1 //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a DAG pattern matching instruction selector for X86,
11 // converting from a legalized dag to a X86 dag.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "X86.h"
16 #include "X86InstrBuilder.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86RegisterInfo.h"
19 #include "X86Subtarget.h"
20 #include "X86TargetMachine.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/SelectionDAGISel.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetMachine.h"
36 #include "llvm/Target/TargetOptions.h"
37 #include <stdint.h>
38 using namespace llvm;
39
40 #define DEBUG_TYPE "x86-isel"
41
42 STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
43
44 //===----------------------------------------------------------------------===//
45 // Pattern Matcher Implementation
46 //===----------------------------------------------------------------------===//
47
48 namespace {
49 /// This corresponds to X86AddressMode, but uses SDValue's instead of register
50 /// numbers for the leaves of the matched tree.
51 struct X86ISelAddressMode {
52 enum {
53 RegBase,
54 FrameIndexBase
55 } BaseType;
56
57 // This is really a union, discriminated by BaseType!
58 SDValue Base_Reg;
59 int Base_FrameIndex;
60
61 unsigned Scale;
62 SDValue IndexReg;
63 int32_t Disp;
64 SDValue Segment;
65 const GlobalValue *GV;
66 const Constant *CP;
67 const BlockAddress *BlockAddr;
68 const char *ES;
69 MCSymbol *MCSym;
70 int JT;
71 unsigned Align; // CP alignment.
72 unsigned char SymbolFlags; // X86II::MO_*
73
X86ISelAddressMode__anonfec1f42b0111::X86ISelAddressMode74 X86ISelAddressMode()
75 : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
76 Segment(), GV(nullptr), CP(nullptr), BlockAddr(nullptr), ES(nullptr),
77 MCSym(nullptr), JT(-1), Align(0), SymbolFlags(X86II::MO_NO_FLAG) {}
78
hasSymbolicDisplacement__anonfec1f42b0111::X86ISelAddressMode79 bool hasSymbolicDisplacement() const {
80 return GV != nullptr || CP != nullptr || ES != nullptr ||
81 MCSym != nullptr || JT != -1 || BlockAddr != nullptr;
82 }
83
hasBaseOrIndexReg__anonfec1f42b0111::X86ISelAddressMode84 bool hasBaseOrIndexReg() const {
85 return BaseType == FrameIndexBase ||
86 IndexReg.getNode() != nullptr || Base_Reg.getNode() != nullptr;
87 }
88
89 /// Return true if this addressing mode is already RIP-relative.
isRIPRelative__anonfec1f42b0111::X86ISelAddressMode90 bool isRIPRelative() const {
91 if (BaseType != RegBase) return false;
92 if (RegisterSDNode *RegNode =
93 dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
94 return RegNode->getReg() == X86::RIP;
95 return false;
96 }
97
setBaseReg__anonfec1f42b0111::X86ISelAddressMode98 void setBaseReg(SDValue Reg) {
99 BaseType = RegBase;
100 Base_Reg = Reg;
101 }
102
103 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump__anonfec1f42b0111::X86ISelAddressMode104 void dump() {
105 dbgs() << "X86ISelAddressMode " << this << '\n';
106 dbgs() << "Base_Reg ";
107 if (Base_Reg.getNode())
108 Base_Reg.getNode()->dump();
109 else
110 dbgs() << "nul";
111 dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n'
112 << " Scale" << Scale << '\n'
113 << "IndexReg ";
114 if (IndexReg.getNode())
115 IndexReg.getNode()->dump();
116 else
117 dbgs() << "nul";
118 dbgs() << " Disp " << Disp << '\n'
119 << "GV ";
120 if (GV)
121 GV->dump();
122 else
123 dbgs() << "nul";
124 dbgs() << " CP ";
125 if (CP)
126 CP->dump();
127 else
128 dbgs() << "nul";
129 dbgs() << '\n'
130 << "ES ";
131 if (ES)
132 dbgs() << ES;
133 else
134 dbgs() << "nul";
135 dbgs() << " MCSym ";
136 if (MCSym)
137 dbgs() << MCSym;
138 else
139 dbgs() << "nul";
140 dbgs() << " JT" << JT << " Align" << Align << '\n';
141 }
142 #endif
143 };
144 }
145
146 namespace {
147 //===--------------------------------------------------------------------===//
148 /// ISel - X86-specific code to select X86 machine instructions for
149 /// SelectionDAG operations.
150 ///
151 class X86DAGToDAGISel final : public SelectionDAGISel {
152 /// Keep a pointer to the X86Subtarget around so that we can
153 /// make the right decision when generating code for different targets.
154 const X86Subtarget *Subtarget;
155
156 /// If true, selector should try to optimize for code size instead of
157 /// performance.
158 bool OptForSize;
159
160 /// If true, selector should try to optimize for minimum code size.
161 bool OptForMinSize;
162
163 public:
X86DAGToDAGISel(X86TargetMachine & tm,CodeGenOpt::Level OptLevel)164 explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
165 : SelectionDAGISel(tm, OptLevel), OptForSize(false),
166 OptForMinSize(false) {}
167
getPassName() const168 const char *getPassName() const override {
169 return "X86 DAG->DAG Instruction Selection";
170 }
171
runOnMachineFunction(MachineFunction & MF)172 bool runOnMachineFunction(MachineFunction &MF) override {
173 // Reset the subtarget each time through.
174 Subtarget = &MF.getSubtarget<X86Subtarget>();
175 SelectionDAGISel::runOnMachineFunction(MF);
176 return true;
177 }
178
179 void EmitFunctionEntryCode() override;
180
181 bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;
182
183 void PreprocessISelDAG() override;
184
immSext8(SDNode * N) const185 inline bool immSext8(SDNode *N) const {
186 return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue());
187 }
188
189 // True if the 64-bit immediate fits in a 32-bit sign-extended field.
i64immSExt32(SDNode * N) const190 inline bool i64immSExt32(SDNode *N) const {
191 uint64_t v = cast<ConstantSDNode>(N)->getZExtValue();
192 return (int64_t)v == (int32_t)v;
193 }
194
195 // Include the pieces autogenerated from the target description.
196 #include "X86GenDAGISel.inc"
197
198 private:
199 void Select(SDNode *N) override;
200 bool tryGather(SDNode *N, unsigned Opc);
201
202 bool foldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
203 bool matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM);
204 bool matchWrapper(SDValue N, X86ISelAddressMode &AM);
205 bool matchAddress(SDValue N, X86ISelAddressMode &AM);
206 bool matchAdd(SDValue N, X86ISelAddressMode &AM, unsigned Depth);
207 bool matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
208 unsigned Depth);
209 bool matchAddressBase(SDValue N, X86ISelAddressMode &AM);
210 bool selectAddr(SDNode *Parent, SDValue N, SDValue &Base,
211 SDValue &Scale, SDValue &Index, SDValue &Disp,
212 SDValue &Segment);
213 bool selectVectorAddr(SDNode *Parent, SDValue N, SDValue &Base,
214 SDValue &Scale, SDValue &Index, SDValue &Disp,
215 SDValue &Segment);
216 bool selectMOV64Imm32(SDValue N, SDValue &Imm);
217 bool selectLEAAddr(SDValue N, SDValue &Base,
218 SDValue &Scale, SDValue &Index, SDValue &Disp,
219 SDValue &Segment);
220 bool selectLEA64_32Addr(SDValue N, SDValue &Base,
221 SDValue &Scale, SDValue &Index, SDValue &Disp,
222 SDValue &Segment);
223 bool selectTLSADDRAddr(SDValue N, SDValue &Base,
224 SDValue &Scale, SDValue &Index, SDValue &Disp,
225 SDValue &Segment);
226 bool selectScalarSSELoad(SDNode *Root, SDValue N,
227 SDValue &Base, SDValue &Scale,
228 SDValue &Index, SDValue &Disp,
229 SDValue &Segment,
230 SDValue &NodeWithChain);
231
232 bool tryFoldLoad(SDNode *P, SDValue N,
233 SDValue &Base, SDValue &Scale,
234 SDValue &Index, SDValue &Disp,
235 SDValue &Segment);
236
237 /// Implement addressing mode selection for inline asm expressions.
238 bool SelectInlineAsmMemoryOperand(const SDValue &Op,
239 unsigned ConstraintID,
240 std::vector<SDValue> &OutOps) override;
241
242 void emitSpecialCodeForMain();
243
getAddressOperands(X86ISelAddressMode & AM,const SDLoc & DL,SDValue & Base,SDValue & Scale,SDValue & Index,SDValue & Disp,SDValue & Segment)244 inline void getAddressOperands(X86ISelAddressMode &AM, const SDLoc &DL,
245 SDValue &Base, SDValue &Scale,
246 SDValue &Index, SDValue &Disp,
247 SDValue &Segment) {
248 Base = (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
249 ? CurDAG->getTargetFrameIndex(
250 AM.Base_FrameIndex,
251 TLI->getPointerTy(CurDAG->getDataLayout()))
252 : AM.Base_Reg;
253 Scale = getI8Imm(AM.Scale, DL);
254 Index = AM.IndexReg;
255 // These are 32-bit even in 64-bit mode since RIP-relative offset
256 // is 32-bit.
257 if (AM.GV)
258 Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(),
259 MVT::i32, AM.Disp,
260 AM.SymbolFlags);
261 else if (AM.CP)
262 Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
263 AM.Align, AM.Disp, AM.SymbolFlags);
264 else if (AM.ES) {
265 assert(!AM.Disp && "Non-zero displacement is ignored with ES.");
266 Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
267 } else if (AM.MCSym) {
268 assert(!AM.Disp && "Non-zero displacement is ignored with MCSym.");
269 assert(AM.SymbolFlags == 0 && "oo");
270 Disp = CurDAG->getMCSymbol(AM.MCSym, MVT::i32);
271 } else if (AM.JT != -1) {
272 assert(!AM.Disp && "Non-zero displacement is ignored with JT.");
273 Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
274 } else if (AM.BlockAddr)
275 Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp,
276 AM.SymbolFlags);
277 else
278 Disp = CurDAG->getTargetConstant(AM.Disp, DL, MVT::i32);
279
280 if (AM.Segment.getNode())
281 Segment = AM.Segment;
282 else
283 Segment = CurDAG->getRegister(0, MVT::i32);
284 }
285
286 // Utility function to determine whether we should avoid selecting
287 // immediate forms of instructions for better code size or not.
288 // At a high level, we'd like to avoid such instructions when
289 // we have similar constants used within the same basic block
290 // that can be kept in a register.
291 //
shouldAvoidImmediateInstFormsForSize(SDNode * N) const292 bool shouldAvoidImmediateInstFormsForSize(SDNode *N) const {
293 uint32_t UseCount = 0;
294
295 // Do not want to hoist if we're not optimizing for size.
296 // TODO: We'd like to remove this restriction.
297 // See the comment in X86InstrInfo.td for more info.
298 if (!OptForSize)
299 return false;
300
301 // Walk all the users of the immediate.
302 for (SDNode::use_iterator UI = N->use_begin(),
303 UE = N->use_end(); (UI != UE) && (UseCount < 2); ++UI) {
304
305 SDNode *User = *UI;
306
307 // This user is already selected. Count it as a legitimate use and
308 // move on.
309 if (User->isMachineOpcode()) {
310 UseCount++;
311 continue;
312 }
313
314 // We want to count stores of immediates as real uses.
315 if (User->getOpcode() == ISD::STORE &&
316 User->getOperand(1).getNode() == N) {
317 UseCount++;
318 continue;
319 }
320
321 // We don't currently match users that have > 2 operands (except
322 // for stores, which are handled above)
323 // Those instruction won't match in ISEL, for now, and would
324 // be counted incorrectly.
325 // This may change in the future as we add additional instruction
326 // types.
327 if (User->getNumOperands() != 2)
328 continue;
329
330 // Immediates that are used for offsets as part of stack
331 // manipulation should be left alone. These are typically
332 // used to indicate SP offsets for argument passing and
333 // will get pulled into stores/pushes (implicitly).
334 if (User->getOpcode() == X86ISD::ADD ||
335 User->getOpcode() == ISD::ADD ||
336 User->getOpcode() == X86ISD::SUB ||
337 User->getOpcode() == ISD::SUB) {
338
339 // Find the other operand of the add/sub.
340 SDValue OtherOp = User->getOperand(0);
341 if (OtherOp.getNode() == N)
342 OtherOp = User->getOperand(1);
343
344 // Don't count if the other operand is SP.
345 RegisterSDNode *RegNode;
346 if (OtherOp->getOpcode() == ISD::CopyFromReg &&
347 (RegNode = dyn_cast_or_null<RegisterSDNode>(
348 OtherOp->getOperand(1).getNode())))
349 if ((RegNode->getReg() == X86::ESP) ||
350 (RegNode->getReg() == X86::RSP))
351 continue;
352 }
353
354 // ... otherwise, count this and move on.
355 UseCount++;
356 }
357
358 // If we have more than 1 use, then recommend for hoisting.
359 return (UseCount > 1);
360 }
361
362 /// Return a target constant with the specified value of type i8.
getI8Imm(unsigned Imm,const SDLoc & DL)363 inline SDValue getI8Imm(unsigned Imm, const SDLoc &DL) {
364 return CurDAG->getTargetConstant(Imm, DL, MVT::i8);
365 }
366
367 /// Return a target constant with the specified value, of type i32.
getI32Imm(unsigned Imm,const SDLoc & DL)368 inline SDValue getI32Imm(unsigned Imm, const SDLoc &DL) {
369 return CurDAG->getTargetConstant(Imm, DL, MVT::i32);
370 }
371
372 /// Return an SDNode that returns the value of the global base register.
373 /// Output instructions required to initialize the global base register,
374 /// if necessary.
