1//===- X86RegisterInfo.td - Describe the X86 Register File --*- tablegen -*-==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the X86 Register file, defining the registers themselves,
11// aliases between the registers, and the register classes built out of the
12// registers.
13//
14//===----------------------------------------------------------------------===//
15
16class X86Reg<string n, bits<16> Enc, list<Register> subregs = []> : Register<n> {
17  let Namespace = "X86";
18  let HWEncoding = Enc;
19  let SubRegs = subregs;
20}
21
22// Subregister indices.
23let Namespace = "X86" in {
24  def sub_8bit    : SubRegIndex<8>;
25  def sub_8bit_hi : SubRegIndex<8, 8>;
26  def sub_16bit   : SubRegIndex<16>;
27  def sub_32bit   : SubRegIndex<32>;
28  def sub_xmm     : SubRegIndex<128>;
29  def sub_ymm     : SubRegIndex<256>;
30}
31
32//===----------------------------------------------------------------------===//
33//  Register definitions...
34//
35
36// In the register alias definitions below, we define which registers alias
37// which others.  We only specify which registers the small registers alias,
38// because the register file generator is smart enough to figure out that
39// AL aliases AX if we tell it that AX aliased AL (for example).
40
41// Dwarf numbering is different for 32-bit and 64-bit, and there are
42// variations by target as well. Currently the first entry is for X86-64,
43// second - for EH on X86-32/Darwin and third is 'generic' one (X86-32/Linux
44// and debug information on X86-32/Darwin)
45
46// 8-bit registers
47// Low registers
48def AL : X86Reg<"al", 0>;
49def DL : X86Reg<"dl", 2>;
50def CL : X86Reg<"cl", 1>;
51def BL : X86Reg<"bl", 3>;
52
53// High registers. On x86-64, these cannot be used in any instruction
54// with a REX prefix.
55def AH : X86Reg<"ah", 4>;
56def DH : X86Reg<"dh", 6>;
57def CH : X86Reg<"ch", 5>;
58def BH : X86Reg<"bh", 7>;
59
60// X86-64 only, requires REX.
61let CostPerUse = 1 in {
62def SIL  : X86Reg<"sil",   6>;
63def DIL  : X86Reg<"dil",   7>;
64def BPL  : X86Reg<"bpl",   5>;
65def SPL  : X86Reg<"spl",   4>;
66def R8B  : X86Reg<"r8b",   8>;
67def R9B  : X86Reg<"r9b",   9>;
68def R10B : X86Reg<"r10b", 10>;
69def R11B : X86Reg<"r11b", 11>;
70def R12B : X86Reg<"r12b", 12>;
71def R13B : X86Reg<"r13b", 13>;
72def R14B : X86Reg<"r14b", 14>;
73def R15B : X86Reg<"r15b", 15>;
74}
75
76// 16-bit registers
77let SubRegIndices = [sub_8bit, sub_8bit_hi], CoveredBySubRegs = 1 in {
78def AX : X86Reg<"ax", 0, [AL,AH]>;
79def DX : X86Reg<"dx", 2, [DL,DH]>;
80def CX : X86Reg<"cx", 1, [CL,CH]>;
81def BX : X86Reg<"bx", 3, [BL,BH]>;
82}
83let SubRegIndices = [sub_8bit] in {
84def SI : X86Reg<"si", 6, [SIL]>;
85def DI : X86Reg<"di", 7, [DIL]>;
86def BP : X86Reg<"bp", 5, [BPL]>;
87def SP : X86Reg<"sp", 4, [SPL]>;
88}
89def IP : X86Reg<"ip", 0>;
90
91// X86-64 only, requires REX.
