1 //===-- X86FixupBWInsts.cpp - Fixup Byte or Word instructions -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This file defines the pass that looks through the machine instructions
11 /// late in the compilation, and finds byte or word instructions that
12 /// can be profitably replaced with 32 bit instructions that give equivalent
13 /// results for the bits of the results that are used. There are two possible
14 /// reasons to do this.
15 ///
16 /// One reason is to avoid false-dependences on the upper portions
17 /// of the registers.  Only instructions that have a destination register
18 /// which is not in any of the source registers can be affected by this.
19 /// Any instruction where one of the source registers is also the destination
20 /// register is unaffected, because it has a true dependence on the source
21 /// register already.  So, this consideration primarily affects load
22 /// instructions and register-to-register moves.  It would
23 /// seem like cmov(s) would also be affected, but because of the way cmov is
24 /// really implemented by most machines as reading both the destination and
25 /// and source regsters, and then "merging" the two based on a condition,
26 /// it really already should be considered as having a true dependence on the
27 /// destination register as well.
28 ///
29 /// The other reason to do this is for potential code size savings.  Word
30 /// operations need an extra override byte compared to their 32 bit
31 /// versions. So this can convert many word operations to their larger
32 /// size, saving a byte in encoding. This could introduce partial register
33 /// dependences where none existed however.  As an example take:
34 ///   orw  ax, $0x1000
35 ///   addw ax, $3
36 /// now if this were to get transformed into
37 ///   orw  ax, $1000
38 ///   addl eax, $3
39 /// because the addl encodes shorter than the addw, this would introduce
40 /// a use of a register that was only partially written earlier.  On older
41 /// Intel processors this can be quite a performance penalty, so this should
42 /// probably only be done when it can be proven that a new partial dependence
43 /// wouldn't be created, or when your know a newer processor is being
44 /// targeted, or when optimizing for minimum code size.
45 ///
46 //===----------------------------------------------------------------------===//
47 
48 #include "X86.h"
49 #include "X86InstrInfo.h"
50 #include "X86Subtarget.h"
51 #include "llvm/ADT/Statistic.h"
52 #include "llvm/CodeGen/LivePhysRegs.h"
53 #include "llvm/CodeGen/MachineFunctionPass.h"
54 #include "llvm/CodeGen/MachineInstrBuilder.h"
55 #include "llvm/CodeGen/MachineLoopInfo.h"
56 #include "llvm/CodeGen/MachineRegisterInfo.h"
57 #include "llvm/CodeGen/Passes.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Target/TargetInstrInfo.h"
61 using namespace llvm;
62 
63 #define FIXUPBW_DESC "X86 Byte/Word Instruction Fixup"
64 #define FIXUPBW_NAME "x86-fixup-bw-insts"
65 
66 #define DEBUG_TYPE FIXUPBW_NAME
67 
68 // Option to allow this optimization pass to have fine-grained control.
69 // This is turned off by default so as not to affect a large number of
70 // existing lit tests.
71 static cl::opt<bool>
72     FixupBWInsts("fixup-byte-word-insts",
73                  cl::desc("Change byte and word instructions to larger sizes"),
74                  cl::init(true), cl::Hidden);
75 
76 namespace {
77 class FixupBWInstPass : public MachineFunctionPass {
78   /// Loop over all of the instructions in the basic block replacing applicable
79   /// byte or word instructions with better alternatives.
80   void processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
81 
82   /// This sets the \p SuperDestReg to the 32 bit super reg of the original
83   /// destination register of the MachineInstr passed in. It returns true if
84   /// that super register is dead just prior to \p OrigMI, and false if not.
85   bool getSuperRegDestIfDead(MachineInstr *OrigMI,
86                              unsigned &SuperDestReg) const;
87 
88   /// Change the MachineInstr \p MI into the equivalent extending load to 32 bit
89   /// register if it is safe to do so.  Return the replacement instruction if
90   /// OK, otherwise return nullptr.
