value,
4147   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
4148   //   This is only a win if the single defined element is used more than once.
4149   //   In other cases we're better off using a single VLVGx.
4150   if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD))
4151     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
4152 
4153   // The best way of building a v2i64 from two i64s is to use VLVGP.
4154   if (VT == MVT::v2i64)
4155     return joinDwords(DAG, DL, Elems[0], Elems[1]);
4156 
4157   // Use a 64-bit merge high to combine two doubles.
4158   if (VT == MVT::v2f64)
4159     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4160 
4161   // Build v4f32 values directly from the FPRs:
4162   //
4163   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
4164   //         V              V         VMRHF
4165   //      <ABxx>         <CDxx>
4166   //                V                 VMRHG
4167   //              <ABCD>
4168   if (VT == MVT::v4f32) {
4169     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4170     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
4171     // Avoid unnecessary undefs by reusing the other operand.
4172     if (Op01.isUndef())
4173       Op01 = Op23;
4174     else if (Op23.isUndef())
4175       Op23 = Op01;
4176     // Merging identical replications is a no-op.
4177     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
4178       return Op01;
4179     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
4180     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
4181     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
4182                              DL, MVT::v2i64, Op01, Op23);
4183     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4184   }
4185 
4186   // Collect the constant terms.
4187   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
4188   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
4189 
4190   unsigned NumConstants = 0;
4191   for (unsigned I = 0; I < NumElements; ++I) {
4192     SDValue Elem = Elems[I];
4193     if (Elem.getOpcode() == ISD::Constant ||
4194         Elem.getOpcode() == ISD::ConstantFP) {
4195       NumConstants += 1;
4196       Constants[I] = Elem;
4197       Done[I] = true;
4198     }
4199   }
4200   // If there was at least one constant, fill in the other elements of
4201   // Constants with undefs to get a full vector constant and use that
4202   // as the starting point.
4203   SDValue Result;
4204   if (NumConstants > 0) {
4205     for (unsigned I = 0; I < NumElements; ++I)
4206       if (!Constants[I].getNode())
4207         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
4208     Result = DAG.getBuildVector(VT, DL, Constants);
4209   } else {
4210     // Otherwise try to use VLVGP to start the sequence in order to
4211     // avoid a false dependency on any previous contents of the vector
4212     // register.  This only makes sense if one of the associated elements
4213     // is defined.
4214     unsigned I1 = NumElements / 2 - 1;
4215     unsigned I2 = NumElements - 1;
4216     bool Def1 = !Elems[I1].isUndef();
4217     bool Def2 = !Elems[I2].isUndef();
4218     if (Def1 || Def2) {
4219       SDValue Elem1 = Elems[Def1 ? I1 : I2];
4220       SDValue Elem2 = Elems[Def2 ? I2 : I1];
4221       Result = DAG.getNode(ISD::BITCAST, DL, VT,
4222                            joinDwords(DAG, DL, Elem1, Elem2));
4223       Done[I1] = true;
4224       Done[I2] = true;
4225     } else
4226       Result = DAG.getUNDEF(VT);
4227   }
4228 
4229   // Use VLVGx to insert the other elements.
4230   for (unsigned I = 0; I < NumElements; ++I)
4231     if (!Done[I] && !Elems[I].isUndef())
4232       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
4233                            DAG.getConstant(I, DL, MVT::i32));
4234   return Result;
4235 }
4236 
lowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG) const4237 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
4238                                                  SelectionDAG &DAG) const {
4239   const SystemZInstrInfo *TII =
4240     static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
4241   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
4242   SDLoc DL(Op);
4243   EVT VT = Op.getValueType();
4244 
4245   if (BVN->isConstant()) {
4246     // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
4247     // preferred way of creating all-zero and all-one vectors so give it
4248     // priority over other methods below.
4249     uint64_t Mask = 0;
4250     if (tryBuildVectorByteMask(BVN, Mask)) {
4251       SDValue Op = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
4252                                DAG.getConstant(Mask, DL, MVT::i32));
4253       return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4254     }
4255 
4256     // Try using some form of replication.
4257     APInt SplatBits, SplatUndef;
4258     unsigned SplatBitSize;
4259     bool HasAnyUndefs;
4260     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
4261                              8, true) &&
4262         SplatBitSize <= 64) {
4263       // First try assuming that any undefined bits above the highest set bit
4264       // and below the lowest set bit are 1s.  This increases the likelihood of
4265       // being able to use a sign-extended element value in VECTOR REPLICATE
4266       // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
4267       uint64_t SplatBitsZ = SplatBits.getZExtValue();
4268       uint64_t SplatUndefZ = SplatUndef.getZExtValue();
4269       uint64_t Lower = (SplatUndefZ
4270                         & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
4271       uint64_t Upper = (SplatUndefZ
4272                         & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
4273       uint64_t Value = SplatBitsZ | Upper | Lower;
4274       SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value,
4275                                            SplatBitSize);
4276       if (Op.getNode())
4277         return Op;
4278 
4279       // Now try assuming that any undefined bits between the first and
4280       // last defined set bits are set.  This increases the chances of
4281       // using a non-wraparound mask.
4282       uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
4283       Value = SplatBitsZ | Middle;
4284       Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize);
4285       if (Op.getNode())
4286         return Op;
4287     }
4288 
4289     // Fall back to loading it from memory.
4290     return SDValue();
4291   }
4292 
4293   // See if we should use shuffles to construct the vector from other vectors.
4294   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
4295     return Res;
4296 
4297   // Detect SCALAR_TO_VECTOR conversions.
4298   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
4299     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
4300 
4301   // Otherwise use buildVector to build the vector up from GPRs.
4302   unsigned NumElements = Op.getNumOperands();
4303   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
4304   for (unsigned I = 0; I < NumElements; ++I)
4305     Ops[I] = Op.getOperand(I);
4306   return buildVector(DAG, DL, VT, Ops);
4307 }
4308 
lowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG) const4309 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
4310                                                    SelectionDAG &DAG) const {
4311   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
4312   SDLoc DL(Op);
4313   EVT VT = Op.getValueType();
4314   unsigned NumElements = VT.getVectorNumElements();
4315 
4316   if (VSN->isSplat()) {
4317     SDValue Op0 = Op.getOperand(0);
4318     unsigned Index = VSN->getSplatIndex();
4319     assert(Index < VT.getVectorNumElements() &&
4320            "Splat index should be defined and in first operand");
4321     // See whether the value we're splatting is directly available as a scalar.
4322     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4323         Op0.getOpcode() == ISD::BUILD_VECTOR)
4324       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
4325     // Otherwise keep it as a vector-to-vector operation.
4326     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
4327                        DAG.getConstant(Index, DL, MVT::i32));
4328   }
4329 
4330   GeneralShuffle GS(VT);
4331   for (unsigned I = 0; I < NumElements; ++I) {
4332     int Elt = VSN->getMaskElt(I);
4333     if (Elt < 0)
4334       GS.addUndef();
4335     else
4336       GS.add(Op.getOperand(unsigned(Elt) / NumElements),
4337              unsigned(Elt) % NumElements);
4338   }
4339   return GS.getNode(DAG, SDLoc(VSN));
4340 }
4341 
lowerSCALAR_TO_VECTOR(SDValue Op,SelectionDAG & DAG) const4342 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
4343                                                      SelectionDAG &DAG) const {
4344   SDLoc DL(Op);
4345   // Just insert the scalar into element 0 of an undefined vector.
4346   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
4347                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
4348                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
4349 }
4350 
lowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const4351 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4352                                                       SelectionDAG &DAG) const {
4353   // Handle insertions of floating-point values.
4354   SDLoc DL(Op);
4355   SDValue Op0 = Op.getOperand(0);
4356   SDValue Op1 = Op.getOperand(1);
4357   SDValue Op2 = Op.getOperand(2);
4358   EVT VT = Op.getValueType();
4359 
4360   // Insertions into constant indices of a v2f64 can be done using VPDI.
4361   // However, if the inserted value is a bitcast or a constant then it's
4362   // better to use GPRs, as below.
4363   if (VT == MVT::v2f64 &&
4364       Op1.getOpcode() != ISD::BITCAST &&
4365       Op1.getOpcode() != ISD::ConstantFP &&
4366       Op2.getOpcode() == ISD::Constant) {
4367     uint64_t Index = dyn_cast<ConstantSDNode>(Op2)->getZExtValue();
4368     unsigned Mask = VT.getVectorNumElements() - 1;
4369     if (Index <= Mask)
4370       return Op;
4371   }
4372 
4373   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
4374   MVT IntVT = MVT::getIntegerVT(VT.getVectorElementType().getSizeInBits());
4375   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
4376   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
4377                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
4378                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
4379   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4380 }
4381 
4382 SDValue
lowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const4383 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4384                                                SelectionDAG &DAG) const {
4385   // Handle extractions of floating-point values.
4386   SDLoc DL(Op);
4387   SDValue Op0 = Op.getOperand(0);
4388   SDValue Op1 = Op.getOperand(1);
4389   EVT VT = Op.getValueType();
4390   EVT VecVT = Op0.getValueType();
4391 
4392   // Extractions of constant indices can be done directly.
4393   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
4394     uint64_t Index = CIndexN->getZExtValue();
4395     unsigned Mask = VecVT.getVectorNumElements() - 1;
4396     if (Index <= Mask)
4397       return Op;
4398   }
4399 
4400   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
4401   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
4402   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
4403   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
4404                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
4405   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4406 }
4407 
4408 SDValue
lowerExtendVectorInreg(SDValue Op,SelectionDAG & DAG,unsigned UnpackHigh) const4409 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG,
4410                                               unsigned UnpackHigh) const {
4411   SDValue PackedOp = Op.getOperand(0);
4412   EVT OutVT = Op.getValueType();
4413   EVT InVT = PackedOp.getValueType();
4414   unsigned ToBits = OutVT.getVectorElementType().getSizeInBits();
4415   unsigned FromBits = InVT.getVectorElementType().getSizeInBits();
4416   do {
4417     FromBits *= 2;
4418     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
4419                                  SystemZ::VectorBits / FromBits);
4420     PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp);
4421   } while (FromBits != ToBits);
4422   return PackedOp;
4423 }
4424 
lowerShift(SDValue Op,SelectionDAG & DAG,unsigned ByScalar) const4425 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
4426                                           unsigned ByScalar) const {
4427   // Look for cases where a vector shift can use the *_BY_SCALAR form.