92let SubRegIndices = [sub_8bit], CostPerUse = 1 in {
93def R8W  : X86Reg<"r8w",   8, [R8B]>;
94def R9W  : X86Reg<"r9w",   9, [R9B]>;
95def R10W : X86Reg<"r10w", 10, [R10B]>;
96def R11W : X86Reg<"r11w", 11, [R11B]>;
97def R12W : X86Reg<"r12w", 12, [R12B]>;
98def R13W : X86Reg<"r13w", 13, [R13B]>;
99def R14W : X86Reg<"r14w", 14, [R14B]>;
100def R15W : X86Reg<"r15w", 15, [R15B]>;
101}
102
103// 32-bit registers
104let SubRegIndices = [sub_16bit] in {
105def EAX : X86Reg<"eax", 0, [AX]>, DwarfRegNum<[-2, 0, 0]>;
106def EDX : X86Reg<"edx", 2, [DX]>, DwarfRegNum<[-2, 2, 2]>;
107def ECX : X86Reg<"ecx", 1, [CX]>, DwarfRegNum<[-2, 1, 1]>;
108def EBX : X86Reg<"ebx", 3, [BX]>, DwarfRegNum<[-2, 3, 3]>;
109def ESI : X86Reg<"esi", 6, [SI]>, DwarfRegNum<[-2, 6, 6]>;
110def EDI : X86Reg<"edi", 7, [DI]>, DwarfRegNum<[-2, 7, 7]>;
111def EBP : X86Reg<"ebp", 5, [BP]>, DwarfRegNum<[-2, 4, 5]>;
112def ESP : X86Reg<"esp", 4, [SP]>, DwarfRegNum<[-2, 5, 4]>;
113def EIP : X86Reg<"eip", 0, [IP]>, DwarfRegNum<[-2, 8, 8]>;
114
115// X86-64 only, requires REX
116let CostPerUse = 1 in {
117def R8D  : X86Reg<"r8d",   8, [R8W]>;
118def R9D  : X86Reg<"r9d",   9, [R9W]>;
119def R10D : X86Reg<"r10d", 10, [R10W]>;
120def R11D : X86Reg<"r11d", 11, [R11W]>;
121def R12D : X86Reg<"r12d", 12, [R12W]>;
122def R13D : X86Reg<"r13d", 13, [R13W]>;
123def R14D : X86Reg<"r14d", 14, [R14W]>;
124def R15D : X86Reg<"r15d", 15, [R15W]>;
125}}
126
127// 64-bit registers, X86-64 only
128let SubRegIndices = [sub_32bit] in {
129def RAX : X86Reg<"rax", 0, [EAX]>, DwarfRegNum<[0, -2, -2]>;
130def RDX : X86Reg<"rdx", 2, [EDX]>, DwarfRegNum<[1, -2, -2]>;
131def RCX : X86Reg<"rcx", 1, [ECX]>, DwarfRegNum<[2, -2, -2]>;
132def RBX : X86Reg<"rbx", 3, [EBX]>, DwarfRegNum<[3, -2, -2]>;
133def RSI : X86Reg<"rsi", 6, [ESI]>, DwarfRegNum<[4, -2, -2]>;
134def RDI : X86Reg<"rdi", 7, [EDI]>, DwarfRegNum<[5, -2, -2]>;
135def RBP : X86Reg<"rbp", 5, [EBP]>, DwarfRegNum<[6, -2, -2]>;
136def RSP : X86Reg<"rsp", 4, [ESP]>, DwarfRegNum<[7, -2, -2]>;
137
138// These also require REX.
