1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SystemZTargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "SystemZISelLowering.h"
15 #include "SystemZCallingConv.h"
16 #include "SystemZConstantPoolValue.h"
17 #include "SystemZMachineFunctionInfo.h"
18 #include "SystemZTargetMachine.h"
19 #include "llvm/CodeGen/CallingConvLower.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include <cctype>
25
26 using namespace llvm;
27
28 #define DEBUG_TYPE "systemz-lower"
29
30 namespace {
31 // Represents a sequence for extracting a 0/1 value from an IPM result:
32 // (((X ^ XORValue) + AddValue) >> Bit)
33 struct IPMConversion {
IPMConversion__anon1643df490111::IPMConversion34 IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit)
35 : XORValue(xorValue), AddValue(addValue), Bit(bit) {}
36
37 int64_t XORValue;
38 int64_t AddValue;
39 unsigned Bit;
40 };
41
42 // Represents information about a comparison.
43 struct Comparison {
Comparison__anon1643df490111::Comparison44 Comparison(SDValue Op0In, SDValue Op1In)
45 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
46
47 // The operands to the comparison.
48 SDValue Op0, Op1;
49
50 // The opcode that should be used to compare Op0 and Op1.
51 unsigned Opcode;
52
53 // A SystemZICMP value. Only used for integer comparisons.
54 unsigned ICmpType;
55
56 // The mask of CC values that Opcode can produce.
57 unsigned CCValid;
58
59 // The mask of CC values for which the original condition is true.
60 unsigned CCMask;
61 };
62 } // end anonymous namespace
63
64 // Classify VT as either 32 or 64 bit.
is32Bit(EVT VT)65 static bool is32Bit(EVT VT) {
66 switch (VT.getSimpleVT().SimpleTy) {
67 case MVT::i32:
68 return true;
69 case MVT::i64:
70 return false;
71 default:
72 llvm_unreachable("Unsupported type");
73 }
74 }
75
76 // Return a version of MachineOperand that can be safely used before the
77 // final use.
earlyUseOperand(MachineOperand Op)78 static MachineOperand earlyUseOperand(MachineOperand Op) {
79 if (Op.isReg())
80 Op.setIsKill(false);
81 return Op;
82 }
83
SystemZTargetLowering(const TargetMachine & TM,const SystemZSubtarget & STI)84 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
85 const SystemZSubtarget &STI)
86 : TargetLowering(TM), Subtarget(STI) {
87 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize());
88
89 // Set up the register classes.
90 if (Subtarget.hasHighWord())
91 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
92 else
93 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
94 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
95 if (Subtarget.hasVector()) {
96 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
97 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
98 } else {
99 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
100 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
101 }
102 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
103
104 if (Subtarget.hasVector()) {
105 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
106 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
107 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
108 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
109 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
110 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
111 }
112
113 // Compute derived properties from the register classes
114 computeRegisterProperties(Subtarget.getRegisterInfo());
115
116 // Set up special registers.
117 setStackPointerRegisterToSaveRestore(SystemZ::R15D);
118
119 // TODO: It may be better to default to latency-oriented scheduling, however
120 // LLVM's current latency-oriented scheduler can't handle physreg definitions
121 // such as SystemZ has with CC, so set this to the register-pressure
122 // scheduler, because it can.
123 setSchedulingPreference(Sched::RegPressure);
124
125 setBooleanContents(ZeroOrOneBooleanContent);
126 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
127
128 // Instructions are strings of 2-byte aligned 2-byte values.
129 setMinFunctionAlignment(2);
130
131 // Handle operations that are handled in a similar way for all types.
132 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
133 I <= MVT::LAST_FP_VALUETYPE;
134 ++I) {
135 MVT VT = MVT::SimpleValueType(I);
136 if (isTypeLegal(VT)) {
137 // Lower SET_CC into an IPM-based sequence.
138 setOperationAction(ISD::SETCC, VT, Custom);
139
140 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
141 setOperationAction(ISD::SELECT, VT, Expand);
142
143 // Lower SELECT_CC and BR_CC into separate comparisons and branches.
144 setOperationAction(ISD::SELECT_CC, VT, Custom);
145 setOperationAction(ISD::BR_CC, VT, Custom);
146 }
147 }
148
149 // Expand jump table branches as address arithmetic followed by an
150 // indirect jump.
151 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
152
153 // Expand BRCOND into a BR_CC (see above).
154 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
155
156 // Handle integer types.
157 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
158 I <= MVT::LAST_INTEGER_VALUETYPE;
159 ++I) {
160 MVT VT = MVT::SimpleValueType(I);
161 if (isTypeLegal(VT)) {
162 // Expand individual DIV and REMs into DIVREMs.
163 setOperationAction(ISD::SDIV, VT, Expand);
164 setOperationAction(ISD::UDIV, VT, Expand);
165 setOperationAction(ISD::SREM, VT, Expand);
166 setOperationAction(ISD::UREM, VT, Expand);
167 setOperationAction(ISD::SDIVREM, VT, Custom);
168 setOperationAction(ISD::UDIVREM, VT, Custom);
169
170 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
171 // stores, putting a serialization instruction after the stores.
172 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom);
173 setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
174
175 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
176 // available, or if the operand is constant.
177 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
178
179 // Use POPCNT on z196 and above.
180 if (Subtarget.hasPopulationCount())
181 setOperationAction(ISD::CTPOP, VT, Custom);
182 else
183 setOperationAction(ISD::CTPOP, VT, Expand);
184
185 // No special instructions for these.
186 setOperationAction(ISD::CTTZ, VT, Expand);
187 setOperationAction(ISD::ROTR, VT, Expand);
188
189 // Use *MUL_LOHI where possible instead of MULH*.
190 setOperationAction(ISD::MULHS, VT, Expand);
191 setOperationAction(ISD::MULHU, VT, Expand);
192 setOperationAction(ISD::SMUL_LOHI, VT, Custom);
193 setOperationAction(ISD::UMUL_LOHI, VT, Custom);
194
195 // Only z196 and above have native support for conversions to unsigned.
196 if (!Subtarget.hasFPExtension())
197 setOperationAction(ISD::FP_TO_UINT, VT, Expand);
198 }
199 }
200
201 // Type legalization will convert 8- and 16-bit atomic operations into
202 // forms that operate on i32s (but still keeping the original memory VT).
203 // Lower them into full i32 operations.
204 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom);
205 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom);
206 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
207 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom);
208 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom);
209 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom);
210 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
211 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom);
212 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom);
213 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
214 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
215 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
216
217 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
218
219 // Traps are legal, as we will convert them to "j .+2".
220 setOperationAction(ISD::TRAP, MVT::Other, Legal);
221
222 // z10 has instructions for signed but not unsigned FP conversion.
223 // Handle unsigned 32-bit types as signed 64-bit types.
224 if (!Subtarget.hasFPExtension()) {
225 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
226 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
227 }
228
229 // We have native support for a 64-bit CTLZ, via FLOGR.
230 setOperationAction(ISD::CTLZ, MVT::i32, Promote);
231 setOperationAction(ISD::CTLZ, MVT::i64, Legal);
232
233 // Give LowerOperation the chance to replace 64-bit ORs with subregs.
234 setOperationAction(ISD::OR, MVT::i64, Custom);
235
236 // FIXME: Can we support these natively?
237 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
238 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
239 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
240
241 // We have native instructions for i8, i16 and i32 extensions, but not i1.
242 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
243 for (MVT VT : MVT::integer_valuetypes()) {
244 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
245 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
246 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
247 }
248
249 // Handle the various types of symbolic address.
250 setOperationAction(ISD::ConstantPool, PtrVT, Custom);
251 setOperationAction(ISD::GlobalAddress, PtrVT, Custom);
252 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
253 setOperationAction(ISD::BlockAddress, PtrVT, Custom);
254 setOperationAction(ISD::JumpTable, PtrVT, Custom);
255
256 // We need to handle dynamic allocations specially because of the
257 // 160-byte area at the bottom of the stack.
258 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
259 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
260
261 // Use custom expanders so that we can force the function to use
262 // a frame pointer.
263 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom);
264 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
265
266 // Handle prefetches with PFD or PFDRL.
267 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
268
269 for (MVT VT : MVT::vector_valuetypes()) {
270 // Assume by default that all vector operations need to be expanded.
271 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
272 if (getOperationAction(Opcode, VT) == Legal)
273 setOperationAction(Opcode, VT, Expand);
274
275 // Likewise all truncating stores and extending loads.
276 for (MVT InnerVT : MVT::vector_valuetypes()) {
277 setTruncStoreAction(VT, InnerVT, Expand);
278 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
279 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
280 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
281 }
282
283 if (isTypeLegal(VT)) {
284 // These operations are legal for anything that can be stored in a
285 // vector register, even if there is no native support for the format
286 // as such. In particular, we can do these for v4f32 even though there
287 // are no specific instructions for that format.
288 setOperationAction(ISD::LOAD, VT, Legal);
289 setOperationAction(ISD::STORE, VT, Legal);
290 setOperationAction(ISD::VSELECT, VT, Legal);
291 setOperationAction(ISD::BITCAST, VT, Legal);
292 setOperationAction(ISD::UNDEF, VT, Legal);
293
294 // Likewise, except that we need to replace the nodes with something
295 // more specific.
296 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
297 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
298 }
299 }
300
301 // Handle integer vector types.
302 for (MVT VT : MVT::integer_vector_valuetypes()) {
303 if (isTypeLegal(VT)) {
304 // These operations have direct equivalents.
305 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
306 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
307 setOperationAction(ISD::ADD, VT, Legal);
308 setOperationAction(ISD::SUB, VT, Legal);
309 if (VT != MVT::v2i64)
310 setOperationAction(ISD::MUL, VT, Legal);
311 setOperationAction(ISD::AND, VT, Legal);
312 setOperationAction(ISD::OR, VT, Legal);
313 setOperationAction(ISD::XOR, VT, Legal);
314 setOperationAction(ISD::CTPOP, VT, Custom);
315 setOperationAction(ISD::CTTZ, VT, Legal);
316 setOperationAction(ISD::CTLZ, VT, Legal);
317
318 // Convert a GPR scalar to a vector by inserting it into element 0.
319 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
320
321 // Use a series of unpacks for extensions.
322 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
323 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
324
325 // Detect shifts by a scalar amount and convert them into
326 // V*_BY_SCALAR.
327 setOperationAction(ISD::SHL, VT, Custom);
328 setOperationAction(ISD::SRA, VT, Custom);
329 setOperationAction(ISD::SRL, VT, Custom);
330
331 // At present ROTL isn't matched by DAGCombiner. ROTR should be
332 // converted into ROTL.
333 setOperationAction(ISD::ROTL, VT, Expand);
334 setOperationAction(ISD::ROTR, VT, Expand);
335
336 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
337 // and inverting the result as necessary.
338 setOperationAction(ISD::SETCC, VT, Custom);
339 }
340 }
341
342 if (Subtarget.hasVector()) {
343 // There should be no need to check for float types other than v2f64
344 // since <2 x f32> isn't a legal type.
345 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
346 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
347 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
348 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
349 }
350
351 // Handle floating-point types.
352 for (unsigned I = MVT::FIRST_FP_VALUETYPE;
353 I <= MVT::LAST_FP_VALUETYPE;
354 ++I) {
355 MVT VT = MVT::SimpleValueType(I);
356 if (isTypeLegal(VT)) {
357 // We can use FI for FRINT.
358 setOperationAction(ISD::FRINT, VT, Legal);
359
360 // We can use the extended form of FI for other rounding operations.
361 if (Subtarget.hasFPExtension()) {
362 setOperationAction(ISD::FNEARBYINT, VT, Legal);
363 setOperationAction(ISD::FFLOOR, VT, Legal);
364 setOperationAction(ISD::FCEIL, VT, Legal);
365 setOperationAction(ISD::FTRUNC, VT, Legal);
366 setOperationAction(ISD::FROUND, VT, Legal);
367 }
368
369 // No special instructions for these.
370 setOperationAction(ISD::FSIN, VT, Expand);
371 setOperationAction(ISD::FCOS, VT, Expand);
372 setOperationAction(ISD::FSINCOS, VT, Expand);
373 setOperationAction(ISD::FREM, VT, Expand);
374 setOperationAction(ISD::FPOW, VT, Expand);
375 }
376 }
377
378 // Handle floating-point vector types.
379 if (Subtarget.hasVector()) {
380 // Scalar-to-vector conversion is just a subreg.
381 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
382 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
383
384 // Some insertions and extractions can be done directly but others
385 // need to go via integers.
386 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
387 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
388 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
389 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
390
391 // These operations have direct equivalents.
392 setOperationAction(ISD::FADD, MVT::v2f64, Legal);
393 setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
394 setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
395 setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
396 setOperationAction(ISD::FMA, MVT::v2f64, Legal);
397 setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
398 setOperationAction(ISD::FABS, MVT::v2f64, Legal);
399 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
400 setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
401 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
402 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
403 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
404 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
405 setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
406 }
407
408 // We have fused multiply-addition for f32 and f64 but not f128.
409 setOperationAction(ISD::FMA, MVT::f32, Legal);
410 setOperationAction(ISD::FMA, MVT::f64, Legal);
411 setOperationAction(ISD::FMA, MVT::f128, Expand);
412
413 // Needed so that we don't try to implement f128 constant loads using
414 // a load-and-extend of a f80 constant (in cases where the constant
415 // would fit in an f80).
416 for (MVT VT : MVT::fp_valuetypes())
417 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
418
419 // Floating-point truncation and stores need to be done separately.
420 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
421 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
422 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
423
424 // We have 64-bit FPR<->GPR moves, but need special handling for
425 // 32-bit forms.
426 if (!Subtarget.hasVector()) {
427 setOperationAction(ISD::BITCAST, MVT::i32, Custom);
428 setOperationAction(ISD::BITCAST, MVT::f32, Custom);
429 }
430
431 // VASTART and VACOPY need to deal with the SystemZ-specific varargs
432 // structure, but VAEND is a no-op.
433 setOperationAction(ISD::VASTART, MVT::Other, Custom);
434 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
435 setOperationAction(ISD::VAEND, MVT::Other, Expand);
436
437 // Codes for which we want to perform some z-specific combinations.
438 setTargetDAGCombine(ISD::SIGN_EXTEND);
439 setTargetDAGCombine(ISD::STORE);
440 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
441 setTargetDAGCombine(ISD::FP_ROUND);
442 setTargetDAGCombine(ISD::BSWAP);
443 setTargetDAGCombine(ISD::SHL);
444 setTargetDAGCombine(ISD::SRA);
445 setTargetDAGCombine(ISD::SRL);
446 setTargetDAGCombine(ISD::ROTL);
447
448 // Handle intrinsics.
449 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
450 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
451
452 // We want to use MVC in preference to even a single load/store pair.
453 MaxStoresPerMemcpy = 0;
454 MaxStoresPerMemcpyOptSize = 0;
455
456 // The main memset sequence is a byte store followed by an MVC.
457 // Two STC or MV..I stores win over that, but the kind of fused stores
458 // generated by target-independent code don't when the byte value is
459 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better
460 // than "STC;MVC". Handle the choice in target-specific code instead.
461 MaxStoresPerMemset = 0;
462 MaxStoresPerMemsetOptSize = 0;
463 }
464
getSetCCResultType(const DataLayout & DL,LLVMContext &,EVT VT) const465 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
466 LLVMContext &, EVT VT) const {
467 if (!VT.isVector())
468 return MVT::i32;
469 return VT.changeVectorElementTypeToInteger();
470 }
471
isFMAFasterThanFMulAndFAdd(EVT VT) const472 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
473 VT = VT.getScalarType();
474
475 if (!VT.isSimple())
476 return false;
477
478 switch (VT.getSimpleVT().SimpleTy) {
479 case MVT::f32:
480 case MVT::f64:
481 return true;
482 case MVT::f128:
483 return false;
484 default:
485 break;
486 }
487
488 return false;
489 }
490
isFPImmLegal(const APFloat & Imm,EVT VT) const491 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
492 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
493 return Imm.isZero() || Imm.isNegZero();
494 }
495
isLegalICmpImmediate(int64_t Imm) const496 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
497 // We can use CGFI or CLGFI.
498 return isInt<32>(Imm) || isUInt<32>(Imm);
499 }
500
isLegalAddImmediate(int64_t Imm) const501 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
502 // We can use ALGFI or SLGFI.
503 return isUInt<32>(Imm) || isUInt<32>(-Imm);
504 }
505
allowsMisalignedMemoryAccesses(EVT VT,unsigned,unsigned,bool * Fast) const506 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
507 unsigned,
508 unsigned,
509 bool *Fast) const {
510 // Unaligned accesses should never be slower than the expanded version.
511 // We check specifically for aligned accesses in the few cases where
512 // they are required.
513 if (Fast)
514 *Fast = true;
515 return true;
516 }
517
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS) const518 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
519 const AddrMode &AM, Type *Ty,
520 unsigned AS) const {
521 // Punt on globals for now, although they can be used in limited
522 // RELATIVE LONG cases.
523 if (AM.BaseGV)
524 return false;
525
526 // Require a 20-bit signed offset.
527 if (!isInt<20>(AM.BaseOffs))
528 return false;
529
530 // Indexing is OK but no scale factor can be applied.
531 return AM.Scale == 0 || AM.Scale == 1;
532 }
533
isTruncateFree(Type * FromType,Type * ToType) const534 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
535 if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
536 return false;
537 unsigned FromBits = FromType->getPrimitiveSizeInBits();
538 unsigned ToBits = ToType->getPrimitiveSizeInBits();
539 return FromBits > ToBits;
540 }
541
isTruncateFree(EVT FromVT,EVT ToVT) const542 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
543 if (!FromVT.isInteger() || !ToVT.isInteger())
544 return false;
545 unsigned FromBits = FromVT.getSizeInBits();
546 unsigned ToBits = ToVT.getSizeInBits();
547 return FromBits > ToBits;
548 }
549
550 //===----------------------------------------------------------------------===//
551 // Inline asm support
552 //===----------------------------------------------------------------------===//
553
554 TargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const555 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
556 if (Constraint.size() == 1) {
557 switch (Constraint[0]) {
558 case 'a': // Address register
559 case 'd': // Data register (equivalent to 'r')
560 case 'f': // Floating-point register
561 case 'h': // High-part register
562 case 'r': // General-purpose register
563 return C_RegisterClass;
564
565 case 'Q': // Memory with base and unsigned 12-bit displacement
566 case 'R': // Likewise, plus an index
567 case 'S': // Memory with base and signed 20-bit displacement
568 case 'T': // Likewise, plus an index
569 case 'm': // Equivalent to 'T'.
570 return C_Memory;
571
572 case 'I': // Unsigned 8-bit constant
573 case 'J': // Unsigned 12-bit constant
574 case 'K': // Signed 16-bit constant
575 case 'L': // Signed 20-bit displacement (on all targets we support)
576 case 'M': // 0x7fffffff
577 return C_Other;
578
579 default:
580 break;
581 }
582 }
583 return TargetLowering::getConstraintType(Constraint);
584 }
585
586 TargetLowering::ConstraintWeight SystemZTargetLowering::
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const587 getSingleConstraintMatchWeight(AsmOperandInfo &info,
588 const char *constraint) const {
589 ConstraintWeight weight = CW_Invalid;
590 Value *CallOperandVal = info.CallOperandVal;
591 // If we don't have a value, we can't do a match,
592 // but allow it at the lowest weight.
593 if (!CallOperandVal)
594 return CW_Default;
595 Type *type = CallOperandVal->getType();
596 // Look at the constraint type.
597 switch (*constraint) {
598 default:
599 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
600 break;
601
602 case 'a': // Address register
603 case 'd': // Data register (equivalent to 'r')
604 case 'h': // High-part register
605 case 'r': // General-purpose register
606 if (CallOperandVal->getType()->isIntegerTy())
607 weight = CW_Register;
608 break;
609
610 case 'f': // Floating-point register
611 if (type->isFloatingPointTy())
612 weight = CW_Register;
613 break;
614
615 case 'I': // Unsigned 8-bit constant
616 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
617 if (isUInt<8>(C->getZExtValue()))
618 weight = CW_Constant;
619 break;
620
621 case 'J': // Unsigned 12-bit constant
622 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
623 if (isUInt<12>(C->getZExtValue()))
624 weight = CW_Constant;
625 break;
626
627 case 'K': // Signed 16-bit constant
628 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
629 if (isInt<16>(C->getSExtValue()))
630 weight = CW_Constant;
631 break;
632
633 case 'L': // Signed 20-bit displacement (on all targets we support)
634 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
635 if (isInt<20>(C->getSExtValue()))
636 weight = CW_Constant;
637 break;
638
639 case 'M': // 0x7fffffff
640 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
641 if (C->getZExtValue() == 0x7fffffff)
642 weight = CW_Constant;
643 break;
644 }
645 return weight;
646 }
647
648 // Parse a "{tNNN}" register constraint for which the register type "t"
649 // has already been verified. MC is the class associated with "t" and
650 // Map maps 0-based register numbers to LLVM register numbers.
651 static std::pair<unsigned, const TargetRegisterClass *>
parseRegisterNumber(StringRef Constraint,const TargetRegisterClass * RC,const unsigned * Map)652 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
653 const unsigned *Map) {
654 assert(*(Constraint.end()-1) == '}' && "Missing '}'");
655 if (isdigit(Constraint[2])) {
656 unsigned Index;
657 bool Failed =
658 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
659 if (!Failed && Index < 16 && Map[Index])
660 return std::make_pair(Map[Index], RC);
661 }
662 return std::make_pair(0U, nullptr);
663 }
664
665 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const666 SystemZTargetLowering::getRegForInlineAsmConstraint(
667 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
668 if (Constraint.size() == 1) {
669 // GCC Constraint Letters
670 switch (Constraint[0]) {
671 default: break;
672 case 'd': // Data register (equivalent to 'r')
673 case 'r': // General-purpose register
674 if (VT == MVT::i64)
675 return std::make_pair(0U, &SystemZ::GR64BitRegClass);
676 else if (VT == MVT::i128)
677 return std::make_pair(0U, &SystemZ::GR128BitRegClass);
678 return std::make_pair(0U, &SystemZ::GR32BitRegClass);
679
680 case 'a': // Address register
681 if (VT == MVT::i64)
682 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
683 else if (VT == MVT::i128)
684 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
685 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
686
687 case 'h': // High-part register (an LLVM extension)
688 return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
689
690 case 'f': // Floating-point register
691 if (VT == MVT::f64)
692 return std::make_pair(0U, &SystemZ::FP64BitRegClass);
693 else if (VT == MVT::f128)
694 return std::make_pair(0U, &SystemZ::FP128BitRegClass);
695 return std::make_pair(0U, &SystemZ::FP32BitRegClass);
696 }
697 }
698 if (Constraint.size() > 0 && Constraint[0] == '{') {
699 // We need to override the default register parsing for GPRs and FPRs
700 // because the interpretation depends on VT. The internal names of
701 // the registers are also different from the external names
702 // (F0D and F0S instead of F0, etc.).
703 if (Constraint[1] == 'r') {
704 if (VT == MVT::i32)
705 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
706 SystemZMC::GR32Regs);
707 if (VT == MVT::i128)
708 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
709 SystemZMC::GR128Regs);
710 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
711 SystemZMC::GR64Regs);
712 }
713 if (Constraint[1] == 'f') {
714 if (VT == MVT::f32)
715 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
716 SystemZMC::FP32Regs);
717 if (VT == MVT::f128)
718 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
719 SystemZMC::FP128Regs);
720 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
721 SystemZMC::FP64Regs);
722 }
723 }
724 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
725 }
726
727 void SystemZTargetLowering::
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const728 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
729 std::vector<SDValue> &Ops,
730 SelectionDAG &DAG) const {
731 // Only support length 1 constraints for now.
732 if (Constraint.length() == 1) {
733 switch (Constraint[0]) {
734 case 'I': // Unsigned 8-bit constant
735 if (auto *C = dyn_cast<ConstantSDNode>(Op))
736 if (isUInt<8>(C->getZExtValue()))
737 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
738 Op.getValueType()));
739 return;
740
741 case 'J': // Unsigned 12-bit constant
742 if (auto *C = dyn_cast<ConstantSDNode>(Op))
743 if (isUInt<12>(C->getZExtValue()))
744 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
745 Op.getValueType()));
746 return;
747
748 case 'K': // Signed 16-bit constant
749 if (auto *C = dyn_cast<ConstantSDNode>(Op))
750 if (isInt<16>(C->getSExtValue()))
751 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
752 Op.getValueType()));
753 return;
754
755 case 'L': // Signed 20-bit displacement (on all targets we support)
756 if (auto *C = dyn_cast<ConstantSDNode>(Op))
757 if (isInt<20>(C->getSExtValue()))
758 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
759 Op.getValueType()));
760 return;
761
762 case 'M': // 0x7fffffff
763 if (auto *C = dyn_cast<ConstantSDNode>(Op))
764 if (C->getZExtValue() == 0x7fffffff)
765 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
766 Op.getValueType()));
767 return;
768 }
769 }
770 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
771 }
772
773 //===----------------------------------------------------------------------===//
774 // Calling conventions
775 //===----------------------------------------------------------------------===//
776
777 #include "SystemZGenCallingConv.inc"
778
allowTruncateForTailCall(Type * FromType,Type * ToType) const779 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
780 Type *ToType) const {
781 return isTruncateFree(FromType, ToType);
782 }
783
mayBeEmittedAsTailCall(CallInst * CI) const784 bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
785 return CI->isTailCall();
786 }
787
788 // We do not yet support 128-bit single-element vector types. If the user
789 // attempts to use such types as function argument or return type, prefer
790 // to error out instead of emitting code violating the ABI.
VerifyVectorType(MVT VT,EVT ArgVT)791 static void VerifyVectorType(MVT VT, EVT ArgVT) {
792 if (ArgVT.isVector() && !VT.isVector())
793 report_fatal_error("Unsupported vector argument or return type");
794 }
795
VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> & Ins)796 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
797 for (unsigned i = 0; i < Ins.size(); ++i)
798 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
799 }
800
VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> & Outs)801 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
802 for (unsigned i = 0; i < Outs.size(); ++i)
803 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
804 }
805
806 // Value is a value that has been passed to us in the location described by VA
807 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining
808 // any loads onto Chain.
convertLocVTToValVT(SelectionDAG & DAG,const SDLoc & DL,CCValAssign & VA,SDValue Chain,SDValue Value)809 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
810 CCValAssign &VA, SDValue Chain,
811 SDValue Value) {
812 // If the argument has been promoted from a smaller type, insert an
813 // assertion to capture this.
814 if (VA.getLocInfo() == CCValAssign::SExt)
815 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
816 DAG.getValueType(VA.getValVT()));
817 else if (VA.getLocInfo() == CCValAssign::ZExt)
818 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
819 DAG.getValueType(VA.getValVT()));
820
821 if (VA.isExtInLoc())
822 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
823 else if (VA.getLocInfo() == CCValAssign::BCvt) {
824 // If this is a short vector argument loaded from the stack,
825 // extend from i64 to full vector size and then bitcast.
826 assert(VA.getLocVT() == MVT::i64);
827 assert(VA.getValVT().isVector());
828 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
829 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
830 } else
831 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
832 return Value;
833 }
834
835 // Value is a value of type VA.getValVT() that we need to copy into
836 // the location described by VA. Return a copy of Value converted to
837 // VA.getValVT(). The caller is responsible for handling indirect values.
convertValVTToLocVT(SelectionDAG & DAG,const SDLoc & DL,CCValAssign & VA,SDValue Value)838 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
839 CCValAssign &VA, SDValue Value) {
840 switch (VA.getLocInfo()) {
841 case CCValAssign::SExt:
842 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
843 case CCValAssign::ZExt:
844 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
845 case CCValAssign::AExt:
846 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
847 case CCValAssign::BCvt:
848 // If this is a short vector argument to be stored to the stack,
849 // bitcast to v2i64 and then extract first element.