375 SDNode *getGlobalBaseReg();
376
377 /// Return a reference to the TargetMachine, casted to the target-specific
378 /// type.
getTargetMachine() const379 const X86TargetMachine &getTargetMachine() const {
380 return static_cast<const X86TargetMachine &>(TM);
381 }
382
383 /// Return a reference to the TargetInstrInfo, casted to the target-specific
384 /// type.
getInstrInfo() const385 const X86InstrInfo *getInstrInfo() const {
386 return Subtarget->getInstrInfo();
387 }
388
389 /// \brief Address-mode matching performs shift-of-and to and-of-shift
390 /// reassociation in order to expose more scaled addressing
391 /// opportunities.
ComplexPatternFuncMutatesDAG() const392 bool ComplexPatternFuncMutatesDAG() const override {
393 return true;
394 }
395 };
396 }
397
398
399 bool
IsProfitableToFold(SDValue N,SDNode * U,SDNode * Root) const400 X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
401 if (OptLevel == CodeGenOpt::None) return false;
402
403 if (!N.hasOneUse())
404 return false;
405
406 if (N.getOpcode() != ISD::LOAD)
407 return true;
408
409 // If N is a load, do additional profitability checks.
410 if (U == Root) {
411 switch (U->getOpcode()) {
412 default: break;
413 case X86ISD::ADD:
414 case X86ISD::SUB:
415 case X86ISD::AND:
416 case X86ISD::XOR:
417 case X86ISD::OR:
418 case ISD::ADD:
419 case ISD::ADDC:
420 case ISD::ADDE:
421 case ISD::AND:
422 case ISD::OR:
423 case ISD::XOR: {
424 SDValue Op1 = U->getOperand(1);
425
426 // If the other operand is a 8-bit immediate we should fold the immediate
427 // instead. This reduces code size.
428 // e.g.
429 // movl 4(%esp), %eax
430 // addl $4, %eax
431 // vs.
432 // movl $4, %eax
433 // addl 4(%esp), %eax
434 // The former is 2 bytes shorter. In case where the increment is 1, then
435 // the saving can be 4 bytes (by using incl %eax).
436 if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
437 if (Imm->getAPIntValue().isSignedIntN(8))
438 return false;
439
440 // If the other operand is a TLS address, we should fold it instead.
441 // This produces
442 // movl %gs:0, %eax
443 // leal i@NTPOFF(%eax), %eax
444 // instead of
445 // movl $i@NTPOFF, %eax
446 // addl %gs:0, %eax
447 // if the block also has an access to a second TLS address this will save
448 // a load.
449 // FIXME: This is probably also true for non-TLS addresses.
450 if (Op1.getOpcode() == X86ISD::Wrapper) {
451 SDValue Val = Op1.getOperand(0);
452 if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
453 return false;
454 }
455 }
456 }
457 }
458
459 return true;
460 }
461
462 /// Replace the original chain operand of the call with
463 /// load's chain operand and move load below the call's chain operand.
moveBelowOrigChain(SelectionDAG * CurDAG,SDValue Load,SDValue Call,SDValue OrigChain)464 static void moveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
465 SDValue Call, SDValue OrigChain) {
466 SmallVector<SDValue, 8> Ops;
467 SDValue Chain = OrigChain.getOperand(0);
468 if (Chain.getNode() == Load.getNode())
469 Ops.push_back(Load.getOperand(0));
470 else {
471 assert(Chain.getOpcode() == ISD::TokenFactor &&
472 "Unexpected chain operand");
473 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
474 if (Chain.getOperand(i).getNode() == Load.getNode())
475 Ops.push_back(Load.getOperand(0));
476 else
477 Ops.push_back(Chain.getOperand(i));
478 SDValue NewChain =
479 CurDAG->getNode(ISD::TokenFactor, SDLoc(Load), MVT::Other, Ops);
480 Ops.clear();
481 Ops.push_back(NewChain);
482 }
483 Ops.append(OrigChain->op_begin() + 1, OrigChain->op_end());
484 CurDAG->UpdateNodeOperands(OrigChain.getNode(), Ops);
485 CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
486 Load.getOperand(1), Load.getOperand(2));
487
488 Ops.clear();
489 Ops.push_back(SDValue(Load.getNode(), 1));
490 Ops.append(Call->op_begin() + 1, Call->op_end());
491 CurDAG->UpdateNodeOperands(Call.getNode(), Ops);
492 }
493
494 /// Return true if call address is a load and it can be
495 /// moved below CALLSEQ_START and the chains leading up to the call.
496 /// Return the CALLSEQ_START by reference as a second output.
497 /// In the case of a tail call, there isn't a callseq node between the call
498 /// chain and the load.
isCalleeLoad(SDValue Callee,SDValue & Chain,bool HasCallSeq)499 static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
500 // The transformation is somewhat dangerous if the call's chain was glued to
501 // the call. After MoveBelowOrigChain the load is moved between the call and
502 // the chain, this can create a cycle if the load is not folded. So it is
503 // *really* important that we are sure the load will be folded.
504 if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
505 return false;
506 LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
507 if (!LD ||
508 LD->isVolatile() ||
509 LD->getAddressingMode() != ISD::UNINDEXED ||
510 LD->getExtensionType() != ISD::NON_EXTLOAD)
511 return false;
512
513 // Now let's find the callseq_start.
514 while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
515 if (!Chain.hasOneUse())
516 return false;
517 Chain = Chain.getOperand(0);
518 }
519
520 if (!Chain.getNumOperands())
521 return false;
522 // Since we are not checking for AA here, conservatively abort if the chain
523 // writes to memory. It's not safe to move the callee (a load) across a store.
524 if (isa<MemSDNode>(Chain.getNode()) &&
525 cast<MemSDNode>(Chain.getNode())->writeMem())
526 return false;
527 if (Chain.getOperand(0).getNode() == Callee.getNode())
528 return true;
529 if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
530 Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
531 Callee.getValue(1).hasOneUse())
532 return true;
533 return false;
534 }
535
PreprocessISelDAG()536 void X86DAGToDAGISel::PreprocessISelDAG() {
537 // OptFor[Min]Size are used in pattern predicates that isel is matching.
538 OptForSize = MF->getFunction()->optForSize();
539 OptForMinSize = MF->getFunction()->optForMinSize();
540 assert((!OptForMinSize || OptForSize) && "OptForMinSize implies OptForSize");
541
542 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
543 E = CurDAG->allnodes_end(); I != E; ) {
544 SDNode *N = &*I++; // Preincrement iterator to avoid invalidation issues.
545
546 if (OptLevel != CodeGenOpt::None &&
547 // Only does this when target favors doesn't favor register indirect
548 // call.
549 ((N->getOpcode() == X86ISD::CALL && !Subtarget->callRegIndirect()) ||
550 (N->getOpcode() == X86ISD::TC_RETURN &&
551 // Only does this if load can be folded into TC_RETURN.
552 (Subtarget->is64Bit() ||
553 !getTargetMachine().isPositionIndependent())))) {
554 /// Also try moving call address load from outside callseq_start to just
555 /// before the call to allow it to be folded.
556 ///
557 /// [Load chain]
558 /// ^
559 /// |
560 /// [Load]
561 /// ^ ^
562 /// | |
563 /// / \--
564 /// / |
565 ///[CALLSEQ_START] |
566 /// ^ |
567 /// | |
568 /// [LOAD/C2Reg] |
569 /// | |
570 /// \ /
571 /// \ /
572 /// [CALL]
573 bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
574 SDValue Chain = N->getOperand(0);
575 SDValue Load = N->getOperand(1);
576 if (!isCalleeLoad(Load, Chain, HasCallSeq))
577 continue;
578 moveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
579 ++NumLoadMoved;
580 continue;
581 }
582
583 // Lower fpround and fpextend nodes that target the FP stack to be store and
584 // load to the stack. This is a gross hack. We would like to simply mark
585 // these as being illegal, but when we do that, legalize produces these when
586 // it expands calls, then expands these in the same legalize pass. We would
587 // like dag combine to be able to hack on these between the call expansion
588 // and the node legalization. As such this pass basically does "really
589 // late" legalization of these inline with the X86 isel pass.
590 // FIXME: This should only happen when not compiled with -O0.
591 if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
592 continue;
593
594 MVT SrcVT = N->getOperand(0).getSimpleValueType();
595 MVT DstVT = N->getSimpleValueType(0);
596
597 // If any of the sources are vectors, no fp stack involved.
598 if (SrcVT.isVector() || DstVT.isVector())
599 continue;
600
601 // If the source and destination are SSE registers, then this is a legal
602 // conversion that should not be lowered.
603 const X86TargetLowering *X86Lowering =
604 static_cast<const X86TargetLowering *>(TLI);
605 bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
606 bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
607 if (SrcIsSSE && DstIsSSE)
608 continue;
609
610 if (!SrcIsSSE && !DstIsSSE) {
611 // If this is an FPStack extension, it is a noop.
612 if (N->getOpcode() == ISD::FP_EXTEND)
613 continue;
614 // If this is a value-preserving FPStack truncation, it is a noop.
615 if (N->getConstantOperandVal(1))
616 continue;
617 }
618
619 // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
620 // FPStack has extload and truncstore. SSE can fold direct loads into other
621 // operations. Based on this, decide what we want to do.
622 MVT MemVT;
623 if (N->getOpcode() == ISD::FP_ROUND)
624 MemVT = DstVT; // FP_ROUND must use DstVT, we can't do a 'trunc load'.
625 else
626 MemVT = SrcIsSSE ? SrcVT : DstVT;
627
628 SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
629 SDLoc dl(N);
630
631 // FIXME: optimize the case where the src/dest is a load or store?
632 SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
633 N->getOperand(0),
634 MemTmp, MachinePointerInfo(), MemVT,
635 false, false, 0);
636 SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
637 MachinePointerInfo(),
638 MemVT, false, false, false, 0);
639
640 // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
641 // extload we created. This will cause general havok on the dag because
642 // anything below the conversion could be folded into other existing nodes.
643 // To avoid invalidating 'I', back it up to the convert node.
644 --I;
645 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
646
647 // Now that we did that, the node is dead. Increment the iterator to the
648 // next node to process, then delete N.
649 ++I;
650 CurDAG->DeleteNode(N);
651 }
652 }
653
654
655 /// Emit any code that needs to be executed only in the main function.
emitSpecialCodeForMain()656 void X86DAGToDAGISel::emitSpecialCodeForMain() {
657 if (Subtarget->isTargetCygMing()) {
658 TargetLowering::ArgListTy Args;
659 auto &DL = CurDAG->getDataLayout();
660
661 TargetLowering::CallLoweringInfo CLI(*CurDAG);
662 CLI.setChain(CurDAG->getRoot())
663 .setCallee(CallingConv::C, Type::getVoidTy(*CurDAG->getContext()),
664 CurDAG->getExternalSymbol("__main", TLI->getPointerTy(DL)),
665 std::move(Args));
666 const TargetLowering &TLI = CurDAG->getTargetLoweringInfo();
667 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
668 CurDAG->setRoot(Result.second);
669 }
670 }
671
EmitFunctionEntryCode()672 void X86DAGToDAGISel::EmitFunctionEntryCode() {
673 // If this is main, emit special code for main.
674 if (const Function *Fn = MF->getFunction())
675 if (Fn->hasExternalLinkage() && Fn->getName() == "main")
676 emitSpecialCodeForMain();
677 }
678
isDispSafeForFrameIndex(int64_t Val)679 static bool isDispSafeForFrameIndex(int64_t Val) {
680 // On 64-bit platforms, we can run into an issue where a frame index
681 // includes a displacement that, when added to the explicit displacement,
682 // will overflow the displacement field. Assuming that the frame index
683 // displacement fits into a 31-bit integer (which is only slightly more
684 // aggressive than the current fundamental assumption that it fits into
685 // a 32-bit integer), a 31-bit disp should always be safe.
686 return isInt<31>(Val);
687 }
688
foldOffsetIntoAddress(uint64_t Offset,X86ISelAddressMode & AM)689 bool X86DAGToDAGISel::foldOffsetIntoAddress(uint64_t Offset,
690 X86ISelAddressMode &AM) {
691 // Cannot combine ExternalSymbol displacements with integer offsets.
692 if (Offset != 0 && (AM.ES || AM.MCSym))
693 return true;
694 int64_t Val = AM.Disp + Offset;
695 CodeModel::Model M = TM.getCodeModel();
696 if (Subtarget->is64Bit()) {
697 if (!X86::isOffsetSuitableForCodeModel(Val, M,
698 AM.hasSymbolicDisplacement()))
699 return true;
700 // In addition to the checks required for a register base, check that
701 // we do not try to use an unsafe Disp with a frame index.
702 if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
703 !isDispSafeForFrameIndex(Val))
704 return true;
705 }
706 AM.Disp = Val;
707 return false;
708
709 }
710
matchLoadInAddress(LoadSDNode * N,X86ISelAddressMode & AM)711 bool X86DAGToDAGISel::matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){
712 SDValue Address = N->getOperand(1);
713
714 // load gs:0 -> GS segment register.
715 // load fs:0 -> FS segment register.
716 //
717 // This optimization is valid because the GNU TLS model defines that
718 // gs:0 (or fs:0 on X86-64) contains its own address.
719 // For more information see http://people.redhat.com/drepper/tls.pdf
720 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address))
721 if (C->getSExtValue() == 0 && AM.Segment.getNode() == nullptr &&
722 Subtarget->isTargetGlibc())
723 switch (N->getPointerInfo().getAddrSpace()) {
724 case 256:
725 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
726 return false;
727 case 257:
728 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
729 return false;
730 // Address space 258 is not handled here, because it is not used to
731 // address TLS areas.