139let CostPerUse = 1 in {
140def R8  : X86Reg<"r8",   8, [R8D]>,  DwarfRegNum<[ 8, -2, -2]>;
141def R9  : X86Reg<"r9",   9, [R9D]>,  DwarfRegNum<[ 9, -2, -2]>;
142def R10 : X86Reg<"r10", 10, [R10D]>, DwarfRegNum<[10, -2, -2]>;
143def R11 : X86Reg<"r11", 11, [R11D]>, DwarfRegNum<[11, -2, -2]>;
144def R12 : X86Reg<"r12", 12, [R12D]>, DwarfRegNum<[12, -2, -2]>;
145def R13 : X86Reg<"r13", 13, [R13D]>, DwarfRegNum<[13, -2, -2]>;
146def R14 : X86Reg<"r14", 14, [R14D]>, DwarfRegNum<[14, -2, -2]>;
147def R15 : X86Reg<"r15", 15, [R15D]>, DwarfRegNum<[15, -2, -2]>;
148def RIP : X86Reg<"rip",  0, [EIP]>,  DwarfRegNum<[16, -2, -2]>;
149}}
150
151// MMX Registers. These are actually aliased to ST0 .. ST7
152def MM0 : X86Reg<"mm0", 0>, DwarfRegNum<[41, 29, 29]>;
153def MM1 : X86Reg<"mm1", 1>, DwarfRegNum<[42, 30, 30]>;
154def MM2 : X86Reg<"mm2", 2>, DwarfRegNum<[43, 31, 31]>;
155def MM3 : X86Reg<"mm3", 3>, DwarfRegNum<[44, 32, 32]>;
156def MM4 : X86Reg<"mm4", 4>, DwarfRegNum<[45, 33, 33]>;
157def MM5 : X86Reg<"mm5", 5>, DwarfRegNum<[46, 34, 34]>;
158def MM6 : X86Reg<"mm6", 6>, DwarfRegNum<[47, 35, 35]>;
159def MM7 : X86Reg<"mm7", 7>, DwarfRegNum<[48, 36, 36]>;
160
161// Pseudo Floating Point registers
162def FP0 : X86Reg<"fp0", 0>;
163def FP1 : X86Reg<"fp1", 0>;
164def FP2 : X86Reg<"fp2", 0>;
165def FP3 : X86Reg<"fp3", 0>;
166def FP4 : X86Reg<"fp4", 0>;
167def FP5 : X86Reg<"fp5", 0>;
168def FP6 : X86Reg<"fp6", 0>;
169def FP7 : X86Reg<"fp7", 0>;
170
171// XMM Registers, used by the various SSE instruction set extensions.
172def XMM0: X86Reg<"xmm0", 0>, DwarfRegNum<[17, 21, 21]>;
173def XMM1: X86Reg<"xmm1", 1>, DwarfRegNum<[18, 22, 22]>;
174def XMM2: X86Reg<"xmm2", 2>, DwarfRegNum<[19, 23, 23]>;
175def XMM3: X86Reg<"xmm3", 3>, DwarfRegNum<[20, 24, 24]>;
176def XMM4: X86Reg<"xmm4", 4>, DwarfRegNum<[21, 25, 25]>;
177def XMM5: X86Reg<"xmm5", 5>, DwarfRegNum<[22, 26, 26]>;
178def XMM6: X86Reg<"xmm6", 6>, DwarfRegNum<[23, 27, 27]>;
179def XMM7: X86Reg<"xmm7", 7>, DwarfRegNum<[24, 28, 28]>;
180
181// X86-64 only
182let CostPerUse = 1 in {
183def XMM8:  X86Reg<"xmm8",   8>, DwarfRegNum<[25, -2, -2]>;
184def XMM9:  X86Reg<"xmm9",   9>, DwarfRegNum<[26, -2, -2]>;
185def XMM10: X86Reg<"xmm10", 10>, DwarfRegNum<[27, -2, -2]>;
186def XMM11: X86Reg<"xmm11", 11>, DwarfRegNum<[28, -2, -2]>;
187def XMM12: X86Reg<"xmm12", 12>, DwarfRegNum<[29, -2, -2]>;
188def XMM13: X86Reg<"xmm13", 13>, DwarfRegNum<[30, -2, -2]>;
189def XMM14: X86Reg<"xmm14", 14>, DwarfRegNum<[31, -2, -2]>;
190def XMM15: X86Reg<"xmm15", 15>, DwarfRegNum<[32, -2, -2]>;
191
192def XMM16:  X86Reg<"xmm16", 16>, DwarfRegNum<[60, -2, -2]>;
193def XMM17:  X86Reg<"xmm17", 17>, DwarfRegNum<[61, -2, -2]>;
194def XMM18:  X86Reg<"xmm18", 18>, DwarfRegNum<[62, -2, -2]>;
195def XMM19:  X86Reg<"xmm19", 19>, DwarfRegNum<[63, -2, -2]>;
196def XMM20:  X86Reg<"xmm20", 20>, DwarfRegNum<[64, -2, -2]>;
197def XMM21:  X86Reg<"xmm21", 21>, DwarfRegNum<[65, -2, -2]>;
198def XMM22:  X86Reg<"xmm22", 22>, DwarfRegNum<[66, -2, -2]>;
199def XMM23:  X86Reg<"xmm23", 23>, DwarfRegNum<[67, -2, -2]>;
200def XMM24:  X86Reg<"xmm24", 24>, DwarfRegNum<[68, -2, -2]>;
201def XMM25:  X86Reg<"xmm25", 25>, DwarfRegNum<[69, -2, -2]>;
202def XMM26:  X86Reg<"xmm26", 26>, DwarfRegNum<[70, -2, -2]>;
203def XMM27:  X86Reg<"xmm27", 27>, DwarfRegNum<[71, -2, -2]>;
204def XMM28:  X86Reg<"xmm28", 28>, DwarfRegNum<[72, -2, -2]>;
205def XMM29:  X86Reg<"xmm29", 29>, DwarfRegNum<[73, -2, -2]>;
206def XMM30:  X86Reg<"xmm30", 30>, DwarfRegNum<[74, -2, -2]>;
207def XMM31:  X86Reg<"xmm31", 31>, DwarfRegNum<[75, -2, -2]>;
208
209} // CostPerUse
210
211// YMM0-15 registers, used by AVX instructions and
212// YMM16-31 registers, used by AVX-512 instructions.