4428   SDValue Op0 = Op.getOperand(0);
4429   SDValue Op1 = Op.getOperand(1);
4430   SDLoc DL(Op);
4431   EVT VT = Op.getValueType();
4432   unsigned ElemBitSize = VT.getVectorElementType().getSizeInBits();
4433 
4434   // See whether the shift vector is a splat represented as BUILD_VECTOR.
4435   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
4436     APInt SplatBits, SplatUndef;
4437     unsigned SplatBitSize;
4438     bool HasAnyUndefs;
4439     // Check for constant splats.  Use ElemBitSize as the minimum element
4440     // width and reject splats that need wider elements.
4441     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
4442                              ElemBitSize, true) &&
4443         SplatBitSize == ElemBitSize) {
4444       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
4445                                       DL, MVT::i32);
4446       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4447     }
4448     // Check for variable splats.
4449     BitVector UndefElements;
4450     SDValue Splat = BVN->getSplatValue(&UndefElements);
4451     if (Splat) {
4452       // Since i32 is the smallest legal type, we either need a no-op
4453       // or a truncation.
4454       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
4455       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4456     }
4457   }
4458 
4459   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
4460   // and the shift amount is directly available in a GPR.
4461   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
4462     if (VSN->isSplat()) {
4463       SDValue VSNOp0 = VSN->getOperand(0);
4464       unsigned Index = VSN->getSplatIndex();
4465       assert(Index < VT.getVectorNumElements() &&
4466              "Splat index should be defined and in first operand");
4467       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4468           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
4469         // Since i32 is the smallest legal type, we either need a no-op
4470         // or a truncation.
4471         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
4472                                     VSNOp0.getOperand(Index));
4473         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4474       }
4475     }
4476   }
4477 
4478   // Otherwise just treat the current form as legal.
4479   return Op;
4480 }
4481 
LowerOperation(SDValue Op,SelectionDAG & DAG) const4482 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
4483                                               SelectionDAG &DAG) const {
4484   switch (Op.getOpcode()) {
4485   case ISD::FRAMEADDR:
4486     return lowerFRAMEADDR(Op, DAG);
4487   case ISD::RETURNADDR:
4488     return lowerRETURNADDR(Op, DAG);
4489   case ISD::BR_CC:
4490     return lowerBR_CC(Op, DAG);
4491   case ISD::SELECT_CC:
4492     return lowerSELECT_CC(Op, DAG);
4493   case ISD::SETCC:
4494     return lowerSETCC(Op, DAG);
4495   case ISD::GlobalAddress:
4496     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
4497   case ISD::GlobalTLSAddress:
4498     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
4499   case ISD::BlockAddress:
4500     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
4501   case ISD::JumpTable:
4502     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
4503   case ISD::ConstantPool:
4504     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
4505   case ISD::BITCAST:
4506     return lowerBITCAST(Op, DAG);
4507   case ISD::VASTART:
4508     return lowerVASTART(Op, DAG);
4509   case ISD::VACOPY:
4510     return lowerVACOPY(Op, DAG);
4511   case ISD::DYNAMIC_STACKALLOC:
4512     return lowerDYNAMIC_STACKALLOC(Op, DAG);
4513   case ISD::GET_DYNAMIC_AREA_OFFSET:
4514     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
4515   case ISD::SMUL_LOHI:
4516     return lowerSMUL_LOHI(Op, DAG);
4517   case ISD::UMUL_LOHI:
4518     return lowerUMUL_LOHI(Op, DAG);
4519   case ISD::SDIVREM:
4520     return lowerSDIVREM(Op, DAG);
4521   case ISD::UDIVREM:
4522     return lowerUDIVREM(Op, DAG);
4523   case ISD::OR:
4524     return lowerOR(Op, DAG);
4525   case ISD::CTPOP:
4526     return lowerCTPOP(Op, DAG);
4527   case ISD::ATOMIC_FENCE:
4528     return lowerATOMIC_FENCE(Op, DAG);
4529   case ISD::ATOMIC_SWAP:
4530     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
4531   case ISD::ATOMIC_STORE:
4532     return lowerATOMIC_STORE(Op, DAG);
4533   case ISD::ATOMIC_LOAD:
4534     return lowerATOMIC_LOAD(Op, DAG);
4535   case ISD::ATOMIC_LOAD_ADD:
4536     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
4537   case ISD::ATOMIC_LOAD_SUB:
4538     return lowerATOMIC_LOAD_SUB(Op, DAG);
4539   case ISD::ATOMIC_LOAD_AND:
4540     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
4541   case ISD::ATOMIC_LOAD_OR:
4542     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
4543   case ISD::ATOMIC_LOAD_XOR:
4544     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
4545   case ISD::ATOMIC_LOAD_NAND:
4546     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
4547   case ISD::ATOMIC_LOAD_MIN:
4548     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
4549   case ISD::ATOMIC_LOAD_MAX:
4550     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
4551   case ISD::ATOMIC_LOAD_UMIN:
4552     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
4553   case ISD::ATOMIC_LOAD_UMAX:
4554     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
4555   case ISD::ATOMIC_CMP_SWAP:
4556     return lowerATOMIC_CMP_SWAP(Op, DAG);
4557   case ISD::STACKSAVE:
4558     return lowerSTACKSAVE(Op, DAG);
4559   case ISD::STACKRESTORE:
4560     return lowerSTACKRESTORE(Op, DAG);
4561   case ISD::PREFETCH:
4562     return lowerPREFETCH(Op, DAG);
4563   case ISD::INTRINSIC_W_CHAIN:
4564     return lowerINTRINSIC_W_CHAIN(Op, DAG);
4565   case ISD::INTRINSIC_WO_CHAIN:
4566     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
4567   case ISD::BUILD_VECTOR:
4568     return lowerBUILD_VECTOR(Op, DAG);
4569   case ISD::VECTOR_SHUFFLE:
4570     return lowerVECTOR_SHUFFLE(Op, DAG);
4571   case ISD::SCALAR_TO_VECTOR:
4572     return lowerSCALAR_TO_VECTOR(Op, DAG);
4573   case ISD::INSERT_VECTOR_ELT:
4574     return lowerINSERT_VECTOR_ELT(Op, DAG);
4575   case ISD::EXTRACT_VECTOR_ELT:
4576     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4577   case ISD::SIGN_EXTEND_VECTOR_INREG:
4578     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH);
4579   case ISD::ZERO_EXTEND_VECTOR_INREG:
4580     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH);
4581   case ISD::SHL:
4582     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
4583   case ISD::SRL:
4584     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
4585   case ISD::SRA:
4586     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
4587   default:
4588     llvm_unreachable("Unexpected node to lower");
4589   }
4590 }
4591 
getTargetNodeName(unsigned Opcode) const4592 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
4593 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
4594   switch ((SystemZISD::NodeType)Opcode) {
4595     case SystemZISD::FIRST_NUMBER: break;
4596     OPCODE(RET_FLAG);
4597     OPCODE(CALL);
4598     OPCODE(SIBCALL);
4599     OPCODE(TLS_GDCALL);
4600     OPCODE(TLS_LDCALL);
4601     OPCODE(PCREL_WRAPPER);
4602     OPCODE(PCREL_OFFSET);
4603     OPCODE(IABS);
4604     OPCODE(ICMP);
4605     OPCODE(FCMP);
4606     OPCODE(TM);
4607     OPCODE(BR_CCMASK);
4608     OPCODE(SELECT_CCMASK);
4609     OPCODE(ADJDYNALLOC);
4610     OPCODE(EXTRACT_ACCESS);
4611     OPCODE(POPCNT);
4612     OPCODE(UMUL_LOHI64);
4613     OPCODE(SDIVREM32);
4614     OPCODE(SDIVREM64);
4615     OPCODE(UDIVREM32);
4616     OPCODE(UDIVREM64);
4617     OPCODE(MVC);
4618     OPCODE(MVC_LOOP);
4619     OPCODE(NC);
4620     OPCODE(NC_LOOP);
4621     OPCODE(OC);
4622     OPCODE(OC_LOOP);
4623     OPCODE(XC);
4624     OPCODE(XC_LOOP);
4625     OPCODE(CLC);
4626     OPCODE(CLC_LOOP);
4627     OPCODE(STPCPY);
4628     OPCODE(STRCMP);
4629     OPCODE(SEARCH_STRING);
4630     OPCODE(IPM);
4631     OPCODE(SERIALIZE);
4632     OPCODE(MEMBARRIER);
4633     OPCODE(TBEGIN);
4634     OPCODE(TBEGIN_NOFLOAT);
4635     OPCODE(TEND);
4636     OPCODE(BYTE_MASK);
4637     OPCODE(ROTATE_MASK);
4638     OPCODE(REPLICATE);
4639     OPCODE(JOIN_DWORDS);
4640     OPCODE(SPLAT);
4641     OPCODE(MERGE_HIGH);
4642     OPCODE(MERGE_LOW);
4643     OPCODE(SHL_DOUBLE);
4644     OPCODE(PERMUTE_DWORDS);
4645     OPCODE(PERMUTE);
4646     OPCODE(PACK);
4647     OPCODE(PACKS_CC);
4648     OPCODE(PACKLS_CC);
4649     OPCODE(UNPACK_HIGH);
4650     OPCODE(UNPACKL_HIGH);
4651     OPCODE(UNPACK_LOW);
4652     OPCODE(UNPACKL_LOW);
4653     OPCODE(VSHL_BY_SCALAR);
4654     OPCODE(VSRL_BY_SCALAR);
4655     OPCODE(VSRA_BY_SCALAR);
4656     OPCODE(VSUM);
4657     OPCODE(VICMPE);
4658     OPCODE(VICMPH);
4659     OPCODE(VICMPHL);
4660     OPCODE(VICMPES);
4661     OPCODE(VICMPHS);
4662     OPCODE(VICMPHLS);
4663     OPCODE(VFCMPE);
4664     OPCODE(VFCMPH);
4665     OPCODE(VFCMPHE);
4666     OPCODE(VFCMPES);
4667     OPCODE(VFCMPHS);
4668     OPCODE(VFCMPHES);
4669     OPCODE(VFTCI);
4670     OPCODE(VEXTEND);
4671     OPCODE(VROUND);
4672     OPCODE(VTM);
4673     OPCODE(VFAE_CC);
4674     OPCODE(VFAEZ_CC);
4675     OPCODE(VFEE_CC);
4676     OPCODE(VFEEZ_CC);
4677     OPCODE(VFENE_CC);
4678     OPCODE(VFENEZ_CC);
4679     OPCODE(VISTR_CC);
4680     OPCODE(VSTRC_CC);
4681     OPCODE(VSTRCZ_CC);
4682     OPCODE(TDC);
4683     OPCODE(ATOMIC_SWAPW);
4684     OPCODE(ATOMIC_LOADW_ADD);
4685     OPCODE(ATOMIC_LOADW_SUB);
4686     OPCODE(ATOMIC_LOADW_AND);
4687     OPCODE(ATOMIC_LOADW_OR);
4688     OPCODE(ATOMIC_LOADW_XOR);
4689     OPCODE(ATOMIC_LOADW_NAND);
4690     OPCODE(ATOMIC_LOADW_MIN);
4691     OPCODE(ATOMIC_LOADW_MAX);
4692     OPCODE(ATOMIC_LOADW_UMIN);
4693     OPCODE(ATOMIC_LOADW_UMAX);
4694     OPCODE(ATOMIC_CMP_SWAPW);
4695     OPCODE(LRV);
4696     OPCODE(STRV);
4697     OPCODE(PREFETCH);
4698   }
4699   return nullptr;
4700 #undef OPCODE
4701 }
4702 
4703 // Return true if VT is a vector whose elements are a whole number of bytes
4704 // in width.