850 assert(VA.getLocVT() == MVT::i64);
851 assert(VA.getValVT().isVector());
852 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
853 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
854 DAG.getConstant(0, DL, MVT::i32));
855 case CCValAssign::Full:
856 return Value;
857 default:
858 llvm_unreachable("Unhandled getLocInfo()");
859 }
860 }
861
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const862 SDValue SystemZTargetLowering::LowerFormalArguments(
863 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
864 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
865 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
866 MachineFunction &MF = DAG.getMachineFunction();
867 MachineFrameInfo *MFI = MF.getFrameInfo();
868 MachineRegisterInfo &MRI = MF.getRegInfo();
869 SystemZMachineFunctionInfo *FuncInfo =
870 MF.getInfo<SystemZMachineFunctionInfo>();
871 auto *TFL =
872 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
873 EVT PtrVT = getPointerTy(DAG.getDataLayout());
874
875 // Detect unsupported vector argument types.
876 if (Subtarget.hasVector())
877 VerifyVectorTypes(Ins);
878
879 // Assign locations to all of the incoming arguments.
880 SmallVector<CCValAssign, 16> ArgLocs;
881 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
882 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
883
884 unsigned NumFixedGPRs = 0;
885 unsigned NumFixedFPRs = 0;
886 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
887 SDValue ArgValue;
888 CCValAssign &VA = ArgLocs[I];
889 EVT LocVT = VA.getLocVT();
890 if (VA.isRegLoc()) {
891 // Arguments passed in registers
892 const TargetRegisterClass *RC;
893 switch (LocVT.getSimpleVT().SimpleTy) {
894 default:
895 // Integers smaller than i64 should be promoted to i64.
896 llvm_unreachable("Unexpected argument type");
897 case MVT::i32:
898 NumFixedGPRs += 1;
899 RC = &SystemZ::GR32BitRegClass;
900 break;
901 case MVT::i64:
902 NumFixedGPRs += 1;
903 RC = &SystemZ::GR64BitRegClass;
904 break;
905 case MVT::f32:
906 NumFixedFPRs += 1;
907 RC = &SystemZ::FP32BitRegClass;
908 break;
909 case MVT::f64:
910 NumFixedFPRs += 1;
911 RC = &SystemZ::FP64BitRegClass;
912 break;
913 case MVT::v16i8:
914 case MVT::v8i16:
915 case MVT::v4i32:
916 case MVT::v2i64:
917 case MVT::v4f32:
918 case MVT::v2f64:
919 RC = &SystemZ::VR128BitRegClass;
920 break;
921 }
922
923 unsigned VReg = MRI.createVirtualRegister(RC);
924 MRI.addLiveIn(VA.getLocReg(), VReg);
925 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
926 } else {
927 assert(VA.isMemLoc() && "Argument not register or memory");
928
929 // Create the frame index object for this incoming parameter.
930 int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8,
931 VA.getLocMemOffset(), true);
932
933 // Create the SelectionDAG nodes corresponding to a load
934 // from this parameter. Unpromoted ints and floats are
935 // passed as right-justified 8-byte values.
936 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
937 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
938 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
939 DAG.getIntPtrConstant(4, DL));
940 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
941 MachinePointerInfo::getFixedStack(MF, FI), false,
942 false, false, 0);
943 }
944
945 // Convert the value of the argument register into the value that's
946 // being passed.
947 if (VA.getLocInfo() == CCValAssign::Indirect) {
948 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain,
949 ArgValue, MachinePointerInfo(),
950 false, false, false, 0));
951 // If the original argument was split (e.g. i128), we need
952 // to load all parts of it here (using the same address).
953 unsigned ArgIndex = Ins[I].OrigArgIndex;
954 assert (Ins[I].PartOffset == 0);
955 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
956 CCValAssign &PartVA = ArgLocs[I + 1];
957 unsigned PartOffset = Ins[I + 1].PartOffset;
958 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
959 DAG.getIntPtrConstant(PartOffset, DL));
960 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain,
961 Address, MachinePointerInfo(),
962 false, false, false, 0));
963 ++I;
964 }
965 } else
966 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
967 }
968
969 if (IsVarArg) {
970 // Save the number of non-varargs registers for later use by va_start, etc.
971 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
972 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
973
974 // Likewise the address (in the form of a frame index) of where the
975 // first stack vararg would be. The 1-byte size here is arbitrary.
976 int64_t StackSize = CCInfo.getNextStackOffset();
977 FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true));
978
979 // ...and a similar frame index for the caller-allocated save area
980 // that will be used to store the incoming registers.
981 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
982 unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true);
983 FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
984
985 // Store the FPR varargs in the reserved frame slots. (We store the
986 // GPRs as part of the prologue.)
987 if (NumFixedFPRs < SystemZ::NumArgFPRs) {
988 SDValue MemOps[SystemZ::NumArgFPRs];
989 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
990 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
991 int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true);
992 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
993 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
994 &SystemZ::FP64BitRegClass);
995 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
996 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
997 MachinePointerInfo::getFixedStack(MF, FI),
998 false, false, 0);
999 }
1000 // Join the stores, which are independent of one another.
1001 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1002 makeArrayRef(&MemOps[NumFixedFPRs],
1003 SystemZ::NumArgFPRs-NumFixedFPRs));
1004 }
1005 }
1006
1007 return Chain;
1008 }
1009
canUseSiblingCall(const CCState & ArgCCInfo,SmallVectorImpl<CCValAssign> & ArgLocs,SmallVectorImpl<ISD::OutputArg> & Outs)1010 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1011 SmallVectorImpl<CCValAssign> &ArgLocs,
1012 SmallVectorImpl<ISD::OutputArg> &Outs) {
1013 // Punt if there are any indirect or stack arguments, or if the call
1014 // needs the callee-saved argument register R6, or if the call uses
1015 // the callee-saved register arguments SwiftSelf and SwiftError.
1016 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1017 CCValAssign &VA = ArgLocs[I];
1018 if (VA.getLocInfo() == CCValAssign::Indirect)
1019 return false;
1020 if (!VA.isRegLoc())
1021 return false;
1022 unsigned Reg = VA.getLocReg();
1023 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1024 return false;
1025 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1026 return false;
1027 }
1028 return true;
1029 }
1030
1031 SDValue
LowerCall(CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const1032 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1033 SmallVectorImpl<SDValue> &InVals) const {
1034 SelectionDAG &DAG = CLI.DAG;
1035 SDLoc &DL = CLI.DL;
1036 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1037 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1038 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1039 SDValue Chain = CLI.Chain;
1040 SDValue Callee = CLI.Callee;
1041 bool &IsTailCall = CLI.IsTailCall;
1042 CallingConv::ID CallConv = CLI.CallConv;
1043 bool IsVarArg = CLI.IsVarArg;
1044 MachineFunction &MF = DAG.getMachineFunction();
1045 EVT PtrVT = getPointerTy(MF.getDataLayout());
1046
1047 // Detect unsupported vector argument and return types.
1048 if (Subtarget.hasVector()) {
1049 VerifyVectorTypes(Outs);
1050 VerifyVectorTypes(Ins);
1051 }
1052
1053 // Analyze the operands of the call, assigning locations to each operand.
1054 SmallVector<CCValAssign, 16> ArgLocs;
1055 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1056 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1057
1058 // We don't support GuaranteedTailCallOpt, only automatically-detected
1059 // sibling calls.
1060 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1061 IsTailCall = false;
1062
1063 // Get a count of how many bytes are to be pushed on the stack.
1064 unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1065
1066 // Mark the start of the call.
1067 if (!IsTailCall)
1068 Chain = DAG.getCALLSEQ_START(Chain,
1069 DAG.getConstant(NumBytes, DL, PtrVT, true),
1070 DL);
1071
1072 // Copy argument values to their designated locations.
1073 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1074 SmallVector<SDValue, 8> MemOpChains;
1075 SDValue StackPtr;
1076 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1077 CCValAssign &VA = ArgLocs[I];
1078 SDValue ArgValue = OutVals[I];
1079
1080 if (VA.getLocInfo() == CCValAssign::Indirect) {
1081 // Store the argument in a stack slot and pass its address.
1082 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT);
1083 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1084 MemOpChains.push_back(DAG.getStore(
1085 Chain, DL, ArgValue, SpillSlot,
1086 MachinePointerInfo::getFixedStack(MF, FI), false, false, 0));
1087 // If the original argument was split (e.g. i128), we need
1088 // to store all parts of it here (and pass just one address).
1089 unsigned ArgIndex = Outs[I].OrigArgIndex;
1090 assert (Outs[I].PartOffset == 0);
1091 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1092 SDValue PartValue = OutVals[I + 1];
1093 unsigned PartOffset = Outs[I + 1].PartOffset;
1094 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1095 DAG.getIntPtrConstant(PartOffset, DL));
1096 MemOpChains.push_back(DAG.getStore(
1097 Chain, DL, PartValue, Address,
1098 MachinePointerInfo::getFixedStack(MF, FI), false, false, 0));
1099 ++I;
1100 }
1101 ArgValue = SpillSlot;
1102 } else
1103 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1104
1105 if (VA.isRegLoc())
1106 // Queue up the argument copies and emit them at the end.
1107 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1108 else {
1109 assert(VA.isMemLoc() && "Argument not register or memory");
1110
1111 // Work out the address of the stack slot. Unpromoted ints and
1112 // floats are passed as right-justified 8-byte values.
1113 if (!StackPtr.getNode())
1114 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
1115 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
1116 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1117 Offset += 4;
1118 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1119 DAG.getIntPtrConstant(Offset, DL));
1120
1121 // Emit the store.
1122 MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address,
1123 MachinePointerInfo(),
1124 false, false, 0));
1125 }
1126 }
1127
1128 // Join the stores, which are independent of one another.
1129 if (!MemOpChains.empty())
1130 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1131
1132 // Accept direct calls by converting symbolic call addresses to the
1133 // associated Target* opcodes. Force %r1 to be used for indirect
1134 // tail calls.
1135 SDValue Glue;
1136 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1137 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1138 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1139 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1140 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1141 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1142 } else if (IsTailCall) {
1143 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1144 Glue = Chain.getValue(1);
1145 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1146 }
1147
1148 // Build a sequence of copy-to-reg nodes, chained and glued together.
1149 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1150 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1151 RegsToPass[I].second, Glue);
1152 Glue = Chain.getValue(1);
1153 }
1154
1155 // The first call operand is the chain and the second is the target address.
1156 SmallVector<SDValue, 8> Ops;
1157 Ops.push_back(Chain);
1158 Ops.push_back(Callee);
1159
1160 // Add argument registers to the end of the list so that they are
1161 // known live into the call.
1162 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1163 Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1164 RegsToPass[I].second.getValueType()));
1165
1166 // Add a register mask operand representing the call-preserved registers.
1167 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1168 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1169 assert(Mask && "Missing call preserved mask for calling convention");
1170 Ops.push_back(DAG.getRegisterMask(Mask));
1171
1172 // Glue the call to the argument copies, if any.
1173 if (Glue.getNode())
1174 Ops.push_back(Glue);
1175
1176 // Emit the call.
1177 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1178 if (IsTailCall)
1179 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1180 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1181 Glue = Chain.getValue(1);
1182
1183 // Mark the end of the call, which is glued to the call itself.
1184 Chain = DAG.getCALLSEQ_END(Chain,
1185 DAG.getConstant(NumBytes, DL, PtrVT, true),
1186 DAG.getConstant(0, DL, PtrVT, true),
1187 Glue, DL);
1188 Glue = Chain.getValue(1);
1189
1190 // Assign locations to each value returned by this call.
1191 SmallVector<CCValAssign, 16> RetLocs;
1192 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1193 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1194
1195 // Copy all of the result registers out of their specified physreg.
1196 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1197 CCValAssign &VA = RetLocs[I];
1198
1199 // Copy the value out, gluing the copy to the end of the call sequence.
1200 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1201 VA.getLocVT(), Glue);
1202 Chain = RetValue.getValue(1);
1203 Glue = RetValue.getValue(2);
1204
1205 // Convert the value of the return register into the value that's
1206 // being returned.
1207 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1208 }
1209
1210 return Chain;
1211 }
1212
1213 bool SystemZTargetLowering::
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const1214 CanLowerReturn(CallingConv::ID CallConv,
1215 MachineFunction &MF, bool isVarArg,
1216 const SmallVectorImpl<ISD::OutputArg> &Outs,
1217 LLVMContext &Context) const {
1218 // Detect unsupported vector return types.
1219 if (Subtarget.hasVector())
1220 VerifyVectorTypes(Outs);
1221
1222 // Special case that we cannot easily detect in RetCC_SystemZ since
1223 // i128 is not a legal type.
1224 for (auto &Out : Outs)
1225 if (Out.ArgVT == MVT::i128)
1226 return false;
1227
1228 SmallVector<CCValAssign, 16> RetLocs;
1229 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1230 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1231 }
1232
1233 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & DL,SelectionDAG & DAG) const1234 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1235 bool IsVarArg,
1236 const SmallVectorImpl<ISD::OutputArg> &Outs,
1237 const SmallVectorImpl<SDValue> &OutVals,
1238 const SDLoc &DL, SelectionDAG &DAG) const {
1239 MachineFunction &MF = DAG.getMachineFunction();
1240
1241 // Detect unsupported vector return types.
1242 if (Subtarget.hasVector())
1243 VerifyVectorTypes(Outs);
1244
1245 // Assign locations to each returned value.
1246 SmallVector<CCValAssign, 16> RetLocs;
1247 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1248 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1249
1250 // Quick exit for void returns
1251 if (RetLocs.empty())
1252 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1253
1254 // Copy the result values into the output registers.
1255 SDValue Glue;
1256 SmallVector<SDValue, 4> RetOps;
1257 RetOps.push_back(Chain);
1258 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1259 CCValAssign &VA = RetLocs[I];
1260 SDValue RetValue = OutVals[I];
1261
1262 // Make the return register live on exit.
1263 assert(VA.isRegLoc() && "Can only return in registers!");
1264
1265 // Promote the value as required.
1266 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1267
1268 // Chain and glue the copies together.
1269 unsigned Reg = VA.getLocReg();
1270 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1271 Glue = Chain.getValue(1);
1272 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1273 }
1274
1275 // Update chain and glue.
1276 RetOps[0] = Chain;
1277 if (Glue.getNode())
1278 RetOps.push_back(Glue);
1279
1280 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1281 }
1282
prepareVolatileOrAtomicLoad(SDValue Chain,const SDLoc & DL,SelectionDAG & DAG) const1283 SDValue SystemZTargetLowering::prepareVolatileOrAtomicLoad(
1284 SDValue Chain, const SDLoc &DL, SelectionDAG &DAG) const {
1285 return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain);
1286 }
1287
1288 // Return true if Op is an intrinsic node with chain that returns the CC value
1289 // as its only (other) argument. Provide the associated SystemZISD opcode and
1290 // the mask of valid CC values if so.
isIntrinsicWithCCAndChain(SDValue Op,unsigned & Opcode,unsigned & CCValid)1291 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1292 unsigned &CCValid) {
1293 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1294 switch (Id) {
1295 case Intrinsic::s390_tbegin:
1296 Opcode = SystemZISD::TBEGIN;
1297 CCValid = SystemZ::CCMASK_TBEGIN;
1298 return true;
1299
1300 case Intrinsic::s390_tbegin_nofloat:
1301 Opcode = SystemZISD::TBEGIN_NOFLOAT;
1302 CCValid = SystemZ::CCMASK_TBEGIN;
1303 return true;
1304
1305 case Intrinsic::s390_tend:
1306 Opcode = SystemZISD::TEND;
1307 CCValid = SystemZ::CCMASK_TEND;
1308 return true;
1309
1310 default:
1311 return false;
1312 }
1313 }
1314
1315 // Return true if Op is an intrinsic node without chain that returns the
1316 // CC value as its final argument. Provide the associated SystemZISD
1317 // opcode and the mask of valid CC values if so.
isIntrinsicWithCC(SDValue Op,unsigned & Opcode,unsigned & CCValid)1318 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1319 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1320 switch (Id) {
1321 case Intrinsic::s390_vpkshs:
1322 case Intrinsic::s390_vpksfs:
1323 case Intrinsic::s390_vpksgs:
1324 Opcode = SystemZISD::PACKS_CC;
1325 CCValid = SystemZ::CCMASK_VCMP;
1326 return true;
1327
1328 case Intrinsic::s390_vpklshs:
1329 case Intrinsic::s390_vpklsfs:
1330 case Intrinsic::s390_vpklsgs:
1331 Opcode = SystemZISD::PACKLS_CC;
1332 CCValid = SystemZ::CCMASK_VCMP;
1333 return true;
1334
1335 case Intrinsic::s390_vceqbs:
1336 case Intrinsic::s390_vceqhs:
1337 case Intrinsic::s390_vceqfs:
1338 case Intrinsic::s390_vceqgs:
1339 Opcode = SystemZISD::VICMPES;
1340 CCValid = SystemZ::CCMASK_VCMP;
1341 return true;
1342
1343 case Intrinsic::s390_vchbs:
1344 case Intrinsic::s390_vchhs:
1345 case Intrinsic::s390_vchfs:
1346 case Intrinsic::s390_vchgs:
1347 Opcode = SystemZISD::VICMPHS;
1348 CCValid = SystemZ::CCMASK_VCMP;
1349 return true;
1350
1351 case Intrinsic::s390_vchlbs:
1352 case Intrinsic::s390_vchlhs:
1353 case Intrinsic::s390_vchlfs:
1354 case Intrinsic::s390_vchlgs:
1355 Opcode = SystemZISD::VICMPHLS;
1356 CCValid = SystemZ::CCMASK_VCMP;
1357 return true;
1358
1359 case Intrinsic::s390_vtm:
1360 Opcode = SystemZISD::VTM;
1361 CCValid = SystemZ::CCMASK_VCMP;
1362 return true;
1363
1364 case Intrinsic::s390_vfaebs:
1365 case Intrinsic::s390_vfaehs:
1366 case Intrinsic::s390_vfaefs:
1367 Opcode = SystemZISD::VFAE_CC;
1368 CCValid = SystemZ::CCMASK_ANY;
1369 return true;
1370
1371 case Intrinsic::s390_vfaezbs:
1372 case Intrinsic::s390_vfaezhs:
1373 case Intrinsic::s390_vfaezfs:
1374 Opcode = SystemZISD::VFAEZ_CC;
1375 CCValid = SystemZ::CCMASK_ANY;
1376 return true;
1377
1378 case Intrinsic::s390_vfeebs:
1379 case Intrinsic::s390_vfeehs:
1380 case Intrinsic::s390_vfeefs:
1381 Opcode = SystemZISD::VFEE_CC;
1382 CCValid = SystemZ::CCMASK_ANY;
1383 return true;
1384
1385 case Intrinsic::s390_vfeezbs:
1386 case Intrinsic::s390_vfeezhs:
1387 case Intrinsic::s390_vfeezfs:
1388 Opcode = SystemZISD::VFEEZ_CC;
1389 CCValid = SystemZ::CCMASK_ANY;
1390 return true;
1391
1392 case Intrinsic::s390_vfenebs:
1393 case Intrinsic::s390_vfenehs:
1394 case Intrinsic::s390_vfenefs:
1395 Opcode = SystemZISD::VFENE_CC;
1396 CCValid = SystemZ::CCMASK_ANY;
1397 return true;
1398
1399 case Intrinsic::s390_vfenezbs:
1400 case Intrinsic::s390_vfenezhs:
1401 case Intrinsic::s390_vfenezfs:
1402 Opcode = SystemZISD::VFENEZ_CC;
1403 CCValid = SystemZ::CCMASK_ANY;
1404 return true;
1405
1406 case Intrinsic::s390_vistrbs:
1407 case Intrinsic::s390_vistrhs:
1408 case Intrinsic::s390_vistrfs:
1409 Opcode = SystemZISD::VISTR_CC;
1410 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
1411 return true;
1412
1413 case Intrinsic::s390_vstrcbs:
1414 case Intrinsic::s390_vstrchs:
1415 case Intrinsic::s390_vstrcfs:
1416 Opcode = SystemZISD::VSTRC_CC;
1417 CCValid = SystemZ::CCMASK_ANY;
1418 return true;
1419
1420 case Intrinsic::s390_vstrczbs:
1421 case Intrinsic::s390_vstrczhs:
1422 case Intrinsic::s390_vstrczfs:
1423 Opcode = SystemZISD::VSTRCZ_CC;
1424 CCValid = SystemZ::CCMASK_ANY;
1425 return true;
1426
1427 case Intrinsic::s390_vfcedbs:
1428 Opcode = SystemZISD::VFCMPES;
1429 CCValid = SystemZ::CCMASK_VCMP;
1430 return true;
1431
1432 case Intrinsic::s390_vfchdbs:
1433 Opcode = SystemZISD::VFCMPHS;
1434 CCValid = SystemZ::CCMASK_VCMP;
1435 return true;
1436
1437 case Intrinsic::s390_vfchedbs:
1438 Opcode = SystemZISD::VFCMPHES;
1439 CCValid = SystemZ::CCMASK_VCMP;
1440 return true;
1441
1442 case Intrinsic::s390_vftcidb:
1443 Opcode = SystemZISD::VFTCI;
1444 CCValid = SystemZ::CCMASK_VCMP;
1445 return true;
1446
1447 case Intrinsic::s390_tdc:
1448 Opcode = SystemZISD::TDC;
1449 CCValid = SystemZ::CCMASK_TDC;
1450 return true;
1451
1452 default:
1453 return false;
1454 }
1455 }
1456
1457 // Emit an intrinsic with chain with a glued value instead of its CC result.
emitIntrinsicWithChainAndGlue(SelectionDAG & DAG,SDValue Op,unsigned Opcode)1458 static SDValue emitIntrinsicWithChainAndGlue(SelectionDAG &DAG, SDValue Op,
1459 unsigned Opcode) {
1460 // Copy all operands except the intrinsic ID.
1461 unsigned NumOps = Op.getNumOperands();
1462 SmallVector<SDValue, 6> Ops;
1463 Ops.reserve(NumOps - 1);
1464 Ops.push_back(Op.getOperand(0));
1465 for (unsigned I = 2; I < NumOps; ++I)
1466 Ops.push_back(Op.getOperand(I));
1467
1468 assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
1469 SDVTList RawVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1470 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1471 SDValue OldChain = SDValue(Op.getNode(), 1);
1472 SDValue NewChain = SDValue(Intr.getNode(), 0);
1473 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
1474 return Intr;
1475 }
1476
1477 // Emit an intrinsic with a glued value instead of its CC result.
emitIntrinsicWithGlue(SelectionDAG & DAG,SDValue Op,unsigned Opcode)1478 static SDValue emitIntrinsicWithGlue(SelectionDAG &DAG, SDValue Op,
1479 unsigned Opcode) {
1480 // Copy all operands except the intrinsic ID.
1481 unsigned NumOps = Op.getNumOperands();
1482 SmallVector<SDValue, 6> Ops;
1483 Ops.reserve(NumOps - 1);
1484 for (unsigned I = 1; I < NumOps; ++I)
1485 Ops.push_back(Op.getOperand(I));
1486
1487 if (Op->getNumValues() == 1)
1488 return DAG.getNode(Opcode, SDLoc(Op), MVT::Glue, Ops);
1489 assert(Op->getNumValues() == 2 && "Expected exactly one non-CC result");
1490 SDVTList RawVTs = DAG.getVTList(Op->getValueType(0), MVT::Glue);
1491 return DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1492 }
1493
1494 // CC is a comparison that will be implemented using an integer or
1495 // floating-point comparison. Return the condition code mask for
1496 // a branch on true. In the integer case, CCMASK_CMP_UO is set for
1497 // unsigned comparisons and clear for signed ones. In the floating-point
1498 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
CCMaskForCondCode(ISD::CondCode CC)1499 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
1500 #define CONV(X) \
1501 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
1502 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
1503 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
1504
1505 switch (CC) {
1506 default:
1507 llvm_unreachable("Invalid integer condition!");
1508
1509 CONV(EQ);
1510 CONV(NE);
1511 CONV(GT);
1512 CONV(GE);
1513 CONV(LT);
1514 CONV(LE);
1515
1516 case ISD::SETO: return SystemZ::CCMASK_CMP_O;
1517 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
1518 }
1519 #undef CONV
1520 }
1521
1522 // Return a sequence for getting a 1 from an IPM result when CC has a
1523 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
1524 // The handling of CC values outside CCValid doesn't matter.
getIPMConversion(unsigned CCValid,unsigned CCMask)1525 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) {
1526 // Deal with cases where the result can be taken directly from a bit
1527 // of the IPM result.
1528 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3)))
1529 return IPMConversion(0, 0, SystemZ::IPM_CC);
1530 if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3)))
1531 return IPMConversion(0, 0, SystemZ::IPM_CC + 1);
1532
1533 // Deal with cases where we can add a value to force the sign bit
1534 // to contain the right value. Putting the bit in 31 means we can
1535 // use SRL rather than RISBG(L), and also makes it easier to get a
1536 // 0/-1 value, so it has priority over the other tests below.
1537 //
1538 // These sequences rely on the fact that the upper two bits of the
1539 // IPM result are zero.
1540 uint64_t TopBit = uint64_t(1) << 31;
1541 if (CCMask == (CCValid & SystemZ::CCMASK_0))
1542 return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31);
1543 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1)))
1544 return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31);
1545 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1546 | SystemZ::CCMASK_1
1547 | SystemZ::CCMASK_2)))
1548 return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31);
1549 if (CCMask == (CCValid & SystemZ::CCMASK_3))
1550 return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31);
1551 if (CCMask == (CCValid & (SystemZ::CCMASK_1
1552 | SystemZ::CCMASK_2
1553 | SystemZ::CCMASK_3)))
1554 return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31);
1555
1556 // Next try inverting the value and testing a bit. 0/1 could be
1557 // handled this way too, but we dealt with that case above.
1558 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2)))
1559 return IPMConversion(-1, 0, SystemZ::IPM_CC);
1560
1561 // Handle cases where adding a value forces a non-sign bit to contain
1562 // the right value.
1563 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2)))
1564 return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1);
1565 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3)))
1566 return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1);
1567
1568 // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are
1569 // can be done by inverting the low CC bit and applying one of the
1570 // sign-based extractions above.
1571 if (CCMask == (CCValid & SystemZ::CCMASK_1))
1572 return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31);
1573 if (CCMask == (CCValid & SystemZ::CCMASK_2))
1574 return IPMConversion(1 << SystemZ::IPM_CC,
1575 TopBit - (3 << SystemZ::IPM_CC), 31);
1576 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1577 | SystemZ::CCMASK_1
1578 | SystemZ::CCMASK_3)))
1579 return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31);
1580 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1581 | SystemZ::CCMASK_2
1582 | SystemZ::CCMASK_3)))
1583 return IPMConversion(1 << SystemZ::IPM_CC,
1584 TopBit - (1 << SystemZ::IPM_CC), 31);
1585
1586 llvm_unreachable("Unexpected CC combination");
1587 }
1588
1589 // If C can be converted to a comparison against zero, adjust the operands
1590 // as necessary.
adjustZeroCmp(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)1591 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
1592 if (C.ICmpType == SystemZICMP::UnsignedOnly)
1593 return;
1594
1595 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
1596 if (!ConstOp1)
1597 return;
1598
1599 int64_t Value = ConstOp1->getSExtValue();
1600 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
1601 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
1602 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
1603 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
1604 C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
1605 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
1606 }
1607 }
1608
1609 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
1610 // adjust the operands as necessary.
adjustSubwordCmp(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)1611 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
1612 Comparison &C) {
1613 // For us to make any changes, it must a comparison between a single-use
1614 // load and a constant.
1615 if (!C.Op0.hasOneUse() ||
1616 C.Op0.getOpcode() != ISD::LOAD ||
1617 C.Op1.getOpcode() != ISD::Constant)
1618 return;
1619
1620 // We must have an 8- or 16-bit load.
1621 auto *Load = cast<LoadSDNode>(C.Op0);
1622 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
1623 if (NumBits != 8 && NumBits != 16)
1624 return;
1625
1626 // The load must be an extending one and the constant must be within the
1627 // range of the unextended value.
1628 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
1629 uint64_t Value = ConstOp1->getZExtValue();
1630 uint64_t Mask = (1 << NumBits) - 1;
1631 if (Load->getExtensionType() == ISD::SEXTLOAD) {
1632 // Make sure that ConstOp1 is in range of C.Op0.
1633 int64_t SignedValue = ConstOp1->getSExtValue();
1634 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
1635 return;
1636 if (C.ICmpType != SystemZICMP::SignedOnly) {
1637 // Unsigned comparison between two sign-extended values is equivalent
1638 // to unsigned comparison between two zero-extended values.