732 }
733
734 return true;
735 }
736
737 /// Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes into an addressing
738 /// mode. These wrap things that will resolve down into a symbol reference.
739 /// If no match is possible, this returns true, otherwise it returns false.
matchWrapper(SDValue N,X86ISelAddressMode & AM)740 bool X86DAGToDAGISel::matchWrapper(SDValue N, X86ISelAddressMode &AM) {
741 // If the addressing mode already has a symbol as the displacement, we can
742 // never match another symbol.
743 if (AM.hasSymbolicDisplacement())
744 return true;
745
746 SDValue N0 = N.getOperand(0);
747 CodeModel::Model M = TM.getCodeModel();
748
749 // Handle X86-64 rip-relative addresses. We check this before checking direct
750 // folding because RIP is preferable to non-RIP accesses.
751 if (Subtarget->is64Bit() && N.getOpcode() == X86ISD::WrapperRIP &&
752 // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
753 // they cannot be folded into immediate fields.
754 // FIXME: This can be improved for kernel and other models?
755 (M == CodeModel::Small || M == CodeModel::Kernel)) {
756 // Base and index reg must be 0 in order to use %rip as base.
757 if (AM.hasBaseOrIndexReg())
758 return true;
759 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
760 X86ISelAddressMode Backup = AM;
761 AM.GV = G->getGlobal();
762 AM.SymbolFlags = G->getTargetFlags();
763 if (foldOffsetIntoAddress(G->getOffset(), AM)) {
764 AM = Backup;
765 return true;
766 }
767 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
768 X86ISelAddressMode Backup = AM;
769 AM.CP = CP->getConstVal();
770 AM.Align = CP->getAlignment();
771 AM.SymbolFlags = CP->getTargetFlags();
772 if (foldOffsetIntoAddress(CP->getOffset(), AM)) {
773 AM = Backup;
774 return true;
775 }
776 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
777 AM.ES = S->getSymbol();
778 AM.SymbolFlags = S->getTargetFlags();
779 } else if (auto *S = dyn_cast<MCSymbolSDNode>(N0)) {
780 AM.MCSym = S->getMCSymbol();
781 } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
782 AM.JT = J->getIndex();
783 AM.SymbolFlags = J->getTargetFlags();
784 } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
785 X86ISelAddressMode Backup = AM;
786 AM.BlockAddr = BA->getBlockAddress();
787 AM.SymbolFlags = BA->getTargetFlags();
788 if (foldOffsetIntoAddress(BA->getOffset(), AM)) {
789 AM = Backup;
790 return true;
791 }
792 } else
793 llvm_unreachable("Unhandled symbol reference node.");
794
795 if (N.getOpcode() == X86ISD::WrapperRIP)
796 AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
797 return false;
798 }
799
800 // Handle the case when globals fit in our immediate field: This is true for
801 // X86-32 always and X86-64 when in -mcmodel=small mode. In 64-bit
802 // mode, this only applies to a non-RIP-relative computation.
803 if (!Subtarget->is64Bit() ||
804 M == CodeModel::Small || M == CodeModel::Kernel) {
805 assert(N.getOpcode() != X86ISD::WrapperRIP &&
806 "RIP-relative addressing already handled");
807 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
808 AM.GV = G->getGlobal();
809 AM.Disp += G->getOffset();
810 AM.SymbolFlags = G->getTargetFlags();
811 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
812 AM.CP = CP->getConstVal();
813 AM.Align = CP->getAlignment();
814 AM.Disp += CP->getOffset();
815 AM.SymbolFlags = CP->getTargetFlags();
816 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
817 AM.ES = S->getSymbol();
818 AM.SymbolFlags = S->getTargetFlags();
819 } else if (auto *S = dyn_cast<MCSymbolSDNode>(N0)) {
820 AM.MCSym = S->getMCSymbol();
821 } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
822 AM.JT = J->getIndex();
823 AM.SymbolFlags = J->getTargetFlags();
824 } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
825 AM.BlockAddr = BA->getBlockAddress();
826 AM.Disp += BA->getOffset();
827 AM.SymbolFlags = BA->getTargetFlags();
828 } else
829 llvm_unreachable("Unhandled symbol reference node.");
830 return false;
831 }
832
833 return true;
834 }
835
836 /// Add the specified node to the specified addressing mode, returning true if
837 /// it cannot be done. This just pattern matches for the addressing mode.
matchAddress(SDValue N,X86ISelAddressMode & AM)838 bool X86DAGToDAGISel::matchAddress(SDValue N, X86ISelAddressMode &AM) {
839 if (matchAddressRecursively(N, AM, 0))
840 return true;
841
842 // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
843 // a smaller encoding and avoids a scaled-index.
844 if (AM.Scale == 2 &&
845 AM.BaseType == X86ISelAddressMode::RegBase &&
846 AM.Base_Reg.getNode() == nullptr) {
847 AM.Base_Reg = AM.IndexReg;
848 AM.Scale = 1;
849 }
850
851 // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
852 // because it has a smaller encoding.
853 // TODO: Which other code models can use this?
854 if (TM.getCodeModel() == CodeModel::Small &&
855 Subtarget->is64Bit() &&
856 AM.Scale == 1 &&
857 AM.BaseType == X86ISelAddressMode::RegBase &&
858 AM.Base_Reg.getNode() == nullptr &&
859 AM.IndexReg.getNode() == nullptr &&
860 AM.SymbolFlags == X86II::MO_NO_FLAG &&
861 AM.hasSymbolicDisplacement())
862 AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
863
864 return false;
865 }
866
matchAdd(SDValue N,X86ISelAddressMode & AM,unsigned Depth)867 bool X86DAGToDAGISel::matchAdd(SDValue N, X86ISelAddressMode &AM,
868 unsigned Depth) {
869 // Add an artificial use to this node so that we can keep track of
870 // it if it gets CSE'd with a different node.
871 HandleSDNode Handle(N);
872
873 X86ISelAddressMode Backup = AM;
874 if (!matchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
875 !matchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
876 return false;
877 AM = Backup;
878
879 // Try again after commuting the operands.
880 if (!matchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1) &&
881 !matchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1))
882 return false;
883 AM = Backup;
884
885 // If we couldn't fold both operands into the address at the same time,
886 // see if we can just put each operand into a register and fold at least
887 // the add.
888 if (AM.BaseType == X86ISelAddressMode::RegBase &&
889 !AM.Base_Reg.getNode() &&
890 !AM.IndexReg.getNode()) {
891 N = Handle.getValue();
892 AM.Base_Reg = N.getOperand(0);
893 AM.IndexReg = N.getOperand(1);
894 AM.Scale = 1;
895 return false;
896 }
897 N = Handle.getValue();
898 return true;
899 }
900
901 // Insert a node into the DAG at least before the Pos node's position. This
902 // will reposition the node as needed, and will assign it a node ID that is <=
903 // the Pos node's ID. Note that this does *not* preserve the uniqueness of node
904 // IDs! The selection DAG must no longer depend on their uniqueness when this
905 // is used.
insertDAGNode(SelectionDAG & DAG,SDValue Pos,SDValue N)906 static void insertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
907 if (N.getNode()->getNodeId() == -1 ||
908 N.getNode()->getNodeId() > Pos.getNode()->getNodeId()) {
909 DAG.RepositionNode(Pos.getNode()->getIterator(), N.getNode());
910 N.getNode()->setNodeId(Pos.getNode()->getNodeId());
911 }
912 }
913
914 // Transform "(X >> (8-C1)) & (0xff << C1)" to "((X >> 8) & 0xff) << C1" if
915 // safe. This allows us to convert the shift and and into an h-register
916 // extract and a scaled index. Returns false if the simplification is
917 // performed.
foldMaskAndShiftToExtract(SelectionDAG & DAG,SDValue N,uint64_t Mask,SDValue Shift,SDValue X,X86ISelAddressMode & AM)918 static bool foldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
919 uint64_t Mask,
920 SDValue Shift, SDValue X,
921 X86ISelAddressMode &AM) {
922 if (Shift.getOpcode() != ISD::SRL ||
923 !isa<ConstantSDNode>(Shift.getOperand(1)) ||
924 !Shift.hasOneUse())
925 return true;
926
927 int ScaleLog = 8 - Shift.getConstantOperandVal(1);
928 if (ScaleLog <= 0 || ScaleLog >= 4 ||
929 Mask != (0xffu << ScaleLog))
930 return true;
931
932 MVT VT = N.getSimpleValueType();
933 SDLoc DL(N);
934 SDValue Eight = DAG.getConstant(8, DL, MVT::i8);
935 SDValue NewMask = DAG.getConstant(0xff, DL, VT);
936 SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight);
937 SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask);
938 SDValue ShlCount = DAG.getConstant(ScaleLog, DL, MVT::i8);
939 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount);
940
941 // Insert the new nodes into the topological ordering. We must do this in
942 // a valid topological ordering as nothing is going to go back and re-sort
943 // these nodes. We continually insert before 'N' in sequence as this is
944 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
945 // hierarchy left to express.
946 insertDAGNode(DAG, N, Eight);
947 insertDAGNode(DAG, N, Srl);
948 insertDAGNode(DAG, N, NewMask);
949 insertDAGNode(DAG, N, And);
950 insertDAGNode(DAG, N, ShlCount);
951 insertDAGNode(DAG, N, Shl);
952 DAG.ReplaceAllUsesWith(N, Shl);
953 AM.IndexReg = And;
954 AM.Scale = (1 << ScaleLog);
955 return false;
956 }
957
958 // Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
959 // allows us to fold the shift into this addressing mode. Returns false if the
960 // transform succeeded.
foldMaskedShiftToScaledMask(SelectionDAG & DAG,SDValue N,uint64_t Mask,SDValue Shift,SDValue X,X86ISelAddressMode & AM)961 static bool foldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N,
962 uint64_t Mask,
963 SDValue Shift, SDValue X,
964 X86ISelAddressMode &AM) {
965 if (Shift.getOpcode() != ISD::SHL ||
966 !isa<ConstantSDNode>(Shift.getOperand(1)))
967 return true;
968
969 // Not likely to be profitable if either the AND or SHIFT node has more
970 // than one use (unless all uses are for address computation). Besides,
971 // isel mechanism requires their node ids to be reused.
972 if (!N.hasOneUse() || !Shift.hasOneUse())
973 return true;
974
975 // Verify that the shift amount is something we can fold.
976 unsigned ShiftAmt = Shift.getConstantOperandVal(1);
977 if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
978 return true;
979
980 MVT VT = N.getSimpleValueType();
981 SDLoc DL(N);
982 SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, DL, VT);
983 SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask);
984 SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1));
985
986 // Insert the new nodes into the topological ordering. We must do this in
987 // a valid topological ordering as nothing is going to go back and re-sort
988 // these nodes. We continually insert before 'N' in sequence as this is
989 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
990 // hierarchy left to express.
991 insertDAGNode(DAG, N, NewMask);
992 insertDAGNode(DAG, N, NewAnd);
993 insertDAGNode(DAG, N, NewShift);
994 DAG.ReplaceAllUsesWith(N, NewShift);
995
996 AM.Scale = 1 << ShiftAmt;
997 AM.IndexReg = NewAnd;
998 return false;
999 }
1000
1001 // Implement some heroics to detect shifts of masked values where the mask can
1002 // be replaced by extending the shift and undoing that in the addressing mode
1003 // scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
1004 // (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
1005 // the addressing mode. This results in code such as:
1006 //
1007 // int f(short *y, int *lookup_table) {
1008 // ...
1009 // return *y + lookup_table[*y >> 11];
1010 // }
1011 //
1012 // Turning into:
1013 // movzwl (%rdi), %eax
1014 // movl %eax, %ecx
1015 // shrl $11, %ecx
1016 // addl (%rsi,%rcx,4), %eax
1017 //
1018 // Instead of:
1019 // movzwl (%rdi), %eax
1020 // movl %eax, %ecx
1021 // shrl $9, %ecx
1022 // andl $124, %rcx
1023 // addl (%rsi,%rcx), %eax
1024 //
1025 // Note that this function assumes the mask is provided as a mask *after* the
1026 // value is shifted. The input chain may or may not match that, but computing
1027 // such a mask is trivial.
foldMaskAndShiftToScale(SelectionDAG & DAG,SDValue N,uint64_t Mask,SDValue Shift,SDValue X,X86ISelAddressMode & AM)1028 static bool foldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
1029 uint64_t Mask,
1030 SDValue Shift, SDValue X,
1031 X86ISelAddressMode &AM) {
1032 if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
1033 !isa<ConstantSDNode>(Shift.getOperand(1)))
1034 return true;
1035
1036 unsigned ShiftAmt = Shift.getConstantOperandVal(1);
1037 unsigned MaskLZ = countLeadingZeros(Mask);
1038 unsigned MaskTZ = countTrailingZeros(Mask);
1039
1040 // The amount of shift we're trying to fit into the addressing mode is taken
1041 // from the trailing zeros of the mask.
1042 unsigned AMShiftAmt = MaskTZ;
1043
1044 // There is nothing we can do here unless the mask is removing some bits.
1045 // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
1046 if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true;
1047
1048 // We also need to ensure that mask is a continuous run of bits.
1049 if (countTrailingOnes(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true;
1050
1051 // Scale the leading zero count down based on the actual size of the value.
1052 // Also scale it down based on the size of the shift.
1053 MaskLZ -= (64 - X.getSimpleValueType().getSizeInBits()) + ShiftAmt;
1054
1055 // The final check is to ensure that any masked out high bits of X are
1056 // already known to be zero. Otherwise, the mask has a semantic impact
1057 // other than masking out a couple of low bits. Unfortunately, because of
1058 // the mask, zero extensions will be removed from operands in some cases.
1059 // This code works extra hard to look through extensions because we can
1060 // replace them with zero extensions cheaply if necessary.