canTreatAsByteVector(EVT VT)4705 static bool canTreatAsByteVector(EVT VT) {
4706   return VT.isVector() && VT.getVectorElementType().getSizeInBits() % 8 == 0;
4707 }
4708 
4709 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
4710 // producing a result of type ResVT.  Op is a possibly bitcast version
4711 // of the input vector and Index is the index (based on type VecVT) that
4712 // should be extracted.  Return the new extraction if a simplification
4713 // was possible or if Force is true.
combineExtract(const SDLoc & DL,EVT ResVT,EVT VecVT,SDValue Op,unsigned Index,DAGCombinerInfo & DCI,bool Force) const4714 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
4715                                               EVT VecVT, SDValue Op,
4716                                               unsigned Index,
4717                                               DAGCombinerInfo &DCI,
4718                                               bool Force) const {
4719   SelectionDAG &DAG = DCI.DAG;
4720 
4721   // The number of bytes being extracted.
4722   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
4723 
4724   for (;;) {
4725     unsigned Opcode = Op.getOpcode();
4726     if (Opcode == ISD::BITCAST)
4727       // Look through bitcasts.
4728       Op = Op.getOperand(0);
4729     else if (Opcode == ISD::VECTOR_SHUFFLE &&
4730              canTreatAsByteVector(Op.getValueType())) {
4731       // Get a VPERM-like permute mask and see whether the bytes covered
4732       // by the extracted element are a contiguous sequence from one
4733       // source operand.
4734       SmallVector<int, SystemZ::VectorBytes> Bytes;
4735       getVPermMask(cast<ShuffleVectorSDNode>(Op), Bytes);
4736       int First;
4737       if (!getShuffleInput(Bytes, Index * BytesPerElement,
4738                            BytesPerElement, First))
4739         break;
4740       if (First < 0)
4741         return DAG.getUNDEF(ResVT);
4742       // Make sure the contiguous sequence starts at a multiple of the
4743       // original element size.
4744       unsigned Byte = unsigned(First) % Bytes.size();
4745       if (Byte % BytesPerElement != 0)
4746         break;
4747       // We can get the extracted value directly from an input.
4748       Index = Byte / BytesPerElement;
4749       Op = Op.getOperand(unsigned(First) / Bytes.size());
4750       Force = true;
4751     } else if (Opcode == ISD::BUILD_VECTOR &&
4752                canTreatAsByteVector(Op.getValueType())) {
4753       // We can only optimize this case if the BUILD_VECTOR elements are
4754       // at least as wide as the extracted value.
4755       EVT OpVT = Op.getValueType();
4756       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
4757       if (OpBytesPerElement < BytesPerElement)
4758         break;
4759       // Make sure that the least-significant bit of the extracted value
4760       // is the least significant bit of an input.
4761       unsigned End = (Index + 1) * BytesPerElement;
4762       if (End % OpBytesPerElement != 0)
4763         break;
4764       // We're extracting the low part of one operand of the BUILD_VECTOR.
4765       Op = Op.getOperand(End / OpBytesPerElement - 1);
4766       if (!Op.getValueType().isInteger()) {
4767         EVT VT = MVT::getIntegerVT(Op.getValueType().getSizeInBits());
4768         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
4769         DCI.AddToWorklist(Op.getNode());
4770       }
4771       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
4772       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
4773       if (VT != ResVT) {
4774         DCI.AddToWorklist(Op.getNode());
4775         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
4776       }
4777       return Op;
4778     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
4779                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
4780                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
4781                canTreatAsByteVector(Op.getValueType()) &&
4782                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
4783       // Make sure that only the unextended bits are significant.
4784       EVT ExtVT = Op.getValueType();
4785       EVT OpVT = Op.getOperand(0).getValueType();
4786       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
4787       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
4788       unsigned Byte = Index * BytesPerElement;
4789       unsigned SubByte = Byte % ExtBytesPerElement;
4790       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
4791       if (SubByte < MinSubByte ||
4792           SubByte + BytesPerElement > ExtBytesPerElement)
4793         break;
4794       // Get the byte offset of the unextended element
4795       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
4796       // ...then add the byte offset relative to that element.
4797       Byte += SubByte - MinSubByte;
4798       if (Byte % BytesPerElement != 0)
4799         break;
4800       Op = Op.getOperand(0);
4801       Index = Byte / BytesPerElement;
4802       Force = true;
4803     } else
4804       break;
4805   }
4806   if (Force) {
4807     if (Op.getValueType() != VecVT) {
4808       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
4809       DCI.AddToWorklist(Op.getNode());
4810     }
4811     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
4812                        DAG.getConstant(Index, DL, MVT::i32));
4813   }
4814   return SDValue();
4815 }
4816 
4817 // Optimize vector operations in scalar value Op on the basis that Op
4818 // is truncated to TruncVT.
combineTruncateExtract(const SDLoc & DL,EVT TruncVT,SDValue Op,DAGCombinerInfo & DCI) const4819 SDValue SystemZTargetLowering::combineTruncateExtract(
4820     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
4821   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
4822   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
4823   // of type TruncVT.
4824   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4825       TruncVT.getSizeInBits() % 8 == 0) {
4826     SDValue Vec = Op.getOperand(0);
4827     EVT VecVT = Vec.getValueType();
4828     if (canTreatAsByteVector(VecVT)) {
4829       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
4830         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
4831         unsigned TruncBytes = TruncVT.getStoreSize();
4832         if (BytesPerElement % TruncBytes == 0) {
4833           // Calculate the value of Y' in the above description.  We are
4834           // splitting the original elements into Scale equal-sized pieces
4835           // and for truncation purposes want the last (least-significant)
4836           // of these pieces for IndexN.  This is easiest to do by calculating
4837           // the start index of the following element and then subtracting 1.
4838           unsigned Scale = BytesPerElement / TruncBytes;
4839           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
4840 
4841           // Defer the creation of the bitcast from X to combineExtract,
4842           // which might be able to optimize the extraction.
4843           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
4844                                    VecVT.getStoreSize() / TruncBytes);
4845           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
4846           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
4847         }
4848       }
4849     }
4850   }
4851   return SDValue();
4852 }
4853 
combineSIGN_EXTEND(SDNode * N,DAGCombinerInfo & DCI) const4854 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
4855     SDNode *N, DAGCombinerInfo &DCI) const {
4856   // Convert (sext (ashr (shl X, C1), C2)) to
4857   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
4858   // cheap as narrower ones.
4859   SelectionDAG &DAG = DCI.DAG;
4860   SDValue N0 = N->getOperand(0);
4861   EVT VT = N->getValueType(0);
4862   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
4863     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
4864     SDValue Inner = N0.getOperand(0);
4865     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
4866       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
4867         unsigned Extra = (VT.getSizeInBits() -
4868                           N0.getValueType().getSizeInBits());
4869         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
4870         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
4871         EVT ShiftVT = N0.getOperand(1).getValueType();
4872         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
4873                                   Inner.getOperand(0));
4874         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
4875                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
4876                                                   ShiftVT));
4877         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
4878                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
4879       }
4880     }
4881   }
4882   return SDValue();
4883 }
4884 
combineMERGE(SDNode * N,DAGCombinerInfo & DCI) const4885 SDValue SystemZTargetLowering::combineMERGE(
4886     SDNode *N, DAGCombinerInfo &DCI) const {
4887   SelectionDAG &DAG = DCI.DAG;
4888   unsigned Opcode = N->getOpcode();
4889   SDValue Op0 = N->getOperand(0);
4890   SDValue Op1 = N->getOperand(1);
4891   if (Op0.getOpcode() == ISD::BITCAST)
4892     Op0 = Op0.getOperand(0);
4893   if (Op0.getOpcode() == SystemZISD::BYTE_MASK &&
4894       cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) {
4895     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
4896     // for v4f32.
4897     if (Op1 == N->getOperand(0))
4898       return Op1;
4899     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
4900     EVT VT = Op1.getValueType();
4901     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
4902     if (ElemBytes <= 4) {
4903       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
4904                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
4905       EVT InVT = VT.changeVectorElementTypeToInteger();
4906       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
4907                                    SystemZ::VectorBytes / ElemBytes / 2);
4908       if (VT != InVT) {
4909         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
4910         DCI.AddToWorklist(Op1.getNode());
4911       }
4912       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
4913       DCI.AddToWorklist(Op.getNode());
4914       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
4915     }
4916   }
4917   return SDValue();
4918 }
4919 
combineSTORE(SDNode * N,DAGCombinerInfo & DCI) const4920 SDValue SystemZTargetLowering::combineSTORE(
4921     SDNode *N, DAGCombinerInfo &DCI) const {
4922   SelectionDAG &DAG = DCI.DAG;
4923   auto *SN = cast<StoreSDNode>(N);
4924   auto &Op1 = N->getOperand(1);
4925   EVT MemVT = SN->getMemoryVT();
4926   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
4927   // for the extraction to be done on a vMiN value, so that we can use VSTE.
