1 //===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// This file implements interprocedural passes which walk the
12 /// call-graph deducing and/or propagating function attributes.
13 ///
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/Transforms/IPO/FunctionAttrs.h"
17 #include "llvm/Transforms/IPO.h"
18 #include "llvm/ADT/SCCIterator.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/StringSwitch.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/BasicAliasAnalysis.h"
26 #include "llvm/Analysis/CallGraph.h"
27 #include "llvm/Analysis/CallGraphSCCPass.h"
28 #include "llvm/Analysis/CaptureTracking.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/InstIterator.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Analysis/TargetLibraryInfo.h"
38 using namespace llvm;
39
40 #define DEBUG_TYPE "functionattrs"
41
42 STATISTIC(NumReadNone, "Number of functions marked readnone");
43 STATISTIC(NumReadOnly, "Number of functions marked readonly");
44 STATISTIC(NumNoCapture, "Number of arguments marked nocapture");
45 STATISTIC(NumReadNoneArg, "Number of arguments marked readnone");
46 STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly");
47 STATISTIC(NumNoAlias, "Number of function returns marked noalias");
48 STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull");
49 STATISTIC(NumNoRecurse, "Number of functions marked as norecurse");
50
51 namespace {
52 typedef SmallSetVector<Function *, 8> SCCNodeSet;
53 }
54
55 namespace {
56 /// The three kinds of memory access relevant to 'readonly' and
57 /// 'readnone' attributes.
58 enum MemoryAccessKind {
59 MAK_ReadNone = 0,
60 MAK_ReadOnly = 1,
61 MAK_MayWrite = 2
62 };
63 }
64
checkFunctionMemoryAccess(Function & F,AAResults & AAR,const SCCNodeSet & SCCNodes)65 static MemoryAccessKind checkFunctionMemoryAccess(Function &F, AAResults &AAR,
66 const SCCNodeSet &SCCNodes) {
67 FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F);
68 if (MRB == FMRB_DoesNotAccessMemory)
69 // Already perfect!
70 return MAK_ReadNone;
71
72 // Non-exact function definitions may not be selected at link time, and an
73 // alternative version that writes to memory may be selected. See the comment
74 // on GlobalValue::isDefinitionExact for more details.
75 if (!F.hasExactDefinition()) {
76 if (AliasAnalysis::onlyReadsMemory(MRB))
77 return MAK_ReadOnly;
78
79 // Conservatively assume it writes to memory.
80 return MAK_MayWrite;
81 }
82
83 // Scan the function body for instructions that may read or write memory.
84 bool ReadsMemory = false;
85 for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
86 Instruction *I = &*II;
87
88 // Some instructions can be ignored even if they read or write memory.
89 // Detect these now, skipping to the next instruction if one is found.
90 CallSite CS(cast<Value>(I));
91 if (CS) {
92 // Ignore calls to functions in the same SCC, as long as the call sites
93 // don't have operand bundles. Calls with operand bundles are allowed to
94 // have memory effects not described by the memory effects of the call
95 // target.
96 if (!CS.hasOperandBundles() && CS.getCalledFunction() &&
97 SCCNodes.count(CS.getCalledFunction()))
98 continue;
99 FunctionModRefBehavior MRB = AAR.getModRefBehavior(CS);
100
101 // If the call doesn't access memory, we're done.
102 if (!(MRB & MRI_ModRef))
103 continue;
104
105 if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) {
106 // The call could access any memory. If that includes writes, give up.
107 if (MRB & MRI_Mod)
108 return MAK_MayWrite;
109 // If it reads, note it.
110 if (MRB & MRI_Ref)
111 ReadsMemory = true;
112 continue;
113 }
114
115 // Check whether all pointer arguments point to local memory, and
116 // ignore calls that only access local memory.
117 for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
118 CI != CE; ++CI) {
119 Value *Arg = *CI;
120 if (!Arg->getType()->isPtrOrPtrVectorTy())
121 continue;
122
123 AAMDNodes AAInfo;
124 I->getAAMetadata(AAInfo);
125 MemoryLocation Loc(Arg, MemoryLocation::UnknownSize, AAInfo);
126
127 // Skip accesses to local or constant memory as they don't impact the
128 // externally visible mod/ref behavior.
129 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
130 continue;
131
132 if (MRB & MRI_Mod)
133 // Writes non-local memory. Give up.
134 return MAK_MayWrite;
135 if (MRB & MRI_Ref)
136 // Ok, it reads non-local memory.
137 ReadsMemory = true;
138 }
139 continue;
140 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
141 // Ignore non-volatile loads from local memory. (Atomic is okay here.)