91   MachineInstr *tryReplaceLoad(unsigned New32BitOpcode, MachineInstr *MI) const;
92 
93   /// Change the MachineInstr \p MI into the equivalent 32-bit copy if it is
94   /// safe to do so.  Return the replacement instruction if OK, otherwise return
95   /// nullptr.
96   MachineInstr *tryReplaceCopy(MachineInstr *MI) const;
97 
98   // Change the MachineInstr \p MI into an eqivalent 32 bit instruction if
99   // possible.  Return the replacement instruction if OK, return nullptr
100   // otherwise. Set WasCandidate to true or false depending on whether the
101   // MI was a candidate for this sort of transformation.
102   MachineInstr *tryReplaceInstr(MachineInstr *MI, MachineBasicBlock &MBB,
103                                 bool &WasCandidate) const;
104 public:
105   static char ID;
106 
getPassName() const107   const char *getPassName() const override {
108     return FIXUPBW_DESC;
109   }
110 
FixupBWInstPass()111   FixupBWInstPass() : MachineFunctionPass(ID) {
112     initializeFixupBWInstPassPass(*PassRegistry::getPassRegistry());
113   }
114 
getAnalysisUsage(AnalysisUsage & AU) const115   void getAnalysisUsage(AnalysisUsage &AU) const override {
116     AU.addRequired<MachineLoopInfo>(); // Machine loop info is used to
117                                        // guide some heuristics.
118     MachineFunctionPass::getAnalysisUsage(AU);
119   }
120 
121   /// Loop over all of the basic blocks, replacing byte and word instructions by
122   /// equivalent 32 bit instructions where performance or code size can be
123   /// improved.
124   bool runOnMachineFunction(MachineFunction &MF) override;
125 
getRequiredProperties() const126   MachineFunctionProperties getRequiredProperties() const override {
127     return MachineFunctionProperties().set(
128         MachineFunctionProperties::Property::AllVRegsAllocated);
129   }
130 
131 private:
132   MachineFunction *MF;
133 
134   /// Machine instruction info used throughout the class.
135   const X86InstrInfo *TII;
136 
137   /// Local member for function's OptForSize attribute.
138   bool OptForSize;
139 
140   /// Machine loop info used for guiding some heruistics.
141   MachineLoopInfo *MLI;
142 
143   /// Register Liveness information after the current instruction.
144   LivePhysRegs LiveRegs;
145 };
146 char FixupBWInstPass::ID = 0;
147 }
148 
INITIALIZE_PASS(FixupBWInstPass,FIXUPBW_NAME,FIXUPBW_DESC,false,false)149 INITIALIZE_PASS(FixupBWInstPass, FIXUPBW_NAME, FIXUPBW_DESC, false, false)
150 
151 FunctionPass *llvm::createX86FixupBWInsts() { return new FixupBWInstPass(); }
152 
runOnMachineFunction(MachineFunction & MF)153 bool FixupBWInstPass::runOnMachineFunction(MachineFunction &MF) {
154   if (!FixupBWInsts || skipFunction(*MF.getFunction()))
155     return false;
156 
157   this->MF = &MF;
158   TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
159   OptForSize = MF.getFunction()->optForSize();
160   MLI = &getAnalysis<MachineLoopInfo>();
161   LiveRegs.init(&TII->getRegisterInfo());
162 
163   DEBUG(dbgs() << "Start X86FixupBWInsts\n";);
164 
165   // Process all basic blocks.
166   for (auto &MBB : MF)
167     processBasicBlock(MF, MBB);
168 
169   DEBUG(dbgs() << "End X86FixupBWInsts\n";);
170 
171   return true;
172 }
173 
174 // TODO: This method of analysis can miss some legal cases, because the
175 // super-register could be live into the address expression for a memory
176 // reference for the instruction, and still be killed/last used by the
177 // instruction. However, the existing query interfaces don't seem to
178 // easily allow that to be checked.