213let SubRegIndices = [sub_xmm] in {
214  foreach  Index = 0-31 in {
215    def YMM#Index : X86Reg<"ymm"#Index, Index, [!cast<X86Reg>("XMM"#Index)]>,
216                    DwarfRegAlias<!cast<X86Reg>("XMM"#Index)>;
217  }
218}
219
220// ZMM Registers, used by AVX-512 instructions.
221let SubRegIndices = [sub_ymm] in {
222  foreach  Index = 0-31 in {
223    def ZMM#Index : X86Reg<"zmm"#Index, Index, [!cast<X86Reg>("YMM"#Index)]>,
224                    DwarfRegAlias<!cast<X86Reg>("XMM"#Index)>;
225  }
226}
227
228// Mask Registers, used by AVX-512 instructions.
229def K0 : X86Reg<"k0", 0>, DwarfRegNum<[118,  93,  93]>;
230def K1 : X86Reg<"k1", 1>, DwarfRegNum<[119,  94,  94]>;
231def K2 : X86Reg<"k2", 2>, DwarfRegNum<[120,  95,  95]>;
232def K3 : X86Reg<"k3", 3>, DwarfRegNum<[121,  96,  96]>;
233def K4 : X86Reg<"k4", 4>, DwarfRegNum<[122,  97,  97]>;
234def K5 : X86Reg<"k5", 5>, DwarfRegNum<[123,  98,  98]>;
235def K6 : X86Reg<"k6", 6>, DwarfRegNum<[124,  99,  99]>;
236def K7 : X86Reg<"k7", 7>, DwarfRegNum<[125, 100, 100]>;
237
238// Floating point stack registers. These don't map one-to-one to the FP
239// pseudo registers, but we still mark them as aliasing FP registers. That
240// way both kinds can be live without exceeding the stack depth. ST registers
241// are only live around inline assembly.