142 if (!LI->isVolatile()) {
143 MemoryLocation Loc = MemoryLocation::get(LI);
144 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
145 continue;
146 }
147 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
148 // Ignore non-volatile stores to local memory. (Atomic is okay here.)
149 if (!SI->isVolatile()) {
150 MemoryLocation Loc = MemoryLocation::get(SI);
151 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
152 continue;
153 }
154 } else if (VAArgInst *VI = dyn_cast<VAArgInst>(I)) {
155 // Ignore vaargs on local memory.
156 MemoryLocation Loc = MemoryLocation::get(VI);
157 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
158 continue;
159 }
160
161 // Any remaining instructions need to be taken seriously! Check if they
162 // read or write memory.
163 if (I->mayWriteToMemory())
164 // Writes memory. Just give up.
165 return MAK_MayWrite;
166
167 // If this instruction may read memory, remember that.
168 ReadsMemory |= I->mayReadFromMemory();
169 }
170
171 return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone;
172 }
173
174 /// Deduce readonly/readnone attributes for the SCC.
175 template <typename AARGetterT>
addReadAttrs(const SCCNodeSet & SCCNodes,AARGetterT AARGetter)176 static bool addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT AARGetter) {
177 // Check if any of the functions in the SCC read or write memory. If they
178 // write memory then they can't be marked readnone or readonly.
179 bool ReadsMemory = false;
180 for (Function *F : SCCNodes) {
181 // Call the callable parameter to look up AA results for this function.
182 AAResults &AAR = AARGetter(*F);
183
184 switch (checkFunctionMemoryAccess(*F, AAR, SCCNodes)) {
185 case MAK_MayWrite:
186 return false;
187 case MAK_ReadOnly:
188 ReadsMemory = true;
189 break;
190 case MAK_ReadNone:
191 // Nothing to do!
192 break;
193 }
194 }
195
196 // Success! Functions in this SCC do not access memory, or only read memory.
197 // Give them the appropriate attribute.
198 bool MadeChange = false;
199 for (Function *F : SCCNodes) {
200 if (F->doesNotAccessMemory())
201 // Already perfect!
202 continue;
203
204 if (F->onlyReadsMemory() && ReadsMemory)
205 // No change.
206 continue;
207
208 MadeChange = true;
209
210 // Clear out any existing attributes.
211 AttrBuilder B;
212 B.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone);
213 F->removeAttributes(
214 AttributeSet::FunctionIndex,
215 AttributeSet::get(F->getContext(), AttributeSet::FunctionIndex, B));
216
217 // Add in the new attribute.
218 F->addAttribute(AttributeSet::FunctionIndex,
219 ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone);
220
221 if (ReadsMemory)
222 ++NumReadOnly;
223 else
224 ++NumReadNone;
225 }
226
227 return MadeChange;
228 }
229
230 namespace {
231 /// For a given pointer Argument, this retains a list of Arguments of functions
232 /// in the same SCC that the pointer data flows into. We use this to build an
233 /// SCC of the arguments.
234 struct ArgumentGraphNode {
235 Argument *Definition;
236 SmallVector<ArgumentGraphNode *, 4> Uses;
237 };
238
239 class ArgumentGraph {
240 // We store pointers to ArgumentGraphNode objects, so it's important that
241 // that they not move around upon insert.
242 typedef std::map<Argument *, ArgumentGraphNode> ArgumentMapTy;
243
244 ArgumentMapTy ArgumentMap;
245
246 // There is no root node for the argument graph, in fact:
247 // void f(int *x, int *y) { if (...) f(x, y); }
248 // is an example where the graph is disconnected. The SCCIterator requires a
249 // single entry point, so we maintain a fake ("synthetic") root node that
250 // uses every node. Because the graph is directed and nothing points into
251 // the root, it will not participate in any SCCs (except for its own).
252 ArgumentGraphNode SyntheticRoot;
253
254 public:
ArgumentGraph()255 ArgumentGraph() { SyntheticRoot.Definition = nullptr; }
256
257 typedef SmallVectorImpl<ArgumentGraphNode *>::iterator iterator;
258
begin()259 iterator begin() { return SyntheticRoot.Uses.begin(); }
end()260 iterator end() { return SyntheticRoot.Uses.end(); }
getEntryNode()261 ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; }
262
operator [](Argument * A)263 ArgumentGraphNode *operator[](Argument *A) {
264 ArgumentGraphNode &Node = ArgumentMap[A];
265 Node.Definition = A;
266 SyntheticRoot.Uses.push_back(&Node);
267 return &Node;
268 }
269 };
270
271 /// This tracker checks whether callees are in the SCC, and if so it does not
272 /// consider that a capture, instead adding it to the "Uses" list and
273 /// continuing with the analysis.