1061 bool ReplacingAnyExtend = false;
1062 if (X.getOpcode() == ISD::ANY_EXTEND) {
1063 unsigned ExtendBits = X.getSimpleValueType().getSizeInBits() -
1064 X.getOperand(0).getSimpleValueType().getSizeInBits();
1065 // Assume that we'll replace the any-extend with a zero-extend, and
1066 // narrow the search to the extended value.
1067 X = X.getOperand(0);
1068 MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
1069 ReplacingAnyExtend = true;
1070 }
1071 APInt MaskedHighBits =
1072 APInt::getHighBitsSet(X.getSimpleValueType().getSizeInBits(), MaskLZ);
1073 APInt KnownZero, KnownOne;
1074 DAG.computeKnownBits(X, KnownZero, KnownOne);
1075 if (MaskedHighBits != KnownZero) return true;
1076
1077 // We've identified a pattern that can be transformed into a single shift
1078 // and an addressing mode. Make it so.
1079 MVT VT = N.getSimpleValueType();
1080 if (ReplacingAnyExtend) {
1081 assert(X.getValueType() != VT);
1082 // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
1083 SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(X), VT, X);
1084 insertDAGNode(DAG, N, NewX);
1085 X = NewX;
1086 }
1087 SDLoc DL(N);
1088 SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8);
1089 SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
1090 SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8);
1091 SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt);
1092
1093 // Insert the new nodes into the topological ordering. We must do this in
1094 // a valid topological ordering as nothing is going to go back and re-sort
1095 // these nodes. We continually insert before 'N' in sequence as this is
1096 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
1097 // hierarchy left to express.
1098 insertDAGNode(DAG, N, NewSRLAmt);
1099 insertDAGNode(DAG, N, NewSRL);
1100 insertDAGNode(DAG, N, NewSHLAmt);
1101 insertDAGNode(DAG, N, NewSHL);
1102 DAG.ReplaceAllUsesWith(N, NewSHL);
1103
1104 AM.Scale = 1 << AMShiftAmt;
1105 AM.IndexReg = NewSRL;
1106 return false;
1107 }
1108
matchAddressRecursively(SDValue N,X86ISelAddressMode & AM,unsigned Depth)1109 bool X86DAGToDAGISel::matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
1110 unsigned Depth) {
1111 SDLoc dl(N);
1112 DEBUG({
1113 dbgs() << "MatchAddress: ";
1114 AM.dump();
1115 });
1116 // Limit recursion.
1117 if (Depth > 5)
1118 return matchAddressBase(N, AM);
1119
1120 // If this is already a %rip relative address, we can only merge immediates
1121 // into it. Instead of handling this in every case, we handle it here.
1122 // RIP relative addressing: %rip + 32-bit displacement!
1123 if (AM.isRIPRelative()) {
1124 // FIXME: JumpTable and ExternalSymbol address currently don't like
1125 // displacements. It isn't very important, but this should be fixed for
1126 // consistency.
1127 if (!(AM.ES || AM.MCSym) && AM.JT != -1)
1128 return true;
1129
1130 if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N))
1131 if (!foldOffsetIntoAddress(Cst->getSExtValue(), AM))
1132 return false;
1133 return true;
1134 }
1135
1136 switch (N.getOpcode()) {
1137 default: break;
1138 case ISD::LOCAL_RECOVER: {
1139 if (!AM.hasSymbolicDisplacement() && AM.Disp == 0)
1140 if (const auto *ESNode = dyn_cast<MCSymbolSDNode>(N.getOperand(0))) {
1141 // Use the symbol and don't prefix it.
1142 AM.MCSym = ESNode->getMCSymbol();
1143 return false;
1144 }
1145 break;
1146 }
1147 case ISD::Constant: {
1148 uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
1149 if (!foldOffsetIntoAddress(Val, AM))
1150 return false;
1151 break;
1152 }
1153
1154 case X86ISD::Wrapper:
1155 case X86ISD::WrapperRIP:
1156 if (!matchWrapper(N, AM))
1157 return false;
1158 break;
1159
1160 case ISD::LOAD:
1161 if (!matchLoadInAddress(cast<LoadSDNode>(N), AM))
1162 return false;
1163 break;
1164
1165 case ISD::FrameIndex:
1166 if (AM.BaseType == X86ISelAddressMode::RegBase &&
1167 AM.Base_Reg.getNode() == nullptr &&
1168 (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
1169 AM.BaseType = X86ISelAddressMode::FrameIndexBase;
1170 AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
1171 return false;
1172 }
1173 break;
1174
1175 case ISD::SHL:
1176 if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
1177 break;
1178
1179 if (ConstantSDNode
1180 *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
1181 unsigned Val = CN->getZExtValue();
1182 // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
1183 // that the base operand remains free for further matching. If
1184 // the base doesn't end up getting used, a post-processing step
1185 // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
1186 if (Val == 1 || Val == 2 || Val == 3) {
1187 AM.Scale = 1 << Val;
1188 SDValue ShVal = N.getNode()->getOperand(0);
1189
1190 // Okay, we know that we have a scale by now. However, if the scaled
1191 // value is an add of something and a constant, we can fold the
1192 // constant into the disp field here.
1193 if (CurDAG->isBaseWithConstantOffset(ShVal)) {
1194 AM.IndexReg = ShVal.getNode()->getOperand(0);
1195 ConstantSDNode *AddVal =
1196 cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
1197 uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val;
1198 if (!foldOffsetIntoAddress(Disp, AM))
1199 return false;
1200 }
1201
1202 AM.IndexReg = ShVal;
1203 return false;
1204 }
1205 }
1206 break;
1207
1208 case ISD::SRL: {
1209 // Scale must not be used already.
1210 if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
1211
1212 SDValue And = N.getOperand(0);
1213 if (And.getOpcode() != ISD::AND) break;
1214 SDValue X = And.getOperand(0);
1215
1216 // We only handle up to 64-bit values here as those are what matter for
1217 // addressing mode optimizations.
1218 if (X.getSimpleValueType().getSizeInBits() > 64) break;
1219
1220 // The mask used for the transform is expected to be post-shift, but we
1221 // found the shift first so just apply the shift to the mask before passing
1222 // it down.
1223 if (!isa<ConstantSDNode>(N.getOperand(1)) ||
1224 !isa<ConstantSDNode>(And.getOperand(1)))
1225 break;
1226 uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1);
1227
1228 // Try to fold the mask and shift into the scale, and return false if we
1229 // succeed.
1230 if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM))
1231 return false;
1232 break;
1233 }
1234
1235 case ISD::SMUL_LOHI:
1236 case ISD::UMUL_LOHI:
1237 // A mul_lohi where we need the low part can be folded as a plain multiply.
1238 if (N.getResNo() != 0) break;
1239 // FALL THROUGH
1240 case ISD::MUL:
1241 case X86ISD::MUL_IMM:
1242 // X*[3,5,9] -> X+X*[2,4,8]
1243 if (AM.BaseType == X86ISelAddressMode::RegBase &&
1244 AM.Base_Reg.getNode() == nullptr &&
1245 AM.IndexReg.getNode() == nullptr) {
1246 if (ConstantSDNode
1247 *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
1248 if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
1249 CN->getZExtValue() == 9) {
1250 AM.Scale = unsigned(CN->getZExtValue())-1;
1251
1252 SDValue MulVal = N.getNode()->getOperand(0);
1253 SDValue Reg;
1254
1255 // Okay, we know that we have a scale by now. However, if the scaled
1256 // value is an add of something and a constant, we can fold the
1257 // constant into the disp field here.
1258 if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
1259 isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
1260 Reg = MulVal.getNode()->getOperand(0);
1261 ConstantSDNode *AddVal =
1262 cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
1263 uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
1264 if (foldOffsetIntoAddress(Disp, AM))
1265 Reg = N.getNode()->getOperand(0);
1266 } else {
1267 Reg = N.getNode()->getOperand(0);
1268 }
1269
1270 AM.IndexReg = AM.Base_Reg = Reg;
1271 return false;
1272 }
1273 }
1274 break;
1275
1276 case ISD::SUB: {
1277 // Given A-B, if A can be completely folded into the address and
1278 // the index field with the index field unused, use -B as the index.
1279 // This is a win if a has multiple parts that can be folded into
1280 // the address. Also, this saves a mov if the base register has
1281 // other uses, since it avoids a two-address sub instruction, however
1282 // it costs an additional mov if the index register has other uses.
1283
1284 // Add an artificial use to this node so that we can keep track of
1285 // it if it gets CSE'd with a different node.
1286 HandleSDNode Handle(N);
1287
1288 // Test if the LHS of the sub can be folded.
1289 X86ISelAddressMode Backup = AM;
1290 if (matchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
1291 AM = Backup;
1292 break;
1293 }
1294 // Test if the index field is free for use.
1295 if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
1296 AM = Backup;
1297 break;
1298 }
1299
1300 int Cost = 0;
1301 SDValue RHS = Handle.getValue().getNode()->getOperand(1);
1302 // If the RHS involves a register with multiple uses, this
1303 // transformation incurs an extra mov, due to the neg instruction
1304 // clobbering its operand.
1305 if (!RHS.getNode()->hasOneUse() ||
1306 RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
1307 RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
1308 RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
1309 (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
1310 RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
1311 ++Cost;
1312 // If the base is a register with multiple uses, this
1313 // transformation may save a mov.
1314 if ((AM.BaseType == X86ISelAddressMode::RegBase &&
1315 AM.Base_Reg.getNode() &&
1316 !AM.Base_Reg.getNode()->hasOneUse()) ||
1317 AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1318 --Cost;
1319 // If the folded LHS was interesting, this transformation saves
1320 // address arithmetic.
1321 if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
1322 ((AM.Disp != 0) && (Backup.Disp == 0)) +
1323 (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
1324 --Cost;
1325 // If it doesn't look like it may be an overall win, don't do it.
1326 if (Cost >= 0) {
1327 AM = Backup;
1328 break;
1329 }
1330
1331 // Ok, the transformation is legal and appears profitable. Go for it.
1332 SDValue Zero = CurDAG->getConstant(0, dl, N.getValueType());
1333 SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
1334 AM.IndexReg = Neg;
1335 AM.Scale = 1;
1336
1337 // Insert the new nodes into the topological ordering.
1338 insertDAGNode(*CurDAG, N, Zero);
1339 insertDAGNode(*CurDAG, N, Neg);
1340 return false;
1341 }
1342
1343 case ISD::ADD:
1344 if (!matchAdd(N, AM, Depth))
1345 return false;
1346 break;
1347
1348 case ISD::OR:
1349 // We want to look through a transform in InstCombine and DAGCombiner that
1350 // turns 'add' into 'or', so we can treat this 'or' exactly like an 'add'.
1351 // Example: (or (and x, 1), (shl y, 3)) --> (add (and x, 1), (shl y, 3))
1352 // An 'lea' can then be used to match the shift (multiply) and add:
1353 // and $1, %esi
1354 // lea (%rsi, %rdi, 8), %rax
1355 if (CurDAG->haveNoCommonBitsSet(N.getOperand(0), N.getOperand(1)) &&
1356 !matchAdd(N, AM, Depth))
1357 return false;
1358 break;
1359
1360 case ISD::AND: {
1361 // Perform some heroic transforms on an and of a constant-count shift
1362 // with a constant to enable use of the scaled offset field.
1363
1364 // Scale must not be used already.
1365 if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
1366
1367 SDValue Shift = N.getOperand(0);
1368 if (Shift.getOpcode() != ISD::SRL && Shift.getOpcode() != ISD::SHL) break;
1369 SDValue X = Shift.getOperand(0);
1370
1371 // We only handle up to 64-bit values here as those are what matter for
1372 // addressing mode optimizations.
1373 if (X.getSimpleValueType().getSizeInBits() > 64) break;
1374
1375 if (!isa<ConstantSDNode>(N.getOperand(1)))
1376 break;
1377 uint64_t Mask = N.getConstantOperandVal(1);
1378
1379 // Try to fold the mask and shift into an extract and scale.
1380 if (!foldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM))
1381 return false;
1382
1383 // Try to fold the mask and shift directly into the scale.
1384 if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM))
1385 return false;
1386
1387 // Try to swap the mask and shift to place shifts which can be done as
1388 // a scale on the outside of the mask.
1389 if (!foldMaskedShiftToScaledMask(*CurDAG, N, Mask, Shift, X, AM))
1390 return false;
1391 break;
1392 }
1393 }
1394
1395 return matchAddressBase(N, AM);
1396 }
1397
1398 /// Helper for MatchAddress. Add the specified node to the
1399 /// specified addressing mode without any further recursion.
matchAddressBase(SDValue N,X86ISelAddressMode & AM)1400 bool X86DAGToDAGISel::matchAddressBase(SDValue N, X86ISelAddressMode &AM) {
1401 // Is the base register already occupied?
1402 if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
1403 // If so, check to see if the scale index register is set.
1404 if (!AM.IndexReg.getNode()) {
1405 AM.IndexReg = N;
1406 AM.Scale = 1;
1407 return false;
1408 }
1409
1410 // Otherwise, we cannot select it.
1411 return true;
1412 }
1413
1414 // Default, generate it as a register.
1415 AM.BaseType = X86ISelAddressMode::RegBase;
1416 AM.Base_Reg = N;
1417 return false;
1418 }
1419
selectVectorAddr(SDNode * Parent,SDValue N,SDValue & Base,SDValue & Scale,SDValue & Index,SDValue & Disp,SDValue & Segment)1420 bool X86DAGToDAGISel::selectVectorAddr(SDNode *Parent, SDValue N, SDValue &Base,
1421 SDValue &Scale, SDValue &Index,
1422 SDValue &Disp, SDValue &Segment) {
1423
1424 MaskedGatherScatterSDNode *Mgs = dyn_cast<MaskedGatherScatterSDNode>(Parent);
1425 if (!Mgs)
1426 return false;
1427 X86ISelAddressMode AM;
1428 unsigned AddrSpace = Mgs->getPointerInfo().getAddrSpace();
1429 // AddrSpace 256 -> GS, 257 -> FS, 258 -> SS.