4928   // If X has wider elements then convert it to:
4929   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
4930   if (MemVT.isInteger()) {
4931     if (SDValue Value =
4932             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
4933       DCI.AddToWorklist(Value.getNode());
4934 
4935       // Rewrite the store with the new form of stored value.
4936       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
4937                                SN->getBasePtr(), SN->getMemoryVT(),
4938                                SN->getMemOperand());
4939     }
4940   }
4941   // Combine STORE (BSWAP) into STRVH/STRV/STRVG
4942   // See comment in combineBSWAP about volatile accesses.
4943   if (!SN->isVolatile() &&
4944       Op1.getOpcode() == ISD::BSWAP &&
4945       Op1.getNode()->hasOneUse() &&
4946       (Op1.getValueType() == MVT::i16 ||
4947        Op1.getValueType() == MVT::i32 ||
4948        Op1.getValueType() == MVT::i64)) {
4949 
4950       SDValue BSwapOp = Op1.getOperand(0);
4951 
4952       if (BSwapOp.getValueType() == MVT::i16)
4953         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
4954 
4955       SDValue Ops[] = {
4956         N->getOperand(0), BSwapOp, N->getOperand(2),
4957         DAG.getValueType(Op1.getValueType())
4958       };
4959 
4960       return
4961         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
4962                                 Ops, MemVT, SN->getMemOperand());
4963     }
4964   return SDValue();
4965 }
4966 
combineEXTRACT_VECTOR_ELT(SDNode * N,DAGCombinerInfo & DCI) const4967 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
4968     SDNode *N, DAGCombinerInfo &DCI) const {
4969   // Try to simplify a vector extraction.
4970   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
4971     SDValue Op0 = N->getOperand(0);
4972     EVT VecVT = Op0.getValueType();
4973     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
4974                           IndexN->getZExtValue(), DCI, false);
4975   }
4976   return SDValue();
4977 }
4978 
combineJOIN_DWORDS(SDNode * N,DAGCombinerInfo & DCI) const4979 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
4980     SDNode *N, DAGCombinerInfo &DCI) const {
4981   SelectionDAG &DAG = DCI.DAG;
4982   // (join_dwords X, X) == (replicate X)
4983   if (N->getOperand(0) == N->getOperand(1))
4984     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
4985                        N->getOperand(0));
4986   return SDValue();
4987 }
4988 
combineFP_ROUND(SDNode * N,DAGCombinerInfo & DCI) const4989 SDValue SystemZTargetLowering::combineFP_ROUND(
4990     SDNode *N, DAGCombinerInfo &DCI) const {
4991   // (fround (extract_vector_elt X 0))
4992   // (fround (extract_vector_elt X 1)) ->
4993   // (extract_vector_elt (VROUND X) 0)
4994   // (extract_vector_elt (VROUND X) 1)
4995   //
4996   // This is a special case since the target doesn't really support v2f32s.
4997   SelectionDAG &DAG = DCI.DAG;
4998   SDValue Op0 = N->getOperand(0);
4999   if (N->getValueType(0) == MVT::f32 &&
5000       Op0.hasOneUse() &&
5001       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5002       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
5003       Op0.getOperand(1).getOpcode() == ISD::Constant &&
5004       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
5005     SDValue Vec = Op0.getOperand(0);
5006     for (auto *U : Vec->uses()) {
5007       if (U != Op0.getNode() &&
5008           U->hasOneUse() &&
5009           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5010           U->getOperand(0) == Vec &&
5011           U->getOperand(1).getOpcode() == ISD::Constant &&
5012           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
5013         SDValue OtherRound = SDValue(*U->use_begin(), 0);
5014         if (OtherRound.getOpcode() == ISD::FP_ROUND &&
5015             OtherRound.getOperand(0) == SDValue(U, 0) &&
5016             OtherRound.getValueType() == MVT::f32) {
5017           SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
5018                                        MVT::v4f32, Vec);
5019           DCI.AddToWorklist(VRound.getNode());
5020           SDValue Extract1 =
5021             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
5022                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
5023           DCI.AddToWorklist(Extract1.getNode());
5024           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
5025           SDValue Extract0 =
5026             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
5027                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
5028           return Extract0;
5029         }
5030       }
5031     }
5032   }
5033   return SDValue();
5034 }
5035 
combineBSWAP(SDNode * N,DAGCombinerInfo & DCI) const5036 SDValue SystemZTargetLowering::combineBSWAP(
5037     SDNode *N, DAGCombinerInfo &DCI) const {
5038   SelectionDAG &DAG = DCI.DAG;
5039   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG
5040   // These loads are allowed to access memory multiple times, and so we must check
5041   // that the loads are not volatile before performing the combine.
5042   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5043       N->getOperand(0).hasOneUse() &&
5044       (N->getValueType(0) == MVT::i16 || N->getValueType(0) == MVT::i32 ||
5045        N->getValueType(0) == MVT::i64) &&
5046        !cast<LoadSDNode>(N->getOperand(0))->isVolatile()) {
5047       SDValue Load = N->getOperand(0);
5048       LoadSDNode *LD = cast<LoadSDNode>(Load);
5049 
5050       // Create the byte-swapping load.
5051       SDValue Ops[] = {
5052         LD->getChain(),    // Chain
5053         LD->getBasePtr(),  // Ptr
5054         DAG.getValueType(N->getValueType(0)) // VT
5055       };
5056       SDValue BSLoad =
5057         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
5058                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
5059                                               MVT::i64 : MVT::i32, MVT::Other),
5060                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
5061 
5062       // If this is an i16 load, insert the truncate.
5063       SDValue ResVal = BSLoad;
5064       if (N->getValueType(0) == MVT::i16)
5065         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
5066 
5067       // First, combine the bswap away.  This makes the value produced by the
5068       // load dead.
5069       DCI.CombineTo(N, ResVal);
5070 
5071       // Next, combine the load away, we give it a bogus result value but a real
5072       // chain result.  The result value is dead because the bswap is dead.
5073       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5074 
5075       // Return N so it doesn't get rechecked!
5076       return SDValue(N, 0);
5077     }
5078   return SDValue();
5079 }
5080 
combineSHIFTROT(SDNode * N,DAGCombinerInfo & DCI) const5081 SDValue SystemZTargetLowering::combineSHIFTROT(
5082     SDNode *N, DAGCombinerInfo &DCI) const {
5083 
5084   SelectionDAG &DAG = DCI.DAG;
5085 
5086   // Shift/rotate instructions only use the last 6 bits of the second operand
5087   // register. If the second operand is the result of an AND with an immediate
5088   // value that has its last 6 bits set, we can safely remove the AND operation.
5089   SDValue N1 = N->getOperand(1);
5090   if (N1.getOpcode() == ISD::AND) {
5091     auto *AndMask = dyn_cast<ConstantSDNode>(N1.getOperand(1));
5092 
5093     // The AND mask is constant
5094     if (AndMask) {
5095       auto AmtVal = AndMask->getZExtValue();
5096 
5097       // Bottom 6 bits are set
5098       if ((AmtVal & 0x3f) == 0x3f) {
5099         SDValue AndOp = N1->getOperand(0);
5100 
5101         // This is the only use, so remove the node
5102         if (N1.hasOneUse()) {
5103           // Combine the AND away
5104           DCI.CombineTo(N1.getNode(), AndOp);
5105 
5106           // Return N so it isn't rechecked
5107           return SDValue(N, 0);
5108 
5109         // The node will be reused, so create a new node for this one use
5110         } else {
5111           SDValue Replace = DAG.getNode(N->getOpcode(), SDLoc(N),
5112                                         N->getValueType(0), N->getOperand(0),
5113                                         AndOp);
5114           DCI.AddToWorklist(Replace.getNode());
5115 
5116           return Replace;
5117         }
5118       }
5119     }
5120   }
5121 
5122   return SDValue();
5123 }
5124 
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const5125 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
5126                                                  DAGCombinerInfo &DCI) const {
5127   switch(N->getOpcode()) {
5128   default: break;
5129   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
5130   case SystemZISD::MERGE_HIGH:
5131   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
5132   case ISD::STORE:              return combineSTORE(N, DCI);
5133   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
5134   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
5135   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
5136   case ISD::BSWAP:              return combineBSWAP(N, DCI);
5137   case ISD::SHL:
5138   case ISD::SRA:
5139   case ISD::SRL:
5140   case ISD::ROTL:               return combineSHIFTROT(N, DCI);
5141   }
5142 
5143   return SDValue();
5144 }
5145 
5146 //===----------------------------------------------------------------------===//
5147 // Custom insertion
5148 //===----------------------------------------------------------------------===//
5149 
5150 // Create a new basic block after MBB.
emitBlockAfter(MachineBasicBlock * MBB)5151 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
5152   MachineFunction &MF = *MBB->getParent();
5153   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
5154   MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
5155   return NewMBB;
5156 }
5157 
5158 // Split MBB after MI and return the new block (the one that contains
5159 // instructions after MI).
splitBlockAfter(MachineBasicBlock::iterator MI,MachineBasicBlock * MBB)5160 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI,
5161                                           MachineBasicBlock *MBB) {
5162   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
5163   NewMBB->splice(NewMBB->begin(), MBB,
5164                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
5165   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
5166   return NewMBB;
5167 }
5168 
5169 // Split MBB before MI and return the new block (the one that contains MI).
splitBlockBefore(MachineBasicBlock::iterator MI,MachineBasicBlock * MBB)5170 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI,
5171                                            MachineBasicBlock *MBB) {
5172   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
5173   NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
5174   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
5175   return NewMBB;
5176 }
5177 
5178 // Force base value Base into a register before MI.  Return the register.