274 struct ArgumentUsesTracker : public CaptureTracker {
ArgumentUsesTracker__anon4eb4aa3b0311::ArgumentUsesTracker275 ArgumentUsesTracker(const SCCNodeSet &SCCNodes)
276 : Captured(false), SCCNodes(SCCNodes) {}
277
tooManyUses__anon4eb4aa3b0311::ArgumentUsesTracker278 void tooManyUses() override { Captured = true; }
279
captured__anon4eb4aa3b0311::ArgumentUsesTracker280 bool captured(const Use *U) override {
281 CallSite CS(U->getUser());
282 if (!CS.getInstruction()) {
283 Captured = true;
284 return true;
285 }
286
287 Function *F = CS.getCalledFunction();
288 if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) {
289 Captured = true;
290 return true;
291 }
292
293 // Note: the callee and the two successor blocks *follow* the argument
294 // operands. This means there is no need to adjust UseIndex to account for
295 // these.
296
297 unsigned UseIndex =
298 std::distance(const_cast<const Use *>(CS.arg_begin()), U);
299
300 assert(UseIndex < CS.data_operands_size() &&
301 "Indirect function calls should have been filtered above!");
302
303 if (UseIndex >= CS.getNumArgOperands()) {
304 // Data operand, but not a argument operand -- must be a bundle operand
305 assert(CS.hasOperandBundles() && "Must be!");
306
307 // CaptureTracking told us that we're being captured by an operand bundle
308 // use. In this case it does not matter if the callee is within our SCC
309 // or not -- we've been captured in some unknown way, and we have to be
310 // conservative.
311 Captured = true;
312 return true;
313 }
314
315 if (UseIndex >= F->arg_size()) {
316 assert(F->isVarArg() && "More params than args in non-varargs call");
317 Captured = true;
318 return true;
319 }
320
321 Uses.push_back(&*std::next(F->arg_begin(), UseIndex));
322 return false;
323 }
324
325 bool Captured; // True only if certainly captured (used outside our SCC).
326 SmallVector<Argument *, 4> Uses; // Uses within our SCC.
327
328 const SCCNodeSet &SCCNodes;
329 };
330 }
331
332 namespace llvm {
333 template <> struct GraphTraits<ArgumentGraphNode *> {
334 typedef ArgumentGraphNode NodeType;
335 typedef SmallVectorImpl<ArgumentGraphNode *>::iterator ChildIteratorType;
336
getEntryNodellvm::GraphTraits337 static inline NodeType *getEntryNode(NodeType *A) { return A; }
child_beginllvm::GraphTraits338 static inline ChildIteratorType child_begin(NodeType *N) {
339 return N->Uses.begin();
340 }
child_endllvm::GraphTraits341 static inline ChildIteratorType child_end(NodeType *N) {
342 return N->Uses.end();
343 }
344 };
345 template <>
346 struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> {
getEntryNodellvm::GraphTraits347 static NodeType *getEntryNode(ArgumentGraph *AG) {
348 return AG->getEntryNode();
349 }
nodes_beginllvm::GraphTraits350 static ChildIteratorType nodes_begin(ArgumentGraph *AG) {
351 return AG->begin();
352 }
nodes_endllvm::GraphTraits353 static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); }
354 };
355 }
356
357 /// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone.
358 static Attribute::AttrKind
determinePointerReadAttrs(Argument * A,const SmallPtrSet<Argument *,8> & SCCNodes)359 determinePointerReadAttrs(Argument *A,
360 const SmallPtrSet<Argument *, 8> &SCCNodes) {
361
362 SmallVector<Use *, 32> Worklist;
363 SmallSet<Use *, 32> Visited;
364
365 // inalloca arguments are always clobbered by the call.
366 if (A->hasInAllocaAttr())
367 return Attribute::None;
368
369 bool IsRead = false;
370 // We don't need to track IsWritten. If A is written to, return immediately.
371
372 for (Use &U : A->uses()) {
373 Visited.insert(&U);
374 Worklist.push_back(&U);
375 }
376
377 while (!Worklist.empty()) {
378 Use *U = Worklist.pop_back_val();
379 Instruction *I = cast<Instruction>(U->getUser());
380
381 switch (I->getOpcode()) {
382 case Instruction::BitCast:
383 case Instruction::GetElementPtr:
384 case Instruction::PHI:
385 case Instruction::Select:
386 case Instruction::AddrSpaceCast:
387 // The original value is not read/written via this if the new value isn't.