1430 if (AddrSpace == 256)
1431 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1432 if (AddrSpace == 257)
1433 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1434 if (AddrSpace == 258)
1435 AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16);
1436
1437 SDLoc DL(N);
1438 Base = Mgs->getBasePtr();
1439 Index = Mgs->getIndex();
1440 unsigned ScalarSize = Mgs->getValue().getValueType().getScalarSizeInBits();
1441 Scale = getI8Imm(ScalarSize/8, DL);
1442
1443 // If Base is 0, the whole address is in index and the Scale is 1
1444 if (isa<ConstantSDNode>(Base)) {
1445 assert(cast<ConstantSDNode>(Base)->isNullValue() &&
1446 "Unexpected base in gather/scatter");
1447 Scale = getI8Imm(1, DL);
1448 Base = CurDAG->getRegister(0, MVT::i32);
1449 }
1450 if (AM.Segment.getNode())
1451 Segment = AM.Segment;
1452 else
1453 Segment = CurDAG->getRegister(0, MVT::i32);
1454 Disp = CurDAG->getTargetConstant(0, DL, MVT::i32);
1455 return true;
1456 }
1457
1458 /// Returns true if it is able to pattern match an addressing mode.
1459 /// It returns the operands which make up the maximal addressing mode it can
1460 /// match by reference.
1461 ///
1462 /// Parent is the parent node of the addr operand that is being matched. It
1463 /// is always a load, store, atomic node, or null. It is only null when
1464 /// checking memory operands for inline asm nodes.
selectAddr(SDNode * Parent,SDValue N,SDValue & Base,SDValue & Scale,SDValue & Index,SDValue & Disp,SDValue & Segment)1465 bool X86DAGToDAGISel::selectAddr(SDNode *Parent, SDValue N, SDValue &Base,
1466 SDValue &Scale, SDValue &Index,
1467 SDValue &Disp, SDValue &Segment) {
1468 X86ISelAddressMode AM;
1469
1470 if (Parent &&
1471 // This list of opcodes are all the nodes that have an "addr:$ptr" operand
1472 // that are not a MemSDNode, and thus don't have proper addrspace info.
1473 Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
1474 Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
1475 Parent->getOpcode() != X86ISD::TLSCALL && // Fixme
1476 Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp
1477 Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp
1478 unsigned AddrSpace =
1479 cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
1480 // AddrSpace 256 -> GS, 257 -> FS, 258 -> SS.
1481 if (AddrSpace == 256)
1482 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1483 if (AddrSpace == 257)
1484 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1485 if (AddrSpace == 258)
1486 AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16);
1487 }
1488
1489 if (matchAddress(N, AM))
1490 return false;
1491
1492 MVT VT = N.getSimpleValueType();
1493 if (AM.BaseType == X86ISelAddressMode::RegBase) {
1494 if (!AM.Base_Reg.getNode())
1495 AM.Base_Reg = CurDAG->getRegister(0, VT);
1496 }
1497
1498 if (!AM.IndexReg.getNode())
1499 AM.IndexReg = CurDAG->getRegister(0, VT);
1500
1501 getAddressOperands(AM, SDLoc(N), Base, Scale, Index, Disp, Segment);
1502 return true;
1503 }
1504
1505 /// Match a scalar SSE load. In particular, we want to match a load whose top
1506 /// elements are either undef or zeros. The load flavor is derived from the
1507 /// type of N, which is either v4f32 or v2f64.
1508 ///
1509 /// We also return:
1510 /// PatternChainNode: this is the matched node that has a chain input and
1511 /// output.
selectScalarSSELoad(SDNode * Root,SDValue N,SDValue & Base,SDValue & Scale,SDValue & Index,SDValue & Disp,SDValue & Segment,SDValue & PatternNodeWithChain)1512 bool X86DAGToDAGISel::selectScalarSSELoad(SDNode *Root,
1513 SDValue N, SDValue &Base,
1514 SDValue &Scale, SDValue &Index,
1515 SDValue &Disp, SDValue &Segment,
1516 SDValue &PatternNodeWithChain) {
1517 if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1518 PatternNodeWithChain = N.getOperand(0);
1519 if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
1520 PatternNodeWithChain.hasOneUse() &&
1521 IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1522 IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1523 LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
1524 if (!selectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1525 return false;
1526 return true;
1527 }
1528 }
1529
1530 // Also handle the case where we explicitly require zeros in the top
1531 // elements. This is a vector shuffle from the zero vector.
1532 if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1533 // Check to see if the top elements are all zeros (or bitcast of zeros).
1534 N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1535 N.getOperand(0).getNode()->hasOneUse() &&
1536 ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1537 N.getOperand(0).getOperand(0).hasOneUse() &&
1538 IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1539 IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1540 // Okay, this is a zero extending load. Fold it.
1541 LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1542 if (!selectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1543 return false;
1544 PatternNodeWithChain = SDValue(LD, 0);
1545 return true;
1546 }
1547 return false;
1548 }
1549
1550
selectMOV64Imm32(SDValue N,SDValue & Imm)1551 bool X86DAGToDAGISel::selectMOV64Imm32(SDValue N, SDValue &Imm) {
1552 if (const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1553 uint64_t ImmVal = CN->getZExtValue();
1554 if ((uint32_t)ImmVal != (uint64_t)ImmVal)
1555 return false;
1556
1557 Imm = CurDAG->getTargetConstant(ImmVal, SDLoc(N), MVT::i64);
1558 return true;
1559 }
1560
1561 // In static codegen with small code model, we can get the address of a label
1562 // into a register with 'movl'. TableGen has already made sure we're looking
1563 // at a label of some kind.
1564 assert(N->getOpcode() == X86ISD::Wrapper &&
1565 "Unexpected node type for MOV32ri64");
1566 N = N.getOperand(0);
1567
1568 if (N->getOpcode() != ISD::TargetConstantPool &&
1569 N->getOpcode() != ISD::TargetJumpTable &&
1570 N->getOpcode() != ISD::TargetGlobalAddress &&
1571 N->getOpcode() != ISD::TargetExternalSymbol &&
1572 N->getOpcode() != ISD::MCSymbol &&
1573 N->getOpcode() != ISD::TargetBlockAddress)
1574 return false;
1575
1576 Imm = N;
1577 return TM.getCodeModel() == CodeModel::Small;
1578 }
1579
selectLEA64_32Addr(SDValue N,SDValue & Base,SDValue & Scale,SDValue & Index,SDValue & Disp,SDValue & Segment)1580 bool X86DAGToDAGISel::selectLEA64_32Addr(SDValue N, SDValue &Base,
1581 SDValue &Scale, SDValue &Index,
1582 SDValue &Disp, SDValue &Segment) {
1583 // Save the debug loc before calling selectLEAAddr, in case it invalidates N.
1584 SDLoc DL(N);
1585
1586 if (!selectLEAAddr(N, Base, Scale, Index, Disp, Segment))
1587 return false;
1588
1589 RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Base);
1590 if (RN && RN->getReg() == 0)
1591 Base = CurDAG->getRegister(0, MVT::i64);
1592 else if (Base.getValueType() == MVT::i32 && !dyn_cast<FrameIndexSDNode>(Base)) {
1593 // Base could already be %rip, particularly in the x32 ABI.
1594 Base = SDValue(CurDAG->getMachineNode(
1595 TargetOpcode::SUBREG_TO_REG, DL, MVT::i64,
1596 CurDAG->getTargetConstant(0, DL, MVT::i64),
1597 Base,
1598 CurDAG->getTargetConstant(X86::sub_32bit, DL, MVT::i32)),
1599 0);
1600 }
1601
1602 RN = dyn_cast<RegisterSDNode>(Index);
1603 if (RN && RN->getReg() == 0)
1604 Index = CurDAG->getRegister(0, MVT::i64);
1605 else {
1606 assert(Index.getValueType() == MVT::i32 &&
1607 "Expect to be extending 32-bit registers for use in LEA");
1608 Index = SDValue(CurDAG->getMachineNode(
1609 TargetOpcode::SUBREG_TO_REG, DL, MVT::i64,
1610 CurDAG->getTargetConstant(0, DL, MVT::i64),
1611 Index,
1612 CurDAG->getTargetConstant(X86::sub_32bit, DL,
1613 MVT::i32)),
1614 0);
1615 }
1616
1617 return true;
1618 }
1619
1620 /// Calls SelectAddr and determines if the maximal addressing
1621 /// mode it matches can be cost effectively emitted as an LEA instruction.
selectLEAAddr(SDValue N,SDValue & Base,SDValue & Scale,SDValue & Index,SDValue & Disp,SDValue & Segment)1622 bool X86DAGToDAGISel::selectLEAAddr(SDValue N,
1623 SDValue &Base, SDValue &Scale,
1624 SDValue &Index, SDValue &Disp,
1625 SDValue &Segment) {
1626 X86ISelAddressMode AM;
1627
1628 // Save the DL and VT before calling matchAddress, it can invalidate N.
1629 SDLoc DL(N);
1630 MVT VT = N.getSimpleValueType();
1631
1632 // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
1633 // segments.
1634 SDValue Copy = AM.Segment;
1635 SDValue T = CurDAG->getRegister(0, MVT::i32);
1636 AM.Segment = T;
1637 if (matchAddress(N, AM))
1638 return false;
1639 assert (T == AM.Segment);
1640 AM.Segment = Copy;
1641
1642 unsigned Complexity = 0;
1643 if (AM.BaseType == X86ISelAddressMode::RegBase)
1644 if (AM.Base_Reg.getNode())
1645 Complexity = 1;
1646 else
1647 AM.Base_Reg = CurDAG->getRegister(0, VT);
1648 else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1649 Complexity = 4;
1650
1651 if (AM.IndexReg.getNode())
1652 Complexity++;
1653 else
1654 AM.IndexReg = CurDAG->getRegister(0, VT);
1655
1656 // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1657 // a simple shift.
1658 if (AM.Scale > 1)
1659 Complexity++;
1660
1661 // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1662 // to a LEA. This is determined with some experimentation but is by no means
1663 // optimal (especially for code size consideration). LEA is nice because of
1664 // its three-address nature. Tweak the cost function again when we can run
1665 // convertToThreeAddress() at register allocation time.
1666 if (AM.hasSymbolicDisplacement()) {
1667 // For X86-64, always use LEA to materialize RIP-relative addresses.
1668 if (Subtarget->is64Bit())
1669 Complexity = 4;
1670 else
1671 Complexity += 2;
1672 }
1673
1674 if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode()))
1675 Complexity++;
1676
1677 // If it isn't worth using an LEA, reject it.
1678 if (Complexity <= 2)
1679 return false;
1680
1681 getAddressOperands(AM, DL, Base, Scale, Index, Disp, Segment);
1682 return true;
1683 }
1684
1685 /// This is only run on TargetGlobalTLSAddress nodes.
selectTLSADDRAddr(SDValue N,SDValue & Base,SDValue & Scale,SDValue & Index,SDValue & Disp,SDValue & Segment)1686 bool X86DAGToDAGISel::selectTLSADDRAddr(SDValue N, SDValue &Base,
1687 SDValue &Scale, SDValue &Index,
1688 SDValue &Disp, SDValue &Segment) {
1689 assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
1690 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
1691
1692 X86ISelAddressMode AM;
1693 AM.GV = GA->getGlobal();
1694 AM.Disp += GA->getOffset();
1695 AM.Base_Reg = CurDAG->getRegister(0, N.getValueType());
1696 AM.SymbolFlags = GA->getTargetFlags();
1697
1698 if (N.getValueType() == MVT::i32) {
1699 AM.Scale = 1;
1700 AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
1701 } else {
1702 AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
1703 }
1704
1705 getAddressOperands(AM, SDLoc(N), Base, Scale, Index, Disp, Segment);
1706 return true;
1707 }
1708
1709
tryFoldLoad(SDNode * P,SDValue N,SDValue & Base,SDValue & Scale,SDValue & Index,SDValue & Disp,SDValue & Segment)1710 bool X86DAGToDAGISel::tryFoldLoad(SDNode *P, SDValue N,
1711 SDValue &Base, SDValue &Scale,
1712 SDValue &Index, SDValue &Disp,
1713 SDValue &Segment) {
1714 if (!ISD::isNON_EXTLoad(N.getNode()) ||
1715 !IsProfitableToFold(N, P, P) ||
1716 !IsLegalToFold(N, P, P, OptLevel))
1717 return false;
1718
1719 return selectAddr(N.getNode(),
1720 N.getOperand(1), Base, Scale, Index, Disp, Segment);
1721 }
1722
1723 /// Return an SDNode that returns the value of the global base register.
1724 /// Output instructions required to initialize the global base register,
1725 /// if necessary.
getGlobalBaseReg()1726 SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1727 unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
1728 auto &DL = MF->getDataLayout();
1729 return CurDAG->getRegister(GlobalBaseReg, TLI->getPointerTy(DL)).getNode();
1730 }
1731
1732 /// Test whether the given X86ISD::CMP node has any uses which require the SF
1733 /// or OF bits to be accurate.
hasNoSignedComparisonUses(SDNode * N)1734 static bool hasNoSignedComparisonUses(SDNode *N) {
1735 // Examine each user of the node.
1736 for (SDNode::use_iterator UI = N->use_begin(),
1737 UE = N->use_end(); UI != UE; ++UI) {
1738 // Only examine CopyToReg uses.