1639 Value &= Mask;
1640 } else if (NumBits == 8) {
1641 // Try to treat the comparison as unsigned, so that we can use CLI.
1642 // Adjust CCMask and Value as necessary.
1643 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
1644 // Test whether the high bit of the byte is set.
1645 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
1646 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
1647 // Test whether the high bit of the byte is clear.
1648 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
1649 else
1650 // No instruction exists for this combination.
1651 return;
1652 C.ICmpType = SystemZICMP::UnsignedOnly;
1653 }
1654 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
1655 if (Value > Mask)
1656 return;
1657 // If the constant is in range, we can use any comparison.
1658 C.ICmpType = SystemZICMP::Any;
1659 } else
1660 return;
1661
1662 // Make sure that the first operand is an i32 of the right extension type.
1663 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
1664 ISD::SEXTLOAD :
1665 ISD::ZEXTLOAD);
1666 if (C.Op0.getValueType() != MVT::i32 ||
1667 Load->getExtensionType() != ExtType)
1668 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32,
1669 Load->getChain(), Load->getBasePtr(),
1670 Load->getPointerInfo(), Load->getMemoryVT(),
1671 Load->isVolatile(), Load->isNonTemporal(),
1672 Load->isInvariant(), Load->getAlignment());
1673
1674 // Make sure that the second operand is an i32 with the right value.
1675 if (C.Op1.getValueType() != MVT::i32 ||
1676 Value != ConstOp1->getZExtValue())
1677 C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
1678 }
1679
1680 // Return true if Op is either an unextended load, or a load suitable
1681 // for integer register-memory comparisons of type ICmpType.
isNaturalMemoryOperand(SDValue Op,unsigned ICmpType)1682 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
1683 auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
1684 if (Load) {
1685 // There are no instructions to compare a register with a memory byte.
1686 if (Load->getMemoryVT() == MVT::i8)
1687 return false;
1688 // Otherwise decide on extension type.
1689 switch (Load->getExtensionType()) {
1690 case ISD::NON_EXTLOAD:
1691 return true;
1692 case ISD::SEXTLOAD:
1693 return ICmpType != SystemZICMP::UnsignedOnly;
1694 case ISD::ZEXTLOAD:
1695 return ICmpType != SystemZICMP::SignedOnly;
1696 default:
1697 break;
1698 }
1699 }
1700 return false;
1701 }
1702
1703 // Return true if it is better to swap the operands of C.
shouldSwapCmpOperands(const Comparison & C)1704 static bool shouldSwapCmpOperands(const Comparison &C) {
1705 // Leave f128 comparisons alone, since they have no memory forms.
1706 if (C.Op0.getValueType() == MVT::f128)
1707 return false;
1708
1709 // Always keep a floating-point constant second, since comparisons with
1710 // zero can use LOAD TEST and comparisons with other constants make a
1711 // natural memory operand.
1712 if (isa<ConstantFPSDNode>(C.Op1))
1713 return false;
1714
1715 // Never swap comparisons with zero since there are many ways to optimize
1716 // those later.
1717 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
1718 if (ConstOp1 && ConstOp1->getZExtValue() == 0)
1719 return false;
1720
1721 // Also keep natural memory operands second if the loaded value is
1722 // only used here. Several comparisons have memory forms.
1723 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
1724 return false;
1725
1726 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
1727 // In that case we generally prefer the memory to be second.
1728 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
1729 // The only exceptions are when the second operand is a constant and
1730 // we can use things like CHHSI.
1731 if (!ConstOp1)
1732 return true;
1733 // The unsigned memory-immediate instructions can handle 16-bit
1734 // unsigned integers.
1735 if (C.ICmpType != SystemZICMP::SignedOnly &&
1736 isUInt<16>(ConstOp1->getZExtValue()))
1737 return false;
1738 // The signed memory-immediate instructions can handle 16-bit
1739 // signed integers.
1740 if (C.ICmpType != SystemZICMP::UnsignedOnly &&
1741 isInt<16>(ConstOp1->getSExtValue()))
1742 return false;
1743 return true;
1744 }
1745
1746 // Try to promote the use of CGFR and CLGFR.
1747 unsigned Opcode0 = C.Op0.getOpcode();
1748 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
1749 return true;
1750 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
1751 return true;
1752 if (C.ICmpType != SystemZICMP::SignedOnly &&
1753 Opcode0 == ISD::AND &&
1754 C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
1755 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
1756 return true;
1757
1758 return false;
1759 }
1760
1761 // Return a version of comparison CC mask CCMask in which the LT and GT
1762 // actions are swapped.
reverseCCMask(unsigned CCMask)1763 static unsigned reverseCCMask(unsigned CCMask) {
1764 return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
1765 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
1766 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
1767 (CCMask & SystemZ::CCMASK_CMP_UO));
1768 }
1769
1770 // Check whether C tests for equality between X and Y and whether X - Y
1771 // or Y - X is also computed. In that case it's better to compare the
1772 // result of the subtraction against zero.
adjustForSubtraction(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)1773 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
1774 Comparison &C) {
1775 if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
1776 C.CCMask == SystemZ::CCMASK_CMP_NE) {
1777 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
1778 SDNode *N = *I;
1779 if (N->getOpcode() == ISD::SUB &&
1780 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
1781 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
1782 C.Op0 = SDValue(N, 0);
1783 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
1784 return;
1785 }
1786 }
1787 }
1788 }
1789
1790 // Check whether C compares a floating-point value with zero and if that
1791 // floating-point value is also negated. In this case we can use the
1792 // negation to set CC, so avoiding separate LOAD AND TEST and
1793 // LOAD (NEGATIVE/COMPLEMENT) instructions.
adjustForFNeg(Comparison & C)1794 static void adjustForFNeg(Comparison &C) {
1795 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
1796 if (C1 && C1->isZero()) {
1797 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
1798 SDNode *N = *I;
1799 if (N->getOpcode() == ISD::FNEG) {
1800 C.Op0 = SDValue(N, 0);
1801 C.CCMask = reverseCCMask(C.CCMask);
1802 return;
1803 }
1804 }
1805 }
1806 }
1807
1808 // Check whether C compares (shl X, 32) with 0 and whether X is
1809 // also sign-extended. In that case it is better to test the result
1810 // of the sign extension using LTGFR.
1811 //
1812 // This case is important because InstCombine transforms a comparison
1813 // with (sext (trunc X)) into a comparison with (shl X, 32).
adjustForLTGFR(Comparison & C)1814 static void adjustForLTGFR(Comparison &C) {
1815 // Check for a comparison between (shl X, 32) and 0.
1816 if (C.Op0.getOpcode() == ISD::SHL &&
1817 C.Op0.getValueType() == MVT::i64 &&
1818 C.Op1.getOpcode() == ISD::Constant &&
1819 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1820 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
1821 if (C1 && C1->getZExtValue() == 32) {
1822 SDValue ShlOp0 = C.Op0.getOperand(0);
1823 // See whether X has any SIGN_EXTEND_INREG uses.
1824 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
1825 SDNode *N = *I;
1826 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
1827 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
1828 C.Op0 = SDValue(N, 0);
1829 return;
1830 }
1831 }
1832 }
1833 }
1834 }
1835
1836 // If C compares the truncation of an extending load, try to compare
1837 // the untruncated value instead. This exposes more opportunities to
1838 // reuse CC.
adjustICmpTruncate(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)1839 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
1840 Comparison &C) {
1841 if (C.Op0.getOpcode() == ISD::TRUNCATE &&
1842 C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
1843 C.Op1.getOpcode() == ISD::Constant &&
1844 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1845 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
1846 if (L->getMemoryVT().getStoreSizeInBits()
1847 <= C.Op0.getValueType().getSizeInBits()) {
1848 unsigned Type = L->getExtensionType();
1849 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
1850 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
1851 C.Op0 = C.Op0.getOperand(0);
1852 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
1853 }
1854 }
1855 }
1856 }
1857
1858 // Return true if shift operation N has an in-range constant shift value.
1859 // Store it in ShiftVal if so.
isSimpleShift(SDValue N,unsigned & ShiftVal)1860 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
1861 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
1862 if (!Shift)
1863 return false;
1864
1865 uint64_t Amount = Shift->getZExtValue();
1866 if (Amount >= N.getValueType().getSizeInBits())
1867 return false;
1868
1869 ShiftVal = Amount;
1870 return true;
1871 }
1872
1873 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
1874 // instruction and whether the CC value is descriptive enough to handle
1875 // a comparison of type Opcode between the AND result and CmpVal.
1876 // CCMask says which comparison result is being tested and BitSize is
1877 // the number of bits in the operands. If TEST UNDER MASK can be used,
1878 // return the corresponding CC mask, otherwise return 0.
getTestUnderMaskCond(unsigned BitSize,unsigned CCMask,uint64_t Mask,uint64_t CmpVal,unsigned ICmpType)1879 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
1880 uint64_t Mask, uint64_t CmpVal,
1881 unsigned ICmpType) {
1882 assert(Mask != 0 && "ANDs with zero should have been removed by now");
1883
1884 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
1885 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
1886 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
1887 return 0;
1888
1889 // Work out the masks for the lowest and highest bits.
1890 unsigned HighShift = 63 - countLeadingZeros(Mask);
1891 uint64_t High = uint64_t(1) << HighShift;
1892 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
1893
1894 // Signed ordered comparisons are effectively unsigned if the sign
1895 // bit is dropped.
1896 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
1897
1898 // Check for equality comparisons with 0, or the equivalent.
1899 if (CmpVal == 0) {
1900 if (CCMask == SystemZ::CCMASK_CMP_EQ)
1901 return SystemZ::CCMASK_TM_ALL_0;
1902 if (CCMask == SystemZ::CCMASK_CMP_NE)
1903 return SystemZ::CCMASK_TM_SOME_1;
1904 }
1905 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
1906 if (CCMask == SystemZ::CCMASK_CMP_LT)
1907 return SystemZ::CCMASK_TM_ALL_0;
1908 if (CCMask == SystemZ::CCMASK_CMP_GE)
1909 return SystemZ::CCMASK_TM_SOME_1;
1910 }
1911 if (EffectivelyUnsigned && CmpVal < Low) {
1912 if (CCMask == SystemZ::CCMASK_CMP_LE)
1913 return SystemZ::CCMASK_TM_ALL_0;
1914 if (CCMask == SystemZ::CCMASK_CMP_GT)
1915 return SystemZ::CCMASK_TM_SOME_1;
1916 }
1917
1918 // Check for equality comparisons with the mask, or the equivalent.
1919 if (CmpVal == Mask) {
1920 if (CCMask == SystemZ::CCMASK_CMP_EQ)
1921 return SystemZ::CCMASK_TM_ALL_1;
1922 if (CCMask == SystemZ::CCMASK_CMP_NE)
1923 return SystemZ::CCMASK_TM_SOME_0;
1924 }
1925 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
1926 if (CCMask == SystemZ::CCMASK_CMP_GT)
1927 return SystemZ::CCMASK_TM_ALL_1;
1928 if (CCMask == SystemZ::CCMASK_CMP_LE)
1929 return SystemZ::CCMASK_TM_SOME_0;
1930 }
1931 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
1932 if (CCMask == SystemZ::CCMASK_CMP_GE)
1933 return SystemZ::CCMASK_TM_ALL_1;
1934 if (CCMask == SystemZ::CCMASK_CMP_LT)
1935 return SystemZ::CCMASK_TM_SOME_0;
1936 }
1937
1938 // Check for ordered comparisons with the top bit.
1939 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
1940 if (CCMask == SystemZ::CCMASK_CMP_LE)
1941 return SystemZ::CCMASK_TM_MSB_0;
1942 if (CCMask == SystemZ::CCMASK_CMP_GT)
1943 return SystemZ::CCMASK_TM_MSB_1;
1944 }
1945 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
1946 if (CCMask == SystemZ::CCMASK_CMP_LT)
1947 return SystemZ::CCMASK_TM_MSB_0;
1948 if (CCMask == SystemZ::CCMASK_CMP_GE)
1949 return SystemZ::CCMASK_TM_MSB_1;
1950 }
1951
1952 // If there are just two bits, we can do equality checks for Low and High
1953 // as well.
1954 if (Mask == Low + High) {
1955 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
1956 return SystemZ::CCMASK_TM_MIXED_MSB_0;
1957 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
1958 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
1959 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
1960 return SystemZ::CCMASK_TM_MIXED_MSB_1;
1961 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
1962 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
1963 }
1964
1965 // Looks like we've exhausted our options.
1966 return 0;
1967 }
1968
1969 // See whether C can be implemented as a TEST UNDER MASK instruction.
1970 // Update the arguments with the TM version if so.
adjustForTestUnderMask(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)1971 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
1972 Comparison &C) {
1973 // Check that we have a comparison with a constant.
1974 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
1975 if (!ConstOp1)
1976 return;
1977 uint64_t CmpVal = ConstOp1->getZExtValue();
1978
1979 // Check whether the nonconstant input is an AND with a constant mask.
1980 Comparison NewC(C);
1981 uint64_t MaskVal;
1982 ConstantSDNode *Mask = nullptr;
1983 if (C.Op0.getOpcode() == ISD::AND) {
1984 NewC.Op0 = C.Op0.getOperand(0);
1985 NewC.Op1 = C.Op0.getOperand(1);
1986 Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
1987 if (!Mask)
1988 return;
1989 MaskVal = Mask->getZExtValue();
1990 } else {
1991 // There is no instruction to compare with a 64-bit immediate
1992 // so use TMHH instead if possible. We need an unsigned ordered
1993 // comparison with an i64 immediate.
1994 if (NewC.Op0.getValueType() != MVT::i64 ||
1995 NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
1996 NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
1997 NewC.ICmpType == SystemZICMP::SignedOnly)
1998 return;
1999 // Convert LE and GT comparisons into LT and GE.
2000 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2001 NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2002 if (CmpVal == uint64_t(-1))
2003 return;
2004 CmpVal += 1;
2005 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2006 }
2007 // If the low N bits of Op1 are zero than the low N bits of Op0 can
2008 // be masked off without changing the result.
2009 MaskVal = -(CmpVal & -CmpVal);
2010 NewC.ICmpType = SystemZICMP::UnsignedOnly;
2011 }
2012 if (!MaskVal)
2013 return;
2014
2015 // Check whether the combination of mask, comparison value and comparison
2016 // type are suitable.
2017 unsigned BitSize = NewC.Op0.getValueType().getSizeInBits();
2018 unsigned NewCCMask, ShiftVal;
2019 if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2020 NewC.Op0.getOpcode() == ISD::SHL &&
2021 isSimpleShift(NewC.Op0, ShiftVal) &&
2022 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2023 MaskVal >> ShiftVal,
2024 CmpVal >> ShiftVal,
2025 SystemZICMP::Any))) {
2026 NewC.Op0 = NewC.Op0.getOperand(0);
2027 MaskVal >>= ShiftVal;
2028 } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2029 NewC.Op0.getOpcode() == ISD::SRL &&
2030 isSimpleShift(NewC.Op0, ShiftVal) &&
2031 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2032 MaskVal << ShiftVal,
2033 CmpVal << ShiftVal,
2034 SystemZICMP::UnsignedOnly))) {
2035 NewC.Op0 = NewC.Op0.getOperand(0);
2036 MaskVal <<= ShiftVal;
2037 } else {
2038 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2039 NewC.ICmpType);
2040 if (!NewCCMask)
2041 return;
2042 }
2043
2044 // Go ahead and make the change.
2045 C.Opcode = SystemZISD::TM;
2046 C.Op0 = NewC.Op0;
2047 if (Mask && Mask->getZExtValue() == MaskVal)
2048 C.Op1 = SDValue(Mask, 0);
2049 else
2050 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2051 C.CCValid = SystemZ::CCMASK_TM;
2052 C.CCMask = NewCCMask;
2053 }
2054
2055 // Return a Comparison that tests the condition-code result of intrinsic
2056 // node Call against constant integer CC using comparison code Cond.
2057 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2058 // and CCValid is the set of possible condition-code results.
getIntrinsicCmp(SelectionDAG & DAG,unsigned Opcode,SDValue Call,unsigned CCValid,uint64_t CC,ISD::CondCode Cond)2059 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2060 SDValue Call, unsigned CCValid, uint64_t CC,
2061 ISD::CondCode Cond) {
2062 Comparison C(Call, SDValue());
2063 C.Opcode = Opcode;
2064 C.CCValid = CCValid;
2065 if (Cond == ISD::SETEQ)
2066 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2067 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2068 else if (Cond == ISD::SETNE)
2069 // ...and the inverse of that.
2070 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2071 else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2072 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2073 // always true for CC>3.
2074 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2075 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2076 // ...and the inverse of that.
2077 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2078 else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2079 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2080 // always true for CC>3.
2081 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2082 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2083 // ...and the inverse of that.
2084 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2085 else
2086 llvm_unreachable("Unexpected integer comparison type");
2087 C.CCMask &= CCValid;
2088 return C;
2089 }
2090
2091 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
getCmp(SelectionDAG & DAG,SDValue CmpOp0,SDValue CmpOp1,ISD::CondCode Cond,const SDLoc & DL)2092 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2093 ISD::CondCode Cond, const SDLoc &DL) {
2094 if (CmpOp1.getOpcode() == ISD::Constant) {
2095 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2096 unsigned Opcode, CCValid;
2097 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2098 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2099 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2100 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2101 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2102 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2103 isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2104 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2105 }
2106 Comparison C(CmpOp0, CmpOp1);
2107 C.CCMask = CCMaskForCondCode(Cond);
2108 if (C.Op0.getValueType().isFloatingPoint()) {
2109 C.CCValid = SystemZ::CCMASK_FCMP;
2110 C.Opcode = SystemZISD::FCMP;
2111 adjustForFNeg(C);
2112 } else {
2113 C.CCValid = SystemZ::CCMASK_ICMP;
2114 C.Opcode = SystemZISD::ICMP;
2115 // Choose the type of comparison. Equality and inequality tests can
2116 // use either signed or unsigned comparisons. The choice also doesn't
2117 // matter if both sign bits are known to be clear. In those cases we
2118 // want to give the main isel code the freedom to choose whichever
2119 // form fits best.
2120 if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2121 C.CCMask == SystemZ::CCMASK_CMP_NE ||
2122 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2123 C.ICmpType = SystemZICMP::Any;
2124 else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2125 C.ICmpType = SystemZICMP::UnsignedOnly;
2126 else
2127 C.ICmpType = SystemZICMP::SignedOnly;
2128 C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2129 adjustZeroCmp(DAG, DL, C);
2130 adjustSubwordCmp(DAG, DL, C);
2131 adjustForSubtraction(DAG, DL, C);
2132 adjustForLTGFR(C);
2133 adjustICmpTruncate(DAG, DL, C);
2134 }
2135
2136 if (shouldSwapCmpOperands(C)) {
2137 std::swap(C.Op0, C.Op1);
2138 C.CCMask = reverseCCMask(C.CCMask);
2139 }
2140
2141 adjustForTestUnderMask(DAG, DL, C);
2142 return C;
2143 }
2144
2145 // Emit the comparison instruction described by C.
emitCmp(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)2146 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2147 if (!C.Op1.getNode()) {
2148 SDValue Op;
2149 switch (C.Op0.getOpcode()) {
2150 case ISD::INTRINSIC_W_CHAIN:
2151 Op = emitIntrinsicWithChainAndGlue(DAG, C.Op0, C.Opcode);
2152 break;
2153 case ISD::INTRINSIC_WO_CHAIN:
2154 Op = emitIntrinsicWithGlue(DAG, C.Op0, C.Opcode);
2155 break;
2156 default:
2157 llvm_unreachable("Invalid comparison operands");
2158 }
2159 return SDValue(Op.getNode(), Op->getNumValues() - 1);
2160 }
2161 if (C.Opcode == SystemZISD::ICMP)
2162 return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1,
2163 DAG.getConstant(C.ICmpType, DL, MVT::i32));
2164 if (C.Opcode == SystemZISD::TM) {
2165 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2166 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2167 return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1,
2168 DAG.getConstant(RegisterOnly, DL, MVT::i32));
2169 }
2170 return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1);
2171 }
2172
2173 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2174 // 64 bits. Extend is the extension type to use. Store the high part
2175 // in Hi and the low part in Lo.
lowerMUL_LOHI32(SelectionDAG & DAG,const SDLoc & DL,unsigned Extend,SDValue Op0,SDValue Op1,SDValue & Hi,SDValue & Lo)2176 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2177 SDValue Op0, SDValue Op1, SDValue &Hi,
2178 SDValue &Lo) {
2179 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2180 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2181 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2182 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2183 DAG.getConstant(32, DL, MVT::i64));
2184 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2185 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2186 }
2187
2188 // Lower a binary operation that produces two VT results, one in each
2189 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation,
2190 // Extend extends Op0 to a GR128, and Opcode performs the GR128 operation
2191 // on the extended Op0 and (unextended) Op1. Store the even register result
2192 // in Even and the odd register result in Odd.
lowerGR128Binary(SelectionDAG & DAG,const SDLoc & DL,EVT VT,unsigned Extend,unsigned Opcode,SDValue Op0,SDValue Op1,SDValue & Even,SDValue & Odd)2193 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2194 unsigned Extend, unsigned Opcode, SDValue Op0,
2195 SDValue Op1, SDValue &Even, SDValue &Odd) {
2196 SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0);
2197 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped,
2198 SDValue(In128, 0), Op1);
2199 bool Is32Bit = is32Bit(VT);
2200 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2201 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2202 }
2203
2204 // Return an i32 value that is 1 if the CC value produced by Glue is
2205 // in the mask CCMask and 0 otherwise. CC is known to have a value
2206 // in CCValid, so other values can be ignored.
emitSETCC(SelectionDAG & DAG,const SDLoc & DL,SDValue Glue,unsigned CCValid,unsigned CCMask)2207 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue Glue,
2208 unsigned CCValid, unsigned CCMask) {
2209 IPMConversion Conversion = getIPMConversion(CCValid, CCMask);
2210 SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
2211
2212 if (Conversion.XORValue)
2213 Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result,
2214 DAG.getConstant(Conversion.XORValue, DL, MVT::i32));
2215
2216 if (Conversion.AddValue)
2217 Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result,
2218 DAG.getConstant(Conversion.AddValue, DL, MVT::i32));
2219
2220 // The SHR/AND sequence should get optimized to an RISBG.
2221 Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result,
2222 DAG.getConstant(Conversion.Bit, DL, MVT::i32));
2223 if (Conversion.Bit != 31)
2224 Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result,
2225 DAG.getConstant(1, DL, MVT::i32));
2226 return Result;
2227 }
2228
2229 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2230 // be done directly. IsFP is true if CC is for a floating-point rather than
2231 // integer comparison.
getVectorComparison(ISD::CondCode CC,bool IsFP)2232 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) {
2233 switch (CC) {
2234 case ISD::SETOEQ:
2235 case ISD::SETEQ:
2236 return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE;
2237
2238 case ISD::SETOGE:
2239 case ISD::SETGE:
2240 return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0);
2241
2242 case ISD::SETOGT:
2243 case ISD::SETGT:
2244 return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH;
2245
2246 case ISD::SETUGT:
2247 return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL;
2248
2249 default:
2250 return 0;
2251 }
2252 }
2253
2254 // Return the SystemZISD vector comparison operation for CC or its inverse,
2255 // or 0 if neither can be done directly. Indicate in Invert whether the
2256 // result is for the inverse of CC. IsFP is true if CC is for a
2257 // floating-point rather than integer comparison.
getVectorComparisonOrInvert(ISD::CondCode CC,bool IsFP,bool & Invert)2258 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP,
2259 bool &Invert) {
2260 if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
2261 Invert = false;
2262 return Opcode;
2263 }
2264
2265 CC = ISD::getSetCCInverse(CC, !IsFP);
2266 if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
2267 Invert = true;
2268 return Opcode;
2269 }
2270
2271 return 0;
2272 }
2273
2274 // Return a v2f64 that contains the extended form of elements Start and Start+1
2275 // of v4f32 value Op.
expandV4F32ToV2F64(SelectionDAG & DAG,int Start,const SDLoc & DL,SDValue Op)2276 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2277 SDValue Op) {
2278 int Mask[] = { Start, -1, Start + 1, -1 };
2279 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2280 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2281 }
2282
2283 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2284 // producing a result of type VT.
getVectorCmp(SelectionDAG & DAG,unsigned Opcode,const SDLoc & DL,EVT VT,SDValue CmpOp0,SDValue CmpOp1)2285 static SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &DL,
2286 EVT VT, SDValue CmpOp0, SDValue CmpOp1) {
2287 // There is no hardware support for v4f32, so extend the vector into
2288 // two v2f64s and compare those.
2289 if (CmpOp0.getValueType() == MVT::v4f32) {
2290 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0);
2291 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0);
2292 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1);
2293 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1);
2294 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2295 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2296 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2297 }
2298 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2299 }
2300
2301 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2302 // an integer mask of type VT.
lowerVectorSETCC(SelectionDAG & DAG,const SDLoc & DL,EVT VT,ISD::CondCode CC,SDValue CmpOp0,SDValue CmpOp1)2303 static SDValue lowerVectorSETCC(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2304 ISD::CondCode CC, SDValue CmpOp0,
2305 SDValue CmpOp1) {
2306 bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2307 bool Invert = false;
2308 SDValue Cmp;
2309 switch (CC) {
2310 // Handle tests for order using (or (ogt y x) (oge x y)).
2311 case ISD::SETUO:
2312 Invert = true;
2313 case ISD::SETO: {
2314 assert(IsFP && "Unexpected integer comparison");
2315 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2316 SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1);
2317 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2318 break;
2319 }
2320
2321 // Handle <> tests using (or (ogt y x) (ogt x y)).
2322 case ISD::SETUEQ:
2323 Invert = true;
2324 case ISD::SETONE: {
2325 assert(IsFP && "Unexpected integer comparison");
2326 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2327 SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1);
2328 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2329 break;
2330 }
2331
2332 // Otherwise a single comparison is enough. It doesn't really
2333 // matter whether we try the inversion or the swap first, since
2334 // there are no cases where both work.
2335 default:
2336 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
2337 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1);
2338 else {
2339 CC = ISD::getSetCCSwappedOperands(CC);
2340 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
2341 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0);
2342 else
2343 llvm_unreachable("Unhandled comparison");
2344 }
2345 break;
2346 }
2347 if (Invert) {
2348 SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
2349 DAG.getConstant(65535, DL, MVT::i32));
2350 Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask);
2351 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
2352 }
2353 return Cmp;
2354 }
2355
lowerSETCC(SDValue Op,SelectionDAG & DAG) const2356 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
2357 SelectionDAG &DAG) const {
2358 SDValue CmpOp0 = Op.getOperand(0);
2359 SDValue CmpOp1 = Op.getOperand(1);
2360 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2361 SDLoc DL(Op);
2362 EVT VT = Op.getValueType();
2363 if (VT.isVector())
2364 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
2365
2366 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2367 SDValue Glue = emitCmp(DAG, DL, C);
2368 return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
2369 }
2370
lowerBR_CC(SDValue Op,SelectionDAG & DAG) const2371 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2372 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2373 SDValue CmpOp0 = Op.getOperand(2);
2374 SDValue CmpOp1 = Op.getOperand(3);
2375 SDValue Dest = Op.getOperand(4);
2376 SDLoc DL(Op);
2377
2378 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2379 SDValue Glue = emitCmp(DAG, DL, C);
2380 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
2381 Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32),
2382 DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, Glue);
2383 }
2384
2385 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
2386 // allowing Pos and Neg to be wider than CmpOp.
isAbsolute(SDValue CmpOp,SDValue Pos,SDValue Neg)2387 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
2388 return (Neg.getOpcode() == ISD::SUB &&
2389 Neg.getOperand(0).getOpcode() == ISD::Constant &&
2390 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
2391 Neg.getOperand(1) == Pos &&
2392 (Pos == CmpOp ||
2393 (Pos.getOpcode() == ISD::SIGN_EXTEND &&
2394 Pos.getOperand(0) == CmpOp)));
2395 }
2396
2397 // Return the absolute or negative absolute of Op; IsNegative decides which.
getAbsolute(SelectionDAG & DAG,const SDLoc & DL,SDValue Op,bool IsNegative)2398 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
2399 bool IsNegative) {
2400 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
2401 if (IsNegative)
2402 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
2403 DAG.getConstant(0, DL, Op.getValueType()), Op);
2404 return Op;
2405 }
2406
lowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const2407 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
2408 SelectionDAG &DAG) const {
2409 SDValue CmpOp0 = Op.getOperand(0);
2410 SDValue CmpOp1 = Op.getOperand(1);
2411 SDValue TrueOp = Op.getOperand(2);
2412 SDValue FalseOp = Op.getOperand(3);
2413 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2414 SDLoc DL(Op);
2415
2416 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2417
2418 // Check for absolute and negative-absolute selections, including those
2419 // where the comparison value is sign-extended (for LPGFR and LNGFR).