forceReg(MachineInstr & MI,MachineOperand & Base,const SystemZInstrInfo * TII)5179 static unsigned forceReg(MachineInstr &MI, MachineOperand &Base,
5180                          const SystemZInstrInfo *TII) {
5181   if (Base.isReg())
5182     return Base.getReg();
5183 
5184   MachineBasicBlock *MBB = MI.getParent();
5185   MachineFunction &MF = *MBB->getParent();
5186   MachineRegisterInfo &MRI = MF.getRegInfo();
5187 
5188   unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
5189   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
5190       .addOperand(Base)
5191       .addImm(0)
5192       .addReg(0);
5193   return Reg;
5194 }
5195 
5196 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
5197 MachineBasicBlock *
emitSelect(MachineInstr & MI,MachineBasicBlock * MBB) const5198 SystemZTargetLowering::emitSelect(MachineInstr &MI,
5199                                   MachineBasicBlock *MBB) const {
5200   const SystemZInstrInfo *TII =
5201       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5202 
5203   unsigned DestReg = MI.getOperand(0).getReg();
5204   unsigned TrueReg = MI.getOperand(1).getReg();
5205   unsigned FalseReg = MI.getOperand(2).getReg();
5206   unsigned CCValid = MI.getOperand(3).getImm();
5207   unsigned CCMask = MI.getOperand(4).getImm();
5208   DebugLoc DL = MI.getDebugLoc();
5209 
5210   MachineBasicBlock *StartMBB = MBB;
5211   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
5212   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
5213 
5214   //  StartMBB:
5215   //   BRC CCMask, JoinMBB
5216   //   # fallthrough to FalseMBB
5217   MBB = StartMBB;
5218   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5219     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
5220   MBB->addSuccessor(JoinMBB);
5221   MBB->addSuccessor(FalseMBB);
5222 
5223   //  FalseMBB:
5224   //   # fallthrough to JoinMBB
5225   MBB = FalseMBB;
5226   MBB->addSuccessor(JoinMBB);
5227 
5228   //  JoinMBB:
5229   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
5230   //  ...
5231   MBB = JoinMBB;
5232   BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg)
5233     .addReg(TrueReg).addMBB(StartMBB)
5234     .addReg(FalseReg).addMBB(FalseMBB);
5235 
5236   MI.eraseFromParent();
5237   return JoinMBB;
5238 }
5239 
5240 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
5241 // StoreOpcode is the store to use and Invert says whether the store should
5242 // happen when the condition is false rather than true.  If a STORE ON
5243 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
emitCondStore(MachineInstr & MI,MachineBasicBlock * MBB,unsigned StoreOpcode,unsigned STOCOpcode,bool Invert) const5244 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
5245                                                         MachineBasicBlock *MBB,
5246                                                         unsigned StoreOpcode,
5247                                                         unsigned STOCOpcode,
5248                                                         bool Invert) const {
5249   const SystemZInstrInfo *TII =
5250       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5251 
5252   unsigned SrcReg = MI.getOperand(0).getReg();
5253   MachineOperand Base = MI.getOperand(1);
5254   int64_t Disp = MI.getOperand(2).getImm();
5255   unsigned IndexReg = MI.getOperand(3).getReg();
5256   unsigned CCValid = MI.getOperand(4).getImm();
5257   unsigned CCMask = MI.getOperand(5).getImm();
5258   DebugLoc DL = MI.getDebugLoc();
5259 
5260   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
5261 
5262   // Use STOCOpcode if possible.  We could use different store patterns in
5263   // order to avoid matching the index register, but the performance trade-offs
5264   // might be more complicated in that case.
5265   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
5266     if (Invert)
5267       CCMask ^= CCValid;
5268     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
5269       .addReg(SrcReg).addOperand(Base).addImm(Disp)
5270       .addImm(CCValid).addImm(CCMask);
5271     MI.eraseFromParent();
5272     return MBB;
5273   }
5274 
5275   // Get the condition needed to branch around the store.
5276   if (!Invert)
5277     CCMask ^= CCValid;
5278 
5279   MachineBasicBlock *StartMBB = MBB;
5280   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
5281   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
5282 
5283   //  StartMBB:
5284   //   BRC CCMask, JoinMBB
5285   //   # fallthrough to FalseMBB
5286   MBB = StartMBB;
5287   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5288     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
5289   MBB->addSuccessor(JoinMBB);
5290   MBB->addSuccessor(FalseMBB);
5291 
5292   //  FalseMBB:
5293   //   store %SrcReg, %Disp(%Index,%Base)
5294   //   # fallthrough to JoinMBB
5295   MBB = FalseMBB;
5296   BuildMI(MBB, DL, TII->get(StoreOpcode))
5297     .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg);
5298   MBB->addSuccessor(JoinMBB);
5299 
5300   MI.eraseFromParent();
5301   return JoinMBB;
5302 }
5303 
5304 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
5305 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
5306 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
5307 // BitSize is the width of the field in bits, or 0 if this is a partword
5308 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
5309 // is one of the operands.  Invert says whether the field should be
5310 // inverted after performing BinOpcode (e.g. for NAND).
emitAtomicLoadBinary(MachineInstr & MI,MachineBasicBlock * MBB,unsigned BinOpcode,unsigned BitSize,bool Invert) const5311 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
5312     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
5313     unsigned BitSize, bool Invert) const {
5314   MachineFunction &MF = *MBB->getParent();
5315   const SystemZInstrInfo *TII =
5316       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5317   MachineRegisterInfo &MRI = MF.getRegInfo();
5318   bool IsSubWord = (BitSize < 32);
5319 
5320   // Extract the operands.  Base can be a register or a frame index.
5321   // Src2 can be a register or immediate.
5322   unsigned Dest = MI.getOperand(0).getReg();
5323   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
5324   int64_t Disp = MI.getOperand(2).getImm();
5325   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
5326   unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0);
5327   unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0);
5328   DebugLoc DL = MI.getDebugLoc();
5329   if (IsSubWord)
5330     BitSize = MI.getOperand(6).getImm();
5331 
5332   // Subword operations use 32-bit registers.
5333   const TargetRegisterClass *RC = (BitSize <= 32 ?
5334                                    &SystemZ::GR32BitRegClass :
5335                                    &SystemZ::GR64BitRegClass);
5336   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
5337   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
5338 
5339   // Get the right opcodes for the displacement.
5340   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
5341   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
5342   assert(LOpcode && CSOpcode && "Displacement out of range");
5343 
5344   // Create virtual registers for temporary results.
5345   unsigned OrigVal       = MRI.createVirtualRegister(RC);
5346   unsigned OldVal        = MRI.createVirtualRegister(RC);
5347   unsigned NewVal        = (BinOpcode || IsSubWord ?
5348                             MRI.createVirtualRegister(RC) : Src2.getReg());
5349   unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
5350   unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
5351 
5352   // Insert a basic block for the main loop.
5353   MachineBasicBlock *StartMBB = MBB;
5354   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
5355   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
5356 
5357   //  StartMBB:
5358   //   ...
5359   //   %OrigVal = L Disp(%Base)
5360   //   # fall through to LoopMMB
5361   MBB = StartMBB;
5362   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
5363     .addOperand(Base).addImm(Disp).addReg(0);
5364   MBB->addSuccessor(LoopMBB);
5365 
5366   //  LoopMBB:
5367   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
5368   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
5369   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
5370   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
5371   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
5372   //   JNE LoopMBB
5373   //   # fall through to DoneMMB
5374   MBB = LoopMBB;
5375   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
5376     .addReg(OrigVal).addMBB(StartMBB)
5377     .addReg(Dest).addMBB(LoopMBB);
5378   if (IsSubWord)
5379     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
5380       .addReg(OldVal).addReg(BitShift).addImm(0);
5381   if (Invert) {
5382     // Perform the operation normally and then invert every bit of the field.
5383     unsigned Tmp = MRI.createVirtualRegister(RC);
5384     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp)
5385       .addReg(RotatedOldVal).addOperand(Src2);
5386     if (BitSize <= 32)
5387       // XILF with the upper BitSize bits set.
5388       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
5389         .addReg(Tmp).addImm(-1U << (32 - BitSize));
5390     else {
5391       // Use LCGR and add -1 to the result, which is more compact than
5392       // an XILF, XILH pair.
5393       unsigned Tmp2 = MRI.createVirtualRegister(RC);
5394       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
5395       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
5396         .addReg(Tmp2).addImm(-1);
5397     }
5398   } else if (BinOpcode)
5399     // A simply binary operation.
5400     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
5401       .addReg(RotatedOldVal).addOperand(Src2);
5402   else if (IsSubWord)
5403     // Use RISBG to rotate Src2 into position and use it to replace the
5404     // field in RotatedOldVal.
5405     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
5406       .addReg(RotatedOldVal).addReg(Src2.getReg())
5407       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
5408   if (IsSubWord)
5409     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
5410       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
5411   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
5412     .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
5413   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5414     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
5415   MBB->addSuccessor(LoopMBB);
5416   MBB->addSuccessor(DoneMBB);
5417 
5418   MI.eraseFromParent();
5419   return DoneMBB;
5420 }
5421 
5422 // Implement EmitInstrWithCustomInserter for pseudo
5423 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
5424 // instruction that should be used to compare the current field with the
5425 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
5426 // for when the current field should be kept.  BitSize is the width of
5427 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
emitAtomicLoadMinMax(MachineInstr & MI,MachineBasicBlock * MBB,unsigned CompareOpcode,unsigned KeepOldMask,unsigned BitSize) const5428 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
5429     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
5430     unsigned KeepOldMask, unsigned BitSize) const {
5431   MachineFunction &MF = *MBB->getParent();
5432   const SystemZInstrInfo *TII =
5433       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5434   MachineRegisterInfo &MRI = MF.getRegInfo();
5435   bool IsSubWord = (BitSize < 32);
5436 
5437   // Extract the operands.  Base can be a register or a frame index.
5438   unsigned Dest = MI.getOperand(0).getReg();
5439   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
5440   int64_t Disp = MI.getOperand(2).getImm();
5441   unsigned Src2 = MI.getOperand(3).getReg();
5442   unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0);
5443   unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0);
5444   DebugLoc DL = MI.getDebugLoc();
5445   if (IsSubWord)
5446     BitSize = MI.getOperand(6).getImm();
5447 
5448   // Subword operations use 32-bit registers.