242def ST0 : X86Reg<"st(0)", 0>, DwarfRegNum<[33, 12, 11]>;
243def ST1 : X86Reg<"st(1)", 1>, DwarfRegNum<[34, 13, 12]>;
244def ST2 : X86Reg<"st(2)", 2>, DwarfRegNum<[35, 14, 13]>;
245def ST3 : X86Reg<"st(3)", 3>, DwarfRegNum<[36, 15, 14]>;
246def ST4 : X86Reg<"st(4)", 4>, DwarfRegNum<[37, 16, 15]>;
247def ST5 : X86Reg<"st(5)", 5>, DwarfRegNum<[38, 17, 16]>;
248def ST6 : X86Reg<"st(6)", 6>, DwarfRegNum<[39, 18, 17]>;
249def ST7 : X86Reg<"st(7)", 7>, DwarfRegNum<[40, 19, 18]>;
250
251// Floating-point status word
252def FPSW : X86Reg<"fpsw", 0>;
253
254// Status flags register
255def EFLAGS : X86Reg<"flags", 0>;
256
257// Segment registers
258def CS : X86Reg<"cs", 1>;
259def DS : X86Reg<"ds", 3>;
260def SS : X86Reg<"ss", 2>;
261def ES : X86Reg<"es", 0>;
262def FS : X86Reg<"fs", 4>;
263def GS : X86Reg<"gs", 5>;
264
265// Debug registers
266def DR0  : X86Reg<"dr0",   0>;
267def DR1  : X86Reg<"dr1",   1>;
268def DR2  : X86Reg<"dr2",   2>;
269def DR3  : X86Reg<"dr3",   3>;
270def DR4  : X86Reg<"dr4",   4>;
271def DR5  : X86Reg<"dr5",   5>;
272def DR6  : X86Reg<"dr6",   6>;
273def DR7  : X86Reg<"dr7",   7>;
274def DR8  : X86Reg<"dr8",   8>;
275def DR9  : X86Reg<"dr9",   9>;
276def DR10 : X86Reg<"dr10", 10>;
277def DR11 : X86Reg<"dr11", 11>;
278def DR12 : X86Reg<"dr12", 12>;
279def DR13 : X86Reg<"dr13", 13>;
280def DR14 : X86Reg<"dr14", 14>;
281def DR15 : X86Reg<"dr15", 15>;
282
283// Control registers
284def CR0  : X86Reg<"cr0",   0>;
285def CR1  : X86Reg<"cr1",   1>;
286def CR2  : X86Reg<"cr2",   2>;
287def CR3  : X86Reg<"cr3",   3>;
288def CR4  : X86Reg<"cr4",   4>;
289def CR5  : X86Reg<"cr5",   5>;
290def CR6  : X86Reg<"cr6",   6>;
291def CR7  : X86Reg<"cr7",   7>;
292def CR8  : X86Reg<"cr8",   8>;
293def CR9  : X86Reg<"cr9",   9>;
294def CR10 : X86Reg<"cr10", 10>;
295def CR11 : X86Reg<"cr11", 11>;
296def CR12 : X86Reg<"cr12", 12>;
297def CR13 : X86Reg<"cr13", 13>;
298def CR14 : X86Reg<"cr14", 14>;
299def CR15 : X86Reg<"cr15", 15>;
300
301// Pseudo index registers
302def EIZ : X86Reg<"eiz", 4>;
303def RIZ : X86Reg<"riz", 4>;
304
305// Bound registers, used in MPX instructions
306def BND0 : X86Reg<"bnd0",   0>;
307def BND1 : X86Reg<"bnd1",   1>;
308def BND2 : X86Reg<"bnd2",   2>;
309def BND3 : X86Reg<"bnd3",   3>;
310
311//===----------------------------------------------------------------------===//
312// Register Class Definitions... now that we have all of the pieces, define the
313// top-level register classes.  The order specified in the register list is
314// implicitly defined to be the register allocation order.
315//
316
317// List call-clobbered registers before callee-save registers. RBX, RBP, (and
318// R12, R13, R14, and R15 for X86-64) are callee-save registers.
319// In 64-mode, there are 12 additional i8 registers, SIL, DIL, BPL, SPL, and
320// R8B, ... R15B.
321// Allocate R12 and R13 last, as these require an extra byte when
322// encoded in x86_64 instructions.
323// FIXME: Allow AH, CH, DH, BH to be used as general-purpose registers in
324// 64-bit mode. The main complication is that they cannot be encoded in an
325// instruction requiring a REX prefix, while SIL, DIL, BPL, R8D, etc.
326// require a REX prefix. For example, "addb %ah, %dil" and "movzbl %ah, %r8d"
327// cannot be encoded.
328def GR8 : RegisterClass<"X86", [i8],  8,
329                        (add AL, CL, DL, AH, CH, DH, BL, BH, SIL, DIL, BPL, SPL,
330                             R8B, R9B, R10B, R11B, R14B, R15B, R12B, R13B)> {
331  let AltOrders = [(sub GR8, AH, BH, CH, DH)];
332  let AltOrderSelect = [{
333    return MF.getSubtarget<X86Subtarget>().is64Bit();
334  }];
335}
336
337def GR16 : RegisterClass<"X86", [i16], 16,
338                         (add AX, CX, DX, SI, DI, BX, BP, SP,
339                              R8W, R9W, R10W, R11W, R14W, R15W, R12W, R13W)>;
340
341def GR32 : RegisterClass<"X86", [i32], 32,
342                         (add EAX, ECX, EDX, ESI, EDI, EBX, EBP, ESP,
343                              R8D, R9D, R10D, R11D, R14D, R15D, R12D, R13D)>;
344
345// GR64 - 64-bit GPRs. This oddly includes RIP, which isn't accurate, since
346// RIP isn't really a register and it can't be used anywhere except in an
347// address, but it doesn't cause trouble.