388 for (Use &UU : I->uses())
389 if (Visited.insert(&UU).second)
390 Worklist.push_back(&UU);
391 break;
392
393 case Instruction::Call:
394 case Instruction::Invoke: {
395 bool Captures = true;
396
397 if (I->getType()->isVoidTy())
398 Captures = false;
399
400 auto AddUsersToWorklistIfCapturing = [&] {
401 if (Captures)
402 for (Use &UU : I->uses())
403 if (Visited.insert(&UU).second)
404 Worklist.push_back(&UU);
405 };
406
407 CallSite CS(I);
408 if (CS.doesNotAccessMemory()) {
409 AddUsersToWorklistIfCapturing();
410 continue;
411 }
412
413 Function *F = CS.getCalledFunction();
414 if (!F) {
415 if (CS.onlyReadsMemory()) {
416 IsRead = true;
417 AddUsersToWorklistIfCapturing();
418 continue;
419 }
420 return Attribute::None;
421 }
422
423 // Note: the callee and the two successor blocks *follow* the argument
424 // operands. This means there is no need to adjust UseIndex to account
425 // for these.
426
427 unsigned UseIndex = std::distance(CS.arg_begin(), U);
428
429 // U cannot be the callee operand use: since we're exploring the
430 // transitive uses of an Argument, having such a use be a callee would
431 // imply the CallSite is an indirect call or invoke; and we'd take the
432 // early exit above.
433 assert(UseIndex < CS.data_operands_size() &&
434 "Data operand use expected!");
435
436 bool IsOperandBundleUse = UseIndex >= CS.getNumArgOperands();
437
438 if (UseIndex >= F->arg_size() && !IsOperandBundleUse) {
439 assert(F->isVarArg() && "More params than args in non-varargs call");
440 return Attribute::None;
441 }
442
443 Captures &= !CS.doesNotCapture(UseIndex);
444
445 // Since the optimizer (by design) cannot see the data flow corresponding
446 // to a operand bundle use, these cannot participate in the optimistic SCC
447 // analysis. Instead, we model the operand bundle uses as arguments in
448 // call to a function external to the SCC.
449 if (!SCCNodes.count(&*std::next(F->arg_begin(), UseIndex)) ||
450 IsOperandBundleUse) {
451
452 // The accessors used on CallSite here do the right thing for calls and
453 // invokes with operand bundles.
454
455 if (!CS.onlyReadsMemory() && !CS.onlyReadsMemory(UseIndex))
456 return Attribute::None;
457 if (!CS.doesNotAccessMemory(UseIndex))
458 IsRead = true;
459 }
460
461 AddUsersToWorklistIfCapturing();
462 break;
463 }
464
465 case Instruction::Load:
466 // A volatile load has side effects beyond what readonly can be relied
467 // upon.
468 if (cast<LoadInst>(I)->isVolatile())
469 return Attribute::None;
470
471 IsRead = true;
472 break;
473
474 case Instruction::ICmp:
475 case Instruction::Ret:
476 break;
477
478 default:
479 return Attribute::None;
480 }
481 }
482
483 return IsRead ? Attribute::ReadOnly : Attribute::ReadNone;
484 }
485
486 /// Deduce nocapture attributes for the SCC.
addArgumentAttrs(const SCCNodeSet & SCCNodes)487 static bool addArgumentAttrs(const SCCNodeSet &SCCNodes) {
488 bool Changed = false;
489
490 ArgumentGraph AG;
491
492 AttrBuilder B;
493 B.addAttribute(Attribute::NoCapture);
494
495 // Check each function in turn, determining which pointer arguments are not
496 // captured.
497 for (Function *F : SCCNodes) {
498 // We can infer and propagate function attributes only when we know that the
499 // definition we'll get at link time is *exactly* the definition we see now.
500 // For more details, see GlobalValue::mayBeDerefined.
501 if (!F->hasExactDefinition())
502 continue;
503
504 // Functions that are readonly (or readnone) and nounwind and don't return
505 // a value can't capture arguments. Don't analyze them.
506 if (F->onlyReadsMemory() && F->doesNotThrow() &&
507 F->getReturnType()->isVoidTy()) {
508 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
509 ++A) {
510 if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) {
511 A->addAttr(AttributeSet::get(F->getContext(), A->getArgNo() + 1, B));
512 ++NumNoCapture;
513 Changed = true;
514 }
515 }
516 continue;
517 }
518
519 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
520 ++A) {
521 if (!A->getType()->isPointerTy())
522 continue;
523 bool HasNonLocalUses = false;
524 if (!A->hasNoCaptureAttr()) {
525 ArgumentUsesTracker Tracker(SCCNodes);
526 PointerMayBeCaptured(&*A, &Tracker);
527 if (!Tracker.Captured) {
528 if (Tracker.Uses.empty()) {
529 // If it's trivially not captured, mark it nocapture now.