2420 // This check supplements the one in DAGCombiner.
2421 if (C.Opcode == SystemZISD::ICMP &&
2422 C.CCMask != SystemZ::CCMASK_CMP_EQ &&
2423 C.CCMask != SystemZ::CCMASK_CMP_NE &&
2424 C.Op1.getOpcode() == ISD::Constant &&
2425 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2426 if (isAbsolute(C.Op0, TrueOp, FalseOp))
2427 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
2428 if (isAbsolute(C.Op0, FalseOp, TrueOp))
2429 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
2430 }
2431
2432 SDValue Glue = emitCmp(DAG, DL, C);
2433
2434 // Special case for handling -1/0 results. The shifts we use here
2435 // should get optimized with the IPM conversion sequence.
2436 auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp);
2437 auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp);
2438 if (TrueC && FalseC) {
2439 int64_t TrueVal = TrueC->getSExtValue();
2440 int64_t FalseVal = FalseC->getSExtValue();
2441 if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) {
2442 // Invert the condition if we want -1 on false.
2443 if (TrueVal == 0)
2444 C.CCMask ^= C.CCValid;
2445 SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
2446 EVT VT = Op.getValueType();
2447 // Extend the result to VT. Upper bits are ignored.
2448 if (!is32Bit(VT))
2449 Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result);
2450 // Sign-extend from the low bit.
2451 SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, DL, MVT::i32);
2452 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt);
2453 return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt);
2454 }
2455 }
2456
2457 SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32),
2458 DAG.getConstant(C.CCMask, DL, MVT::i32), Glue};
2459
2460 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
2461 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops);
2462 }
2463
lowerGlobalAddress(GlobalAddressSDNode * Node,SelectionDAG & DAG) const2464 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
2465 SelectionDAG &DAG) const {
2466 SDLoc DL(Node);
2467 const GlobalValue *GV = Node->getGlobal();
2468 int64_t Offset = Node->getOffset();
2469 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2470 CodeModel::Model CM = DAG.getTarget().getCodeModel();
2471
2472 SDValue Result;
2473 if (Subtarget.isPC32DBLSymbol(GV, CM)) {
2474 // Assign anchors at 1<<12 byte boundaries.
2475 uint64_t Anchor = Offset & ~uint64_t(0xfff);
2476 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
2477 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2478
2479 // The offset can be folded into the address if it is aligned to a halfword.
2480 Offset -= Anchor;
2481 if (Offset != 0 && (Offset & 1) == 0) {
2482 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
2483 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
2484 Offset = 0;
2485 }
2486 } else {
2487 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
2488 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2489 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
2490 MachinePointerInfo::getGOT(DAG.getMachineFunction()),
2491 false, false, false, 0);
2492 }
2493
2494 // If there was a non-zero offset that we didn't fold, create an explicit
2495 // addition for it.
2496 if (Offset != 0)
2497 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
2498 DAG.getConstant(Offset, DL, PtrVT));
2499
2500 return Result;
2501 }
2502
lowerTLSGetOffset(GlobalAddressSDNode * Node,SelectionDAG & DAG,unsigned Opcode,SDValue GOTOffset) const2503 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
2504 SelectionDAG &DAG,
2505 unsigned Opcode,
2506 SDValue GOTOffset) const {
2507 SDLoc DL(Node);
2508 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2509 SDValue Chain = DAG.getEntryNode();
2510 SDValue Glue;
2511
2512 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
2513 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2514 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
2515 Glue = Chain.getValue(1);
2516 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
2517 Glue = Chain.getValue(1);
2518
2519 // The first call operand is the chain and the second is the TLS symbol.
2520 SmallVector<SDValue, 8> Ops;
2521 Ops.push_back(Chain);
2522 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
2523 Node->getValueType(0),
2524 0, 0));
2525
2526 // Add argument registers to the end of the list so that they are
2527 // known live into the call.
2528 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
2529 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
2530
2531 // Add a register mask operand representing the call-preserved registers.
2532 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2533 const uint32_t *Mask =
2534 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
2535 assert(Mask && "Missing call preserved mask for calling convention");
2536 Ops.push_back(DAG.getRegisterMask(Mask));
2537
2538 // Glue the call to the argument copies.
2539 Ops.push_back(Glue);
2540
2541 // Emit the call.
2542 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2543 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
2544 Glue = Chain.getValue(1);
2545
2546 // Copy the return value from %r2.
2547 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
2548 }
2549
lowerThreadPointer(const SDLoc & DL,SelectionDAG & DAG) const2550 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
2551 SelectionDAG &DAG) const {
2552 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2553
2554 // The high part of the thread pointer is in access register 0.
2555 SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
2556 DAG.getConstant(0, DL, MVT::i32));
2557 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
2558
2559 // The low part of the thread pointer is in access register 1.
2560 SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
2561 DAG.getConstant(1, DL, MVT::i32));
2562 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
2563
2564 // Merge them into a single 64-bit address.
2565 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
2566 DAG.getConstant(32, DL, PtrVT));
2567 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
2568 }
2569
lowerGlobalTLSAddress(GlobalAddressSDNode * Node,SelectionDAG & DAG) const2570 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
2571 SelectionDAG &DAG) const {
2572 if (DAG.getTarget().Options.EmulatedTLS)
2573 return LowerToTLSEmulatedModel(Node, DAG);
2574 SDLoc DL(Node);
2575 const GlobalValue *GV = Node->getGlobal();
2576 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2577 TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
2578
2579 SDValue TP = lowerThreadPointer(DL, DAG);
2580
2581 // Get the offset of GA from the thread pointer, based on the TLS model.
2582 SDValue Offset;
2583 switch (model) {
2584 case TLSModel::GeneralDynamic: {
2585 // Load the GOT offset of the tls_index (module ID / per-symbol offset).
2586 SystemZConstantPoolValue *CPV =
2587 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
2588
2589 Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2590 Offset = DAG.getLoad(
2591 PtrVT, DL, DAG.getEntryNode(), Offset,
2592 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
2593 false, false, 0);
2594
2595 // Call __tls_get_offset to retrieve the offset.
2596 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
2597 break;
2598 }
2599
2600 case TLSModel::LocalDynamic: {
2601 // Load the GOT offset of the module ID.
2602 SystemZConstantPoolValue *CPV =
2603 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
2604
2605 Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2606 Offset = DAG.getLoad(
2607 PtrVT, DL, DAG.getEntryNode(), Offset,
2608 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
2609 false, false, 0);
2610
2611 // Call __tls_get_offset to retrieve the module base offset.
2612 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
2613
2614 // Note: The SystemZLDCleanupPass will remove redundant computations
2615 // of the module base offset. Count total number of local-dynamic
2616 // accesses to trigger execution of that pass.
2617 SystemZMachineFunctionInfo* MFI =
2618 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
2619 MFI->incNumLocalDynamicTLSAccesses();
2620
2621 // Add the per-symbol offset.
2622 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
2623
2624 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8);
2625 DTPOffset = DAG.getLoad(
2626 PtrVT, DL, DAG.getEntryNode(), DTPOffset,
2627 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
2628 false, false, 0);
2629
2630 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
2631 break;
2632 }
2633
2634 case TLSModel::InitialExec: {
2635 // Load the offset from the GOT.
2636 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2637 SystemZII::MO_INDNTPOFF);
2638 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
2639 Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
2640 MachinePointerInfo::getGOT(DAG.getMachineFunction()),
2641 false, false, false, 0);
2642 break;
2643 }
2644
2645 case TLSModel::LocalExec: {
2646 // Force the offset into the constant pool and load it from there.
2647 SystemZConstantPoolValue *CPV =
2648 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
2649
2650 Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2651 Offset = DAG.getLoad(
2652 PtrVT, DL, DAG.getEntryNode(), Offset,
2653 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
2654 false, false, 0);
2655 break;
2656 }
2657 }
2658
2659 // Add the base and offset together.
2660 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
2661 }
2662
lowerBlockAddress(BlockAddressSDNode * Node,SelectionDAG & DAG) const2663 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
2664 SelectionDAG &DAG) const {
2665 SDLoc DL(Node);
2666 const BlockAddress *BA = Node->getBlockAddress();
2667 int64_t Offset = Node->getOffset();
2668 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2669
2670 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
2671 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2672 return Result;
2673 }
2674
lowerJumpTable(JumpTableSDNode * JT,SelectionDAG & DAG) const2675 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
2676 SelectionDAG &DAG) const {
2677 SDLoc DL(JT);
2678 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2679 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2680
2681 // Use LARL to load the address of the table.
2682 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2683 }
2684
lowerConstantPool(ConstantPoolSDNode * CP,SelectionDAG & DAG) const2685 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
2686 SelectionDAG &DAG) const {
2687 SDLoc DL(CP);
2688 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2689
2690 SDValue Result;
2691 if (CP->isMachineConstantPoolEntry())
2692 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2693 CP->getAlignment());
2694 else
2695 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2696 CP->getAlignment(), CP->getOffset());
2697
2698 // Use LARL to load the address of the constant pool entry.
2699 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2700 }
2701
lowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const2702 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
2703 SelectionDAG &DAG) const {
2704 MachineFunction &MF = DAG.getMachineFunction();
2705 MachineFrameInfo *MFI = MF.getFrameInfo();
2706 MFI->setFrameAddressIsTaken(true);
2707
2708 SDLoc DL(Op);
2709 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2710 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2711
2712 // If the back chain frame index has not been allocated yet, do so.
2713 SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>();
2714 int BackChainIdx = FI->getFramePointerSaveIndex();
2715 if (!BackChainIdx) {
2716 // By definition, the frame address is the address of the back chain.
2717 BackChainIdx = MFI->CreateFixedObject(8, -SystemZMC::CallFrameSize, false);
2718 FI->setFramePointerSaveIndex(BackChainIdx);
2719 }
2720 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
2721
2722 // FIXME The frontend should detect this case.
2723 if (Depth > 0) {
2724 report_fatal_error("Unsupported stack frame traversal count");
2725 }
2726
2727 return BackChain;
2728 }
2729
lowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const2730 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
2731 SelectionDAG &DAG) const {
2732 MachineFunction &MF = DAG.getMachineFunction();
2733 MachineFrameInfo *MFI = MF.getFrameInfo();
2734 MFI->setReturnAddressIsTaken(true);
2735
2736 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
2737 return SDValue();
2738
2739 SDLoc DL(Op);
2740 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2741 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2742
2743 // FIXME The frontend should detect this case.
2744 if (Depth > 0) {
2745 report_fatal_error("Unsupported stack frame traversal count");
2746 }
2747
2748 // Return R14D, which has the return address. Mark it an implicit live-in.
2749 unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
2750 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
2751 }
2752
lowerBITCAST(SDValue Op,SelectionDAG & DAG) const2753 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
2754 SelectionDAG &DAG) const {
2755 SDLoc DL(Op);
2756 SDValue In = Op.getOperand(0);
2757 EVT InVT = In.getValueType();
2758 EVT ResVT = Op.getValueType();
2759
2760 // Convert loads directly. This is normally done by DAGCombiner,
2761 // but we need this case for bitcasts that are created during lowering
2762 // and which are then lowered themselves.
2763 if (auto *LoadN = dyn_cast<LoadSDNode>(In))
2764 return DAG.getLoad(ResVT, DL, LoadN->getChain(), LoadN->getBasePtr(),
2765 LoadN->getMemOperand());
2766
2767 if (InVT == MVT::i32 && ResVT == MVT::f32) {
2768 SDValue In64;
2769 if (Subtarget.hasHighWord()) {
2770 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
2771 MVT::i64);
2772 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
2773 MVT::i64, SDValue(U64, 0), In);
2774 } else {
2775 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
2776 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
2777 DAG.getConstant(32, DL, MVT::i64));
2778 }
2779 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
2780 return DAG.getTargetExtractSubreg(SystemZ::subreg_r32,
2781 DL, MVT::f32, Out64);
2782 }
2783 if (InVT == MVT::f32 && ResVT == MVT::i32) {
2784 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
2785 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL,
2786 MVT::f64, SDValue(U64, 0), In);
2787 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
2788 if (Subtarget.hasHighWord())
2789 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
2790 MVT::i32, Out64);
2791 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
2792 DAG.getConstant(32, DL, MVT::i64));
2793 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
2794 }
2795 llvm_unreachable("Unexpected bitcast combination");
2796 }
2797
lowerVASTART(SDValue Op,SelectionDAG & DAG) const2798 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
2799 SelectionDAG &DAG) const {
2800 MachineFunction &MF = DAG.getMachineFunction();
2801 SystemZMachineFunctionInfo *FuncInfo =
2802 MF.getInfo<SystemZMachineFunctionInfo>();
2803 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2804
2805 SDValue Chain = Op.getOperand(0);
2806 SDValue Addr = Op.getOperand(1);
2807 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2808 SDLoc DL(Op);
2809
2810 // The initial values of each field.
2811 const unsigned NumFields = 4;
2812 SDValue Fields[NumFields] = {
2813 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
2814 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
2815 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
2816 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
2817 };
2818
2819 // Store each field into its respective slot.
2820 SDValue MemOps[NumFields];
2821 unsigned Offset = 0;
2822 for (unsigned I = 0; I < NumFields; ++I) {
2823 SDValue FieldAddr = Addr;
2824 if (Offset != 0)
2825 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
2826 DAG.getIntPtrConstant(Offset, DL));
2827 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
2828 MachinePointerInfo(SV, Offset),
2829 false, false, 0);
2830 Offset += 8;
2831 }
2832 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
2833 }
2834
lowerVACOPY(SDValue Op,SelectionDAG & DAG) const2835 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
2836 SelectionDAG &DAG) const {
2837 SDValue Chain = Op.getOperand(0);
2838 SDValue DstPtr = Op.getOperand(1);
2839 SDValue SrcPtr = Op.getOperand(2);
2840 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
2841 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
2842 SDLoc DL(Op);
2843
2844 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
2845 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
2846 /*isTailCall*/false,
2847 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
2848 }
2849
2850 SDValue SystemZTargetLowering::
lowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const2851 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
2852 const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
2853 MachineFunction &MF = DAG.getMachineFunction();
2854 bool RealignOpt = !MF.getFunction()-> hasFnAttribute("no-realign-stack");
2855 bool StoreBackchain = MF.getFunction()->hasFnAttribute("backchain");
2856
2857 SDValue Chain = Op.getOperand(0);
2858 SDValue Size = Op.getOperand(1);
2859 SDValue Align = Op.getOperand(2);
2860 SDLoc DL(Op);
2861
2862 // If user has set the no alignment function attribute, ignore
2863 // alloca alignments.
2864 uint64_t AlignVal = (RealignOpt ?
2865 dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0);
2866
2867 uint64_t StackAlign = TFI->getStackAlignment();
2868 uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
2869 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
2870
2871 unsigned SPReg = getStackPointerRegisterToSaveRestore();
2872 SDValue NeededSpace = Size;
2873
2874 // Get a reference to the stack pointer.
2875 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
2876
2877 // If we need a backchain, save it now.
2878 SDValue Backchain;
2879 if (StoreBackchain)
2880 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo(),
2881 false, false, false, 0);
2882
2883 // Add extra space for alignment if needed.
2884 if (ExtraAlignSpace)
2885 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
2886 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
2887
2888 // Get the new stack pointer value.
2889 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
2890
2891 // Copy the new stack pointer back.
2892 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
2893
2894 // The allocated data lives above the 160 bytes allocated for the standard
2895 // frame, plus any outgoing stack arguments. We don't know how much that
2896 // amounts to yet, so emit a special ADJDYNALLOC placeholder.
2897 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
2898 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
2899
2900 // Dynamically realign if needed.
2901 if (RequiredAlign > StackAlign) {
2902 Result =
2903 DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
2904 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
2905 Result =
2906 DAG.getNode(ISD::AND, DL, MVT::i64, Result,
2907 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
2908 }
2909
2910 if (StoreBackchain)
2911 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo(),
2912 false, false, 0);
2913
2914 SDValue Ops[2] = { Result, Chain };
2915 return DAG.getMergeValues(Ops, DL);
2916 }
2917
lowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,SelectionDAG & DAG) const2918 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
2919 SDValue Op, SelectionDAG &DAG) const {
2920 SDLoc DL(Op);
2921
2922 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
2923 }
2924
lowerSMUL_LOHI(SDValue Op,SelectionDAG & DAG) const2925 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
2926 SelectionDAG &DAG) const {
2927 EVT VT = Op.getValueType();
2928 SDLoc DL(Op);
2929 SDValue Ops[2];
2930 if (is32Bit(VT))
2931 // Just do a normal 64-bit multiplication and extract the results.
2932 // We define this so that it can be used for constant division.
2933 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
2934 Op.getOperand(1), Ops[1], Ops[0]);
2935 else {
2936 // Do a full 128-bit multiplication based on UMUL_LOHI64:
2937 //
2938 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
2939 //
2940 // but using the fact that the upper halves are either all zeros
2941 // or all ones:
2942 //
2943 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
2944 //
2945 // and grouping the right terms together since they are quicker than the
2946 // multiplication:
2947 //
2948 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
2949 SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
2950 SDValue LL = Op.getOperand(0);
2951 SDValue RL = Op.getOperand(1);
2952 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
2953 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
2954 // UMUL_LOHI64 returns the low result in the odd register and the high
2955 // result in the even register. SMUL_LOHI is defined to return the
2956 // low half first, so the results are in reverse order.
2957 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
2958 LL, RL, Ops[1], Ops[0]);
2959 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
2960 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
2961 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
2962 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
2963 }
2964 return DAG.getMergeValues(Ops, DL);
2965 }
2966
lowerUMUL_LOHI(SDValue Op,SelectionDAG & DAG) const2967 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
2968 SelectionDAG &DAG) const {
2969 EVT VT = Op.getValueType();
2970 SDLoc DL(Op);
2971 SDValue Ops[2];
2972 if (is32Bit(VT))
2973 // Just do a normal 64-bit multiplication and extract the results.
2974 // We define this so that it can be used for constant division.
2975 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
2976 Op.getOperand(1), Ops[1], Ops[0]);
2977 else
2978 // UMUL_LOHI64 returns the low result in the odd register and the high
2979 // result in the even register. UMUL_LOHI is defined to return the
2980 // low half first, so the results are in reverse order.
2981 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
2982 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
2983 return DAG.getMergeValues(Ops, DL);
2984 }
2985
lowerSDIVREM(SDValue Op,SelectionDAG & DAG) const2986 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
2987 SelectionDAG &DAG) const {
2988 SDValue Op0 = Op.getOperand(0);
2989 SDValue Op1 = Op.getOperand(1);
2990 EVT VT = Op.getValueType();
2991 SDLoc DL(Op);
2992 unsigned Opcode;
2993
2994 // We use DSGF for 32-bit division.
2995 if (is32Bit(VT)) {
2996 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
2997 Opcode = SystemZISD::SDIVREM32;
2998 } else if (DAG.ComputeNumSignBits(Op1) > 32) {
2999 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3000 Opcode = SystemZISD::SDIVREM32;
3001 } else
3002 Opcode = SystemZISD::SDIVREM64;
3003
3004 // DSG(F) takes a 64-bit dividend, so the even register in the GR128
3005 // input is "don't care". The instruction returns the remainder in
3006 // the even register and the quotient in the odd register.
3007 SDValue Ops[2];
3008 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode,
3009 Op0, Op1, Ops[1], Ops[0]);
3010 return DAG.getMergeValues(Ops, DL);
3011 }
3012
lowerUDIVREM(SDValue Op,SelectionDAG & DAG) const3013 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3014 SelectionDAG &DAG) const {
3015 EVT VT = Op.getValueType();
3016 SDLoc DL(Op);
3017
3018 // DL(G) uses a double-width dividend, so we need to clear the even
3019 // register in the GR128 input. The instruction returns the remainder
3020 // in the even register and the quotient in the odd register.
3021 SDValue Ops[2];
3022 if (is32Bit(VT))
3023 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32,
3024 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3025 else
3026 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64,
3027 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3028 return DAG.getMergeValues(Ops, DL);
3029 }
3030
lowerOR(SDValue Op,SelectionDAG & DAG) const3031 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3032 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3033
3034 // Get the known-zero masks for each operand.
3035 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
3036 APInt KnownZero[2], KnownOne[2];
3037 DAG.computeKnownBits(Ops[0], KnownZero[0], KnownOne[0]);
3038 DAG.computeKnownBits(Ops[1], KnownZero[1], KnownOne[1]);
3039
3040 // See if the upper 32 bits of one operand and the lower 32 bits of the
3041 // other are known zero. They are the low and high operands respectively.
3042 uint64_t Masks[] = { KnownZero[0].getZExtValue(),
3043 KnownZero[1].getZExtValue() };
3044 unsigned High, Low;
3045 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3046 High = 1, Low = 0;
3047 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3048 High = 0, Low = 1;
3049 else
3050 return Op;
3051
3052 SDValue LowOp = Ops[Low];
3053 SDValue HighOp = Ops[High];
3054
3055 // If the high part is a constant, we're better off using IILH.
3056 if (HighOp.getOpcode() == ISD::Constant)
3057 return Op;
3058
3059 // If the low part is a constant that is outside the range of LHI,
3060 // then we're better off using IILF.
3061 if (LowOp.getOpcode() == ISD::Constant) {
3062 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3063 if (!isInt<16>(Value))
3064 return Op;
3065 }
3066
3067 // Check whether the high part is an AND that doesn't change the
3068 // high 32 bits and just masks out low bits. We can skip it if so.
3069 if (HighOp.getOpcode() == ISD::AND &&
3070 HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3071 SDValue HighOp0 = HighOp.getOperand(0);
3072 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3073 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3074 HighOp = HighOp0;
3075 }
3076
3077 // Take advantage of the fact that all GR32 operations only change the
3078 // low 32 bits by truncating Low to an i32 and inserting it directly
3079 // using a subreg. The interesting cases are those where the truncation
3080 // can be folded.
3081 SDLoc DL(Op);
3082 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3083 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3084 MVT::i64, HighOp, Low32);
3085 }
3086
lowerCTPOP(SDValue Op,SelectionDAG & DAG) const3087 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
3088 SelectionDAG &DAG) const {
3089 EVT VT = Op.getValueType();
3090 SDLoc DL(Op);
3091 Op = Op.getOperand(0);
3092
3093 // Handle vector types via VPOPCT.
3094 if (VT.isVector()) {
3095 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
3096 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
3097 switch (VT.getVectorElementType().getSizeInBits()) {
3098 case 8:
3099 break;
3100 case 16: {
3101 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
3102 SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
3103 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
3104 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3105 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
3106 break;
3107 }
3108 case 32: {
3109 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
3110 DAG.getConstant(0, DL, MVT::i32));
3111 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3112 break;
3113 }
3114 case 64: {
3115 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
3116 DAG.getConstant(0, DL, MVT::i32));
3117 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
3118 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3119 break;
3120 }
3121 default:
3122 llvm_unreachable("Unexpected type");
3123 }
3124 return Op;
3125 }
3126
3127 // Get the known-zero mask for the operand.
3128 APInt KnownZero, KnownOne;
3129 DAG.computeKnownBits(Op, KnownZero, KnownOne);
3130 unsigned NumSignificantBits = (~KnownZero).getActiveBits();
3131 if (NumSignificantBits == 0)
3132 return DAG.getConstant(0, DL, VT);
3133
3134 // Skip known-zero high parts of the operand.
3135 int64_t OrigBitSize = VT.getSizeInBits();
3136 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3137 BitSize = std::min(BitSize, OrigBitSize);
3138
3139 // The POPCNT instruction counts the number of bits in each byte.
3140 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3141 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3142 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3143
3144 // Add up per-byte counts in a binary tree. All bits of Op at
3145 // position larger than BitSize remain zero throughout.
3146 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
3147 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
3148 if (BitSize != OrigBitSize)
3149 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
3150 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
3151 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3152 }
3153
3154 // Extract overall result from high byte.
3155 if (BitSize > 8)
3156 Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3157 DAG.getConstant(BitSize - 8, DL, VT));
3158
3159 return Op;
3160 }
3161
lowerATOMIC_FENCE(SDValue Op,SelectionDAG & DAG) const3162 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
3163 SelectionDAG &DAG) const {
3164 SDLoc DL(Op);
3165 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
3166 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
3167 SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
3168 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
3169
3170 // The only fence that needs an instruction is a sequentially-consistent
3171 // cross-thread fence.
3172 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
3173 FenceScope == CrossThread) {
3174 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
3175 Op.getOperand(0)),
3176 0);
3177 }
3178
3179 // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3180 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
3181 }
3182
3183 // Op is an atomic load. Lower it into a normal volatile load.
lowerATOMIC_LOAD(SDValue Op,SelectionDAG & DAG) const3184 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3185 SelectionDAG &DAG) const {
3186 auto *Node = cast<AtomicSDNode>(Op.getNode());
3187 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3188 Node->getChain(), Node->getBasePtr(),
3189 Node->getMemoryVT(), Node->getMemOperand());
3190 }
3191
3192 // Op is an atomic store. Lower it into a normal volatile store followed
3193 // by a serialization.
lowerATOMIC_STORE(SDValue Op,SelectionDAG & DAG) const3194 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3195 SelectionDAG &DAG) const {
3196 auto *Node = cast<AtomicSDNode>(Op.getNode());
3197 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3198 Node->getBasePtr(), Node->getMemoryVT(),
3199 Node->getMemOperand());
3200 return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other,
3201 Chain), 0);
3202 }
3203
3204 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first
3205 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
lowerATOMIC_LOAD_OP(SDValue Op,SelectionDAG & DAG,unsigned Opcode) const3206 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3207 SelectionDAG &DAG,
3208 unsigned Opcode) const {
3209 auto *Node = cast<AtomicSDNode>(Op.getNode());
3210
3211 // 32-bit operations need no code outside the main loop.
3212 EVT NarrowVT = Node->getMemoryVT();
3213 EVT WideVT = MVT::i32;
3214 if (NarrowVT == WideVT)
3215 return Op;
3216
3217 int64_t BitSize = NarrowVT.getSizeInBits();
3218 SDValue ChainIn = Node->getChain();
3219 SDValue Addr = Node->getBasePtr();
3220 SDValue Src2 = Node->getVal();
3221 MachineMemOperand *MMO = Node->getMemOperand();
3222 SDLoc DL(Node);
3223 EVT PtrVT = Addr.getValueType();
3224
3225 // Convert atomic subtracts of constants into additions.
3226 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
3227 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
3228 Opcode = SystemZISD::ATOMIC_LOADW_ADD;
3229 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
3230 }
3231
3232 // Get the address of the containing word.
3233 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3234 DAG.getConstant(-4, DL, PtrVT));
3235
3236 // Get the number of bits that the word must be rotated left in order
3237 // to bring the field to the top bits of a GR32.
3238 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3239 DAG.getConstant(3, DL, PtrVT));
3240 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3241
3242 // Get the complementing shift amount, for rotating a field in the top
3243 // bits back to its proper position.
3244 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3245 DAG.getConstant(0, DL, WideVT), BitShift);
3246
3247 // Extend the source operand to 32 bits and prepare it for the inner loop.
3248 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
3249 // operations require the source to be shifted in advance. (This shift
3250 // can be folded if the source is constant.) For AND and NAND, the lower
3251 // bits must be set, while for other opcodes they should be left clear.
3252 if (Opcode != SystemZISD::ATOMIC_SWAPW)
3253 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
3254 DAG.getConstant(32 - BitSize, DL, WideVT));
3255 if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
3256 Opcode == SystemZISD::ATOMIC_LOADW_NAND)
3257 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
3258 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
3259
3260 // Construct the ATOMIC_LOADW_* node.
3261 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3262 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
3263 DAG.getConstant(BitSize, DL, WideVT) };
3264 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
3265 NarrowVT, MMO);
3266
3267 // Rotate the result of the final CS so that the field is in the lower
3268 // bits of a GR32, then truncate it.