1739 if (UI->getOpcode() != ISD::CopyToReg)
1740 return false;
1741 // Only examine CopyToReg uses that copy to EFLAGS.
1742 if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
1743 X86::EFLAGS)
1744 return false;
1745 // Examine each user of the CopyToReg use.
1746 for (SDNode::use_iterator FlagUI = UI->use_begin(),
1747 FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
1748 // Only examine the Flag result.
1749 if (FlagUI.getUse().getResNo() != 1) continue;
1750 // Anything unusual: assume conservatively.
1751 if (!FlagUI->isMachineOpcode()) return false;
1752 // Examine the opcode of the user.
1753 switch (FlagUI->getMachineOpcode()) {
1754 // These comparisons don't treat the most significant bit specially.
1755 case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
1756 case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
1757 case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
1758 case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
1759 case X86::JA_1: case X86::JAE_1: case X86::JB_1: case X86::JBE_1:
1760 case X86::JE_1: case X86::JNE_1: case X86::JP_1: case X86::JNP_1:
1761 case X86::CMOVA16rr: case X86::CMOVA16rm:
1762 case X86::CMOVA32rr: case X86::CMOVA32rm:
1763 case X86::CMOVA64rr: case X86::CMOVA64rm:
1764 case X86::CMOVAE16rr: case X86::CMOVAE16rm:
1765 case X86::CMOVAE32rr: case X86::CMOVAE32rm:
1766 case X86::CMOVAE64rr: case X86::CMOVAE64rm:
1767 case X86::CMOVB16rr: case X86::CMOVB16rm:
1768 case X86::CMOVB32rr: case X86::CMOVB32rm:
1769 case X86::CMOVB64rr: case X86::CMOVB64rm:
1770 case X86::CMOVBE16rr: case X86::CMOVBE16rm:
1771 case X86::CMOVBE32rr: case X86::CMOVBE32rm:
1772 case X86::CMOVBE64rr: case X86::CMOVBE64rm:
1773 case X86::CMOVE16rr: case X86::CMOVE16rm:
1774 case X86::CMOVE32rr: case X86::CMOVE32rm:
1775 case X86::CMOVE64rr: case X86::CMOVE64rm:
1776 case X86::CMOVNE16rr: case X86::CMOVNE16rm:
1777 case X86::CMOVNE32rr: case X86::CMOVNE32rm:
1778 case X86::CMOVNE64rr: case X86::CMOVNE64rm:
1779 case X86::CMOVNP16rr: case X86::CMOVNP16rm:
1780 case X86::CMOVNP32rr: case X86::CMOVNP32rm:
1781 case X86::CMOVNP64rr: case X86::CMOVNP64rm:
1782 case X86::CMOVP16rr: case X86::CMOVP16rm:
1783 case X86::CMOVP32rr: case X86::CMOVP32rm:
1784 case X86::CMOVP64rr: case X86::CMOVP64rm:
1785 continue;
1786 // Anything else: assume conservatively.
1787 default: return false;
1788 }
1789 }
1790 }
1791 return true;
1792 }
1793
1794 /// Check whether or not the chain ending in StoreNode is suitable for doing
1795 /// the {load; increment or decrement; store} to modify transformation.
isLoadIncOrDecStore(StoreSDNode * StoreNode,unsigned Opc,SDValue StoredVal,SelectionDAG * CurDAG,LoadSDNode * & LoadNode,SDValue & InputChain)1796 static bool isLoadIncOrDecStore(StoreSDNode *StoreNode, unsigned Opc,
1797 SDValue StoredVal, SelectionDAG *CurDAG,
1798 LoadSDNode* &LoadNode, SDValue &InputChain) {
1799
1800 // is the value stored the result of a DEC or INC?
1801 if (!(Opc == X86ISD::DEC || Opc == X86ISD::INC)) return false;
1802
1803 // is the stored value result 0 of the load?
1804 if (StoredVal.getResNo() != 0) return false;
1805
1806 // are there other uses of the loaded value than the inc or dec?
1807 if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false;
1808
1809 // is the store non-extending and non-indexed?
1810 if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
1811 return false;
1812
1813 SDValue Load = StoredVal->getOperand(0);
1814 // Is the stored value a non-extending and non-indexed load?
1815 if (!ISD::isNormalLoad(Load.getNode())) return false;
1816
1817 // Return LoadNode by reference.
1818 LoadNode = cast<LoadSDNode>(Load);
1819 // is the size of the value one that we can handle? (i.e. 64, 32, 16, or 8)
1820 EVT LdVT = LoadNode->getMemoryVT();
1821 if (LdVT != MVT::i64 && LdVT != MVT::i32 && LdVT != MVT::i16 &&
1822 LdVT != MVT::i8)
1823 return false;
1824
1825 // Is store the only read of the loaded value?
1826 if (!Load.hasOneUse())
1827 return false;
1828
1829 // Is the address of the store the same as the load?
1830 if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
1831 LoadNode->getOffset() != StoreNode->getOffset())
1832 return false;
1833
1834 // Check if the chain is produced by the load or is a TokenFactor with
1835 // the load output chain as an operand. Return InputChain by reference.
1836 SDValue Chain = StoreNode->getChain();
1837
1838 bool ChainCheck = false;
1839 if (Chain == Load.getValue(1)) {
1840 ChainCheck = true;
1841 InputChain = LoadNode->getChain();
1842 } else if (Chain.getOpcode() == ISD::TokenFactor) {
1843 SmallVector<SDValue, 4> ChainOps;
1844 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
1845 SDValue Op = Chain.getOperand(i);
1846 if (Op == Load.getValue(1)) {
1847 ChainCheck = true;
1848 continue;
1849 }
1850
1851 // Make sure using Op as part of the chain would not cause a cycle here.
1852 // In theory, we could check whether the chain node is a predecessor of
1853 // the load. But that can be very expensive. Instead visit the uses and
1854 // make sure they all have smaller node id than the load.
1855 int LoadId = LoadNode->getNodeId();
1856 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
1857 UE = UI->use_end(); UI != UE; ++UI) {
1858 if (UI.getUse().getResNo() != 0)
1859 continue;
1860 if (UI->getNodeId() > LoadId)
1861 return false;
1862 }
1863
1864 ChainOps.push_back(Op);
1865 }
1866
1867 if (ChainCheck)
1868 // Make a new TokenFactor with all the other input chains except
1869 // for the load.
1870 InputChain = CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain),
1871 MVT::Other, ChainOps);
1872 }
1873 if (!ChainCheck)
1874 return false;
1875
1876 return true;
1877 }
1878
1879 /// Get the appropriate X86 opcode for an in-memory increment or decrement.
1880 /// Opc should be X86ISD::DEC or X86ISD::INC.
getFusedLdStOpcode(EVT & LdVT,unsigned Opc)1881 static unsigned getFusedLdStOpcode(EVT &LdVT, unsigned Opc) {
1882 if (Opc == X86ISD::DEC) {
1883 if (LdVT == MVT::i64) return X86::DEC64m;
1884 if (LdVT == MVT::i32) return X86::DEC32m;
1885 if (LdVT == MVT::i16) return X86::DEC16m;
1886 if (LdVT == MVT::i8) return X86::DEC8m;
1887 } else {
1888 assert(Opc == X86ISD::INC && "unrecognized opcode");
1889 if (LdVT == MVT::i64) return X86::INC64m;
1890 if (LdVT == MVT::i32) return X86::INC32m;
1891 if (LdVT == MVT::i16) return X86::INC16m;
1892 if (LdVT == MVT::i8) return X86::INC8m;
1893 }
1894 llvm_unreachable("unrecognized size for LdVT");
1895 }
1896
1897 /// Customized ISel for GATHER operations.
tryGather(SDNode * Node,unsigned Opc)1898 bool X86DAGToDAGISel::tryGather(SDNode *Node, unsigned Opc) {
1899 // Operands of Gather: VSrc, Base, VIdx, VMask, Scale
1900 SDValue Chain = Node->getOperand(0);
1901 SDValue VSrc = Node->getOperand(2);
1902 SDValue Base = Node->getOperand(3);
1903 SDValue VIdx = Node->getOperand(4);
1904 SDValue VMask = Node->getOperand(5);
1905 ConstantSDNode *Scale = dyn_cast<ConstantSDNode>(Node->getOperand(6));
1906 if (!Scale)
1907 return false;
1908
1909 SDVTList VTs = CurDAG->getVTList(VSrc.getValueType(), VSrc.getValueType(),
1910 MVT::Other);
1911
1912 SDLoc DL(Node);
1913
1914 // Memory Operands: Base, Scale, Index, Disp, Segment
1915 SDValue Disp = CurDAG->getTargetConstant(0, DL, MVT::i32);
1916 SDValue Segment = CurDAG->getRegister(0, MVT::i32);
1917 const SDValue Ops[] = { VSrc, Base, getI8Imm(Scale->getSExtValue(), DL), VIdx,
1918 Disp, Segment, VMask, Chain};
1919 SDNode *ResNode = CurDAG->getMachineNode(Opc, DL, VTs, Ops);
1920 // Node has 2 outputs: VDst and MVT::Other.
1921 // ResNode has 3 outputs: VDst, VMask_wb, and MVT::Other.
1922 // We replace VDst of Node with VDst of ResNode, and Other of Node with Other
1923 // of ResNode.
1924 ReplaceUses(SDValue(Node, 0), SDValue(ResNode, 0));
1925 ReplaceUses(SDValue(Node, 1), SDValue(ResNode, 2));
1926 CurDAG->RemoveDeadNode(Node);
1927 return true;
1928 }
1929
Select(SDNode * Node)1930 void X86DAGToDAGISel::Select(SDNode *Node) {
1931 MVT NVT = Node->getSimpleValueType(0);
1932 unsigned Opc, MOpc;
1933 unsigned Opcode = Node->getOpcode();
1934 SDLoc dl(Node);
1935
1936 DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n');
1937
1938 if (Node->isMachineOpcode()) {
1939 DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << '\n');
1940 Node->setNodeId(-1);
1941 return; // Already selected.
1942 }
1943
1944 switch (Opcode) {
1945 default: break;
1946 case ISD::BRIND: {
1947 if (Subtarget->isTargetNaCl())
1948 // NaCl has its own pass where jmp %r32 are converted to jmp %r64. We
1949 // leave the instruction alone.
1950 break;
1951 if (Subtarget->isTarget64BitILP32()) {
1952 // Converts a 32-bit register to a 64-bit, zero-extended version of
1953 // it. This is needed because x86-64 can do many things, but jmp %r32
1954 // ain't one of them.
1955 const SDValue &Target = Node->getOperand(1);
1956 assert(Target.getSimpleValueType() == llvm::MVT::i32);
1957 SDValue ZextTarget = CurDAG->getZExtOrTrunc(Target, dl, EVT(MVT::i64));
1958 SDValue Brind = CurDAG->getNode(ISD::BRIND, dl, MVT::Other,
1959 Node->getOperand(0), ZextTarget);
1960 ReplaceNode(Node, Brind.getNode());
1961 SelectCode(ZextTarget.getNode());
1962 SelectCode(Brind.getNode());
1963 return;
1964 }
1965 break;
1966 }
1967 case ISD::INTRINSIC_W_CHAIN: {
1968 unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
1969 switch (IntNo) {
1970 default: break;
1971 case Intrinsic::x86_avx2_gather_d_pd:
1972 case Intrinsic::x86_avx2_gather_d_pd_256:
1973 case Intrinsic::x86_avx2_gather_q_pd:
1974 case Intrinsic::x86_avx2_gather_q_pd_256:
1975 case Intrinsic::x86_avx2_gather_d_ps:
1976 case Intrinsic::x86_avx2_gather_d_ps_256:
1977 case Intrinsic::x86_avx2_gather_q_ps:
1978 case Intrinsic::x86_avx2_gather_q_ps_256:
1979 case Intrinsic::x86_avx2_gather_d_q:
1980 case Intrinsic::x86_avx2_gather_d_q_256:
1981 case Intrinsic::x86_avx2_gather_q_q:
1982 case Intrinsic::x86_avx2_gather_q_q_256:
1983 case Intrinsic::x86_avx2_gather_d_d:
1984 case Intrinsic::x86_avx2_gather_d_d_256:
1985 case Intrinsic::x86_avx2_gather_q_d:
1986 case Intrinsic::x86_avx2_gather_q_d_256: {
1987 if (!Subtarget->hasAVX2())
1988 break;
1989 unsigned Opc;
1990 switch (IntNo) {
1991 default: llvm_unreachable("Impossible intrinsic");
1992 case Intrinsic::x86_avx2_gather_d_pd: Opc = X86::VGATHERDPDrm; break;
1993 case Intrinsic::x86_avx2_gather_d_pd_256: Opc = X86::VGATHERDPDYrm; break;
1994 case Intrinsic::x86_avx2_gather_q_pd: Opc = X86::VGATHERQPDrm; break;
1995 case Intrinsic::x86_avx2_gather_q_pd_256: Opc = X86::VGATHERQPDYrm; break;
1996 case Intrinsic::x86_avx2_gather_d_ps: Opc = X86::VGATHERDPSrm; break;
1997 case Intrinsic::x86_avx2_gather_d_ps_256: Opc = X86::VGATHERDPSYrm; break;
1998 case Intrinsic::x86_avx2_gather_q_ps: Opc = X86::VGATHERQPSrm; break;
1999 case Intrinsic::x86_avx2_gather_q_ps_256: Opc = X86::VGATHERQPSYrm; break;
2000 case Intrinsic::x86_avx2_gather_d_q: Opc = X86::VPGATHERDQrm; break;
2001 case Intrinsic::x86_avx2_gather_d_q_256: Opc = X86::VPGATHERDQYrm; break;
2002 case Intrinsic::x86_avx2_gather_q_q: Opc = X86::VPGATHERQQrm; break;
2003 case Intrinsic::x86_avx2_gather_q_q_256: Opc = X86::VPGATHERQQYrm; break;
2004 case Intrinsic::x86_avx2_gather_d_d: Opc = X86::VPGATHERDDrm; break;
2005 case Intrinsic::x86_avx2_gather_d_d_256: Opc = X86::VPGATHERDDYrm; break;
2006 case Intrinsic::x86_avx2_gather_q_d: Opc = X86::VPGATHERQDrm; break;
2007 case Intrinsic::x86_avx2_gather_q_d_256: Opc = X86::VPGATHERQDYrm; break;
2008 }
2009 if (tryGather(Node, Opc))
2010 return;
2011 break;
2012 }
2013 }
2014 break;
2015 }
2016 case X86ISD::GlobalBaseReg:
2017 ReplaceNode(Node, getGlobalBaseReg());
2018 return;
2019
2020 case X86ISD::SHRUNKBLEND: {
2021 // SHRUNKBLEND selects like a regular VSELECT.