348def GR64 : RegisterClass<"X86", [i64], 64,
349                         (add RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
350                              RBX, R14, R15, R12, R13, RBP, RSP, RIP)>;
351
352// Segment registers for use by MOV instructions (and others) that have a
353//   segment register as one operand.  Always contain a 16-bit segment
354//   descriptor.
355def SEGMENT_REG : RegisterClass<"X86", [i16], 16, (add CS, DS, SS, ES, FS, GS)>;
356
357// Debug registers.
358def DEBUG_REG : RegisterClass<"X86", [i32], 32, (sequence "DR%u", 0, 7)>;
359
360// Control registers.
361def CONTROL_REG : RegisterClass<"X86", [i64], 64, (sequence "CR%u", 0, 15)>;
362
363// GR8_ABCD_L, GR8_ABCD_H, GR16_ABCD, GR32_ABCD, GR64_ABCD - Subclasses of
364// GR8, GR16, GR32, and GR64 which contain just the "a" "b", "c", and "d"
365// registers. On x86-32, GR16_ABCD and GR32_ABCD are classes for registers
366// that support 8-bit subreg operations. On x86-64, GR16_ABCD, GR32_ABCD,
367// and GR64_ABCD are classes for registers that support 8-bit h-register
368// operations.
369def GR8_ABCD_L : RegisterClass<"X86", [i8], 8, (add AL, CL, DL, BL)>;
370def GR8_ABCD_H : RegisterClass<"X86", [i8], 8, (add AH, CH, DH, BH)>;
371def GR16_ABCD : RegisterClass<"X86", [i16], 16, (add AX, CX, DX, BX)>;
372def GR32_ABCD : RegisterClass<"X86", [i32], 32, (add EAX, ECX, EDX, EBX)>;
373def GR64_ABCD : RegisterClass<"X86", [i64], 64, (add RAX, RCX, RDX, RBX)>;
374def GR32_TC   : RegisterClass<"X86", [i32], 32, (add EAX, ECX, EDX)>;
375def GR64_TC   : RegisterClass<"X86", [i64], 64, (add RAX, RCX, RDX, RSI, RDI,
376                                                     R8, R9, R11, RIP)>;
377def GR64_TCW64 : RegisterClass<"X86", [i64], 64, (add RAX, RCX, RDX,
378                                                      R8, R9, R10, R11, RIP)>;
379
380// GR8_NOREX - GR8 registers which do not require a REX prefix.
381def GR8_NOREX : RegisterClass<"X86", [i8], 8,
382                              (add AL, CL, DL, AH, CH, DH, BL, BH)> {
383  let AltOrders = [(sub GR8_NOREX, AH, BH, CH, DH)];
384  let AltOrderSelect = [{
385    return MF.getSubtarget<X86Subtarget>().is64Bit();
386  }];
387}
388// GR16_NOREX - GR16 registers which do not require a REX prefix.
389def GR16_NOREX : RegisterClass<"X86", [i16], 16,
390                               (add AX, CX, DX, SI, DI, BX, BP, SP)>;
391// GR32_NOREX - GR32 registers which do not require a REX prefix.
392def GR32_NOREX : RegisterClass<"X86", [i32], 32,
393                               (add EAX, ECX, EDX, ESI, EDI, EBX, EBP, ESP)>;
394// GR64_NOREX - GR64 registers which do not require a REX prefix.