5449   const TargetRegisterClass *RC = (BitSize <= 32 ?
5450                                    &SystemZ::GR32BitRegClass :
5451                                    &SystemZ::GR64BitRegClass);
5452   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
5453   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
5454 
5455   // Get the right opcodes for the displacement.
5456   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
5457   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
5458   assert(LOpcode && CSOpcode && "Displacement out of range");
5459 
5460   // Create virtual registers for temporary results.
5461   unsigned OrigVal       = MRI.createVirtualRegister(RC);
5462   unsigned OldVal        = MRI.createVirtualRegister(RC);
5463   unsigned NewVal        = MRI.createVirtualRegister(RC);
5464   unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
5465   unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
5466   unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
5467 
5468   // Insert 3 basic blocks for the loop.
5469   MachineBasicBlock *StartMBB  = MBB;
5470   MachineBasicBlock *DoneMBB   = splitBlockBefore(MI, MBB);
5471   MachineBasicBlock *LoopMBB   = emitBlockAfter(StartMBB);
5472   MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
5473   MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
5474 
5475   //  StartMBB:
5476   //   ...
5477   //   %OrigVal     = L Disp(%Base)
5478   //   # fall through to LoopMMB
5479   MBB = StartMBB;
5480   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
5481     .addOperand(Base).addImm(Disp).addReg(0);
5482   MBB->addSuccessor(LoopMBB);
5483 
5484   //  LoopMBB:
5485   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
5486   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
5487   //   CompareOpcode %RotatedOldVal, %Src2
5488   //   BRC KeepOldMask, UpdateMBB
5489   MBB = LoopMBB;
5490   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
5491     .addReg(OrigVal).addMBB(StartMBB)
5492     .addReg(Dest).addMBB(UpdateMBB);
5493   if (IsSubWord)
5494     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
5495       .addReg(OldVal).addReg(BitShift).addImm(0);
5496   BuildMI(MBB, DL, TII->get(CompareOpcode))
5497     .addReg(RotatedOldVal).addReg(Src2);
5498   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5499     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
5500   MBB->addSuccessor(UpdateMBB);
5501   MBB->addSuccessor(UseAltMBB);
5502 
5503   //  UseAltMBB:
5504   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
5505   //   # fall through to UpdateMMB
5506   MBB = UseAltMBB;
5507   if (IsSubWord)
5508     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
5509       .addReg(RotatedOldVal).addReg(Src2)
5510       .addImm(32).addImm(31 + BitSize).addImm(0);
5511   MBB->addSuccessor(UpdateMBB);
5512 
5513   //  UpdateMBB:
5514   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
5515   //                        [ %RotatedAltVal, UseAltMBB ]
5516   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
5517   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
5518   //   JNE LoopMBB
5519   //   # fall through to DoneMMB
5520   MBB = UpdateMBB;
5521   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
5522     .addReg(RotatedOldVal).addMBB(LoopMBB)
5523     .addReg(RotatedAltVal).addMBB(UseAltMBB);
5524   if (IsSubWord)
5525     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
5526       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
5527   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
5528     .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
5529   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5530     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
5531   MBB->addSuccessor(LoopMBB);
5532   MBB->addSuccessor(DoneMBB);
5533 
5534   MI.eraseFromParent();
5535   return DoneMBB;
5536 }
5537 
5538 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
5539 // instruction MI.
5540 MachineBasicBlock *
emitAtomicCmpSwapW(MachineInstr & MI,MachineBasicBlock * MBB) const5541 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
5542                                           MachineBasicBlock *MBB) const {
5543 
5544   MachineFunction &MF = *MBB->getParent();
5545   const SystemZInstrInfo *TII =
5546       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5547   MachineRegisterInfo &MRI = MF.getRegInfo();
5548 
5549   // Extract the operands.  Base can be a register or a frame index.
5550   unsigned Dest = MI.getOperand(0).getReg();
5551   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
5552   int64_t Disp = MI.getOperand(2).getImm();
5553   unsigned OrigCmpVal = MI.getOperand(3).getReg();
5554   unsigned OrigSwapVal = MI.getOperand(4).getReg();
5555   unsigned BitShift = MI.getOperand(5).getReg();
5556   unsigned NegBitShift = MI.getOperand(6).getReg();
5557   int64_t BitSize = MI.getOperand(7).getImm();
5558   DebugLoc DL = MI.getDebugLoc();
5559 
5560   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
5561 
5562   // Get the right opcodes for the displacement.
5563   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
5564   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
5565   assert(LOpcode && CSOpcode && "Displacement out of range");
5566 
5567   // Create virtual registers for temporary results.
5568   unsigned OrigOldVal   = MRI.createVirtualRegister(RC);
5569   unsigned OldVal       = MRI.createVirtualRegister(RC);
5570   unsigned CmpVal       = MRI.createVirtualRegister(RC);
5571   unsigned SwapVal      = MRI.createVirtualRegister(RC);
5572   unsigned StoreVal     = MRI.createVirtualRegister(RC);
5573   unsigned RetryOldVal  = MRI.createVirtualRegister(RC);
5574   unsigned RetryCmpVal  = MRI.createVirtualRegister(RC);
5575   unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
5576 
5577   // Insert 2 basic blocks for the loop.
5578   MachineBasicBlock *StartMBB = MBB;
5579   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
5580   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
5581   MachineBasicBlock *SetMBB   = emitBlockAfter(LoopMBB);
5582 
5583   //  StartMBB:
5584   //   ...
5585   //   %OrigOldVal     = L Disp(%Base)
5586   //   # fall through to LoopMMB
5587   MBB = StartMBB;
5588   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
5589     .addOperand(Base).addImm(Disp).addReg(0);
5590   MBB->addSuccessor(LoopMBB);
5591 
5592   //  LoopMBB:
5593   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
5594   //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
5595   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
5596   //   %Dest          = RLL %OldVal, BitSize(%BitShift)
5597   //                      ^^ The low BitSize bits contain the field
5598   //                         of interest.
5599   //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
5600   //                      ^^ Replace the upper 32-BitSize bits of the
5601   //                         comparison value with those that we loaded,
5602   //                         so that we can use a full word comparison.
5603   //   CR %Dest, %RetryCmpVal
5604   //   JNE DoneMBB
5605   //   # Fall through to SetMBB
5606   MBB = LoopMBB;
5607   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
5608     .addReg(OrigOldVal).addMBB(StartMBB)
5609     .addReg(RetryOldVal).addMBB(SetMBB);
5610   BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
5611     .addReg(OrigCmpVal).addMBB(StartMBB)
5612     .addReg(RetryCmpVal).addMBB(SetMBB);
5613   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
5614     .addReg(OrigSwapVal).addMBB(StartMBB)
5615     .addReg(RetrySwapVal).addMBB(SetMBB);
5616   BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
5617     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
5618   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
5619     .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
5620   BuildMI(MBB, DL, TII->get(SystemZ::CR))
5621     .addReg(Dest).addReg(RetryCmpVal);
5622   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5623     .addImm(SystemZ::CCMASK_ICMP)
5624     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
5625   MBB->addSuccessor(DoneMBB);
5626   MBB->addSuccessor(SetMBB);
5627 
5628   //  SetMBB:
5629   //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
5630   //                      ^^ Replace the upper 32-BitSize bits of the new
5631   //                         value with those that we loaded.
5632   //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
5633   //                      ^^ Rotate the new field to its proper position.
5634   //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
5635   //   JNE LoopMBB
5636   //   # fall through to ExitMMB
5637   MBB = SetMBB;
5638   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
5639     .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
5640   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
5641     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
5642   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
5643     .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp);
5644   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5645     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
5646   MBB->addSuccessor(LoopMBB);
5647   MBB->addSuccessor(DoneMBB);
5648 
5649   MI.eraseFromParent();
5650   return DoneMBB;
5651 }
5652 
5653 // Emit an extension from a GR32 or GR64 to a GR128.  ClearEven is true
5654 // if the high register of the GR128 value must be cleared or false if
5655 // it's "don't care".  SubReg is subreg_l32 when extending a GR32
5656 // and subreg_l64 when extending a GR64.
emitExt128(MachineInstr & MI,MachineBasicBlock * MBB,bool ClearEven,unsigned SubReg) const5657 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
5658                                                      MachineBasicBlock *MBB,
5659                                                      bool ClearEven,
5660                                                      unsigned SubReg) const {
5661   MachineFunction &MF = *MBB->getParent();
5662   const SystemZInstrInfo *TII =
5663       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5664   MachineRegisterInfo &MRI = MF.getRegInfo();
5665   DebugLoc DL = MI.getDebugLoc();
5666 
5667   unsigned Dest = MI.getOperand(0).getReg();
5668   unsigned Src = MI.getOperand(1).getReg();
5669   unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
5670 
5671   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
5672   if (ClearEven) {
5673     unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
5674     unsigned Zero64   = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
5675 
5676     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
5677       .addImm(0);
5678     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
5679       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
5680     In128 = NewIn128;
5681   }
5682   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
5683     .addReg(In128).addReg(Src).addImm(SubReg);
5684 
5685   MI.eraseFromParent();
5686   return MBB;
5687 }
5688 
emitMemMemWrapper(MachineInstr & MI,MachineBasicBlock * MBB,unsigned Opcode) const5689 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
5690     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
5691   MachineFunction &MF = *MBB->getParent();
5692   const SystemZInstrInfo *TII =
5693       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5694   MachineRegisterInfo &MRI = MF.getRegInfo();
5695   DebugLoc DL = MI.getDebugLoc();
5696 
5697   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
5698   uint64_t DestDisp = MI.getOperand(1).getImm();
5699   MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
5700   uint64_t SrcDisp = MI.getOperand(3).getImm();
5701   uint64_t Length = MI.getOperand(4).getImm();
5702 
5703   // When generating more than one CLC, all but the last will need to
5704   // branch to the end when a difference is found.
5705   MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
5706                                splitBlockAfter(MI, MBB) : nullptr);
5707 
5708   // Check for the loop form, in which operand 5 is the trip count.