179 //
180 // What we'd really like to know is whether after OrigMI, the
181 // only portion of SuperDestReg that is alive is the portion that
182 // was the destination register of OrigMI.
getSuperRegDestIfDead(MachineInstr * OrigMI,unsigned & SuperDestReg) const183 bool FixupBWInstPass::getSuperRegDestIfDead(MachineInstr *OrigMI,
184                                             unsigned &SuperDestReg) const {
185   auto *TRI = &TII->getRegisterInfo();
186 
187   unsigned OrigDestReg = OrigMI->getOperand(0).getReg();
188   SuperDestReg = getX86SubSuperRegister(OrigDestReg, 32);
189 
190   const auto SubRegIdx = TRI->getSubRegIndex(SuperDestReg, OrigDestReg);
191 
192   // Make sure that the sub-register that this instruction has as its
193   // destination is the lowest order sub-register of the super-register.
194   // If it isn't, then the register isn't really dead even if the
195   // super-register is considered dead.
196   if (SubRegIdx == X86::sub_8bit_hi)
197     return false;
198 
199   if (LiveRegs.contains(SuperDestReg))
200     return false;
201 
202   if (SubRegIdx == X86::sub_8bit) {
203     // In the case of byte registers, we also have to check that the upper
204     // byte register is also dead. That is considered to be independent of
205     // whether the super-register is dead.
206     unsigned UpperByteReg =
207         getX86SubSuperRegister(SuperDestReg, 8, /*High=*/true);
208 
209     if (LiveRegs.contains(UpperByteReg))
210       return false;
211   }
212 
213   return true;
214 }
215 
tryReplaceLoad(unsigned New32BitOpcode,MachineInstr * MI) const216 MachineInstr *FixupBWInstPass::tryReplaceLoad(unsigned New32BitOpcode,
217                                               MachineInstr *MI) const {
218   unsigned NewDestReg;
219 
220   // We are going to try to rewrite this load to a larger zero-extending
221   // load.  This is safe if all portions of the 32 bit super-register
222   // of the original destination register, except for the original destination
223   // register are dead. getSuperRegDestIfDead checks that.
224   if (!getSuperRegDestIfDead(MI, NewDestReg))
225     return nullptr;
226 
227   // Safe to change the instruction.
228   MachineInstrBuilder MIB =
229       BuildMI(*MF, MI->getDebugLoc(), TII->get(New32BitOpcode), NewDestReg);
230 
231   unsigned NumArgs = MI->getNumOperands();
232   for (unsigned i = 1; i < NumArgs; ++i)
233     MIB.addOperand(MI->getOperand(i));
234 
235   MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
236 
237   return MIB;
238 }
239 
tryReplaceCopy(MachineInstr * MI) const240 MachineInstr *FixupBWInstPass::tryReplaceCopy(MachineInstr *MI) const {
241   assert(MI->getNumExplicitOperands() == 2);
242   auto &OldDest = MI->getOperand(0);
243   auto &OldSrc = MI->getOperand(1);
244 
245   unsigned NewDestReg;
246   if (!getSuperRegDestIfDead(MI, NewDestReg))
247     return nullptr;
248 
249   unsigned NewSrcReg = getX86SubSuperRegister(OldSrc.getReg(), 32);
250 
251   // This is only correct if we access the same subregister index: otherwise,
252   // we could try to replace "movb %ah, %al" with "movl %eax, %eax".
253   auto *TRI = &TII->getRegisterInfo();
254   if (TRI->getSubRegIndex(NewSrcReg, OldSrc.getReg()) !=
255       TRI->getSubRegIndex(NewDestReg, OldDest.getReg()))
256     return nullptr;
257 
258   // Safe to change the instruction.
259   // Don't set src flags, as we don't know if we're also killing the superreg.
260   // However, the superregister might not be defined; make it explicit that
261   // we don't care about the higher bits by reading it as Undef, and adding
262   // an imp-use on the original subregister.
263   MachineInstrBuilder MIB =
264       BuildMI(*MF, MI->getDebugLoc(), TII->get(X86::MOV32rr), NewDestReg)
265           .addReg(NewSrcReg, RegState::Undef)
266           .addReg(OldSrc.getReg(), RegState::Implicit);
267 
268   // Drop imp-defs/uses that would be redundant with the new def/use.