395def GR64_NOREX : RegisterClass<"X86", [i64], 64,
396                            (add RAX, RCX, RDX, RSI, RDI, RBX, RBP, RSP, RIP)>;
397
398// GR32_NOAX - GR32 registers except EAX. Used by AddRegFrm of XCHG32 in 64-bit
399// mode to prevent encoding using the 0x90 NOP encoding. xchg %eax, %eax needs
400// to clear upper 32-bits of RAX so is not a NOP.
401def GR32_NOAX : RegisterClass<"X86", [i32], 32, (sub GR32, EAX)>;
402
403// GR32_NOSP - GR32 registers except ESP.
404def GR32_NOSP : RegisterClass<"X86", [i32], 32, (sub GR32, ESP)>;
405
406// GR64_NOSP - GR64 registers except RSP (and RIP).
407def GR64_NOSP : RegisterClass<"X86", [i64], 64, (sub GR64, RSP, RIP)>;
408
409// GR32_NOREX_NOSP - GR32 registers which do not require a REX prefix except
410// ESP.
411def GR32_NOREX_NOSP : RegisterClass<"X86", [i32], 32,
412                                    (and GR32_NOREX, GR32_NOSP)>;
413
414// GR64_NOREX_NOSP - GR64_NOREX registers except RSP.
415def GR64_NOREX_NOSP : RegisterClass<"X86", [i64], 64,
416                                    (and GR64_NOREX, GR64_NOSP)>;
417
418// Register classes used for ABIs that use 32-bit address accesses,
419// while using the whole x84_64 ISA.
420
421// In such cases, it is fine to use RIP as we are sure the 32 high
422// bits are not set. We do not need variants for NOSP as RIP is not
423// allowed there.
424// RIP is not spilled anywhere for now, so stick to 32-bit alignment
425// to save on memory space.
426// FIXME: We could allow all 64bit registers, but we would need
427// something to check that the 32 high bits are not set,
428// which we do not have right now.
429def LOW32_ADDR_ACCESS : RegisterClass<"X86", [i32], 32, (add GR32, RIP)>;
430
431// When RBP is used as a base pointer in a 32-bit addresses environement,
432// this is also safe to use the full register to access addresses.
433// Since RBP will never be spilled, stick to a 32 alignment to save
434// on memory consumption.
435def LOW32_ADDR_ACCESS_RBP : RegisterClass<"X86", [i32], 32,
436                                          (add LOW32_ADDR_ACCESS, RBP)>;
437
438// A class to support the 'A' assembler constraint: EAX then EDX.
439def GR32_AD : RegisterClass<"X86", [i32], 32, (add EAX, EDX)>;
440
441// Scalar SSE2 floating point registers.
442def FR32 : RegisterClass<"X86", [f32], 32, (sequence "XMM%u", 0, 15)>;
443
444def FR64 : RegisterClass<"X86", [f64], 64, (add FR32)>;
445
446def FR128 : RegisterClass<"X86", [i128, f128], 128, (add FR32)>;
447
448
449// FIXME: This sets up the floating point register files as though they are f64
450// values, though they really are f80 values.  This will cause us to spill
451// values as 64-bit quantities instead of 80-bit quantities, which is much much
452// faster on common hardware.  In reality, this should be controlled by a
453// command line option or something.
454
455def RFP32 : RegisterClass<"X86",[f32], 32, (sequence "FP%u", 0, 6)>;
456def RFP64 : RegisterClass<"X86",[f64], 32, (add RFP32)>;
457def RFP80 : RegisterClass<"X86",[f80], 32, (add RFP32)>;
458
459// Floating point stack registers (these are not allocatable by the
460// register allocator - the floating point stackifier is responsible
461// for transforming FPn allocations to STn registers)
462def RST : RegisterClass<"X86", [f80, f64, f32], 32, (sequence "ST%u", 0, 7)> {
463  let isAllocatable = 0;
464}
465
466// Generic vector registers: VR64 and VR128.
467// Ensure that float types are declared first - only float is legal on SSE1.
468def VR64: RegisterClass<"X86", [x86mmx], 64, (sequence "MM%u", 0, 7)>;
469def VR128 : RegisterClass<"X86", [v4f32, v2f64, v16i8, v8i16, v4i32, v2i64],
470                          128, (add FR32)>;
471def VR256 : RegisterClass<"X86", [v8f32, v4f64, v32i8, v16i16, v8i32, v4i64],
472                          256, (sequence "YMM%u", 0, 15)>;
473
474// Special classes that help the assembly parser choose some alternate
475// instructions to favor 2-byte VEX encodings.