5709   if (MI.getNumExplicitOperands() > 5) {
5710     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
5711 
5712     uint64_t StartCountReg = MI.getOperand(5).getReg();
5713     uint64_t StartSrcReg   = forceReg(MI, SrcBase, TII);
5714     uint64_t StartDestReg  = (HaveSingleBase ? StartSrcReg :
5715                               forceReg(MI, DestBase, TII));
5716 
5717     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
5718     uint64_t ThisSrcReg  = MRI.createVirtualRegister(RC);
5719     uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg :
5720                             MRI.createVirtualRegister(RC));
5721     uint64_t NextSrcReg  = MRI.createVirtualRegister(RC);
5722     uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg :
5723                             MRI.createVirtualRegister(RC));
5724 
5725     RC = &SystemZ::GR64BitRegClass;
5726     uint64_t ThisCountReg = MRI.createVirtualRegister(RC);
5727     uint64_t NextCountReg = MRI.createVirtualRegister(RC);
5728 
5729     MachineBasicBlock *StartMBB = MBB;
5730     MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
5731     MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
5732     MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
5733 
5734     //  StartMBB:
5735     //   # fall through to LoopMMB
5736     MBB->addSuccessor(LoopMBB);
5737 
5738     //  LoopMBB:
5739     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
5740     //                      [ %NextDestReg, NextMBB ]
5741     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
5742     //                     [ %NextSrcReg, NextMBB ]
5743     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
5744     //                       [ %NextCountReg, NextMBB ]
5745     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
5746     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
5747     //   ( JLH EndMBB )
5748     //
5749     // The prefetch is used only for MVC.  The JLH is used only for CLC.
5750     MBB = LoopMBB;
5751 
5752     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
5753       .addReg(StartDestReg).addMBB(StartMBB)
5754       .addReg(NextDestReg).addMBB(NextMBB);
5755     if (!HaveSingleBase)
5756       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
5757         .addReg(StartSrcReg).addMBB(StartMBB)
5758         .addReg(NextSrcReg).addMBB(NextMBB);
5759     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
5760       .addReg(StartCountReg).addMBB(StartMBB)
5761       .addReg(NextCountReg).addMBB(NextMBB);
5762     if (Opcode == SystemZ::MVC)
5763       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
5764         .addImm(SystemZ::PFD_WRITE)
5765         .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
5766     BuildMI(MBB, DL, TII->get(Opcode))
5767       .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
5768       .addReg(ThisSrcReg).addImm(SrcDisp);
5769     if (EndMBB) {
5770       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5771         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
5772         .addMBB(EndMBB);
5773       MBB->addSuccessor(EndMBB);
5774       MBB->addSuccessor(NextMBB);
5775     }
5776 
5777     // NextMBB:
5778     //   %NextDestReg = LA 256(%ThisDestReg)
5779     //   %NextSrcReg = LA 256(%ThisSrcReg)
5780     //   %NextCountReg = AGHI %ThisCountReg, -1
5781     //   CGHI %NextCountReg, 0
5782     //   JLH LoopMBB
5783     //   # fall through to DoneMMB
5784     //
5785     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
5786     MBB = NextMBB;
5787 
5788     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
5789       .addReg(ThisDestReg).addImm(256).addReg(0);
5790     if (!HaveSingleBase)
5791       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
5792         .addReg(ThisSrcReg).addImm(256).addReg(0);
5793     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
5794       .addReg(ThisCountReg).addImm(-1);
5795     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
5796       .addReg(NextCountReg).addImm(0);
5797     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5798       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
5799       .addMBB(LoopMBB);
5800     MBB->addSuccessor(LoopMBB);
5801     MBB->addSuccessor(DoneMBB);
5802 
5803     DestBase = MachineOperand::CreateReg(NextDestReg, false);
5804     SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
5805     Length &= 255;
5806     MBB = DoneMBB;
5807   }
5808   // Handle any remaining bytes with straight-line code.
5809   while (Length > 0) {
5810     uint64_t ThisLength = std::min(Length, uint64_t(256));
5811     // The previous iteration might have created out-of-range displacements.
5812     // Apply them using LAY if so.
5813     if (!isUInt<12>(DestDisp)) {
5814       unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
5815       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
5816           .addOperand(DestBase)
5817           .addImm(DestDisp)
5818           .addReg(0);
5819       DestBase = MachineOperand::CreateReg(Reg, false);
5820       DestDisp = 0;
5821     }
5822     if (!isUInt<12>(SrcDisp)) {
5823       unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
5824       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
5825           .addOperand(SrcBase)
5826           .addImm(SrcDisp)
5827           .addReg(0);
5828       SrcBase = MachineOperand::CreateReg(Reg, false);
5829       SrcDisp = 0;
5830     }
5831     BuildMI(*MBB, MI, DL, TII->get(Opcode))
5832       .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength)
5833       .addOperand(SrcBase).addImm(SrcDisp);
5834     DestDisp += ThisLength;
5835     SrcDisp += ThisLength;
5836     Length -= ThisLength;
5837     // If there's another CLC to go, branch to the end if a difference
5838     // was found.
5839     if (EndMBB && Length > 0) {
5840       MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
5841       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5842         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
5843         .addMBB(EndMBB);
5844       MBB->addSuccessor(EndMBB);
5845       MBB->addSuccessor(NextMBB);
5846       MBB = NextMBB;
5847     }
5848   }
5849   if (EndMBB) {
5850     MBB->addSuccessor(EndMBB);
5851     MBB = EndMBB;
5852     MBB->addLiveIn(SystemZ::CC);
5853   }
5854 
5855   MI.eraseFromParent();
5856   return MBB;
5857 }
5858 
5859 // Decompose string pseudo-instruction MI into a loop that continually performs
5860 // Opcode until CC != 3.
emitStringWrapper(MachineInstr & MI,MachineBasicBlock * MBB,unsigned Opcode) const5861 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
5862     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
5863   MachineFunction &MF = *MBB->getParent();
5864   const SystemZInstrInfo *TII =
5865       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5866   MachineRegisterInfo &MRI = MF.getRegInfo();
5867   DebugLoc DL = MI.getDebugLoc();
5868 
5869   uint64_t End1Reg = MI.getOperand(0).getReg();
5870   uint64_t Start1Reg = MI.getOperand(1).getReg();
5871   uint64_t Start2Reg = MI.getOperand(2).getReg();
5872   uint64_t CharReg = MI.getOperand(3).getReg();
5873 
5874   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
5875   uint64_t This1Reg = MRI.createVirtualRegister(RC);
5876   uint64_t This2Reg = MRI.createVirtualRegister(RC);
5877   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
5878 
5879   MachineBasicBlock *StartMBB = MBB;
5880   MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
5881   MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
5882 
5883   //  StartMBB:
5884   //   # fall through to LoopMMB
5885   MBB->addSuccessor(LoopMBB);
5886 
5887   //  LoopMBB:
5888   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
5889   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
5890   //   R0L = %CharReg
5891   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
5892   //   JO LoopMBB
5893   //   # fall through to DoneMMB
5894   //
5895   // The load of R0L can be hoisted by post-RA LICM.
5896   MBB = LoopMBB;
5897 
5898   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
5899     .addReg(Start1Reg).addMBB(StartMBB)
5900     .addReg(End1Reg).addMBB(LoopMBB);
5901   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
5902     .addReg(Start2Reg).addMBB(StartMBB)
5903     .addReg(End2Reg).addMBB(LoopMBB);
5904   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
5905   BuildMI(MBB, DL, TII->get(Opcode))
5906     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
5907     .addReg(This1Reg).addReg(This2Reg);
5908   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5909     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
5910   MBB->addSuccessor(LoopMBB);
5911   MBB->addSuccessor(DoneMBB);
5912 
5913   DoneMBB->addLiveIn(SystemZ::CC);
5914 
5915   MI.eraseFromParent();
5916   return DoneMBB;
5917 }
5918 
5919 // Update TBEGIN instruction with final opcode and register clobbers.
emitTransactionBegin(MachineInstr & MI,MachineBasicBlock * MBB,unsigned Opcode,bool NoFloat) const5920 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
5921     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
5922     bool NoFloat) const {
5923   MachineFunction &MF = *MBB->getParent();
5924   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
5925   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
5926 
5927   // Update opcode.
5928   MI.setDesc(TII->get(Opcode));
5929 
5930   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
5931   // Make sure to add the corresponding GRSM bits if they are missing.
5932   uint64_t Control = MI.getOperand(2).getImm();
5933   static const unsigned GPRControlBit[16] = {
5934     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
5935     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
5936   };
5937   Control |= GPRControlBit[15];
5938   if (TFI->hasFP(MF))
5939     Control |= GPRControlBit[11];
5940   MI.getOperand(2).setImm(Control);
5941 
5942   // Add GPR clobbers.
5943   for (int I = 0; I < 16; I++) {
5944     if ((Control & GPRControlBit[I]) == 0) {
5945       unsigned Reg = SystemZMC::GR64Regs[I];
5946       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
5947     }
5948   }
5949 
5950   // Add FPR/VR clobbers.
5951   if (!NoFloat && (Control & 4) != 0) {
5952     if (Subtarget.hasVector()) {
5953       for (int I = 0; I < 32; I++) {
5954         unsigned Reg = SystemZMC::VR128Regs[I];
5955         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
5956       }
5957     } else {
5958       for (int I = 0; I < 16; I++) {
5959         unsigned Reg = SystemZMC::FP64Regs[I];
5960         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
5961       }
5962     }
5963   }
5964 
5965   return MBB;
5966 }
5967 
emitLoadAndTestCmp0(MachineInstr & MI,MachineBasicBlock * MBB,unsigned Opcode) const5968 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
5969     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
5970   MachineFunction &MF = *MBB->getParent();
5971   MachineRegisterInfo *MRI = &MF.getRegInfo();
5972   const SystemZInstrInfo *TII =
5973       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5974   DebugLoc DL = MI.getDebugLoc();
5975 
5976   unsigned SrcReg = MI.getOperand(0).getReg();
5977 
5978   // Create new virtual register of the same class as source.
5979   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
5980   unsigned DstReg = MRI->createVirtualRegister(RC);
5981 
5982   // Replace pseudo with a normal load-and-test that models the def as
5983   // well.