2022 SDValue VSelect = CurDAG->getNode(
2023 ISD::VSELECT, SDLoc(Node), Node->getValueType(0), Node->getOperand(0),
2024 Node->getOperand(1), Node->getOperand(2));
2025 ReplaceUses(SDValue(Node, 0), VSelect);
2026 SelectCode(VSelect.getNode());
2027 // We already called ReplaceUses.
2028 return;
2029 }
2030
2031 case ISD::AND:
2032 case ISD::OR:
2033 case ISD::XOR: {
2034 // For operations of the form (x << C1) op C2, check if we can use a smaller
2035 // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
2036 SDValue N0 = Node->getOperand(0);
2037 SDValue N1 = Node->getOperand(1);
2038
2039 if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse())
2040 break;
2041
2042 // i8 is unshrinkable, i16 should be promoted to i32.
2043 if (NVT != MVT::i32 && NVT != MVT::i64)
2044 break;
2045
2046 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
2047 ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
2048 if (!Cst || !ShlCst)
2049 break;
2050
2051 int64_t Val = Cst->getSExtValue();
2052 uint64_t ShlVal = ShlCst->getZExtValue();
2053
2054 // Make sure that we don't change the operation by removing bits.
2055 // This only matters for OR and XOR, AND is unaffected.
2056 uint64_t RemovedBitsMask = (1ULL << ShlVal) - 1;
2057 if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0)
2058 break;
2059
2060 unsigned ShlOp, AddOp, Op;
2061 MVT CstVT = NVT;
2062
2063 // Check the minimum bitwidth for the new constant.
2064 // TODO: AND32ri is the same as AND64ri32 with zext imm.
2065 // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr
2066 // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
2067 if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal))
2068 CstVT = MVT::i8;
2069 else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal))
2070 CstVT = MVT::i32;
2071
2072 // Bail if there is no smaller encoding.
2073 if (NVT == CstVT)
2074 break;
2075
2076 switch (NVT.SimpleTy) {
2077 default: llvm_unreachable("Unsupported VT!");
2078 case MVT::i32:
2079 assert(CstVT == MVT::i8);
2080 ShlOp = X86::SHL32ri;
2081 AddOp = X86::ADD32rr;
2082
2083 switch (Opcode) {
2084 default: llvm_unreachable("Impossible opcode");
2085 case ISD::AND: Op = X86::AND32ri8; break;
2086 case ISD::OR: Op = X86::OR32ri8; break;
2087 case ISD::XOR: Op = X86::XOR32ri8; break;
2088 }
2089 break;
2090 case MVT::i64:
2091 assert(CstVT == MVT::i8 || CstVT == MVT::i32);
2092 ShlOp = X86::SHL64ri;
2093 AddOp = X86::ADD64rr;
2094
2095 switch (Opcode) {
2096 default: llvm_unreachable("Impossible opcode");
2097 case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break;
2098 case ISD::OR: Op = CstVT==MVT::i8? X86::OR64ri8 : X86::OR64ri32; break;
2099 case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break;
2100 }
2101 break;
2102 }
2103
2104 // Emit the smaller op and the shift.
2105 SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, dl, CstVT);
2106 SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst);
2107 if (ShlVal == 1)
2108 CurDAG->SelectNodeTo(Node, AddOp, NVT, SDValue(New, 0),
2109 SDValue(New, 0));
2110 else
2111 CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0),
2112 getI8Imm(ShlVal, dl));
2113 return;
2114 }
2115 case X86ISD::UMUL8:
2116 case X86ISD::SMUL8: {
2117 SDValue N0 = Node->getOperand(0);
2118 SDValue N1 = Node->getOperand(1);
2119
2120 Opc = (Opcode == X86ISD::SMUL8 ? X86::IMUL8r : X86::MUL8r);
2121
2122 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::AL,
2123 N0, SDValue()).getValue(1);
2124
2125 SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32);
2126 SDValue Ops[] = {N1, InFlag};
2127 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
2128
2129 ReplaceNode(Node, CNode);
2130 return;
2131 }
2132
2133 case X86ISD::UMUL: {
2134 SDValue N0 = Node->getOperand(0);
2135 SDValue N1 = Node->getOperand(1);
2136
2137 unsigned LoReg;
2138 switch (NVT.SimpleTy) {
2139 default: llvm_unreachable("Unsupported VT!");
2140 case MVT::i8: LoReg = X86::AL; Opc = X86::MUL8r; break;
2141 case MVT::i16: LoReg = X86::AX; Opc = X86::MUL16r; break;
2142 case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break;
2143 case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break;
2144 }
2145
2146 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
2147 N0, SDValue()).getValue(1);
2148
2149 SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
2150 SDValue Ops[] = {N1, InFlag};
2151 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
2152
2153 ReplaceNode(Node, CNode);
2154 return;
2155 }
2156
2157 case ISD::SMUL_LOHI:
2158 case ISD::UMUL_LOHI: {
2159 SDValue N0 = Node->getOperand(0);
2160 SDValue N1 = Node->getOperand(1);
2161
2162 bool isSigned = Opcode == ISD::SMUL_LOHI;
2163 bool hasBMI2 = Subtarget->hasBMI2();
2164 if (!isSigned) {
2165 switch (NVT.SimpleTy) {
2166 default: llvm_unreachable("Unsupported VT!");
2167 case MVT::i8: Opc = X86::MUL8r; MOpc = X86::MUL8m; break;
2168 case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
2169 case MVT::i32: Opc = hasBMI2 ? X86::MULX32rr : X86::MUL32r;
2170 MOpc = hasBMI2 ? X86::MULX32rm : X86::MUL32m; break;
2171 case MVT::i64: Opc = hasBMI2 ? X86::MULX64rr : X86::MUL64r;
2172 MOpc = hasBMI2 ? X86::MULX64rm : X86::MUL64m; break;
2173 }
2174 } else {
2175 switch (NVT.SimpleTy) {
2176 default: llvm_unreachable("Unsupported VT!");
2177 case MVT::i8: Opc = X86::IMUL8r; MOpc = X86::IMUL8m; break;
2178 case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
2179 case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
2180 case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
2181 }
2182 }
2183
2184 unsigned SrcReg, LoReg, HiReg;
2185 switch (Opc) {
2186 default: llvm_unreachable("Unknown MUL opcode!");
2187 case X86::IMUL8r:
2188 case X86::MUL8r:
2189 SrcReg = LoReg = X86::AL; HiReg = X86::AH;
2190 break;
2191 case X86::IMUL16r:
2192 case X86::MUL16r:
2193 SrcReg = LoReg = X86::AX; HiReg = X86::DX;
2194 break;
2195 case X86::IMUL32r:
2196 case X86::MUL32r:
2197 SrcReg = LoReg = X86::EAX; HiReg = X86::EDX;
2198 break;
2199 case X86::IMUL64r:
2200 case X86::MUL64r:
2201 SrcReg = LoReg = X86::RAX; HiReg = X86::RDX;
2202 break;
2203 case X86::MULX32rr:
2204 SrcReg = X86::EDX; LoReg = HiReg = 0;
2205 break;
2206 case X86::MULX64rr:
2207 SrcReg = X86::RDX; LoReg = HiReg = 0;
2208 break;
2209 }
2210
2211 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2212 bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2213 // Multiply is commmutative.
2214 if (!foldedLoad) {
2215 foldedLoad = tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2216 if (foldedLoad)
2217 std::swap(N0, N1);
2218 }
2219
2220 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, SrcReg,
2221 N0, SDValue()).getValue(1);
2222 SDValue ResHi, ResLo;
2223
2224 if (foldedLoad) {
2225 SDValue Chain;
2226 MachineSDNode *CNode = nullptr;
2227 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
2228 InFlag };
2229 if (MOpc == X86::MULX32rm || MOpc == X86::MULX64rm) {
2230 SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other, MVT::Glue);
2231 CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
2232 ResHi = SDValue(CNode, 0);
2233 ResLo = SDValue(CNode, 1);
2234 Chain = SDValue(CNode, 2);
2235 InFlag = SDValue(CNode, 3);
2236 } else {
2237 SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
2238 CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
2239 Chain = SDValue(CNode, 0);
2240 InFlag = SDValue(CNode, 1);
2241 }
2242
2243 // Update the chain.
2244 ReplaceUses(N1.getValue(1), Chain);
2245 // Record the mem-refs
2246 LoadSDNode *LoadNode = cast<LoadSDNode>(N1);
2247 if (LoadNode) {
2248 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
2249 MemOp[0] = LoadNode->getMemOperand();
2250 CNode->setMemRefs(MemOp, MemOp + 1);
2251 }
2252 } else {
2253 SDValue Ops[] = { N1, InFlag };
2254 if (Opc == X86::MULX32rr || Opc == X86::MULX64rr) {
2255 SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Glue);
2256 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
2257 ResHi = SDValue(CNode, 0);
2258 ResLo = SDValue(CNode, 1);
2259 InFlag = SDValue(CNode, 2);
2260 } else {
2261 SDVTList VTs = CurDAG->getVTList(MVT::Glue);
2262 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
2263 InFlag = SDValue(CNode, 0);
2264 }
2265 }
2266
2267 // Prevent use of AH in a REX instruction by referencing AX instead.
2268 if (HiReg == X86::AH && Subtarget->is64Bit() &&
2269 !SDValue(Node, 1).use_empty()) {
2270 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2271 X86::AX, MVT::i16, InFlag);
2272 InFlag = Result.getValue(2);
2273 // Get the low part if needed. Don't use getCopyFromReg for aliasing
2274 // registers.
2275 if (!SDValue(Node, 0).use_empty())
2276 ReplaceUses(SDValue(Node, 1),
2277 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2278
2279 // Shift AX down 8 bits.
2280 Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
2281 Result,
2282 CurDAG->getTargetConstant(8, dl, MVT::i8)),
2283 0);
2284 // Then truncate it down to i8.
2285 ReplaceUses(SDValue(Node, 1),
2286 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2287 }
2288 // Copy the low half of the result, if it is needed.
2289 if (!SDValue(Node, 0).use_empty()) {
2290 if (!ResLo.getNode()) {
2291 assert(LoReg && "Register for low half is not defined!");
2292 ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg, NVT,
2293 InFlag);
2294 InFlag = ResLo.getValue(2);
2295 }
2296 ReplaceUses(SDValue(Node, 0), ResLo);
2297 DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG); dbgs() << '\n');
2298 }
2299 // Copy the high half of the result, if it is needed.
2300 if (!SDValue(Node, 1).use_empty()) {
2301 if (!ResHi.getNode()) {
2302 assert(HiReg && "Register for high half is not defined!");
2303 ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg, NVT,
2304 InFlag);
2305 InFlag = ResHi.getValue(2);
2306 }
2307 ReplaceUses(SDValue(Node, 1), ResHi);
2308 DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG); dbgs() << '\n');
2309 }
2310
2311 return;
2312 }
2313
2314 case ISD::SDIVREM:
2315 case ISD::UDIVREM:
2316 case X86ISD::SDIVREM8_SEXT_HREG:
2317 case X86ISD::UDIVREM8_ZEXT_HREG: {
2318 SDValue N0 = Node->getOperand(0);
2319 SDValue N1 = Node->getOperand(1);
2320
2321 bool isSigned = (Opcode == ISD::SDIVREM ||
2322 Opcode == X86ISD::SDIVREM8_SEXT_HREG);
2323 if (!isSigned) {
2324 switch (NVT.SimpleTy) {
2325 default: llvm_unreachable("Unsupported VT!");
2326 case MVT::i8: Opc = X86::DIV8r; MOpc = X86::DIV8m; break;
2327 case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
2328 case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
2329 case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
2330 }
2331 } else {
2332 switch (NVT.SimpleTy) {
2333 default: llvm_unreachable("Unsupported VT!");
2334 case MVT::i8: Opc = X86::IDIV8r; MOpc = X86::IDIV8m; break;
2335 case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
2336 case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
2337 case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
2338 }
2339 }
2340
2341 unsigned LoReg, HiReg, ClrReg;
2342 unsigned SExtOpcode;
2343 switch (NVT.SimpleTy) {
2344 default: llvm_unreachable("Unsupported VT!");
2345 case MVT::i8:
2346 LoReg = X86::AL; ClrReg = HiReg = X86::AH;
2347 SExtOpcode = X86::CBW;
2348 break;
2349 case MVT::i16:
2350 LoReg = X86::AX; HiReg = X86::DX;
2351 ClrReg = X86::DX;
2352 SExtOpcode = X86::CWD;
2353 break;
2354 case MVT::i32:
2355 LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
2356 SExtOpcode = X86::CDQ;
2357 break;
2358 case MVT::i64:
2359 LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
2360 SExtOpcode = X86::CQO;
2361 break;
2362 }
2363
2364 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2365 bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2366 bool signBitIsZero = CurDAG->SignBitIsZero(N0);
2367
2368 SDValue InFlag;
2369 if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
2370 // Special case for div8, just use a move with zero extension to AX to
2371 // clear the upper 8 bits (AH).