476def VR128L : RegisterClass<"X86", [v4f32, v2f64, v16i8, v8i16, v4i32, v2i64],
477                           128, (sequence "XMM%u", 0, 7)>;
478def VR128H : RegisterClass<"X86", [v4f32, v2f64, v16i8, v8i16, v4i32, v2i64],
479                           128, (sequence "XMM%u", 8, 15)>;
480def VR256L : RegisterClass<"X86", [v8f32, v4f64, v32i8, v16i16, v8i32, v4i64],
481                           256, (sequence "YMM%u", 0, 7)>;
482def VR256H : RegisterClass<"X86", [v8f32, v4f64, v32i8, v16i16, v8i32, v4i64],
483                           256, (sequence "YMM%u", 8, 15)>;
484
485// Status flags registers.
486def CCR : RegisterClass<"X86", [i32], 32, (add EFLAGS)> {
487  let CopyCost = -1;  // Don't allow copying of status registers.
488  let isAllocatable = 0;
489}
490def FPCCR : RegisterClass<"X86", [i16], 16, (add FPSW)> {
491  let CopyCost = -1;  // Don't allow copying of status registers.
492  let isAllocatable = 0;
493}
494
495// AVX-512 vector/mask registers.
496def VR512 : RegisterClass<"X86", [v16f32, v8f64, v64i8, v32i16, v16i32, v8i64],
497                          512, (sequence "ZMM%u", 0, 31)>;
498
499// Scalar AVX-512 floating point registers.
500def FR32X : RegisterClass<"X86", [f32], 32, (sequence "XMM%u", 0, 31)>;
501
502def FR64X : RegisterClass<"X86", [f64], 64, (add FR32X)>;
503
504// Extended VR128 and VR256 for AVX-512 instructions
505def VR128X : RegisterClass<"X86", [v4f32, v2f64, v16i8, v8i16, v4i32, v2i64],
506                           128, (add FR32X)>;
507def VR256X : RegisterClass<"X86", [v8f32, v4f64, v32i8, v16i16, v8i32, v4i64],
508                           256, (sequence "YMM%u", 0, 31)>;
509
510// Mask registers
511def VK1     : RegisterClass<"X86", [i1],    16,  (sequence "K%u", 0, 7)> {let Size = 16;}
512def VK2     : RegisterClass<"X86", [v2i1],  16,  (add VK1)> {let Size = 16;}
513def VK4     : RegisterClass<"X86", [v4i1],  16,  (add VK2)> {let Size = 16;}
514def VK8     : RegisterClass<"X86", [v8i1],  16,  (add VK4)> {let Size = 16;}
515def VK16    : RegisterClass<"X86", [v16i1], 16, (add VK8)> {let Size = 16;}
516def VK32    : RegisterClass<"X86", [v32i1], 32, (add VK16)> {let Size = 32;}
517def VK64    : RegisterClass<"X86", [v64i1], 64, (add VK32)> {let Size = 64;}
518
519def VK1WM   : RegisterClass<"X86", [i1],    16,  (sub VK1, K0)> {let Size = 16;}
520def VK2WM   : RegisterClass<"X86", [v2i1],  16,  (sub VK2, K0)> {let Size = 16;}
521def VK4WM   : RegisterClass<"X86", [v4i1],  16,  (sub VK4, K0)> {let Size = 16;}
522def VK8WM   : RegisterClass<"X86", [v8i1],  16,  (sub VK8, K0)> {let Size = 16;}
523def VK16WM  : RegisterClass<"X86", [v16i1], 16, (add VK8WM)>   {let Size = 16;}
524def VK32WM  : RegisterClass<"X86", [v32i1], 32, (add VK16WM)> {let Size = 32;}
525def VK64WM  : RegisterClass<"X86", [v64i1], 64, (add VK32WM)> {let Size = 64;}
526
527// Bound registers
528def BNDR : RegisterClass<"X86", [v2i64], 128, (sequence "BND%u", 0, 3)>;
529