5984   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
5985     .addReg(SrcReg);
5986   MI.eraseFromParent();
5987 
5988   return MBB;
5989 }
5990 
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * MBB) const5991 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
5992     MachineInstr &MI, MachineBasicBlock *MBB) const {
5993   switch (MI.getOpcode()) {
5994   case SystemZ::Select32Mux:
5995   case SystemZ::Select32:
5996   case SystemZ::SelectF32:
5997   case SystemZ::Select64:
5998   case SystemZ::SelectF64:
5999   case SystemZ::SelectF128:
6000     return emitSelect(MI, MBB);
6001 
6002   case SystemZ::CondStore8Mux:
6003     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
6004   case SystemZ::CondStore8MuxInv:
6005     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
6006   case SystemZ::CondStore16Mux:
6007     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
6008   case SystemZ::CondStore16MuxInv:
6009     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
6010   case SystemZ::CondStore8:
6011     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
6012   case SystemZ::CondStore8Inv:
6013     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
6014   case SystemZ::CondStore16:
6015     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
6016   case SystemZ::CondStore16Inv:
6017     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
6018   case SystemZ::CondStore32:
6019     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
6020   case SystemZ::CondStore32Inv:
6021     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
6022   case SystemZ::CondStore64:
6023     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
6024   case SystemZ::CondStore64Inv:
6025     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
6026   case SystemZ::CondStoreF32:
6027     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
6028   case SystemZ::CondStoreF32Inv:
6029     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
6030   case SystemZ::CondStoreF64:
6031     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
6032   case SystemZ::CondStoreF64Inv:
6033     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
6034 
6035   case SystemZ::AEXT128_64:
6036     return emitExt128(MI, MBB, false, SystemZ::subreg_l64);
6037   case SystemZ::ZEXT128_32:
6038     return emitExt128(MI, MBB, true, SystemZ::subreg_l32);
6039   case SystemZ::ZEXT128_64:
6040     return emitExt128(MI, MBB, true, SystemZ::subreg_l64);
6041 
6042   case SystemZ::ATOMIC_SWAPW:
6043     return emitAtomicLoadBinary(MI, MBB, 0, 0);
6044   case SystemZ::ATOMIC_SWAP_32:
6045     return emitAtomicLoadBinary(MI, MBB, 0, 32);
6046   case SystemZ::ATOMIC_SWAP_64:
6047     return emitAtomicLoadBinary(MI, MBB, 0, 64);
6048 
6049   case SystemZ::ATOMIC_LOADW_AR:
6050     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
6051   case SystemZ::ATOMIC_LOADW_AFI:
6052     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
6053   case SystemZ::ATOMIC_LOAD_AR:
6054     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
6055   case SystemZ::ATOMIC_LOAD_AHI:
6056     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
6057   case SystemZ::ATOMIC_LOAD_AFI:
6058     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
6059   case SystemZ::ATOMIC_LOAD_AGR:
6060     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
6061   case SystemZ::ATOMIC_LOAD_AGHI:
6062     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
6063   case SystemZ::ATOMIC_LOAD_AGFI:
6064     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
6065 
6066   case SystemZ::ATOMIC_LOADW_SR:
6067     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
6068   case SystemZ::ATOMIC_LOAD_SR:
6069     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
6070   case SystemZ::ATOMIC_LOAD_SGR:
6071     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
6072 
6073   case SystemZ::ATOMIC_LOADW_NR:
6074     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
6075   case SystemZ::ATOMIC_LOADW_NILH:
6076     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
6077   case SystemZ::ATOMIC_LOAD_NR:
6078     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
6079   case SystemZ::ATOMIC_LOAD_NILL:
6080     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
6081   case SystemZ::ATOMIC_LOAD_NILH:
6082     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
6083   case SystemZ::ATOMIC_LOAD_NILF:
6084     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
6085   case SystemZ::ATOMIC_LOAD_NGR:
6086     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
6087   case SystemZ::ATOMIC_LOAD_NILL64:
6088     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
6089   case SystemZ::ATOMIC_LOAD_NILH64:
6090     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
6091   case SystemZ::ATOMIC_LOAD_NIHL64:
6092     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
6093   case SystemZ::ATOMIC_LOAD_NIHH64:
6094     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
6095   case SystemZ::ATOMIC_LOAD_NILF64:
6096     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
6097   case SystemZ::ATOMIC_LOAD_NIHF64:
6098     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
6099 
6100   case SystemZ::ATOMIC_LOADW_OR:
6101     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
6102   case SystemZ::ATOMIC_LOADW_OILH:
6103     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
6104   case SystemZ::ATOMIC_LOAD_OR:
6105     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
6106   case SystemZ::ATOMIC_LOAD_OILL:
6107     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
6108   case SystemZ::ATOMIC_LOAD_OILH:
6109     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
6110   case SystemZ::ATOMIC_LOAD_OILF:
6111     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
6112   case SystemZ::ATOMIC_LOAD_OGR:
6113     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
6114   case SystemZ::ATOMIC_LOAD_OILL64:
6115     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
6116   case SystemZ::ATOMIC_LOAD_OILH64:
6117     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
6118   case SystemZ::ATOMIC_LOAD_OIHL64:
6119     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
6120   case SystemZ::ATOMIC_LOAD_OIHH64:
6121     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
6122   case SystemZ::ATOMIC_LOAD_OILF64:
6123     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
6124   case SystemZ::ATOMIC_LOAD_OIHF64:
6125     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
6126 
6127   case SystemZ::ATOMIC_LOADW_XR:
6128     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
6129   case SystemZ::ATOMIC_LOADW_XILF:
6130     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
6131   case SystemZ::ATOMIC_LOAD_XR:
6132     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
6133   case SystemZ::ATOMIC_LOAD_XILF:
6134     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
6135   case SystemZ::ATOMIC_LOAD_XGR:
6136     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
6137   case SystemZ::ATOMIC_LOAD_XILF64:
6138     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
6139   case SystemZ::ATOMIC_LOAD_XIHF64:
6140     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
6141 
6142   case SystemZ::ATOMIC_LOADW_NRi:
6143     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
6144   case SystemZ::ATOMIC_LOADW_NILHi:
6145     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
6146   case SystemZ::ATOMIC_LOAD_NRi:
6147     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
6148   case SystemZ::ATOMIC_LOAD_NILLi:
6149     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
6150   case SystemZ::ATOMIC_LOAD_NILHi:
6151     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
6152   case SystemZ::ATOMIC_LOAD_NILFi:
6153     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
6154   case SystemZ::ATOMIC_LOAD_NGRi:
6155     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
6156   case SystemZ::ATOMIC_LOAD_NILL64i:
6157     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
6158   case SystemZ::ATOMIC_LOAD_NILH64i:
6159     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
6160   case SystemZ::ATOMIC_LOAD_NIHL64i:
6161     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
6162   case SystemZ::ATOMIC_LOAD_NIHH64i:
6163     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
6164   case SystemZ::ATOMIC_LOAD_NILF64i:
6165     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
6166   case SystemZ::ATOMIC_LOAD_NIHF64i:
6167     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
6168 
6169   case SystemZ::ATOMIC_LOADW_MIN:
6170     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
6171                                 SystemZ::CCMASK_CMP_LE, 0);
6172   case SystemZ::ATOMIC_LOAD_MIN_32:
6173     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
6174                                 SystemZ::CCMASK_CMP_LE, 32);
6175   case SystemZ::ATOMIC_LOAD_MIN_64:
6176     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
6177                                 SystemZ::CCMASK_CMP_LE, 64);
6178 
6179   case SystemZ::ATOMIC_LOADW_MAX:
6180     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
6181                                 SystemZ::CCMASK_CMP_GE, 0);
6182   case SystemZ::ATOMIC_LOAD_MAX_32:
6183     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
6184                                 SystemZ::CCMASK_CMP_GE, 32);
6185   case SystemZ::ATOMIC_LOAD_MAX_64:
6186     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
6187                                 SystemZ::CCMASK_CMP_GE, 64);
6188 
6189   case SystemZ::ATOMIC_LOADW_UMIN:
6190     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
6191                                 SystemZ::CCMASK_CMP_LE, 0);
6192   case SystemZ::ATOMIC_LOAD_UMIN_32:
6193     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
6194                                 SystemZ::CCMASK_CMP_LE, 32);
6195   case SystemZ::ATOMIC_LOAD_UMIN_64:
6196     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
6197                                 SystemZ::CCMASK_CMP_LE, 64);
6198 
6199   case SystemZ::ATOMIC_LOADW_UMAX:
6200     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
6201                                 SystemZ::CCMASK_CMP_GE, 0);
6202   case SystemZ::ATOMIC_LOAD_UMAX_32:
6203     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
6204                                 SystemZ::CCMASK_CMP_GE, 32);
6205   case SystemZ::ATOMIC_LOAD_UMAX_64:
6206     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
6207                                 SystemZ::CCMASK_CMP_GE, 64);
6208 
6209   case SystemZ::ATOMIC_CMP_SWAPW:
6210     return emitAtomicCmpSwapW(MI, MBB);
6211   case SystemZ::MVCSequence:
6212   case SystemZ::MVCLoop:
6213     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
6214   case SystemZ::NCSequence:
6215   case SystemZ::NCLoop:
6216     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
6217   case SystemZ::OCSequence:
6218   case SystemZ::OCLoop:
6219     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
6220   case SystemZ::XCSequence:
6221   case SystemZ::XCLoop:
6222     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
6223   case SystemZ::CLCSequence:
6224   case SystemZ::CLCLoop:
6225     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
6226   case SystemZ::CLSTLoop:
6227     return emitStringWrapper(MI, MBB, SystemZ::CLST);
6228   case SystemZ::MVSTLoop:
6229     return emitStringWrapper(MI, MBB, SystemZ::MVST);
6230   case SystemZ::SRSTLoop:
6231     return emitStringWrapper(MI, MBB, SystemZ::SRST);
6232   case SystemZ::TBEGIN:
6233     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
6234   case SystemZ::TBEGIN_nofloat:
6235     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
6236   case SystemZ::TBEGINC:
6237     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
6238   case SystemZ::LTEBRCompare_VecPseudo:
6239     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
6240   case SystemZ::LTDBRCompare_VecPseudo:
6241     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
6242   case SystemZ::LTXBRCompare_VecPseudo:
6243     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
6244 
6245   default:
6246     llvm_unreachable("Unexpected instr type to insert");
6247   }
6248 }
6249