2372 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
2373 if (tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
2374 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
2375 Move =
2376 SDValue(CurDAG->getMachineNode(X86::MOVZX32rm8, dl, MVT::i32,
2377 MVT::Other, Ops), 0);
2378 Chain = Move.getValue(1);
2379 ReplaceUses(N0.getValue(1), Chain);
2380 } else {
2381 Move =
2382 SDValue(CurDAG->getMachineNode(X86::MOVZX32rr8, dl, MVT::i32, N0),0);
2383 Chain = CurDAG->getEntryNode();
2384 }
2385 Chain = CurDAG->getCopyToReg(Chain, dl, X86::EAX, Move, SDValue());
2386 InFlag = Chain.getValue(1);
2387 } else {
2388 InFlag =
2389 CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
2390 LoReg, N0, SDValue()).getValue(1);
2391 if (isSigned && !signBitIsZero) {
2392 // Sign extend the low part into the high part.
2393 InFlag =
2394 SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
2395 } else {
2396 // Zero out the high part, effectively zero extending the input.
2397 SDValue ClrNode = SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, NVT), 0);
2398 switch (NVT.SimpleTy) {
2399 case MVT::i16:
2400 ClrNode =
2401 SDValue(CurDAG->getMachineNode(
2402 TargetOpcode::EXTRACT_SUBREG, dl, MVT::i16, ClrNode,
2403 CurDAG->getTargetConstant(X86::sub_16bit, dl,
2404 MVT::i32)),
2405 0);
2406 break;
2407 case MVT::i32:
2408 break;
2409 case MVT::i64:
2410 ClrNode =
2411 SDValue(CurDAG->getMachineNode(
2412 TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
2413 CurDAG->getTargetConstant(0, dl, MVT::i64), ClrNode,
2414 CurDAG->getTargetConstant(X86::sub_32bit, dl,
2415 MVT::i32)),
2416 0);
2417 break;
2418 default:
2419 llvm_unreachable("Unexpected division source");
2420 }
2421
2422 InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
2423 ClrNode, InFlag).getValue(1);
2424 }
2425 }
2426
2427 if (foldedLoad) {
2428 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
2429 InFlag };
2430 SDNode *CNode =
2431 CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops);
2432 InFlag = SDValue(CNode, 1);
2433 // Update the chain.
2434 ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
2435 } else {
2436 InFlag =
2437 SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0);
2438 }
2439
2440 // Prevent use of AH in a REX instruction by explicitly copying it to
2441 // an ABCD_L register.
2442 //
2443 // The current assumption of the register allocator is that isel
2444 // won't generate explicit references to the GR8_ABCD_H registers. If
2445 // the allocator and/or the backend get enhanced to be more robust in
2446 // that regard, this can be, and should be, removed.
2447 if (HiReg == X86::AH && !SDValue(Node, 1).use_empty()) {
2448 SDValue AHCopy = CurDAG->getRegister(X86::AH, MVT::i8);
2449 unsigned AHExtOpcode =
2450 isSigned ? X86::MOVSX32_NOREXrr8 : X86::MOVZX32_NOREXrr8;
2451
2452 SDNode *RNode = CurDAG->getMachineNode(AHExtOpcode, dl, MVT::i32,
2453 MVT::Glue, AHCopy, InFlag);
2454 SDValue Result(RNode, 0);
2455 InFlag = SDValue(RNode, 1);
2456
2457 if (Opcode == X86ISD::UDIVREM8_ZEXT_HREG ||
2458 Opcode == X86ISD::SDIVREM8_SEXT_HREG) {
2459 if (Node->getValueType(1) == MVT::i64) {
2460 // It's not possible to directly movsx AH to a 64bit register, because
2461 // the latter needs the REX prefix, but the former can't have it.
2462 assert(Opcode != X86ISD::SDIVREM8_SEXT_HREG &&
2463 "Unexpected i64 sext of h-register");
2464 Result =
2465 SDValue(CurDAG->getMachineNode(
2466 TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
2467 CurDAG->getTargetConstant(0, dl, MVT::i64), Result,
2468 CurDAG->getTargetConstant(X86::sub_32bit, dl,
2469 MVT::i32)),
2470 0);
2471 }
2472 } else {
2473 Result =
2474 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result);
2475 }
2476 ReplaceUses(SDValue(Node, 1), Result);
2477 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2478 }
2479 // Copy the division (low) result, if it is needed.
2480 if (!SDValue(Node, 0).use_empty()) {
2481 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2482 LoReg, NVT, InFlag);
2483 InFlag = Result.getValue(2);
2484 ReplaceUses(SDValue(Node, 0), Result);
2485 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2486 }
2487 // Copy the remainder (high) result, if it is needed.
2488 if (!SDValue(Node, 1).use_empty()) {
2489 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2490 HiReg, NVT, InFlag);
2491 InFlag = Result.getValue(2);
2492 ReplaceUses(SDValue(Node, 1), Result);
2493 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2494 }
2495 return;
2496 }
2497
2498 case X86ISD::CMP:
2499 case X86ISD::SUB: {
2500 // Sometimes a SUB is used to perform comparison.
2501 if (Opcode == X86ISD::SUB && Node->hasAnyUseOfValue(0))
2502 // This node is not a CMP.
2503 break;
2504 SDValue N0 = Node->getOperand(0);
2505 SDValue N1 = Node->getOperand(1);
2506
2507 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
2508 hasNoSignedComparisonUses(Node))
2509 N0 = N0.getOperand(0);
2510
2511 // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
2512 // use a smaller encoding.
2513 // Look past the truncate if CMP is the only use of it.
2514 if ((N0.getNode()->getOpcode() == ISD::AND ||
2515 (N0.getResNo() == 0 && N0.getNode()->getOpcode() == X86ISD::AND)) &&
2516 N0.getNode()->hasOneUse() &&
2517 N0.getValueType() != MVT::i8 &&
2518 X86::isZeroNode(N1)) {
2519 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
2520 if (!C) break;
2521
2522 // For example, convert "testl %eax, $8" to "testb %al, $8"
2523 if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
2524 (!(C->getZExtValue() & 0x80) ||
2525 hasNoSignedComparisonUses(Node))) {
2526 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), dl, MVT::i8);
2527 SDValue Reg = N0.getNode()->getOperand(0);
2528
2529 // On x86-32, only the ABCD registers have 8-bit subregisters.
2530 if (!Subtarget->is64Bit()) {
2531 const TargetRegisterClass *TRC;
2532 switch (N0.getSimpleValueType().SimpleTy) {
2533 case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2534 case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2535 default: llvm_unreachable("Unsupported TEST operand type!");
2536 }
2537 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32);
2538 Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2539 Reg.getValueType(), Reg, RC), 0);
2540 }
2541
2542 // Extract the l-register.
2543 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl,
2544 MVT::i8, Reg);
2545
2546 // Emit a testb.
2547 SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32,
2548 Subreg, Imm);
2549 // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2550 // one, do not call ReplaceAllUsesWith.
2551 ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2552 SDValue(NewNode, 0));
2553 return;
2554 }
2555
2556 // For example, "testl %eax, $2048" to "testb %ah, $8".
2557 if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
2558 (!(C->getZExtValue() & 0x8000) ||
2559 hasNoSignedComparisonUses(Node))) {
2560 // Shift the immediate right by 8 bits.
2561 SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
2562 dl, MVT::i8);
2563 SDValue Reg = N0.getNode()->getOperand(0);
2564
2565 // Put the value in an ABCD register.
2566 const TargetRegisterClass *TRC;
2567 switch (N0.getSimpleValueType().SimpleTy) {
2568 case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
2569 case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2570 case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2571 default: llvm_unreachable("Unsupported TEST operand type!");
2572 }
2573 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32);
2574 Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2575 Reg.getValueType(), Reg, RC), 0);
2576
2577 // Extract the h-register.
2578 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl,
2579 MVT::i8, Reg);
2580
2581 // Emit a testb. The EXTRACT_SUBREG becomes a COPY that can only
2582 // target GR8_NOREX registers, so make sure the register class is
2583 // forced.
2584 SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri_NOREX, dl,
2585 MVT::i32, Subreg, ShiftedImm);
2586 // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2587 // one, do not call ReplaceAllUsesWith.
2588 ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2589 SDValue(NewNode, 0));
2590 return;
2591 }
2592
2593 // For example, "testl %eax, $32776" to "testw %ax, $32776".
2594 if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
2595 N0.getValueType() != MVT::i16 &&
2596 (!(C->getZExtValue() & 0x8000) ||
2597 hasNoSignedComparisonUses(Node))) {
2598 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), dl,
2599 MVT::i16);
2600 SDValue Reg = N0.getNode()->getOperand(0);
2601
2602 // Extract the 16-bit subregister.
2603 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl,
2604 MVT::i16, Reg);
2605
2606 // Emit a testw.
2607 SDNode *NewNode = CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32,
2608 Subreg, Imm);
2609 // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2610 // one, do not call ReplaceAllUsesWith.
2611 ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2612 SDValue(NewNode, 0));
2613 return;
2614 }
2615
2616 // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
2617 if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
2618 N0.getValueType() == MVT::i64 &&
2619 (!(C->getZExtValue() & 0x80000000) ||
2620 hasNoSignedComparisonUses(Node))) {
2621 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), dl,
2622 MVT::i32);
2623 SDValue Reg = N0.getNode()->getOperand(0);
2624
2625 // Extract the 32-bit subregister.
2626 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl,
2627 MVT::i32, Reg);
2628
2629 // Emit a testl.
2630 SDNode *NewNode = CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32,
2631 Subreg, Imm);
2632 // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2633 // one, do not call ReplaceAllUsesWith.
2634 ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2635 SDValue(NewNode, 0));
2636 return;
2637 }
2638 }
2639 break;
2640 }
2641 case ISD::STORE: {
2642 // Change a chain of {load; incr or dec; store} of the same value into
2643 // a simple increment or decrement through memory of that value, if the
2644 // uses of the modified value and its address are suitable.
2645 // The DEC64m tablegen pattern is currently not able to match the case where
2646 // the EFLAGS on the original DEC are used. (This also applies to
2647 // {INC,DEC}X{64,32,16,8}.)
2648 // We'll need to improve tablegen to allow flags to be transferred from a
2649 // node in the pattern to the result node. probably with a new keyword
2650 // for example, we have this
2651 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2652 // [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2653 // (implicit EFLAGS)]>;
2654 // but maybe need something like this
2655 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2656 // [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2657 // (transferrable EFLAGS)]>;
2658
2659 StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
2660 SDValue StoredVal = StoreNode->getOperand(1);
2661 unsigned Opc = StoredVal->getOpcode();
2662
2663 LoadSDNode *LoadNode = nullptr;
2664 SDValue InputChain;
2665 if (!isLoadIncOrDecStore(StoreNode, Opc, StoredVal, CurDAG,
2666 LoadNode, InputChain))
2667 break;
2668
2669 SDValue Base, Scale, Index, Disp, Segment;
2670 if (!selectAddr(LoadNode, LoadNode->getBasePtr(),
2671 Base, Scale, Index, Disp, Segment))
2672 break;
2673
2674 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(2);
2675 MemOp[0] = StoreNode->getMemOperand();
2676 MemOp[1] = LoadNode->getMemOperand();
2677 const SDValue Ops[] = { Base, Scale, Index, Disp, Segment, InputChain };
2678 EVT LdVT = LoadNode->getMemoryVT();
2679 unsigned newOpc = getFusedLdStOpcode(LdVT, Opc);
2680 MachineSDNode *Result = CurDAG->getMachineNode(newOpc,
2681 SDLoc(Node),
2682 MVT::i32, MVT::Other, Ops);
2683 Result->setMemRefs(MemOp, MemOp + 2);
2684
2685 ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
2686 ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
2687 CurDAG->RemoveDeadNode(Node);
2688 return;
2689 }
2690 }
2691
2692 SelectCode(Node);
2693 }
2694
2695 bool X86DAGToDAGISel::
SelectInlineAsmMemoryOperand(const SDValue & Op,unsigned ConstraintID,std::vector<SDValue> & OutOps)2696 SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
2697 std::vector<SDValue> &OutOps) {
2698 SDValue Op0, Op1, Op2, Op3, Op4;
2699 switch (ConstraintID) {
2700 default:
2701 llvm_unreachable("Unexpected asm memory constraint");
2702 case InlineAsm::Constraint_i:
2703 // FIXME: It seems strange that 'i' is needed here since it's supposed to
2704 // be an immediate and not a memory constraint.
2705 // Fallthrough.
2706 case InlineAsm::Constraint_o: // offsetable ??
2707 case InlineAsm::Constraint_v: // not offsetable ??
2708 case InlineAsm::Constraint_m: // memory
2709 case InlineAsm::Constraint_X:
2710 if (!selectAddr(nullptr, Op, Op0, Op1, Op2, Op3, Op4))
2711 return true;
2712 break;
2713 }
2714
2715 OutOps.push_back(Op0);
2716 OutOps.push_back(Op1);
2717 OutOps.push_back(Op2);
2718 OutOps.push_back(Op3);
2719 OutOps.push_back(Op4);
2720 return false;
2721 }
2722
2723 /// This pass converts a legalized DAG into a X86-specific DAG,
2724 /// ready for instruction scheduling.
createX86ISelDag(X86TargetMachine & TM,CodeGenOpt::Level OptLevel)2725 FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
2726 CodeGenOpt::Level OptLevel) {
2727 return new X86DAGToDAGISel(TM, OptLevel);
2728 }
2729