3269 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
3270 DAG.getConstant(BitSize, DL, WideVT));
3271 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
3272
3273 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
3274 return DAG.getMergeValues(RetOps, DL);
3275 }
3276
3277 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations
3278 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
3279 // operations into additions.
lowerATOMIC_LOAD_SUB(SDValue Op,SelectionDAG & DAG) const3280 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
3281 SelectionDAG &DAG) const {
3282 auto *Node = cast<AtomicSDNode>(Op.getNode());
3283 EVT MemVT = Node->getMemoryVT();
3284 if (MemVT == MVT::i32 || MemVT == MVT::i64) {
3285 // A full-width operation.
3286 assert(Op.getValueType() == MemVT && "Mismatched VTs");
3287 SDValue Src2 = Node->getVal();
3288 SDValue NegSrc2;
3289 SDLoc DL(Src2);
3290
3291 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
3292 // Use an addition if the operand is constant and either LAA(G) is
3293 // available or the negative value is in the range of A(G)FHI.
3294 int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
3295 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
3296 NegSrc2 = DAG.getConstant(Value, DL, MemVT);
3297 } else if (Subtarget.hasInterlockedAccess1())
3298 // Use LAA(G) if available.
3299 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
3300 Src2);
3301
3302 if (NegSrc2.getNode())
3303 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
3304 Node->getChain(), Node->getBasePtr(), NegSrc2,
3305 Node->getMemOperand(), Node->getOrdering(),
3306 Node->getSynchScope());
3307
3308 // Use the node as-is.
3309 return Op;
3310 }
3311
3312 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
3313 }
3314
3315 // Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation. Lower the first two
3316 // into a fullword ATOMIC_CMP_SWAPW operation.
lowerATOMIC_CMP_SWAP(SDValue Op,SelectionDAG & DAG) const3317 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
3318 SelectionDAG &DAG) const {
3319 auto *Node = cast<AtomicSDNode>(Op.getNode());
3320
3321 // We have native support for 32-bit compare and swap.
3322 EVT NarrowVT = Node->getMemoryVT();
3323 EVT WideVT = MVT::i32;
3324 if (NarrowVT == WideVT)
3325 return Op;
3326
3327 int64_t BitSize = NarrowVT.getSizeInBits();
3328 SDValue ChainIn = Node->getOperand(0);
3329 SDValue Addr = Node->getOperand(1);
3330 SDValue CmpVal = Node->getOperand(2);
3331 SDValue SwapVal = Node->getOperand(3);
3332 MachineMemOperand *MMO = Node->getMemOperand();
3333 SDLoc DL(Node);
3334 EVT PtrVT = Addr.getValueType();
3335
3336 // Get the address of the containing word.
3337 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3338 DAG.getConstant(-4, DL, PtrVT));
3339
3340 // Get the number of bits that the word must be rotated left in order
3341 // to bring the field to the top bits of a GR32.
3342 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3343 DAG.getConstant(3, DL, PtrVT));
3344 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3345
3346 // Get the complementing shift amount, for rotating a field in the top
3347 // bits back to its proper position.
3348 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3349 DAG.getConstant(0, DL, WideVT), BitShift);
3350
3351 // Construct the ATOMIC_CMP_SWAPW node.
3352 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3353 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
3354 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
3355 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
3356 VTList, Ops, NarrowVT, MMO);
3357 return AtomicOp;
3358 }
3359
lowerSTACKSAVE(SDValue Op,SelectionDAG & DAG) const3360 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
3361 SelectionDAG &DAG) const {
3362 MachineFunction &MF = DAG.getMachineFunction();
3363 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
3364 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
3365 SystemZ::R15D, Op.getValueType());
3366 }
3367
lowerSTACKRESTORE(SDValue Op,SelectionDAG & DAG) const3368 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
3369 SelectionDAG &DAG) const {
3370 MachineFunction &MF = DAG.getMachineFunction();
3371 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
3372 bool StoreBackchain = MF.getFunction()->hasFnAttribute("backchain");
3373
3374 SDValue Chain = Op.getOperand(0);
3375 SDValue NewSP = Op.getOperand(1);
3376 SDValue Backchain;
3377 SDLoc DL(Op);
3378
3379 if (StoreBackchain) {
3380 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64);
3381 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo(),
3382 false, false, false, 0);
3383 }
3384
3385 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP);
3386
3387 if (StoreBackchain)
3388 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo(),
3389 false, false, 0);
3390
3391 return Chain;
3392 }
3393
lowerPREFETCH(SDValue Op,SelectionDAG & DAG) const3394 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
3395 SelectionDAG &DAG) const {
3396 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
3397 if (!IsData)
3398 // Just preserve the chain.
3399 return Op.getOperand(0);
3400
3401 SDLoc DL(Op);
3402 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
3403 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
3404 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
3405 SDValue Ops[] = {
3406 Op.getOperand(0),
3407 DAG.getConstant(Code, DL, MVT::i32),
3408 Op.getOperand(1)
3409 };
3410 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
3411 Node->getVTList(), Ops,
3412 Node->getMemoryVT(), Node->getMemOperand());
3413 }
3414
3415 // Return an i32 that contains the value of CC immediately after After,
3416 // whose final operand must be MVT::Glue.
getCCResult(SelectionDAG & DAG,SDNode * After)3417 static SDValue getCCResult(SelectionDAG &DAG, SDNode *After) {
3418 SDLoc DL(After);
3419 SDValue Glue = SDValue(After, After->getNumValues() - 1);
3420 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
3421 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
3422 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
3423 }
3424
3425 SDValue
lowerINTRINSIC_W_CHAIN(SDValue Op,SelectionDAG & DAG) const3426 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
3427 SelectionDAG &DAG) const {
3428 unsigned Opcode, CCValid;
3429 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
3430 assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
3431 SDValue Glued = emitIntrinsicWithChainAndGlue(DAG, Op, Opcode);
3432 SDValue CC = getCCResult(DAG, Glued.getNode());
3433 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
3434 return SDValue();
3435 }
3436
3437 return SDValue();
3438 }
3439
3440 SDValue
lowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const3441 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
3442 SelectionDAG &DAG) const {
3443 unsigned Opcode, CCValid;
3444 if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
3445 SDValue Glued = emitIntrinsicWithGlue(DAG, Op, Opcode);
3446 SDValue CC = getCCResult(DAG, Glued.getNode());
3447 if (Op->getNumValues() == 1)
3448 return CC;
3449 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
3450 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), Glued,
3451 CC);
3452 }
3453
3454 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3455 switch (Id) {
3456 case Intrinsic::thread_pointer:
3457 return lowerThreadPointer(SDLoc(Op), DAG);
3458
3459 case Intrinsic::s390_vpdi:
3460 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
3461 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3462
3463 case Intrinsic::s390_vperm:
3464 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
3465 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3466
3467 case Intrinsic::s390_vuphb:
3468 case Intrinsic::s390_vuphh:
3469 case Intrinsic::s390_vuphf:
3470 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
3471 Op.getOperand(1));
3472
3473 case Intrinsic::s390_vuplhb:
3474 case Intrinsic::s390_vuplhh:
3475 case Intrinsic::s390_vuplhf:
3476 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
3477 Op.getOperand(1));
3478
3479 case Intrinsic::s390_vuplb:
3480 case Intrinsic::s390_vuplhw:
3481 case Intrinsic::s390_vuplf:
3482 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
3483 Op.getOperand(1));
3484
3485 case Intrinsic::s390_vupllb:
3486 case Intrinsic::s390_vupllh:
3487 case Intrinsic::s390_vupllf:
3488 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
3489 Op.getOperand(1));
3490
3491 case Intrinsic::s390_vsumb:
3492 case Intrinsic::s390_vsumh:
3493 case Intrinsic::s390_vsumgh:
3494 case Intrinsic::s390_vsumgf:
3495 case Intrinsic::s390_vsumqf:
3496 case Intrinsic::s390_vsumqg:
3497 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
3498 Op.getOperand(1), Op.getOperand(2));
3499 }
3500
3501 return SDValue();
3502 }
3503
3504 namespace {
3505 // Says that SystemZISD operation Opcode can be used to perform the equivalent
3506 // of a VPERM with permute vector Bytes. If Opcode takes three operands,
3507 // Operand is the constant third operand, otherwise it is the number of
3508 // bytes in each element of the result.
3509 struct Permute {
3510 unsigned Opcode;
3511 unsigned Operand;
3512 unsigned char Bytes[SystemZ::VectorBytes];
3513 };
3514 }
3515
3516 static const Permute PermuteForms[] = {
3517 // VMRHG
3518 { SystemZISD::MERGE_HIGH, 8,
3519 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
3520 // VMRHF
3521 { SystemZISD::MERGE_HIGH, 4,
3522 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
3523 // VMRHH
3524 { SystemZISD::MERGE_HIGH, 2,
3525 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
3526 // VMRHB
3527 { SystemZISD::MERGE_HIGH, 1,
3528 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
3529 // VMRLG
3530 { SystemZISD::MERGE_LOW, 8,
3531 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
3532 // VMRLF
3533 { SystemZISD::MERGE_LOW, 4,
3534 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
3535 // VMRLH
3536 { SystemZISD::MERGE_LOW, 2,
3537 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
3538 // VMRLB
3539 { SystemZISD::MERGE_LOW, 1,
3540 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
3541 // VPKG
3542 { SystemZISD::PACK, 4,
3543 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
3544 // VPKF
3545 { SystemZISD::PACK, 2,
3546 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
3547 // VPKH
3548 { SystemZISD::PACK, 1,
3549 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
3550 // VPDI V1, V2, 4 (low half of V1, high half of V2)
3551 { SystemZISD::PERMUTE_DWORDS, 4,
3552 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
3553 // VPDI V1, V2, 1 (high half of V1, low half of V2)
3554 { SystemZISD::PERMUTE_DWORDS, 1,
3555 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
3556 };
3557
3558 // Called after matching a vector shuffle against a particular pattern.
3559 // Both the original shuffle and the pattern have two vector operands.
3560 // OpNos[0] is the operand of the original shuffle that should be used for
3561 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
3562 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and
3563 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
3564 // for operands 0 and 1 of the pattern.
chooseShuffleOpNos(int * OpNos,unsigned & OpNo0,unsigned & OpNo1)3565 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
3566 if (OpNos[0] < 0) {
3567 if (OpNos[1] < 0)
3568 return false;
3569 OpNo0 = OpNo1 = OpNos[1];
3570 } else if (OpNos[1] < 0) {
3571 OpNo0 = OpNo1 = OpNos[0];
3572 } else {
3573 OpNo0 = OpNos[0];
3574 OpNo1 = OpNos[1];
3575 }
3576 return true;
3577 }
3578
3579 // Bytes is a VPERM-like permute vector, except that -1 is used for
3580 // undefined bytes. Return true if the VPERM can be implemented using P.
3581 // When returning true set OpNo0 to the VPERM operand that should be
3582 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
3583 //
3584 // For example, if swapping the VPERM operands allows P to match, OpNo0
3585 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one
3586 // operand, but rewriting it to use two duplicated operands allows it to
3587 // match P, then OpNo0 and OpNo1 will be the same.
matchPermute(const SmallVectorImpl<int> & Bytes,const Permute & P,unsigned & OpNo0,unsigned & OpNo1)3588 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
3589 unsigned &OpNo0, unsigned &OpNo1) {
3590 int OpNos[] = { -1, -1 };
3591 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
3592 int Elt = Bytes[I];
3593 if (Elt >= 0) {
3594 // Make sure that the two permute vectors use the same suboperand
3595 // byte number. Only the operand numbers (the high bits) are
3596 // allowed to differ.
3597 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
3598 return false;
3599 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
3600 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
3601 // Make sure that the operand mappings are consistent with previous
3602 // elements.
3603 if (OpNos[ModelOpNo] == 1 - RealOpNo)
3604 return false;
3605 OpNos[ModelOpNo] = RealOpNo;
3606 }
3607 }
3608 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
3609 }
3610
3611 // As above, but search for a matching permute.
matchPermute(const SmallVectorImpl<int> & Bytes,unsigned & OpNo0,unsigned & OpNo1)3612 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
3613 unsigned &OpNo0, unsigned &OpNo1) {
3614 for (auto &P : PermuteForms)
3615 if (matchPermute(Bytes, P, OpNo0, OpNo1))
3616 return &P;
3617 return nullptr;
3618 }
3619
3620 // Bytes is a VPERM-like permute vector, except that -1 is used for
3621 // undefined bytes. This permute is an operand of an outer permute.
3622 // See whether redistributing the -1 bytes gives a shuffle that can be
3623 // implemented using P. If so, set Transform to a VPERM-like permute vector
3624 // that, when applied to the result of P, gives the original permute in Bytes.
matchDoublePermute(const SmallVectorImpl<int> & Bytes,const Permute & P,SmallVectorImpl<int> & Transform)3625 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
3626 const Permute &P,
3627 SmallVectorImpl<int> &Transform) {
3628 unsigned To = 0;
3629 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
3630 int Elt = Bytes[From];
3631 if (Elt < 0)
3632 // Byte number From of the result is undefined.
3633 Transform[From] = -1;
3634 else {
3635 while (P.Bytes[To] != Elt) {
3636 To += 1;
3637 if (To == SystemZ::VectorBytes)
3638 return false;
3639 }
3640 Transform[From] = To;
3641 }
3642 }
3643 return true;
3644 }
3645
3646 // As above, but search for a matching permute.
matchDoublePermute(const SmallVectorImpl<int> & Bytes,SmallVectorImpl<int> & Transform)3647 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
3648 SmallVectorImpl<int> &Transform) {
3649 for (auto &P : PermuteForms)
3650 if (matchDoublePermute(Bytes, P, Transform))
3651 return &P;
3652 return nullptr;
3653 }
3654
3655 // Convert the mask of the given VECTOR_SHUFFLE into a byte-level mask,
3656 // as if it had type vNi8.
getVPermMask(ShuffleVectorSDNode * VSN,SmallVectorImpl<int> & Bytes)3657 static void getVPermMask(ShuffleVectorSDNode *VSN,
3658 SmallVectorImpl<int> &Bytes) {
3659 EVT VT = VSN->getValueType(0);
3660 unsigned NumElements = VT.getVectorNumElements();
3661 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
3662 Bytes.resize(NumElements * BytesPerElement, -1);
3663 for (unsigned I = 0; I < NumElements; ++I) {
3664 int Index = VSN->getMaskElt(I);
3665 if (Index >= 0)
3666 for (unsigned J = 0; J < BytesPerElement; ++J)
3667 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
3668 }
3669 }
3670
3671 // Bytes is a VPERM-like permute vector, except that -1 is used for
3672 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of
3673 // the result come from a contiguous sequence of bytes from one input.
3674 // Set Base to the selector for the first byte if so.
getShuffleInput(const SmallVectorImpl<int> & Bytes,unsigned Start,unsigned BytesPerElement,int & Base)3675 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
3676 unsigned BytesPerElement, int &Base) {
3677 Base = -1;
3678 for (unsigned I = 0; I < BytesPerElement; ++I) {
3679 if (Bytes[Start + I] >= 0) {
3680 unsigned Elem = Bytes[Start + I];
3681 if (Base < 0) {
3682 Base = Elem - I;
3683 // Make sure the bytes would come from one input operand.
3684 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
3685 return false;
3686 } else if (unsigned(Base) != Elem - I)
3687 return false;
3688 }
3689 }
3690 return true;
3691 }
3692
3693 // Bytes is a VPERM-like permute vector, except that -1 is used for
3694 // undefined bytes. Return true if it can be performed using VSLDI.
3695 // When returning true, set StartIndex to the shift amount and OpNo0
3696 // and OpNo1 to the VPERM operands that should be used as the first
3697 // and second shift operand respectively.
isShlDoublePermute(const SmallVectorImpl<int> & Bytes,unsigned & StartIndex,unsigned & OpNo0,unsigned & OpNo1)3698 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
3699 unsigned &StartIndex, unsigned &OpNo0,
3700 unsigned &OpNo1) {
3701 int OpNos[] = { -1, -1 };
3702 int Shift = -1;
3703 for (unsigned I = 0; I < 16; ++I) {
3704 int Index = Bytes[I];
3705 if (Index >= 0) {
3706 int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
3707 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
3708 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
3709 if (Shift < 0)
3710 Shift = ExpectedShift;
3711 else if (Shift != ExpectedShift)
3712 return false;
3713 // Make sure that the operand mappings are consistent with previous
3714 // elements.
3715 if (OpNos[ModelOpNo] == 1 - RealOpNo)
3716 return false;
3717 OpNos[ModelOpNo] = RealOpNo;
3718 }
3719 }
3720 StartIndex = Shift;
3721 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
3722 }
3723
3724 // Create a node that performs P on operands Op0 and Op1, casting the
3725 // operands to the appropriate type. The type of the result is determined by P.
getPermuteNode(SelectionDAG & DAG,const SDLoc & DL,const Permute & P,SDValue Op0,SDValue Op1)3726 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
3727 const Permute &P, SDValue Op0, SDValue Op1) {
3728 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input
3729 // elements of a PACK are twice as wide as the outputs.
3730 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
3731 P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
3732 P.Operand);
3733 // Cast both operands to the appropriate type.
3734 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
3735 SystemZ::VectorBytes / InBytes);
3736 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
3737 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
3738 SDValue Op;
3739 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
3740 SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32);
3741 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
3742 } else if (P.Opcode == SystemZISD::PACK) {
3743 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
3744 SystemZ::VectorBytes / P.Operand);
3745 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
3746 } else {
3747 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
3748 }
3749 return Op;
3750 }
3751
3752 // Bytes is a VPERM-like permute vector, except that -1 is used for
3753 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using
3754 // VSLDI or VPERM.
getGeneralPermuteNode(SelectionDAG & DAG,const SDLoc & DL,SDValue * Ops,const SmallVectorImpl<int> & Bytes)3755 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
3756 SDValue *Ops,
3757 const SmallVectorImpl<int> &Bytes) {
3758 for (unsigned I = 0; I < 2; ++I)
3759 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
3760
3761 // First see whether VSLDI can be used.
3762 unsigned StartIndex, OpNo0, OpNo1;
3763 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
3764 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
3765 Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32));
3766
3767 // Fall back on VPERM. Construct an SDNode for the permute vector.
3768 SDValue IndexNodes[SystemZ::VectorBytes];
3769 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
3770 if (Bytes[I] >= 0)
3771 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
3772 else
3773 IndexNodes[I] = DAG.getUNDEF(MVT::i32);
3774 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
3775 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2);
3776 }
3777
3778 namespace {
3779 // Describes a general N-operand vector shuffle.
3780 struct GeneralShuffle {
GeneralShuffle__anon1643df490311::GeneralShuffle3781 GeneralShuffle(EVT vt) : VT(vt) {}
3782 void addUndef();
3783 void add(SDValue, unsigned);
3784 SDValue getNode(SelectionDAG &, const SDLoc &);
3785
3786 // The operands of the shuffle.
3787 SmallVector<SDValue, SystemZ::VectorBytes> Ops;
3788
3789 // Index I is -1 if byte I of the result is undefined. Otherwise the
3790 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
3791 // Bytes[I] / SystemZ::VectorBytes.
3792 SmallVector<int, SystemZ::VectorBytes> Bytes;
3793
3794 // The type of the shuffle result.
3795 EVT VT;
3796 };
3797 }
3798
3799 // Add an extra undefined element to the shuffle.
addUndef()3800 void GeneralShuffle::addUndef() {
3801 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
3802 for (unsigned I = 0; I < BytesPerElement; ++I)
3803 Bytes.push_back(-1);
3804 }
3805
3806 // Add an extra element to the shuffle, taking it from element Elem of Op.
3807 // A null Op indicates a vector input whose value will be calculated later;
3808 // there is at most one such input per shuffle and it always has the same
3809 // type as the result.
add(SDValue Op,unsigned Elem)3810 void GeneralShuffle::add(SDValue Op, unsigned Elem) {
3811 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
3812
3813 // The source vector can have wider elements than the result,
3814 // either through an explicit TRUNCATE or because of type legalization.
3815 // We want the least significant part.
3816 EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
3817 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
3818 assert(FromBytesPerElement >= BytesPerElement &&
3819 "Invalid EXTRACT_VECTOR_ELT");
3820 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
3821 (FromBytesPerElement - BytesPerElement));
3822
3823 // Look through things like shuffles and bitcasts.
3824 while (Op.getNode()) {
3825 if (Op.getOpcode() == ISD::BITCAST)
3826 Op = Op.getOperand(0);
3827 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
3828 // See whether the bytes we need come from a contiguous part of one
3829 // operand.
3830 SmallVector<int, SystemZ::VectorBytes> OpBytes;
3831 getVPermMask(cast<ShuffleVectorSDNode>(Op), OpBytes);
3832 int NewByte;
3833 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
3834 break;
3835 if (NewByte < 0) {
3836 addUndef();
3837 return;
3838 }
3839 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
3840 Byte = unsigned(NewByte) % SystemZ::VectorBytes;
3841 } else if (Op.isUndef()) {
3842 addUndef();
3843 return;
3844 } else
3845 break;
3846 }
3847
3848 // Make sure that the source of the extraction is in Ops.
3849 unsigned OpNo = 0;
3850 for (; OpNo < Ops.size(); ++OpNo)
3851 if (Ops[OpNo] == Op)
3852 break;
3853 if (OpNo == Ops.size())
3854 Ops.push_back(Op);
3855
3856 // Add the element to Bytes.
3857 unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
3858 for (unsigned I = 0; I < BytesPerElement; ++I)
3859 Bytes.push_back(Base + I);
3860 }
3861
3862 // Return SDNodes for the completed shuffle.
getNode(SelectionDAG & DAG,const SDLoc & DL)3863 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
3864 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
3865
3866 if (Ops.size() == 0)
3867 return DAG.getUNDEF(VT);
3868
3869 // Make sure that there are at least two shuffle operands.
3870 if (Ops.size() == 1)
3871 Ops.push_back(DAG.getUNDEF(MVT::v16i8));
3872
3873 // Create a tree of shuffles, deferring root node until after the loop.
3874 // Try to redistribute the undefined elements of non-root nodes so that
3875 // the non-root shuffles match something like a pack or merge, then adjust
3876 // the parent node's permute vector to compensate for the new order.
3877 // Among other things, this copes with vectors like <2 x i16> that were
3878 // padded with undefined elements during type legalization.
3879 //
3880 // In the best case this redistribution will lead to the whole tree
3881 // using packs and merges. It should rarely be a loss in other cases.
3882 unsigned Stride = 1;
3883 for (; Stride * 2 < Ops.size(); Stride *= 2) {
3884 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
3885 SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
3886
3887 // Create a mask for just these two operands.
3888 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
3889 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
3890 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
3891 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
3892 if (OpNo == I)
3893 NewBytes[J] = Byte;
3894 else if (OpNo == I + Stride)
3895 NewBytes[J] = SystemZ::VectorBytes + Byte;
3896 else
3897 NewBytes[J] = -1;
3898 }
3899 // See if it would be better to reorganize NewMask to avoid using VPERM.
3900 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
3901 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
3902 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
3903 // Applying NewBytesMap to Ops[I] gets back to NewBytes.
3904 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
3905 if (NewBytes[J] >= 0) {
3906 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
3907 "Invalid double permute");
3908 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
3909 } else
3910 assert(NewBytesMap[J] < 0 && "Invalid double permute");
3911 }
3912 } else {
3913 // Just use NewBytes on the operands.
3914 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
3915 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
3916 if (NewBytes[J] >= 0)
3917 Bytes[J] = I * SystemZ::VectorBytes + J;
3918 }
3919 }
3920 }
3921
3922 // Now we just have 2 inputs. Put the second operand in Ops[1].
3923 if (Stride > 1) {
3924 Ops[1] = Ops[Stride];
3925 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
3926 if (Bytes[I] >= int(SystemZ::VectorBytes))
3927 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
3928 }
3929
3930 // Look for an instruction that can do the permute without resorting
3931 // to VPERM.
3932 unsigned OpNo0, OpNo1;
3933 SDValue Op;
3934 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
3935 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
3936 else
3937 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
3938 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
3939 }
3940
3941 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
isScalarToVector(SDValue Op)3942 static bool isScalarToVector(SDValue Op) {
3943 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
3944 if (!Op.getOperand(I).isUndef())
3945 return false;
3946 return true;
3947 }
3948
3949 // Return a vector of type VT that contains Value in the first element.
3950 // The other elements don't matter.
buildScalarToVector(SelectionDAG & DAG,const SDLoc & DL,EVT VT,SDValue Value)3951 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
3952 SDValue Value) {
3953 // If we have a constant, replicate it to all elements and let the
3954 // BUILD_VECTOR lowering take care of it.
3955 if (Value.getOpcode() == ISD::Constant ||
3956 Value.getOpcode() == ISD::ConstantFP) {
3957 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
3958 return DAG.getBuildVector(VT, DL, Ops);
3959 }
3960 if (Value.isUndef())
3961 return DAG.getUNDEF(VT);
3962 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
3963 }
3964
3965 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
3966 // element 1. Used for cases in which replication is cheap.
buildMergeScalars(SelectionDAG & DAG,const SDLoc & DL,EVT VT,SDValue Op0,SDValue Op1)3967 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
3968 SDValue Op0, SDValue Op1) {
3969 if (Op0.isUndef()) {
3970 if (Op1.isUndef())
3971 return DAG.getUNDEF(VT);
3972 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
3973 }
3974 if (Op1.isUndef())
3975 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
3976 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
3977 buildScalarToVector(DAG, DL, VT, Op0),
3978 buildScalarToVector(DAG, DL, VT, Op1));
3979 }
3980
3981 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
3982 // vector for them.
joinDwords(SelectionDAG & DAG,const SDLoc & DL,SDValue Op0,SDValue Op1)3983 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
3984 SDValue Op1) {
3985 if (Op0.isUndef() && Op1.isUndef())
3986 return DAG.getUNDEF(MVT::v2i64);
3987 // If one of the two inputs is undefined then replicate the other one,
3988 // in order to avoid using another register unnecessarily.
3989 if (Op0.isUndef())
3990 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
3991 else if (Op1.isUndef())
3992 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
3993 else {
3994 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
3995 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
3996 }
3997 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
3998 }
3999
4000 // Try to represent constant BUILD_VECTOR node BVN using a
4001 // SystemZISD::BYTE_MASK-style mask. Store the mask value in Mask
4002 // on success.
tryBuildVectorByteMask(BuildVectorSDNode * BVN,uint64_t & Mask)4003 static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) {
4004 EVT ElemVT = BVN->getValueType(0).getVectorElementType();
4005 unsigned BytesPerElement = ElemVT.getStoreSize();
4006 for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) {
4007 SDValue Op = BVN->getOperand(I);
4008 if (!Op.isUndef()) {
4009 uint64_t Value;
4010 if (Op.getOpcode() == ISD::Constant)
4011 Value = dyn_cast<ConstantSDNode>(Op)->getZExtValue();
4012 else if (Op.getOpcode() == ISD::ConstantFP)
4013 Value = (dyn_cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()
4014 .getZExtValue());
4015 else
4016 return false;
4017 for (unsigned J = 0; J < BytesPerElement; ++J) {
4018 uint64_t Byte = (Value >> (J * 8)) & 0xff;
4019 if (Byte == 0xff)
4020 Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J);
4021 else if (Byte != 0)
4022 return false;
4023 }
4024 }
4025 }
4026 return true;
4027 }
4028
4029 // Try to load a vector constant in which BitsPerElement-bit value Value
4030 // is replicated to fill the vector. VT is the type of the resulting
4031 // constant, which may have elements of a different size from BitsPerElement.
4032 // Return the SDValue of the constant on success, otherwise return
4033 // an empty value.
tryBuildVectorReplicate(SelectionDAG & DAG,const SystemZInstrInfo * TII,const SDLoc & DL,EVT VT,uint64_t Value,unsigned BitsPerElement)4034 static SDValue tryBuildVectorReplicate(SelectionDAG &DAG,
4035 const SystemZInstrInfo *TII,
4036 const SDLoc &DL, EVT VT, uint64_t Value,
4037 unsigned BitsPerElement) {
4038 // Signed 16-bit values can be replicated using VREPI.