269   for (auto &Op : MI->implicit_operands())
270     if (Op.getReg() != (Op.isDef() ? NewDestReg : NewSrcReg))
271       MIB.addOperand(Op);
272 
273   return MIB;
274 }
275 
tryReplaceInstr(MachineInstr * MI,MachineBasicBlock & MBB,bool & WasCandidate) const276 MachineInstr *FixupBWInstPass::tryReplaceInstr(
277                   MachineInstr *MI, MachineBasicBlock &MBB,
278                   bool &WasCandidate) const {
279   MachineInstr *NewMI = nullptr;
280   WasCandidate = false;
281 
282   // See if this is an instruction of the type we are currently looking for.
283   switch (MI->getOpcode()) {
284 
285   case X86::MOV8rm:
286     // Only replace 8 bit loads with the zero extending versions if
287     // in an inner most loop and not optimizing for size. This takes
288     // an extra byte to encode, and provides limited performance upside.
289     if (MachineLoop *ML = MLI->getLoopFor(&MBB)) {
290       if (ML->begin() == ML->end() && !OptForSize) {
291         NewMI = tryReplaceLoad(X86::MOVZX32rm8, MI);
292         WasCandidate = true;
293       }
294     }
295     break;
296 
297   case X86::MOV16rm:
298     // Always try to replace 16 bit load with 32 bit zero extending.
299     // Code size is the same, and there is sometimes a perf advantage
300     // from eliminating a false dependence on the upper portion of
301     // the register.
302     NewMI = tryReplaceLoad(X86::MOVZX32rm16, MI);
303     WasCandidate = true;
304     break;
305 
306   case X86::MOV8rr:
307   case X86::MOV16rr:
308     // Always try to replace 8/16 bit copies with a 32 bit copy.
309     // Code size is either less (16) or equal (8), and there is sometimes a
310     // perf advantage from eliminating a false dependence on the upper portion
311     // of the register.
312     NewMI = tryReplaceCopy(MI);
313     WasCandidate = true;
314     break;
315 
316   default:
317     // nothing to do here.
318     break;
319   }
320 
321   return NewMI;
322 }
323 
processBasicBlock(MachineFunction & MF,MachineBasicBlock & MBB)324 void FixupBWInstPass::processBasicBlock(MachineFunction &MF,
325                                         MachineBasicBlock &MBB) {
326 
327   // This algorithm doesn't delete the instructions it is replacing
328   // right away.  By leaving the existing instructions in place, the
329   // register liveness information doesn't change, and this makes the
330   // analysis that goes on be better than if the replaced instructions
331   // were immediately removed.
332   //
333   // This algorithm always creates a replacement instruction
334   // and notes that and the original in a data structure, until the
335   // whole BB has been analyzed.  This keeps the replacement instructions
336   // from making it seem as if the larger register might be live.
337   SmallVector<std::pair<MachineInstr *, MachineInstr *>, 8> MIReplacements;
338 
339   // Start computing liveness for this block. We iterate from the end to be able
340   // to update this for each instruction.
341   LiveRegs.clear();
342   // We run after PEI, so we need to AddPristinesAndCSRs.
343   LiveRegs.addLiveOuts(MBB);
344 
345   bool WasCandidate = false;
346 
347   for (auto I = MBB.rbegin(); I != MBB.rend(); ++I) {
348     MachineInstr *MI = &*I;
349 
350     MachineInstr *NewMI = tryReplaceInstr(MI, MBB, WasCandidate);
351 
352     // Add this to replacements if it was a candidate, even if NewMI is
353     // nullptr.  We will revisit that in a bit.
354     if (WasCandidate) {
355       MIReplacements.push_back(std::make_pair(MI, NewMI));
356     }
357 
358     // We're done with this instruction, update liveness for the next one.
359     LiveRegs.stepBackward(*MI);
360   }
361 
362   while (!MIReplacements.empty()) {
363     MachineInstr *MI = MIReplacements.back().first;
364     MachineInstr *NewMI = MIReplacements.back().second;
365     MIReplacements.pop_back();
366     if (NewMI) {
367       MBB.insert(MI, NewMI);
368       MBB.erase(MI);
369     }
370   }
371 }
372