4039 int64_t SignedValue = SignExtend64(Value, BitsPerElement);
4040 if (isInt<16>(SignedValue)) {
4041 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
4042 SystemZ::VectorBits / BitsPerElement);
4043 SDValue Op = DAG.getNode(SystemZISD::REPLICATE, DL, VecVT,
4044 DAG.getConstant(SignedValue, DL, MVT::i32));
4045 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4046 }
4047 // See whether rotating the constant left some N places gives a value that
4048 // is one less than a power of 2 (i.e. all zeros followed by all ones).
4049 // If so we can use VGM.
4050 unsigned Start, End;
4051 if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) {
4052 // isRxSBGMask returns the bit numbers for a full 64-bit value,
4053 // with 0 denoting 1 << 63 and 63 denoting 1. Convert them to
4054 // bit numbers for an BitsPerElement value, so that 0 denotes
4055 // 1 << (BitsPerElement-1).
4056 Start -= 64 - BitsPerElement;
4057 End -= 64 - BitsPerElement;
4058 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
4059 SystemZ::VectorBits / BitsPerElement);
4060 SDValue Op = DAG.getNode(SystemZISD::ROTATE_MASK, DL, VecVT,
4061 DAG.getConstant(Start, DL, MVT::i32),
4062 DAG.getConstant(End, DL, MVT::i32));
4063 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4064 }
4065 return SDValue();
4066 }
4067
4068 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
4069 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
4070 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR
4071 // would benefit from this representation and return it if so.
tryBuildVectorShuffle(SelectionDAG & DAG,BuildVectorSDNode * BVN)4072 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
4073 BuildVectorSDNode *BVN) {
4074 EVT VT = BVN->getValueType(0);
4075 unsigned NumElements = VT.getVectorNumElements();
4076
4077 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
4078 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still
4079 // need a BUILD_VECTOR, add an additional placeholder operand for that
4080 // BUILD_VECTOR and store its operands in ResidueOps.
4081 GeneralShuffle GS(VT);
4082 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
4083 bool FoundOne = false;
4084 for (unsigned I = 0; I < NumElements; ++I) {
4085 SDValue Op = BVN->getOperand(I);
4086 if (Op.getOpcode() == ISD::TRUNCATE)
4087 Op = Op.getOperand(0);
4088 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4089 Op.getOperand(1).getOpcode() == ISD::Constant) {
4090 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4091 GS.add(Op.getOperand(0), Elem);
4092 FoundOne = true;
4093 } else if (Op.isUndef()) {
4094 GS.addUndef();
4095 } else {
4096 GS.add(SDValue(), ResidueOps.size());
4097 ResidueOps.push_back(BVN->getOperand(I));
4098 }
4099 }
4100
4101 // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
4102 if (!FoundOne)
4103 return SDValue();
4104
4105 // Create the BUILD_VECTOR for the remaining elements, if any.
4106 if (!ResidueOps.empty()) {
4107 while (ResidueOps.size() < NumElements)
4108 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
4109 for (auto &Op : GS.Ops) {
4110 if (!Op.getNode()) {
4111 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
4112 break;
4113 }
4114 }
4115 }
4116 return GS.getNode(DAG, SDLoc(BVN));
4117 }
4118
4119 // Combine GPR scalar values Elems into a vector of type VT.
buildVector(SelectionDAG & DAG,const SDLoc & DL,EVT VT,SmallVectorImpl<SDValue> & Elems)4120 static SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4121 SmallVectorImpl<SDValue> &Elems) {
4122 // See whether there is a single replicated value.
4123 SDValue Single;
4124 unsigned int NumElements = Elems.size();
4125 unsigned int Count = 0;
4126 for (auto Elem : Elems) {
4127 if (!Elem.isUndef()) {
4128 if (!Single.getNode())
4129 Single = Elem;
4130 else if (Elem != Single) {
4131 Single = SDValue();
4132 break;
4133 }
4134 Count += 1;
4135 }
4136 }
4137 // There are three cases here:
4138 //
4139 // - if the only defined element is a loaded one, the best sequence
4140 // is a replicating load.
4141 //
4142 // - otherwise, if the only defined element is an i64 value, we will
4143 // end up with the same VLVGP sequence regardless of whether we short-cut
4144 // for replication or fall through to the later code.
4145 //
4146 // - otherwise, if the only defined element is an i32 or smaller value,
4147 // we would need 2 instructions to replicate it: VLVGP followed by VREPx.
4148 // This is only a win if the single defined element is used more than once.
4149 // In other cases we're better off using a single VLVGx.
4150 if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD))
4151 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
4152
4153 // The best way of building a v2i64 from two i64s is to use VLVGP.
4154 if (VT == MVT::v2i64)
4155 return joinDwords(DAG, DL, Elems[0], Elems[1]);
4156
4157 // Use a 64-bit merge high to combine two doubles.
4158 if (VT == MVT::v2f64)
4159 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4160
4161 // Build v4f32 values directly from the FPRs:
4162 //
4163 // <Axxx> <Bxxx> <Cxxxx> <Dxxx>
4164 // V V VMRHF
4165 // <ABxx> <CDxx>
4166 // V VMRHG
4167 // <ABCD>
4168 if (VT == MVT::v4f32) {
4169 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4170 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
4171 // Avoid unnecessary undefs by reusing the other operand.
4172 if (Op01.isUndef())
4173 Op01 = Op23;
4174 else if (Op23.isUndef())
4175 Op23 = Op01;
4176 // Merging identical replications is a no-op.
4177 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
4178 return Op01;
4179 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
4180 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
4181 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
4182 DL, MVT::v2i64, Op01, Op23);
4183 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4184 }
4185
4186 // Collect the constant terms.
4187 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
4188 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
4189
4190 unsigned NumConstants = 0;
4191 for (unsigned I = 0; I < NumElements; ++I) {
4192 SDValue Elem = Elems[I];
4193 if (Elem.getOpcode() == ISD::Constant ||
4194 Elem.getOpcode() == ISD::ConstantFP) {
4195 NumConstants += 1;
4196 Constants[I] = Elem;
4197 Done[I] = true;
4198 }
4199 }
4200 // If there was at least one constant, fill in the other elements of
4201 // Constants with undefs to get a full vector constant and use that
4202 // as the starting point.
4203 SDValue Result;
4204 if (NumConstants > 0) {
4205 for (unsigned I = 0; I < NumElements; ++I)
4206 if (!Constants[I].getNode())
4207 Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
4208 Result = DAG.getBuildVector(VT, DL, Constants);
4209 } else {
4210 // Otherwise try to use VLVGP to start the sequence in order to
4211 // avoid a false dependency on any previous contents of the vector
4212 // register. This only makes sense if one of the associated elements
4213 // is defined.
4214 unsigned I1 = NumElements / 2 - 1;
4215 unsigned I2 = NumElements - 1;
4216 bool Def1 = !Elems[I1].isUndef();
4217 bool Def2 = !Elems[I2].isUndef();
4218 if (Def1 || Def2) {
4219 SDValue Elem1 = Elems[Def1 ? I1 : I2];
4220 SDValue Elem2 = Elems[Def2 ? I2 : I1];
4221 Result = DAG.getNode(ISD::BITCAST, DL, VT,
4222 joinDwords(DAG, DL, Elem1, Elem2));
4223 Done[I1] = true;
4224 Done[I2] = true;
4225 } else
4226 Result = DAG.getUNDEF(VT);
4227 }
4228
4229 // Use VLVGx to insert the other elements.
4230 for (unsigned I = 0; I < NumElements; ++I)
4231 if (!Done[I] && !Elems[I].isUndef())
4232 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
4233 DAG.getConstant(I, DL, MVT::i32));
4234 return Result;
4235 }
4236
lowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG) const4237 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
4238 SelectionDAG &DAG) const {
4239 const SystemZInstrInfo *TII =
4240 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
4241 auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
4242 SDLoc DL(Op);
4243 EVT VT = Op.getValueType();
4244
4245 if (BVN->isConstant()) {
4246 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally-
4247 // preferred way of creating all-zero and all-one vectors so give it
4248 // priority over other methods below.
4249 uint64_t Mask = 0;
4250 if (tryBuildVectorByteMask(BVN, Mask)) {
4251 SDValue Op = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
4252 DAG.getConstant(Mask, DL, MVT::i32));
4253 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4254 }
4255
4256 // Try using some form of replication.
4257 APInt SplatBits, SplatUndef;
4258 unsigned SplatBitSize;
4259 bool HasAnyUndefs;
4260 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
4261 8, true) &&
4262 SplatBitSize <= 64) {
4263 // First try assuming that any undefined bits above the highest set bit
4264 // and below the lowest set bit are 1s. This increases the likelihood of
4265 // being able to use a sign-extended element value in VECTOR REPLICATE
4266 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
4267 uint64_t SplatBitsZ = SplatBits.getZExtValue();
4268 uint64_t SplatUndefZ = SplatUndef.getZExtValue();
4269 uint64_t Lower = (SplatUndefZ
4270 & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
4271 uint64_t Upper = (SplatUndefZ
4272 & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
4273 uint64_t Value = SplatBitsZ | Upper | Lower;
4274 SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value,
4275 SplatBitSize);
4276 if (Op.getNode())
4277 return Op;
4278
4279 // Now try assuming that any undefined bits between the first and
4280 // last defined set bits are set. This increases the chances of
4281 // using a non-wraparound mask.
4282 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
4283 Value = SplatBitsZ | Middle;
4284 Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize);
4285 if (Op.getNode())
4286 return Op;
4287 }
4288
4289 // Fall back to loading it from memory.
4290 return SDValue();
4291 }
4292
4293 // See if we should use shuffles to construct the vector from other vectors.
4294 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
4295 return Res;
4296
4297 // Detect SCALAR_TO_VECTOR conversions.
4298 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
4299 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
4300
4301 // Otherwise use buildVector to build the vector up from GPRs.
4302 unsigned NumElements = Op.getNumOperands();
4303 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
4304 for (unsigned I = 0; I < NumElements; ++I)
4305 Ops[I] = Op.getOperand(I);
4306 return buildVector(DAG, DL, VT, Ops);
4307 }
4308
lowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG) const4309 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
4310 SelectionDAG &DAG) const {
4311 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
4312 SDLoc DL(Op);
4313 EVT VT = Op.getValueType();
4314 unsigned NumElements = VT.getVectorNumElements();
4315
4316 if (VSN->isSplat()) {
4317 SDValue Op0 = Op.getOperand(0);
4318 unsigned Index = VSN->getSplatIndex();
4319 assert(Index < VT.getVectorNumElements() &&
4320 "Splat index should be defined and in first operand");
4321 // See whether the value we're splatting is directly available as a scalar.
4322 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4323 Op0.getOpcode() == ISD::BUILD_VECTOR)
4324 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
4325 // Otherwise keep it as a vector-to-vector operation.
4326 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
4327 DAG.getConstant(Index, DL, MVT::i32));
4328 }
4329
4330 GeneralShuffle GS(VT);
4331 for (unsigned I = 0; I < NumElements; ++I) {
4332 int Elt = VSN->getMaskElt(I);
4333 if (Elt < 0)
4334 GS.addUndef();
4335 else
4336 GS.add(Op.getOperand(unsigned(Elt) / NumElements),
4337 unsigned(Elt) % NumElements);
4338 }
4339 return GS.getNode(DAG, SDLoc(VSN));
4340 }
4341
lowerSCALAR_TO_VECTOR(SDValue Op,SelectionDAG & DAG) const4342 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
4343 SelectionDAG &DAG) const {
4344 SDLoc DL(Op);
4345 // Just insert the scalar into element 0 of an undefined vector.
4346 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
4347 Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
4348 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
4349 }
4350
lowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const4351 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4352 SelectionDAG &DAG) const {
4353 // Handle insertions of floating-point values.
4354 SDLoc DL(Op);
4355 SDValue Op0 = Op.getOperand(0);
4356 SDValue Op1 = Op.getOperand(1);
4357 SDValue Op2 = Op.getOperand(2);
4358 EVT VT = Op.getValueType();
4359
4360 // Insertions into constant indices of a v2f64 can be done using VPDI.
4361 // However, if the inserted value is a bitcast or a constant then it's
4362 // better to use GPRs, as below.
4363 if (VT == MVT::v2f64 &&
4364 Op1.getOpcode() != ISD::BITCAST &&
4365 Op1.getOpcode() != ISD::ConstantFP &&
4366 Op2.getOpcode() == ISD::Constant) {
4367 uint64_t Index = dyn_cast<ConstantSDNode>(Op2)->getZExtValue();
4368 unsigned Mask = VT.getVectorNumElements() - 1;
4369 if (Index <= Mask)
4370 return Op;
4371 }
4372
4373 // Otherwise bitcast to the equivalent integer form and insert via a GPR.
4374 MVT IntVT = MVT::getIntegerVT(VT.getVectorElementType().getSizeInBits());
4375 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
4376 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
4377 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
4378 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
4379 return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4380 }
4381
4382 SDValue
lowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const4383 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4384 SelectionDAG &DAG) const {
4385 // Handle extractions of floating-point values.
4386 SDLoc DL(Op);
4387 SDValue Op0 = Op.getOperand(0);
4388 SDValue Op1 = Op.getOperand(1);
4389 EVT VT = Op.getValueType();
4390 EVT VecVT = Op0.getValueType();
4391
4392 // Extractions of constant indices can be done directly.
4393 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
4394 uint64_t Index = CIndexN->getZExtValue();
4395 unsigned Mask = VecVT.getVectorNumElements() - 1;
4396 if (Index <= Mask)
4397 return Op;
4398 }
4399
4400 // Otherwise bitcast to the equivalent integer form and extract via a GPR.
4401 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
4402 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
4403 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
4404 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
4405 return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4406 }
4407
4408 SDValue
lowerExtendVectorInreg(SDValue Op,SelectionDAG & DAG,unsigned UnpackHigh) const4409 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG,
4410 unsigned UnpackHigh) const {
4411 SDValue PackedOp = Op.getOperand(0);
4412 EVT OutVT = Op.getValueType();
4413 EVT InVT = PackedOp.getValueType();
4414 unsigned ToBits = OutVT.getVectorElementType().getSizeInBits();
4415 unsigned FromBits = InVT.getVectorElementType().getSizeInBits();
4416 do {
4417 FromBits *= 2;
4418 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
4419 SystemZ::VectorBits / FromBits);
4420 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp);
4421 } while (FromBits != ToBits);
4422 return PackedOp;
4423 }
4424
lowerShift(SDValue Op,SelectionDAG & DAG,unsigned ByScalar) const4425 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
4426 unsigned ByScalar) const {
4427 // Look for cases where a vector shift can use the *_BY_SCALAR form.
4428 SDValue Op0 = Op.getOperand(0);
4429 SDValue Op1 = Op.getOperand(1);
4430 SDLoc DL(Op);
4431 EVT VT = Op.getValueType();
4432 unsigned ElemBitSize = VT.getVectorElementType().getSizeInBits();
4433
4434 // See whether the shift vector is a splat represented as BUILD_VECTOR.
4435 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
4436 APInt SplatBits, SplatUndef;
4437 unsigned SplatBitSize;
4438 bool HasAnyUndefs;
4439 // Check for constant splats. Use ElemBitSize as the minimum element
4440 // width and reject splats that need wider elements.
4441 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
4442 ElemBitSize, true) &&
4443 SplatBitSize == ElemBitSize) {
4444 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
4445 DL, MVT::i32);
4446 return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4447 }
4448 // Check for variable splats.
4449 BitVector UndefElements;
4450 SDValue Splat = BVN->getSplatValue(&UndefElements);
4451 if (Splat) {
4452 // Since i32 is the smallest legal type, we either need a no-op
4453 // or a truncation.
4454 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
4455 return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4456 }
4457 }
4458
4459 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
4460 // and the shift amount is directly available in a GPR.
4461 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
4462 if (VSN->isSplat()) {
4463 SDValue VSNOp0 = VSN->getOperand(0);
4464 unsigned Index = VSN->getSplatIndex();
4465 assert(Index < VT.getVectorNumElements() &&
4466 "Splat index should be defined and in first operand");
4467 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4468 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
4469 // Since i32 is the smallest legal type, we either need a no-op
4470 // or a truncation.
4471 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
4472 VSNOp0.getOperand(Index));
4473 return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4474 }
4475 }
4476 }
4477
4478 // Otherwise just treat the current form as legal.
4479 return Op;
4480 }
4481
LowerOperation(SDValue Op,SelectionDAG & DAG) const4482 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
4483 SelectionDAG &DAG) const {
4484 switch (Op.getOpcode()) {
4485 case ISD::FRAMEADDR:
4486 return lowerFRAMEADDR(Op, DAG);
4487 case ISD::RETURNADDR:
4488 return lowerRETURNADDR(Op, DAG);
4489 case ISD::BR_CC:
4490 return lowerBR_CC(Op, DAG);
4491 case ISD::SELECT_CC:
4492 return lowerSELECT_CC(Op, DAG);
4493 case ISD::SETCC:
4494 return lowerSETCC(Op, DAG);
4495 case ISD::GlobalAddress:
4496 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
4497 case ISD::GlobalTLSAddress:
4498 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
4499 case ISD::BlockAddress:
4500 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
4501 case ISD::JumpTable:
4502 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
4503 case ISD::ConstantPool:
4504 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
4505 case ISD::BITCAST:
4506 return lowerBITCAST(Op, DAG);
4507 case ISD::VASTART:
4508 return lowerVASTART(Op, DAG);
4509 case ISD::VACOPY:
4510 return lowerVACOPY(Op, DAG);
4511 case ISD::DYNAMIC_STACKALLOC:
4512 return lowerDYNAMIC_STACKALLOC(Op, DAG);
4513 case ISD::GET_DYNAMIC_AREA_OFFSET:
4514 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
4515 case ISD::SMUL_LOHI:
4516 return lowerSMUL_LOHI(Op, DAG);
4517 case ISD::UMUL_LOHI:
4518 return lowerUMUL_LOHI(Op, DAG);
4519 case ISD::SDIVREM:
4520 return lowerSDIVREM(Op, DAG);
4521 case ISD::UDIVREM:
4522 return lowerUDIVREM(Op, DAG);
4523 case ISD::OR:
4524 return lowerOR(Op, DAG);
4525 case ISD::CTPOP:
4526 return lowerCTPOP(Op, DAG);
4527 case ISD::ATOMIC_FENCE:
4528 return lowerATOMIC_FENCE(Op, DAG);
4529 case ISD::ATOMIC_SWAP:
4530 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
4531 case ISD::ATOMIC_STORE:
4532 return lowerATOMIC_STORE(Op, DAG);
4533 case ISD::ATOMIC_LOAD:
4534 return lowerATOMIC_LOAD(Op, DAG);
4535 case ISD::ATOMIC_LOAD_ADD:
4536 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
4537 case ISD::ATOMIC_LOAD_SUB:
4538 return lowerATOMIC_LOAD_SUB(Op, DAG);
4539 case ISD::ATOMIC_LOAD_AND:
4540 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
4541 case ISD::ATOMIC_LOAD_OR:
4542 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
4543 case ISD::ATOMIC_LOAD_XOR:
4544 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
4545 case ISD::ATOMIC_LOAD_NAND:
4546 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
4547 case ISD::ATOMIC_LOAD_MIN:
4548 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
4549 case ISD::ATOMIC_LOAD_MAX:
4550 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
4551 case ISD::ATOMIC_LOAD_UMIN:
4552 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
4553 case ISD::ATOMIC_LOAD_UMAX:
4554 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
4555 case ISD::ATOMIC_CMP_SWAP:
4556 return lowerATOMIC_CMP_SWAP(Op, DAG);
4557 case ISD::STACKSAVE:
4558 return lowerSTACKSAVE(Op, DAG);
4559 case ISD::STACKRESTORE:
4560 return lowerSTACKRESTORE(Op, DAG);
4561 case ISD::PREFETCH:
4562 return lowerPREFETCH(Op, DAG);
4563 case ISD::INTRINSIC_W_CHAIN:
4564 return lowerINTRINSIC_W_CHAIN(Op, DAG);
4565 case ISD::INTRINSIC_WO_CHAIN:
4566 return lowerINTRINSIC_WO_CHAIN(Op, DAG);
4567 case ISD::BUILD_VECTOR:
4568 return lowerBUILD_VECTOR(Op, DAG);
4569 case ISD::VECTOR_SHUFFLE:
4570 return lowerVECTOR_SHUFFLE(Op, DAG);
4571 case ISD::SCALAR_TO_VECTOR:
4572 return lowerSCALAR_TO_VECTOR(Op, DAG);
4573 case ISD::INSERT_VECTOR_ELT:
4574 return lowerINSERT_VECTOR_ELT(Op, DAG);
4575 case ISD::EXTRACT_VECTOR_ELT:
4576 return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4577 case ISD::SIGN_EXTEND_VECTOR_INREG:
4578 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH);
4579 case ISD::ZERO_EXTEND_VECTOR_INREG:
4580 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH);
4581 case ISD::SHL:
4582 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
4583 case ISD::SRL:
4584 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
4585 case ISD::SRA:
4586 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
4587 default:
4588 llvm_unreachable("Unexpected node to lower");
4589 }
4590 }
4591
getTargetNodeName(unsigned Opcode) const4592 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
4593 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
4594 switch ((SystemZISD::NodeType)Opcode) {
4595 case SystemZISD::FIRST_NUMBER: break;
4596 OPCODE(RET_FLAG);
4597 OPCODE(CALL);
4598 OPCODE(SIBCALL);
4599 OPCODE(TLS_GDCALL);
4600 OPCODE(TLS_LDCALL);
4601 OPCODE(PCREL_WRAPPER);
4602 OPCODE(PCREL_OFFSET);
4603 OPCODE(IABS);
4604 OPCODE(ICMP);
4605 OPCODE(FCMP);
4606 OPCODE(TM);
4607 OPCODE(BR_CCMASK);
4608 OPCODE(SELECT_CCMASK);
4609 OPCODE(ADJDYNALLOC);
4610 OPCODE(EXTRACT_ACCESS);
4611 OPCODE(POPCNT);
4612 OPCODE(UMUL_LOHI64);
4613 OPCODE(SDIVREM32);
4614 OPCODE(SDIVREM64);
4615 OPCODE(UDIVREM32);
4616 OPCODE(UDIVREM64);
4617 OPCODE(MVC);
4618 OPCODE(MVC_LOOP);
4619 OPCODE(NC);
4620 OPCODE(NC_LOOP);
4621 OPCODE(OC);
4622 OPCODE(OC_LOOP);
4623 OPCODE(XC);
4624 OPCODE(XC_LOOP);
4625 OPCODE(CLC);
4626 OPCODE(CLC_LOOP);
4627 OPCODE(STPCPY);
4628 OPCODE(STRCMP);
4629 OPCODE(SEARCH_STRING);
4630 OPCODE(IPM);
4631 OPCODE(SERIALIZE);
4632 OPCODE(MEMBARRIER);
4633 OPCODE(TBEGIN);
4634 OPCODE(TBEGIN_NOFLOAT);
4635 OPCODE(TEND);
4636 OPCODE(BYTE_MASK);
4637 OPCODE(ROTATE_MASK);
4638 OPCODE(REPLICATE);
4639 OPCODE(JOIN_DWORDS);
4640 OPCODE(SPLAT);
4641 OPCODE(MERGE_HIGH);
4642 OPCODE(MERGE_LOW);
4643 OPCODE(SHL_DOUBLE);
4644 OPCODE(PERMUTE_DWORDS);
4645 OPCODE(PERMUTE);
4646 OPCODE(PACK);
4647 OPCODE(PACKS_CC);
4648 OPCODE(PACKLS_CC);
4649 OPCODE(UNPACK_HIGH);
4650 OPCODE(UNPACKL_HIGH);
4651 OPCODE(UNPACK_LOW);
4652 OPCODE(UNPACKL_LOW);
4653 OPCODE(VSHL_BY_SCALAR);
4654 OPCODE(VSRL_BY_SCALAR);
4655 OPCODE(VSRA_BY_SCALAR);
4656 OPCODE(VSUM);
4657 OPCODE(VICMPE);
4658 OPCODE(VICMPH);
4659 OPCODE(VICMPHL);
4660 OPCODE(VICMPES);
4661 OPCODE(VICMPHS);
4662 OPCODE(VICMPHLS);
4663 OPCODE(VFCMPE);
4664 OPCODE(VFCMPH);
4665 OPCODE(VFCMPHE);
4666 OPCODE(VFCMPES);
4667 OPCODE(VFCMPHS);
4668 OPCODE(VFCMPHES);
4669 OPCODE(VFTCI);
4670 OPCODE(VEXTEND);
4671 OPCODE(VROUND);
4672 OPCODE(VTM);
4673 OPCODE(VFAE_CC);
4674 OPCODE(VFAEZ_CC);
4675 OPCODE(VFEE_CC);
4676 OPCODE(VFEEZ_CC);
4677 OPCODE(VFENE_CC);
4678 OPCODE(VFENEZ_CC);
4679 OPCODE(VISTR_CC);
4680 OPCODE(VSTRC_CC);
4681 OPCODE(VSTRCZ_CC);
4682 OPCODE(TDC);
4683 OPCODE(ATOMIC_SWAPW);
4684 OPCODE(ATOMIC_LOADW_ADD);
4685 OPCODE(ATOMIC_LOADW_SUB);
4686 OPCODE(ATOMIC_LOADW_AND);
4687 OPCODE(ATOMIC_LOADW_OR);
4688 OPCODE(ATOMIC_LOADW_XOR);
4689 OPCODE(ATOMIC_LOADW_NAND);
4690 OPCODE(ATOMIC_LOADW_MIN);
4691 OPCODE(ATOMIC_LOADW_MAX);
4692 OPCODE(ATOMIC_LOADW_UMIN);
4693 OPCODE(ATOMIC_LOADW_UMAX);
4694 OPCODE(ATOMIC_CMP_SWAPW);
4695 OPCODE(LRV);
4696 OPCODE(STRV);
4697 OPCODE(PREFETCH);
4698 }
4699 return nullptr;
4700 #undef OPCODE
4701 }
4702
4703 // Return true if VT is a vector whose elements are a whole number of bytes
4704 // in width.
canTreatAsByteVector(EVT VT)4705 static bool canTreatAsByteVector(EVT VT) {
4706 return VT.isVector() && VT.getVectorElementType().getSizeInBits() % 8 == 0;
4707 }
4708
4709 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
4710 // producing a result of type ResVT. Op is a possibly bitcast version
4711 // of the input vector and Index is the index (based on type VecVT) that
4712 // should be extracted. Return the new extraction if a simplification
4713 // was possible or if Force is true.
combineExtract(const SDLoc & DL,EVT ResVT,EVT VecVT,SDValue Op,unsigned Index,DAGCombinerInfo & DCI,bool Force) const4714 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
4715 EVT VecVT, SDValue Op,
4716 unsigned Index,
4717 DAGCombinerInfo &DCI,
4718 bool Force) const {
4719 SelectionDAG &DAG = DCI.DAG;
4720
4721 // The number of bytes being extracted.
4722 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
4723
4724 for (;;) {
4725 unsigned Opcode = Op.getOpcode();
4726 if (Opcode == ISD::BITCAST)
4727 // Look through bitcasts.
4728 Op = Op.getOperand(0);
4729 else if (Opcode == ISD::VECTOR_SHUFFLE &&
4730 canTreatAsByteVector(Op.getValueType())) {
4731 // Get a VPERM-like permute mask and see whether the bytes covered
4732 // by the extracted element are a contiguous sequence from one
4733 // source operand.
4734 SmallVector<int, SystemZ::VectorBytes> Bytes;
4735 getVPermMask(cast<ShuffleVectorSDNode>(Op), Bytes);
4736 int First;
4737 if (!getShuffleInput(Bytes, Index * BytesPerElement,
4738 BytesPerElement, First))
4739 break;
4740 if (First < 0)
4741 return DAG.getUNDEF(ResVT);
4742 // Make sure the contiguous sequence starts at a multiple of the
4743 // original element size.
4744 unsigned Byte = unsigned(First) % Bytes.size();
4745 if (Byte % BytesPerElement != 0)
4746 break;
4747 // We can get the extracted value directly from an input.
4748 Index = Byte / BytesPerElement;
4749 Op = Op.getOperand(unsigned(First) / Bytes.size());
4750 Force = true;
4751 } else if (Opcode == ISD::BUILD_VECTOR &&
4752 canTreatAsByteVector(Op.getValueType())) {
4753 // We can only optimize this case if the BUILD_VECTOR elements are
4754 // at least as wide as the extracted value.
4755 EVT OpVT = Op.getValueType();
4756 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
4757 if (OpBytesPerElement < BytesPerElement)
4758 break;
4759 // Make sure that the least-significant bit of the extracted value
4760 // is the least significant bit of an input.
4761 unsigned End = (Index + 1) * BytesPerElement;
4762 if (End % OpBytesPerElement != 0)
4763 break;
4764 // We're extracting the low part of one operand of the BUILD_VECTOR.
4765 Op = Op.getOperand(End / OpBytesPerElement - 1);
4766 if (!Op.getValueType().isInteger()) {
4767 EVT VT = MVT::getIntegerVT(Op.getValueType().getSizeInBits());
4768 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
4769 DCI.AddToWorklist(Op.getNode());
4770 }
4771 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
4772 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
4773 if (VT != ResVT) {
4774 DCI.AddToWorklist(Op.getNode());
4775 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
4776 }
4777 return Op;
4778 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
4779 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
4780 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
4781 canTreatAsByteVector(Op.getValueType()) &&
4782 canTreatAsByteVector(Op.getOperand(0).getValueType())) {
4783 // Make sure that only the unextended bits are significant.
4784 EVT ExtVT = Op.getValueType();
4785 EVT OpVT = Op.getOperand(0).getValueType();
4786 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
4787 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
4788 unsigned Byte = Index * BytesPerElement;
4789 unsigned SubByte = Byte % ExtBytesPerElement;
4790 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
4791 if (SubByte < MinSubByte ||
4792 SubByte + BytesPerElement > ExtBytesPerElement)
4793 break;
4794 // Get the byte offset of the unextended element
4795 Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
4796 // ...then add the byte offset relative to that element.
4797 Byte += SubByte - MinSubByte;
4798 if (Byte % BytesPerElement != 0)
4799 break;
4800 Op = Op.getOperand(0);
4801 Index = Byte / BytesPerElement;
4802 Force = true;
4803 } else
4804 break;
4805 }
4806 if (Force) {
4807 if (Op.getValueType() != VecVT) {
4808 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
4809 DCI.AddToWorklist(Op.getNode());
4810 }
4811 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
4812 DAG.getConstant(Index, DL, MVT::i32));
4813 }
4814 return SDValue();
4815 }
4816
4817 // Optimize vector operations in scalar value Op on the basis that Op
4818 // is truncated to TruncVT.
combineTruncateExtract(const SDLoc & DL,EVT TruncVT,SDValue Op,DAGCombinerInfo & DCI) const4819 SDValue SystemZTargetLowering::combineTruncateExtract(
4820 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
4821 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
4822 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
4823 // of type TruncVT.
4824 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4825 TruncVT.getSizeInBits() % 8 == 0) {
4826 SDValue Vec = Op.getOperand(0);
4827 EVT VecVT = Vec.getValueType();
4828 if (canTreatAsByteVector(VecVT)) {
4829 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
4830 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
4831 unsigned TruncBytes = TruncVT.getStoreSize();
4832 if (BytesPerElement % TruncBytes == 0) {
4833 // Calculate the value of Y' in the above description. We are
4834 // splitting the original elements into Scale equal-sized pieces
4835 // and for truncation purposes want the last (least-significant)
4836 // of these pieces for IndexN. This is easiest to do by calculating
4837 // the start index of the following element and then subtracting 1.
4838 unsigned Scale = BytesPerElement / TruncBytes;
4839 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
4840
4841 // Defer the creation of the bitcast from X to combineExtract,
4842 // which might be able to optimize the extraction.
4843 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
4844 VecVT.getStoreSize() / TruncBytes);
4845 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
4846 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
4847 }
4848 }
4849 }
4850 }
4851 return SDValue();
4852 }
4853
combineSIGN_EXTEND(SDNode * N,DAGCombinerInfo & DCI) const4854 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
4855 SDNode *N, DAGCombinerInfo &DCI) const {
4856 // Convert (sext (ashr (shl X, C1), C2)) to
4857 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
4858 // cheap as narrower ones.
4859 SelectionDAG &DAG = DCI.DAG;
4860 SDValue N0 = N->getOperand(0);
4861 EVT VT = N->getValueType(0);
4862 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
4863 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
4864 SDValue Inner = N0.getOperand(0);
4865 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
4866 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
4867 unsigned Extra = (VT.getSizeInBits() -
4868 N0.getValueType().getSizeInBits());
4869 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
4870 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
4871 EVT ShiftVT = N0.getOperand(1).getValueType();
4872 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
4873 Inner.getOperand(0));
4874 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
4875 DAG.getConstant(NewShlAmt, SDLoc(Inner),
4876 ShiftVT));
4877 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
4878 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
4879 }
4880 }
4881 }
4882 return SDValue();
4883 }
4884
combineMERGE(SDNode * N,DAGCombinerInfo & DCI) const4885 SDValue SystemZTargetLowering::combineMERGE(
4886 SDNode *N, DAGCombinerInfo &DCI) const {
4887 SelectionDAG &DAG = DCI.DAG;
4888 unsigned Opcode = N->getOpcode();
4889 SDValue Op0 = N->getOperand(0);
4890 SDValue Op1 = N->getOperand(1);
4891 if (Op0.getOpcode() == ISD::BITCAST)
4892 Op0 = Op0.getOperand(0);
4893 if (Op0.getOpcode() == SystemZISD::BYTE_MASK &&
4894 cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) {
4895 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF
4896 // for v4f32.
4897 if (Op1 == N->getOperand(0))
4898 return Op1;
4899 // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
4900 EVT VT = Op1.getValueType();
4901 unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
4902 if (ElemBytes <= 4) {
4903 Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
4904 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
4905 EVT InVT = VT.changeVectorElementTypeToInteger();
4906 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
4907 SystemZ::VectorBytes / ElemBytes / 2);
4908 if (VT != InVT) {
4909 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
4910 DCI.AddToWorklist(Op1.getNode());
4911 }
4912 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
4913 DCI.AddToWorklist(Op.getNode());
4914 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
4915 }
4916 }
4917 return SDValue();
4918 }
4919
combineSTORE(SDNode * N,DAGCombinerInfo & DCI) const4920 SDValue SystemZTargetLowering::combineSTORE(
4921 SDNode *N, DAGCombinerInfo &DCI) const {
4922 SelectionDAG &DAG = DCI.DAG;
4923 auto *SN = cast<StoreSDNode>(N);
4924 auto &Op1 = N->getOperand(1);
4925 EVT MemVT = SN->getMemoryVT();
4926 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
4927 // for the extraction to be done on a vMiN value, so that we can use VSTE.
4928 // If X has wider elements then convert it to:
4929 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
4930 if (MemVT.isInteger()) {
4931 if (SDValue Value =
4932 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
4933 DCI.AddToWorklist(Value.getNode());
4934
4935 // Rewrite the store with the new form of stored value.
4936 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
4937 SN->getBasePtr(), SN->getMemoryVT(),
4938 SN->getMemOperand());
4939 }
4940 }
4941 // Combine STORE (BSWAP) into STRVH/STRV/STRVG
4942 // See comment in combineBSWAP about volatile accesses.
4943 if (!SN->isVolatile() &&
4944 Op1.getOpcode() == ISD::BSWAP &&
4945 Op1.getNode()->hasOneUse() &&
4946 (Op1.getValueType() == MVT::i16 ||
4947 Op1.getValueType() == MVT::i32 ||
4948 Op1.getValueType() == MVT::i64)) {
4949
4950 SDValue BSwapOp = Op1.getOperand(0);
4951
4952 if (BSwapOp.getValueType() == MVT::i16)
4953 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
4954
4955 SDValue Ops[] = {
4956 N->getOperand(0), BSwapOp, N->getOperand(2),
4957 DAG.getValueType(Op1.getValueType())
4958 };
4959
4960 return
4961 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
4962 Ops, MemVT, SN->getMemOperand());
4963 }
4964 return SDValue();
4965 }
4966
combineEXTRACT_VECTOR_ELT(SDNode * N,DAGCombinerInfo & DCI) const4967 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
4968 SDNode *N, DAGCombinerInfo &DCI) const {
4969 // Try to simplify a vector extraction.
4970 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
4971 SDValue Op0 = N->getOperand(0);
4972 EVT VecVT = Op0.getValueType();
4973 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
4974 IndexN->getZExtValue(), DCI, false);
4975 }
4976 return SDValue();
4977 }
4978
combineJOIN_DWORDS(SDNode * N,DAGCombinerInfo & DCI) const4979 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
4980 SDNode *N, DAGCombinerInfo &DCI) const {
4981 SelectionDAG &DAG = DCI.DAG;
4982 // (join_dwords X, X) == (replicate X)
4983 if (N->getOperand(0) == N->getOperand(1))
4984 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
4985 N->getOperand(0));
4986 return SDValue();
4987 }
4988
combineFP_ROUND(SDNode * N,DAGCombinerInfo & DCI) const4989 SDValue SystemZTargetLowering::combineFP_ROUND(
4990 SDNode *N, DAGCombinerInfo &DCI) const {
4991 // (fround (extract_vector_elt X 0))
4992 // (fround (extract_vector_elt X 1)) ->
4993 // (extract_vector_elt (VROUND X) 0)
4994 // (extract_vector_elt (VROUND X) 1)
4995 //
4996 // This is a special case since the target doesn't really support v2f32s.
4997 SelectionDAG &DAG = DCI.DAG;
4998 SDValue Op0 = N->getOperand(0);
4999 if (N->getValueType(0) == MVT::f32 &&
5000 Op0.hasOneUse() &&
5001 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5002 Op0.getOperand(0).getValueType() == MVT::v2f64 &&
5003 Op0.getOperand(1).getOpcode() == ISD::Constant &&
5004 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
5005 SDValue Vec = Op0.getOperand(0);
5006 for (auto *U : Vec->uses()) {
5007 if (U != Op0.getNode() &&
5008 U->hasOneUse() &&
5009 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5010 U->getOperand(0) == Vec &&
5011 U->getOperand(1).getOpcode() == ISD::Constant &&
5012 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
5013 SDValue OtherRound = SDValue(*U->use_begin(), 0);
5014 if (OtherRound.getOpcode() == ISD::FP_ROUND &&
5015 OtherRound.getOperand(0) == SDValue(U, 0) &&
5016 OtherRound.getValueType() == MVT::f32) {
5017 SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
5018 MVT::v4f32, Vec);
5019 DCI.AddToWorklist(VRound.getNode());
5020 SDValue Extract1 =
5021 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
5022 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
5023 DCI.AddToWorklist(Extract1.getNode());
5024 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
5025 SDValue Extract0 =
5026 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
5027 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
5028 return Extract0;
5029 }
5030 }
5031 }
5032 }
5033 return SDValue();
5034 }
5035
combineBSWAP(SDNode * N,DAGCombinerInfo & DCI) const5036 SDValue SystemZTargetLowering::combineBSWAP(
5037 SDNode *N, DAGCombinerInfo &DCI) const {
5038 SelectionDAG &DAG = DCI.DAG;
5039 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG
5040 // These loads are allowed to access memory multiple times, and so we must check
5041 // that the loads are not volatile before performing the combine.
5042 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5043 N->getOperand(0).hasOneUse() &&
5044 (N->getValueType(0) == MVT::i16 || N->getValueType(0) == MVT::i32 ||
5045 N->getValueType(0) == MVT::i64) &&
5046 !cast<LoadSDNode>(N->getOperand(0))->isVolatile()) {
5047 SDValue Load = N->getOperand(0);
5048 LoadSDNode *LD = cast<LoadSDNode>(Load);
5049
5050 // Create the byte-swapping load.
5051 SDValue Ops[] = {
5052 LD->getChain(), // Chain
5053 LD->getBasePtr(), // Ptr
5054 DAG.getValueType(N->getValueType(0)) // VT
5055 };
5056 SDValue BSLoad =
5057 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
5058 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
5059 MVT::i64 : MVT::i32, MVT::Other),
5060 Ops, LD->getMemoryVT(), LD->getMemOperand());
5061
5062 // If this is an i16 load, insert the truncate.
5063 SDValue ResVal = BSLoad;
5064 if (N->getValueType(0) == MVT::i16)
5065 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
5066
5067 // First, combine the bswap away. This makes the value produced by the
5068 // load dead.
5069 DCI.CombineTo(N, ResVal);
5070
5071 // Next, combine the load away, we give it a bogus result value but a real
5072 // chain result. The result value is dead because the bswap is dead.
5073 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5074
5075 // Return N so it doesn't get rechecked!
5076 return SDValue(N, 0);
5077 }
5078 return SDValue();
5079 }
5080
combineSHIFTROT(SDNode * N,DAGCombinerInfo & DCI) const5081 SDValue SystemZTargetLowering::combineSHIFTROT(
5082 SDNode *N, DAGCombinerInfo &DCI) const {
5083
5084 SelectionDAG &DAG = DCI.DAG;
5085
5086 // Shift/rotate instructions only use the last 6 bits of the second operand
5087 // register. If the second operand is the result of an AND with an immediate
5088 // value that has its last 6 bits set, we can safely remove the AND operation.
5089 SDValue N1 = N->getOperand(1);
5090 if (N1.getOpcode() == ISD::AND) {
5091 auto *AndMask = dyn_cast<ConstantSDNode>(N1.getOperand(1));
5092
5093 // The AND mask is constant
5094 if (AndMask) {
5095 auto AmtVal = AndMask->getZExtValue();
5096
5097 // Bottom 6 bits are set
5098 if ((AmtVal & 0x3f) == 0x3f) {
5099 SDValue AndOp = N1->getOperand(0);
5100
5101 // This is the only use, so remove the node
5102 if (N1.hasOneUse()) {
5103 // Combine the AND away
5104 DCI.CombineTo(N1.getNode(), AndOp);
5105
5106 // Return N so it isn't rechecked
5107 return SDValue(N, 0);
5108
5109 // The node will be reused, so create a new node for this one use
5110 } else {
5111 SDValue Replace = DAG.getNode(N->getOpcode(), SDLoc(N),
5112 N->getValueType(0), N->getOperand(0),
5113 AndOp);
5114 DCI.AddToWorklist(Replace.getNode());
5115
5116 return Replace;
5117 }
5118 }
5119 }
5120 }
5121
5122 return SDValue();
5123 }
5124
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const5125 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
5126 DAGCombinerInfo &DCI) const {
5127 switch(N->getOpcode()) {
5128 default: break;
5129 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI);
5130 case SystemZISD::MERGE_HIGH:
5131 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI);
5132 case ISD::STORE: return combineSTORE(N, DCI);
5133 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
5134 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
5135 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI);
5136 case ISD::BSWAP: return combineBSWAP(N, DCI);
5137 case ISD::SHL:
5138 case ISD::SRA:
5139 case ISD::SRL:
5140 case ISD::ROTL: return combineSHIFTROT(N, DCI);
5141 }
5142
5143 return SDValue();
5144 }
5145
5146 //===----------------------------------------------------------------------===//
5147 // Custom insertion
5148 //===----------------------------------------------------------------------===//
5149
5150 // Create a new basic block after MBB.
emitBlockAfter(MachineBasicBlock * MBB)5151 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
5152 MachineFunction &MF = *MBB->getParent();
5153 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
5154 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
5155 return NewMBB;
5156 }
5157
5158 // Split MBB after MI and return the new block (the one that contains
5159 // instructions after MI).
splitBlockAfter(MachineBasicBlock::iterator MI,MachineBasicBlock * MBB)5160 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI,
5161 MachineBasicBlock *MBB) {
5162 MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
5163 NewMBB->splice(NewMBB->begin(), MBB,
5164 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
5165 NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
5166 return NewMBB;
5167 }
5168
5169 // Split MBB before MI and return the new block (the one that contains MI).
splitBlockBefore(MachineBasicBlock::iterator MI,MachineBasicBlock * MBB)5170 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI,
5171 MachineBasicBlock *MBB) {
5172 MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
5173 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
5174 NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
5175 return NewMBB;
5176 }
5177
5178 // Force base value Base into a register before MI. Return the register.
forceReg(MachineInstr & MI,MachineOperand & Base,const SystemZInstrInfo * TII)5179 static unsigned forceReg(MachineInstr &MI, MachineOperand &Base,
5180 const SystemZInstrInfo *TII) {
5181 if (Base.isReg())
5182 return Base.getReg();
5183
5184 MachineBasicBlock *MBB = MI.getParent();
5185 MachineFunction &MF = *MBB->getParent();
5186 MachineRegisterInfo &MRI = MF.getRegInfo();
5187
5188 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
5189 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
5190 .addOperand(Base)
5191 .addImm(0)
5192 .addReg(0);
5193 return Reg;
5194 }
5195
5196 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
5197 MachineBasicBlock *
emitSelect(MachineInstr & MI,MachineBasicBlock * MBB) const5198 SystemZTargetLowering::emitSelect(MachineInstr &MI,
5199 MachineBasicBlock *MBB) const {
5200 const SystemZInstrInfo *TII =
5201 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5202
5203 unsigned DestReg = MI.getOperand(0).getReg();
5204 unsigned TrueReg = MI.getOperand(1).getReg();
5205 unsigned FalseReg = MI.getOperand(2).getReg();
5206 unsigned CCValid = MI.getOperand(3).getImm();
5207 unsigned CCMask = MI.getOperand(4).getImm();
5208 DebugLoc DL = MI.getDebugLoc();
5209
5210 MachineBasicBlock *StartMBB = MBB;
5211 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB);
5212 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
5213
5214 // StartMBB:
5215 // BRC CCMask, JoinMBB
5216 // # fallthrough to FalseMBB
5217 MBB = StartMBB;
5218 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5219 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
5220 MBB->addSuccessor(JoinMBB);
5221 MBB->addSuccessor(FalseMBB);
5222
5223 // FalseMBB:
5224 // # fallthrough to JoinMBB
5225 MBB = FalseMBB;
5226 MBB->addSuccessor(JoinMBB);
5227
5228 // JoinMBB:
5229 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
5230 // ...
5231 MBB = JoinMBB;
5232 BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg)
5233 .addReg(TrueReg).addMBB(StartMBB)
5234 .addReg(FalseReg).addMBB(FalseMBB);
5235
5236 MI.eraseFromParent();
5237 return JoinMBB;
5238 }
5239
5240 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
5241 // StoreOpcode is the store to use and Invert says whether the store should
5242 // happen when the condition is false rather than true. If a STORE ON
5243 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
emitCondStore(MachineInstr & MI,MachineBasicBlock * MBB,unsigned StoreOpcode,unsigned STOCOpcode,bool Invert) const5244 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
5245 MachineBasicBlock *MBB,
5246 unsigned StoreOpcode,
5247 unsigned STOCOpcode,
5248 bool Invert) const {
5249 const SystemZInstrInfo *TII =
5250 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5251
5252 unsigned SrcReg = MI.getOperand(0).getReg();
5253 MachineOperand Base = MI.getOperand(1);
5254 int64_t Disp = MI.getOperand(2).getImm();
5255 unsigned IndexReg = MI.getOperand(3).getReg();
5256 unsigned CCValid = MI.getOperand(4).getImm();
5257 unsigned CCMask = MI.getOperand(5).getImm();
5258 DebugLoc DL = MI.getDebugLoc();
5259
5260 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
5261
5262 // Use STOCOpcode if possible. We could use different store patterns in
5263 // order to avoid matching the index register, but the performance trade-offs
5264 // might be more complicated in that case.
5265 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
5266 if (Invert)
5267 CCMask ^= CCValid;
5268 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
5269 .addReg(SrcReg).addOperand(Base).addImm(Disp)
5270 .addImm(CCValid).addImm(CCMask);
5271 MI.eraseFromParent();
5272 return MBB;
5273 }
5274
5275 // Get the condition needed to branch around the store.
5276 if (!Invert)
5277 CCMask ^= CCValid;
5278
5279 MachineBasicBlock *StartMBB = MBB;
5280 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB);
5281 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
5282
5283 // StartMBB:
5284 // BRC CCMask, JoinMBB
5285 // # fallthrough to FalseMBB
5286 MBB = StartMBB;
5287 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5288 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
5289 MBB->addSuccessor(JoinMBB);
5290 MBB->addSuccessor(FalseMBB);
5291
5292 // FalseMBB:
5293 // store %SrcReg, %Disp(%Index,%Base)
5294 // # fallthrough to JoinMBB
5295 MBB = FalseMBB;
5296 BuildMI(MBB, DL, TII->get(StoreOpcode))
5297 .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg);
5298 MBB->addSuccessor(JoinMBB);
5299
5300 MI.eraseFromParent();
5301 return JoinMBB;
5302 }
5303
5304 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
5305 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that
5306 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
5307 // BitSize is the width of the field in bits, or 0 if this is a partword
5308 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
5309 // is one of the operands. Invert says whether the field should be
5310 // inverted after performing BinOpcode (e.g. for NAND).
emitAtomicLoadBinary(MachineInstr & MI,MachineBasicBlock * MBB,unsigned BinOpcode,unsigned BitSize,bool Invert) const5311 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
5312 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
5313 unsigned BitSize, bool Invert) const {
5314 MachineFunction &MF = *MBB->getParent();
5315 const SystemZInstrInfo *TII =
5316 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5317 MachineRegisterInfo &MRI = MF.getRegInfo();
5318 bool IsSubWord = (BitSize < 32);
5319
5320 // Extract the operands. Base can be a register or a frame index.
5321 // Src2 can be a register or immediate.
5322 unsigned Dest = MI.getOperand(0).getReg();
5323 MachineOperand Base = earlyUseOperand(MI.getOperand(1));
5324 int64_t Disp = MI.getOperand(2).getImm();
5325 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
5326 unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0);
5327 unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0);
5328 DebugLoc DL = MI.getDebugLoc();
5329 if (IsSubWord)
5330 BitSize = MI.getOperand(6).getImm();
5331
5332 // Subword operations use 32-bit registers.
5333 const TargetRegisterClass *RC = (BitSize <= 32 ?
5334 &SystemZ::GR32BitRegClass :
5335 &SystemZ::GR64BitRegClass);
5336 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG;
5337 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
5338
5339 // Get the right opcodes for the displacement.
5340 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp);
5341 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
5342 assert(LOpcode && CSOpcode && "Displacement out of range");
5343
5344 // Create virtual registers for temporary results.
5345 unsigned OrigVal = MRI.createVirtualRegister(RC);
5346 unsigned OldVal = MRI.createVirtualRegister(RC);
5347 unsigned NewVal = (BinOpcode || IsSubWord ?
5348 MRI.createVirtualRegister(RC) : Src2.getReg());
5349 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
5350 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
5351
5352 // Insert a basic block for the main loop.
5353 MachineBasicBlock *StartMBB = MBB;
5354 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
5355 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
5356
5357 // StartMBB:
5358 // ...
5359 // %OrigVal = L Disp(%Base)
5360 // # fall through to LoopMMB
5361 MBB = StartMBB;
5362 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
5363 .addOperand(Base).addImm(Disp).addReg(0);
5364 MBB->addSuccessor(LoopMBB);
5365
5366 // LoopMBB:
5367 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
5368 // %RotatedOldVal = RLL %OldVal, 0(%BitShift)
5369 // %RotatedNewVal = OP %RotatedOldVal, %Src2
5370 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
5371 // %Dest = CS %OldVal, %NewVal, Disp(%Base)
5372 // JNE LoopMBB
5373 // # fall through to DoneMMB
5374 MBB = LoopMBB;
5375 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
5376 .addReg(OrigVal).addMBB(StartMBB)
5377 .addReg(Dest).addMBB(LoopMBB);
5378 if (IsSubWord)
5379 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
5380 .addReg(OldVal).addReg(BitShift).addImm(0);
5381 if (Invert) {
5382 // Perform the operation normally and then invert every bit of the field.
5383 unsigned Tmp = MRI.createVirtualRegister(RC);
5384 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp)
5385 .addReg(RotatedOldVal).addOperand(Src2);
5386 if (BitSize <= 32)
5387 // XILF with the upper BitSize bits set.
5388 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
5389 .addReg(Tmp).addImm(-1U << (32 - BitSize));
5390 else {
5391 // Use LCGR and add -1 to the result, which is more compact than
5392 // an XILF, XILH pair.
5393 unsigned Tmp2 = MRI.createVirtualRegister(RC);
5394 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
5395 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
5396 .addReg(Tmp2).addImm(-1);
5397 }
5398 } else if (BinOpcode)
5399 // A simply binary operation.
5400 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
5401 .addReg(RotatedOldVal).addOperand(Src2);
5402 else if (IsSubWord)
5403 // Use RISBG to rotate Src2 into position and use it to replace the
5404 // field in RotatedOldVal.
5405 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
5406 .addReg(RotatedOldVal).addReg(Src2.getReg())
5407 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
5408 if (IsSubWord)
5409 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
5410 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
5411 BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
5412 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
5413 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5414 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
5415 MBB->addSuccessor(LoopMBB);
5416 MBB->addSuccessor(DoneMBB);
5417
5418 MI.eraseFromParent();
5419 return DoneMBB;
5420 }
5421
5422 // Implement EmitInstrWithCustomInserter for pseudo
5423 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the
5424 // instruction that should be used to compare the current field with the
5425 // minimum or maximum value. KeepOldMask is the BRC condition-code mask
5426 // for when the current field should be kept. BitSize is the width of
5427 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
emitAtomicLoadMinMax(MachineInstr & MI,MachineBasicBlock * MBB,unsigned CompareOpcode,unsigned KeepOldMask,unsigned BitSize) const5428 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
5429 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
5430 unsigned KeepOldMask, unsigned BitSize) const {
5431 MachineFunction &MF = *MBB->getParent();
5432 const SystemZInstrInfo *TII =
5433 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5434 MachineRegisterInfo &MRI = MF.getRegInfo();
5435 bool IsSubWord = (BitSize < 32);
5436
5437 // Extract the operands. Base can be a register or a frame index.
5438 unsigned Dest = MI.getOperand(0).getReg();
5439 MachineOperand Base = earlyUseOperand(MI.getOperand(1));
5440 int64_t Disp = MI.getOperand(2).getImm();
5441 unsigned Src2 = MI.getOperand(3).getReg();
5442 unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0);
5443 unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0);
5444 DebugLoc DL = MI.getDebugLoc();
5445 if (IsSubWord)
5446 BitSize = MI.getOperand(6).getImm();
5447
5448 // Subword operations use 32-bit registers.
5449 const TargetRegisterClass *RC = (BitSize <= 32 ?
5450 &SystemZ::GR32BitRegClass :
5451 &SystemZ::GR64BitRegClass);
5452 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG;
5453 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
5454
5455 // Get the right opcodes for the displacement.
5456 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp);
5457 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
5458 assert(LOpcode && CSOpcode && "Displacement out of range");
5459
5460 // Create virtual registers for temporary results.
5461 unsigned OrigVal = MRI.createVirtualRegister(RC);
5462 unsigned OldVal = MRI.createVirtualRegister(RC);
5463 unsigned NewVal = MRI.createVirtualRegister(RC);
5464 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
5465 unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
5466 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
5467
5468 // Insert 3 basic blocks for the loop.
5469 MachineBasicBlock *StartMBB = MBB;
5470 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
5471 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
5472 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
5473 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
5474
5475 // StartMBB:
5476 // ...
5477 // %OrigVal = L Disp(%Base)
5478 // # fall through to LoopMMB
5479 MBB = StartMBB;
5480 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
5481 .addOperand(Base).addImm(Disp).addReg(0);
5482 MBB->addSuccessor(LoopMBB);
5483
5484 // LoopMBB:
5485 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
5486 // %RotatedOldVal = RLL %OldVal, 0(%BitShift)
5487 // CompareOpcode %RotatedOldVal, %Src2
5488 // BRC KeepOldMask, UpdateMBB
5489 MBB = LoopMBB;
5490 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
5491 .addReg(OrigVal).addMBB(StartMBB)
5492 .addReg(Dest).addMBB(UpdateMBB);
5493 if (IsSubWord)
5494 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
5495 .addReg(OldVal).addReg(BitShift).addImm(0);
5496 BuildMI(MBB, DL, TII->get(CompareOpcode))
5497 .addReg(RotatedOldVal).addReg(Src2);
5498 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5499 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
5500 MBB->addSuccessor(UpdateMBB);
5501 MBB->addSuccessor(UseAltMBB);
5502
5503 // UseAltMBB:
5504 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
5505 // # fall through to UpdateMMB
5506 MBB = UseAltMBB;
5507 if (IsSubWord)
5508 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
5509 .addReg(RotatedOldVal).addReg(Src2)
5510 .addImm(32).addImm(31 + BitSize).addImm(0);
5511 MBB->addSuccessor(UpdateMBB);
5512
5513 // UpdateMBB:
5514 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
5515 // [ %RotatedAltVal, UseAltMBB ]
5516 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
5517 // %Dest = CS %OldVal, %NewVal, Disp(%Base)
5518 // JNE LoopMBB
5519 // # fall through to DoneMMB
5520 MBB = UpdateMBB;
5521 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
5522 .addReg(RotatedOldVal).addMBB(LoopMBB)
5523 .addReg(RotatedAltVal).addMBB(UseAltMBB);
5524 if (IsSubWord)
5525 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
5526 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
5527 BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
5528 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
5529 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5530 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
5531 MBB->addSuccessor(LoopMBB);
5532 MBB->addSuccessor(DoneMBB);
5533
5534 MI.eraseFromParent();
5535 return DoneMBB;
5536 }
5537
5538 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
5539 // instruction MI.
5540 MachineBasicBlock *
emitAtomicCmpSwapW(MachineInstr & MI,MachineBasicBlock * MBB) const5541 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
5542 MachineBasicBlock *MBB) const {
5543
5544 MachineFunction &MF = *MBB->getParent();
5545 const SystemZInstrInfo *TII =
5546 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5547 MachineRegisterInfo &MRI = MF.getRegInfo();
5548
5549 // Extract the operands. Base can be a register or a frame index.
5550 unsigned Dest = MI.getOperand(0).getReg();
5551 MachineOperand Base = earlyUseOperand(MI.getOperand(1));
5552 int64_t Disp = MI.getOperand(2).getImm();
5553 unsigned OrigCmpVal = MI.getOperand(3).getReg();
5554 unsigned OrigSwapVal = MI.getOperand(4).getReg();
5555 unsigned BitShift = MI.getOperand(5).getReg();
5556 unsigned NegBitShift = MI.getOperand(6).getReg();
5557 int64_t BitSize = MI.getOperand(7).getImm();
5558 DebugLoc DL = MI.getDebugLoc();
5559
5560 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
5561
5562 // Get the right opcodes for the displacement.
5563 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp);
5564 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
5565 assert(LOpcode && CSOpcode && "Displacement out of range");
5566
5567 // Create virtual registers for temporary results.
5568 unsigned OrigOldVal = MRI.createVirtualRegister(RC);
5569 unsigned OldVal = MRI.createVirtualRegister(RC);
5570 unsigned CmpVal = MRI.createVirtualRegister(RC);
5571 unsigned SwapVal = MRI.createVirtualRegister(RC);
5572 unsigned StoreVal = MRI.createVirtualRegister(RC);
5573 unsigned RetryOldVal = MRI.createVirtualRegister(RC);
5574 unsigned RetryCmpVal = MRI.createVirtualRegister(RC);
5575 unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
5576
5577 // Insert 2 basic blocks for the loop.
5578 MachineBasicBlock *StartMBB = MBB;
5579 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
5580 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
5581 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB);
5582
5583 // StartMBB:
5584 // ...
5585 // %OrigOldVal = L Disp(%Base)
5586 // # fall through to LoopMMB
5587 MBB = StartMBB;
5588 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
5589 .addOperand(Base).addImm(Disp).addReg(0);
5590 MBB->addSuccessor(LoopMBB);
5591
5592 // LoopMBB:
5593 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
5594 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
5595 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
5596 // %Dest = RLL %OldVal, BitSize(%BitShift)
5597 // ^^ The low BitSize bits contain the field
5598 // of interest.
5599 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
5600 // ^^ Replace the upper 32-BitSize bits of the
5601 // comparison value with those that we loaded,
5602 // so that we can use a full word comparison.
5603 // CR %Dest, %RetryCmpVal
5604 // JNE DoneMBB
5605 // # Fall through to SetMBB
5606 MBB = LoopMBB;
5607 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
5608 .addReg(OrigOldVal).addMBB(StartMBB)
5609 .addReg(RetryOldVal).addMBB(SetMBB);
5610 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
5611 .addReg(OrigCmpVal).addMBB(StartMBB)
5612 .addReg(RetryCmpVal).addMBB(SetMBB);
5613 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
5614 .addReg(OrigSwapVal).addMBB(StartMBB)
5615 .addReg(RetrySwapVal).addMBB(SetMBB);
5616 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
5617 .addReg(OldVal).addReg(BitShift).addImm(BitSize);
5618 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
5619 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
5620 BuildMI(MBB, DL, TII->get(SystemZ::CR))
5621 .addReg(Dest).addReg(RetryCmpVal);
5622 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5623 .addImm(SystemZ::CCMASK_ICMP)
5624 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
5625 MBB->addSuccessor(DoneMBB);
5626 MBB->addSuccessor(SetMBB);
5627
5628 // SetMBB:
5629 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
5630 // ^^ Replace the upper 32-BitSize bits of the new
5631 // value with those that we loaded.
5632 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift)
5633 // ^^ Rotate the new field to its proper position.
5634 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
5635 // JNE LoopMBB
5636 // # fall through to ExitMMB
5637 MBB = SetMBB;
5638 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
5639 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
5640 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
5641 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
5642 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
5643 .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp);
5644 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5645 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
5646 MBB->addSuccessor(LoopMBB);
5647 MBB->addSuccessor(DoneMBB);
5648
5649 MI.eraseFromParent();
5650 return DoneMBB;
5651 }
5652
5653 // Emit an extension from a GR32 or GR64 to a GR128. ClearEven is true
5654 // if the high register of the GR128 value must be cleared or false if
5655 // it's "don't care". SubReg is subreg_l32 when extending a GR32
5656 // and subreg_l64 when extending a GR64.
emitExt128(MachineInstr & MI,MachineBasicBlock * MBB,bool ClearEven,unsigned SubReg) const5657 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
5658 MachineBasicBlock *MBB,
5659 bool ClearEven,
5660 unsigned SubReg) const {
5661 MachineFunction &MF = *MBB->getParent();
5662 const SystemZInstrInfo *TII =
5663 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5664 MachineRegisterInfo &MRI = MF.getRegInfo();
5665 DebugLoc DL = MI.getDebugLoc();
5666
5667 unsigned Dest = MI.getOperand(0).getReg();
5668 unsigned Src = MI.getOperand(1).getReg();
5669 unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
5670
5671 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
5672 if (ClearEven) {
5673 unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
5674 unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
5675
5676 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
5677 .addImm(0);
5678 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
5679 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
5680 In128 = NewIn128;
5681 }
5682 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
5683 .addReg(In128).addReg(Src).addImm(SubReg);
5684
5685 MI.eraseFromParent();
5686 return MBB;
5687 }
5688
emitMemMemWrapper(MachineInstr & MI,MachineBasicBlock * MBB,unsigned Opcode) const5689 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
5690 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
5691 MachineFunction &MF = *MBB->getParent();
5692 const SystemZInstrInfo *TII =
5693 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5694 MachineRegisterInfo &MRI = MF.getRegInfo();
5695 DebugLoc DL = MI.getDebugLoc();
5696
5697 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
5698 uint64_t DestDisp = MI.getOperand(1).getImm();
5699 MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
5700 uint64_t SrcDisp = MI.getOperand(3).getImm();
5701 uint64_t Length = MI.getOperand(4).getImm();
5702
5703 // When generating more than one CLC, all but the last will need to
5704 // branch to the end when a difference is found.
5705 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
5706 splitBlockAfter(MI, MBB) : nullptr);
5707
5708 // Check for the loop form, in which operand 5 is the trip count.
5709 if (MI.getNumExplicitOperands() > 5) {
5710 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
5711
5712 uint64_t StartCountReg = MI.getOperand(5).getReg();
5713 uint64_t StartSrcReg = forceReg(MI, SrcBase, TII);
5714 uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg :
5715 forceReg(MI, DestBase, TII));
5716
5717 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
5718 uint64_t ThisSrcReg = MRI.createVirtualRegister(RC);
5719 uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg :
5720 MRI.createVirtualRegister(RC));
5721 uint64_t NextSrcReg = MRI.createVirtualRegister(RC);
5722 uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg :
5723 MRI.createVirtualRegister(RC));
5724
5725 RC = &SystemZ::GR64BitRegClass;
5726 uint64_t ThisCountReg = MRI.createVirtualRegister(RC);
5727 uint64_t NextCountReg = MRI.createVirtualRegister(RC);
5728
5729 MachineBasicBlock *StartMBB = MBB;
5730 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
5731 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
5732 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
5733
5734 // StartMBB:
5735 // # fall through to LoopMMB
5736 MBB->addSuccessor(LoopMBB);
5737
5738 // LoopMBB:
5739 // %ThisDestReg = phi [ %StartDestReg, StartMBB ],
5740 // [ %NextDestReg, NextMBB ]
5741 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
5742 // [ %NextSrcReg, NextMBB ]
5743 // %ThisCountReg = phi [ %StartCountReg, StartMBB ],
5744 // [ %NextCountReg, NextMBB ]
5745 // ( PFD 2, 768+DestDisp(%ThisDestReg) )
5746 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
5747 // ( JLH EndMBB )
5748 //
5749 // The prefetch is used only for MVC. The JLH is used only for CLC.
5750 MBB = LoopMBB;
5751
5752 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
5753 .addReg(StartDestReg).addMBB(StartMBB)
5754 .addReg(NextDestReg).addMBB(NextMBB);
5755 if (!HaveSingleBase)
5756 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
5757 .addReg(StartSrcReg).addMBB(StartMBB)
5758 .addReg(NextSrcReg).addMBB(NextMBB);
5759 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
5760 .addReg(StartCountReg).addMBB(StartMBB)
5761 .addReg(NextCountReg).addMBB(NextMBB);
5762 if (Opcode == SystemZ::MVC)
5763 BuildMI(MBB, DL, TII->get(SystemZ::PFD))
5764 .addImm(SystemZ::PFD_WRITE)
5765 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
5766 BuildMI(MBB, DL, TII->get(Opcode))
5767 .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
5768 .addReg(ThisSrcReg).addImm(SrcDisp);
5769 if (EndMBB) {
5770 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5771 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
5772 .addMBB(EndMBB);
5773 MBB->addSuccessor(EndMBB);
5774 MBB->addSuccessor(NextMBB);
5775 }
5776
5777 // NextMBB:
5778 // %NextDestReg = LA 256(%ThisDestReg)
5779 // %NextSrcReg = LA 256(%ThisSrcReg)
5780 // %NextCountReg = AGHI %ThisCountReg, -1
5781 // CGHI %NextCountReg, 0
5782 // JLH LoopMBB
5783 // # fall through to DoneMMB
5784 //
5785 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
5786 MBB = NextMBB;
5787
5788 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
5789 .addReg(ThisDestReg).addImm(256).addReg(0);
5790 if (!HaveSingleBase)
5791 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
5792 .addReg(ThisSrcReg).addImm(256).addReg(0);
5793 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
5794 .addReg(ThisCountReg).addImm(-1);
5795 BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
5796 .addReg(NextCountReg).addImm(0);
5797 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5798 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
5799 .addMBB(LoopMBB);
5800 MBB->addSuccessor(LoopMBB);
5801 MBB->addSuccessor(DoneMBB);
5802
5803 DestBase = MachineOperand::CreateReg(NextDestReg, false);
5804 SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
5805 Length &= 255;
5806 MBB = DoneMBB;
5807 }
5808 // Handle any remaining bytes with straight-line code.
5809 while (Length > 0) {
5810 uint64_t ThisLength = std::min(Length, uint64_t(256));
5811 // The previous iteration might have created out-of-range displacements.
5812 // Apply them using LAY if so.
5813 if (!isUInt<12>(DestDisp)) {
5814 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
5815 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
5816 .addOperand(DestBase)
5817 .addImm(DestDisp)
5818 .addReg(0);
5819 DestBase = MachineOperand::CreateReg(Reg, false);
5820 DestDisp = 0;
5821 }
5822 if (!isUInt<12>(SrcDisp)) {
5823 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
5824 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
5825 .addOperand(SrcBase)
5826 .addImm(SrcDisp)
5827 .addReg(0);
5828 SrcBase = MachineOperand::CreateReg(Reg, false);
5829 SrcDisp = 0;
5830 }
5831 BuildMI(*MBB, MI, DL, TII->get(Opcode))
5832 .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength)
5833 .addOperand(SrcBase).addImm(SrcDisp);
5834 DestDisp += ThisLength;
5835 SrcDisp += ThisLength;
5836 Length -= ThisLength;
5837 // If there's another CLC to go, branch to the end if a difference
5838 // was found.
5839 if (EndMBB && Length > 0) {
5840 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
5841 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5842 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
5843 .addMBB(EndMBB);
5844 MBB->addSuccessor(EndMBB);
5845 MBB->addSuccessor(NextMBB);
5846 MBB = NextMBB;
5847 }
5848 }
5849 if (EndMBB) {
5850 MBB->addSuccessor(EndMBB);
5851 MBB = EndMBB;
5852 MBB->addLiveIn(SystemZ::CC);
5853 }
5854
5855 MI.eraseFromParent();
5856 return MBB;
5857 }
5858
5859 // Decompose string pseudo-instruction MI into a loop that continually performs
5860 // Opcode until CC != 3.
emitStringWrapper(MachineInstr & MI,MachineBasicBlock * MBB,unsigned Opcode) const5861 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
5862 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
5863 MachineFunction &MF = *MBB->getParent();
5864 const SystemZInstrInfo *TII =
5865 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5866 MachineRegisterInfo &MRI = MF.getRegInfo();
5867 DebugLoc DL = MI.getDebugLoc();
5868
5869 uint64_t End1Reg = MI.getOperand(0).getReg();
5870 uint64_t Start1Reg = MI.getOperand(1).getReg();
5871 uint64_t Start2Reg = MI.getOperand(2).getReg();
5872 uint64_t CharReg = MI.getOperand(3).getReg();
5873
5874 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
5875 uint64_t This1Reg = MRI.createVirtualRegister(RC);
5876 uint64_t This2Reg = MRI.createVirtualRegister(RC);
5877 uint64_t End2Reg = MRI.createVirtualRegister(RC);
5878
5879 MachineBasicBlock *StartMBB = MBB;
5880 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
5881 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
5882
5883 // StartMBB:
5884 // # fall through to LoopMMB
5885 MBB->addSuccessor(LoopMBB);
5886
5887 // LoopMBB:
5888 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
5889 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
5890 // R0L = %CharReg
5891 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
5892 // JO LoopMBB
5893 // # fall through to DoneMMB
5894 //
5895 // The load of R0L can be hoisted by post-RA LICM.
5896 MBB = LoopMBB;
5897
5898 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
5899 .addReg(Start1Reg).addMBB(StartMBB)
5900 .addReg(End1Reg).addMBB(LoopMBB);
5901 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
5902 .addReg(Start2Reg).addMBB(StartMBB)
5903 .addReg(End2Reg).addMBB(LoopMBB);
5904 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
5905 BuildMI(MBB, DL, TII->get(Opcode))
5906 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
5907 .addReg(This1Reg).addReg(This2Reg);
5908 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5909 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
5910 MBB->addSuccessor(LoopMBB);
5911 MBB->addSuccessor(DoneMBB);
5912
5913 DoneMBB->addLiveIn(SystemZ::CC);
5914
5915 MI.eraseFromParent();
5916 return DoneMBB;
5917 }
5918
5919 // Update TBEGIN instruction with final opcode and register clobbers.
emitTransactionBegin(MachineInstr & MI,MachineBasicBlock * MBB,unsigned Opcode,bool NoFloat) const5920 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
5921 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
5922 bool NoFloat) const {
5923 MachineFunction &MF = *MBB->getParent();
5924 const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
5925 const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
5926
5927 // Update opcode.
5928 MI.setDesc(TII->get(Opcode));
5929
5930 // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
5931 // Make sure to add the corresponding GRSM bits if they are missing.
5932 uint64_t Control = MI.getOperand(2).getImm();
5933 static const unsigned GPRControlBit[16] = {
5934 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
5935 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
5936 };
5937 Control |= GPRControlBit[15];
5938 if (TFI->hasFP(MF))
5939 Control |= GPRControlBit[11];
5940 MI.getOperand(2).setImm(Control);
5941
5942 // Add GPR clobbers.
5943 for (int I = 0; I < 16; I++) {
5944 if ((Control & GPRControlBit[I]) == 0) {
5945 unsigned Reg = SystemZMC::GR64Regs[I];
5946 MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
5947 }
5948 }
5949
5950 // Add FPR/VR clobbers.
5951 if (!NoFloat && (Control & 4) != 0) {
5952 if (Subtarget.hasVector()) {
5953 for (int I = 0; I < 32; I++) {
5954 unsigned Reg = SystemZMC::VR128Regs[I];
5955 MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
5956 }
5957 } else {
5958 for (int I = 0; I < 16; I++) {
5959 unsigned Reg = SystemZMC::FP64Regs[I];
5960 MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
5961 }
5962 }
5963 }
5964
5965 return MBB;
5966 }
5967
emitLoadAndTestCmp0(MachineInstr & MI,MachineBasicBlock * MBB,unsigned Opcode) const5968 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
5969 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
5970 MachineFunction &MF = *MBB->getParent();
5971 MachineRegisterInfo *MRI = &MF.getRegInfo();
5972 const SystemZInstrInfo *TII =
5973 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5974 DebugLoc DL = MI.getDebugLoc();
5975
5976 unsigned SrcReg = MI.getOperand(0).getReg();
5977
5978 // Create new virtual register of the same class as source.
5979 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
5980 unsigned DstReg = MRI->createVirtualRegister(RC);
5981
5982 // Replace pseudo with a normal load-and-test that models the def as
5983 // well.
5984 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
5985 .addReg(SrcReg);
5986 MI.eraseFromParent();
5987
5988 return MBB;
5989 }
5990
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * MBB) const5991 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
5992 MachineInstr &MI, MachineBasicBlock *MBB) const {
5993 switch (MI.getOpcode()) {
5994 case SystemZ::Select32Mux:
5995 case SystemZ::Select32:
5996 case SystemZ::SelectF32:
5997 case SystemZ::Select64:
5998 case SystemZ::SelectF64:
5999 case SystemZ::SelectF128:
6000 return emitSelect(MI, MBB);
6001
6002 case SystemZ::CondStore8Mux:
6003 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
6004 case SystemZ::CondStore8MuxInv:
6005 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
6006 case SystemZ::CondStore16Mux:
6007 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
6008 case SystemZ::CondStore16MuxInv:
6009 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
6010 case SystemZ::CondStore8:
6011 return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
6012 case SystemZ::CondStore8Inv:
6013 return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
6014 case SystemZ::CondStore16:
6015 return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
6016 case SystemZ::CondStore16Inv:
6017 return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
6018 case SystemZ::CondStore32:
6019 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
6020 case SystemZ::CondStore32Inv:
6021 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
6022 case SystemZ::CondStore64:
6023 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
6024 case SystemZ::CondStore64Inv:
6025 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
6026 case SystemZ::CondStoreF32:
6027 return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
6028 case SystemZ::CondStoreF32Inv:
6029 return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
6030 case SystemZ::CondStoreF64:
6031 return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
6032 case SystemZ::CondStoreF64Inv:
6033 return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
6034
6035 case SystemZ::AEXT128_64:
6036 return emitExt128(MI, MBB, false, SystemZ::subreg_l64);
6037 case SystemZ::ZEXT128_32:
6038 return emitExt128(MI, MBB, true, SystemZ::subreg_l32);
6039 case SystemZ::ZEXT128_64:
6040 return emitExt128(MI, MBB, true, SystemZ::subreg_l64);
6041
6042 case SystemZ::ATOMIC_SWAPW:
6043 return emitAtomicLoadBinary(MI, MBB, 0, 0);
6044 case SystemZ::ATOMIC_SWAP_32:
6045 return emitAtomicLoadBinary(MI, MBB, 0, 32);
6046 case SystemZ::ATOMIC_SWAP_64:
6047 return emitAtomicLoadBinary(MI, MBB, 0, 64);
6048
6049 case SystemZ::ATOMIC_LOADW_AR:
6050 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
6051 case SystemZ::ATOMIC_LOADW_AFI:
6052 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
6053 case SystemZ::ATOMIC_LOAD_AR:
6054 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
6055 case SystemZ::ATOMIC_LOAD_AHI:
6056 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
6057 case SystemZ::ATOMIC_LOAD_AFI:
6058 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
6059 case SystemZ::ATOMIC_LOAD_AGR:
6060 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
6061 case SystemZ::ATOMIC_LOAD_AGHI:
6062 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
6063 case SystemZ::ATOMIC_LOAD_AGFI:
6064 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
6065
6066 case SystemZ::ATOMIC_LOADW_SR:
6067 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
6068 case SystemZ::ATOMIC_LOAD_SR:
6069 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
6070 case SystemZ::ATOMIC_LOAD_SGR:
6071 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
6072
6073 case SystemZ::ATOMIC_LOADW_NR:
6074 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
6075 case SystemZ::ATOMIC_LOADW_NILH:
6076 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
6077 case SystemZ::ATOMIC_LOAD_NR:
6078 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
6079 case SystemZ::ATOMIC_LOAD_NILL:
6080 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
6081 case SystemZ::ATOMIC_LOAD_NILH:
6082 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
6083 case SystemZ::ATOMIC_LOAD_NILF:
6084 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
6085 case SystemZ::ATOMIC_LOAD_NGR:
6086 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
6087 case SystemZ::ATOMIC_LOAD_NILL64:
6088 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
6089 case SystemZ::ATOMIC_LOAD_NILH64:
6090 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
6091 case SystemZ::ATOMIC_LOAD_NIHL64:
6092 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
6093 case SystemZ::ATOMIC_LOAD_NIHH64:
6094 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
6095 case SystemZ::ATOMIC_LOAD_NILF64:
6096 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
6097 case SystemZ::ATOMIC_LOAD_NIHF64:
6098 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
6099
6100 case SystemZ::ATOMIC_LOADW_OR:
6101 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
6102 case SystemZ::ATOMIC_LOADW_OILH:
6103 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
6104 case SystemZ::ATOMIC_LOAD_OR:
6105 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
6106 case SystemZ::ATOMIC_LOAD_OILL:
6107 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
6108 case SystemZ::ATOMIC_LOAD_OILH:
6109 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
6110 case SystemZ::ATOMIC_LOAD_OILF:
6111 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
6112 case SystemZ::ATOMIC_LOAD_OGR:
6113 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
6114 case SystemZ::ATOMIC_LOAD_OILL64:
6115 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
6116 case SystemZ::ATOMIC_LOAD_OILH64:
6117 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
6118 case SystemZ::ATOMIC_LOAD_OIHL64:
6119 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
6120 case SystemZ::ATOMIC_LOAD_OIHH64:
6121 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
6122 case SystemZ::ATOMIC_LOAD_OILF64:
6123 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
6124 case SystemZ::ATOMIC_LOAD_OIHF64:
6125 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
6126
6127 case SystemZ::ATOMIC_LOADW_XR:
6128 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
6129 case SystemZ::ATOMIC_LOADW_XILF:
6130 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
6131 case SystemZ::ATOMIC_LOAD_XR:
6132 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
6133 case SystemZ::ATOMIC_LOAD_XILF:
6134 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
6135 case SystemZ::ATOMIC_LOAD_XGR:
6136 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
6137 case SystemZ::ATOMIC_LOAD_XILF64:
6138 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
6139 case SystemZ::ATOMIC_LOAD_XIHF64:
6140 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
6141
6142 case SystemZ::ATOMIC_LOADW_NRi:
6143 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
6144 case SystemZ::ATOMIC_LOADW_NILHi:
6145 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
6146 case SystemZ::ATOMIC_LOAD_NRi:
6147 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
6148 case SystemZ::ATOMIC_LOAD_NILLi:
6149 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
6150 case SystemZ::ATOMIC_LOAD_NILHi:
6151 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
6152 case SystemZ::ATOMIC_LOAD_NILFi:
6153 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
6154 case SystemZ::ATOMIC_LOAD_NGRi:
6155 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
6156 case SystemZ::ATOMIC_LOAD_NILL64i:
6157 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
6158 case SystemZ::ATOMIC_LOAD_NILH64i:
6159 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
6160 case SystemZ::ATOMIC_LOAD_NIHL64i:
6161 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
6162 case SystemZ::ATOMIC_LOAD_NIHH64i:
6163 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
6164 case SystemZ::ATOMIC_LOAD_NILF64i:
6165 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
6166 case SystemZ::ATOMIC_LOAD_NIHF64i:
6167 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
6168
6169 case SystemZ::ATOMIC_LOADW_MIN:
6170 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
6171 SystemZ::CCMASK_CMP_LE, 0);
6172 case SystemZ::ATOMIC_LOAD_MIN_32:
6173 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
6174 SystemZ::CCMASK_CMP_LE, 32);
6175 case SystemZ::ATOMIC_LOAD_MIN_64:
6176 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
6177 SystemZ::CCMASK_CMP_LE, 64);
6178
6179 case SystemZ::ATOMIC_LOADW_MAX:
6180 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
6181 SystemZ::CCMASK_CMP_GE, 0);
6182 case SystemZ::ATOMIC_LOAD_MAX_32:
6183 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
6184 SystemZ::CCMASK_CMP_GE, 32);
6185 case SystemZ::ATOMIC_LOAD_MAX_64:
6186 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
6187 SystemZ::CCMASK_CMP_GE, 64);
6188
6189 case SystemZ::ATOMIC_LOADW_UMIN:
6190 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
6191 SystemZ::CCMASK_CMP_LE, 0);
6192 case SystemZ::ATOMIC_LOAD_UMIN_32:
6193 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
6194 SystemZ::CCMASK_CMP_LE, 32);
6195 case SystemZ::ATOMIC_LOAD_UMIN_64:
6196 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
6197 SystemZ::CCMASK_CMP_LE, 64);
6198
6199 case SystemZ::ATOMIC_LOADW_UMAX:
6200 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
6201 SystemZ::CCMASK_CMP_GE, 0);
6202 case SystemZ::ATOMIC_LOAD_UMAX_32:
6203 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
6204 SystemZ::CCMASK_CMP_GE, 32);
6205 case SystemZ::ATOMIC_LOAD_UMAX_64:
6206 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
6207 SystemZ::CCMASK_CMP_GE, 64);
6208
6209 case SystemZ::ATOMIC_CMP_SWAPW:
6210 return emitAtomicCmpSwapW(MI, MBB);
6211 case SystemZ::MVCSequence:
6212 case SystemZ::MVCLoop:
6213 return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
6214 case SystemZ::NCSequence:
6215 case SystemZ::NCLoop:
6216 return emitMemMemWrapper(MI, MBB, SystemZ::NC);
6217 case SystemZ::OCSequence:
6218 case SystemZ::OCLoop:
6219 return emitMemMemWrapper(MI, MBB, SystemZ::OC);
6220 case SystemZ::XCSequence:
6221 case SystemZ::XCLoop:
6222 return emitMemMemWrapper(MI, MBB, SystemZ::XC);
6223 case SystemZ::CLCSequence:
6224 case SystemZ::CLCLoop:
6225 return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
6226 case SystemZ::CLSTLoop:
6227 return emitStringWrapper(MI, MBB, SystemZ::CLST);
6228 case SystemZ::MVSTLoop:
6229 return emitStringWrapper(MI, MBB, SystemZ::MVST);
6230 case SystemZ::SRSTLoop:
6231 return emitStringWrapper(MI, MBB, SystemZ::SRST);
6232 case SystemZ::TBEGIN:
6233 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
6234 case SystemZ::TBEGIN_nofloat:
6235 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
6236 case SystemZ::TBEGINC:
6237 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
6238 case SystemZ::LTEBRCompare_VecPseudo:
6239 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
6240 case SystemZ::LTDBRCompare_VecPseudo:
6241 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
6242 case SystemZ::LTXBRCompare_VecPseudo:
6243 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
6244
6245 default:
6246 llvm_unreachable("Unexpected instr type to insert");
6247 }
6248 }
6249