530 A->addAttr(
531 AttributeSet::get(F->getContext(), A->getArgNo() + 1, B));
532 ++NumNoCapture;
533 Changed = true;
534 } else {
535 // If it's not trivially captured and not trivially not captured,
536 // then it must be calling into another function in our SCC. Save
537 // its particulars for Argument-SCC analysis later.
538 ArgumentGraphNode *Node = AG[&*A];
539 for (Argument *Use : Tracker.Uses) {
540 Node->Uses.push_back(AG[Use]);
541 if (Use != &*A)
542 HasNonLocalUses = true;
543 }
544 }
545 }
546 // Otherwise, it's captured. Don't bother doing SCC analysis on it.
547 }
548 if (!HasNonLocalUses && !A->onlyReadsMemory()) {
549 // Can we determine that it's readonly/readnone without doing an SCC?
550 // Note that we don't allow any calls at all here, or else our result
551 // will be dependent on the iteration order through the functions in the
552 // SCC.
553 SmallPtrSet<Argument *, 8> Self;
554 Self.insert(&*A);
555 Attribute::AttrKind R = determinePointerReadAttrs(&*A, Self);
556 if (R != Attribute::None) {
557 AttrBuilder B;
558 B.addAttribute(R);
559 A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
560 Changed = true;
561 R == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
562 }
563 }
564 }
565 }
566
567 // The graph we've collected is partial because we stopped scanning for
568 // argument uses once we solved the argument trivially. These partial nodes
569 // show up as ArgumentGraphNode objects with an empty Uses list, and for
570 // these nodes the final decision about whether they capture has already been
571 // made. If the definition doesn't have a 'nocapture' attribute by now, it
572 // captures.
573
574 for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) {
575 const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I;
576 if (ArgumentSCC.size() == 1) {
577 if (!ArgumentSCC[0]->Definition)
578 continue; // synthetic root node
579
580 // eg. "void f(int* x) { if (...) f(x); }"
581 if (ArgumentSCC[0]->Uses.size() == 1 &&
582 ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) {
583 Argument *A = ArgumentSCC[0]->Definition;
584 A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
585 ++NumNoCapture;
586 Changed = true;
587 }
588 continue;
589 }
590
591 bool SCCCaptured = false;
592 for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
593 I != E && !SCCCaptured; ++I) {
594 ArgumentGraphNode *Node = *I;
595 if (Node->Uses.empty()) {
596 if (!Node->Definition->hasNoCaptureAttr())
597 SCCCaptured = true;
598 }
599 }
600 if (SCCCaptured)
601 continue;
602
603 SmallPtrSet<Argument *, 8> ArgumentSCCNodes;
604 // Fill ArgumentSCCNodes with the elements of the ArgumentSCC. Used for
605 // quickly looking up whether a given Argument is in this ArgumentSCC.
606 for (ArgumentGraphNode *I : ArgumentSCC) {
607 ArgumentSCCNodes.insert(I->Definition);
608 }
609
610 for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
611 I != E && !SCCCaptured; ++I) {
612 ArgumentGraphNode *N = *I;
613 for (ArgumentGraphNode *Use : N->Uses) {
614 Argument *A = Use->Definition;
615 if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A))
616 continue;
617 SCCCaptured = true;
618 break;
619 }
620 }
621 if (SCCCaptured)
622 continue;
623
624 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
625 Argument *A = ArgumentSCC[i]->Definition;
626 A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
627 ++NumNoCapture;
628 Changed = true;
629 }
630
631 // We also want to compute readonly/readnone. With a small number of false
632 // negatives, we can assume that any pointer which is captured isn't going
633 // to be provably readonly or readnone, since by definition we can't
634 // analyze all uses of a captured pointer.
635 //
636 // The false negatives happen when the pointer is captured by a function
637 // that promises readonly/readnone behaviour on the pointer, then the
638 // pointer's lifetime ends before anything that writes to arbitrary memory.
639 // Also, a readonly/readnone pointer may be returned, but returning a
640 // pointer is capturing it.
641
642 Attribute::AttrKind ReadAttr = Attribute::ReadNone;
643 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
644 Argument *A = ArgumentSCC[i]->Definition;
645 Attribute::AttrKind K = determinePointerReadAttrs(A, ArgumentSCCNodes);
646 if (K == Attribute::ReadNone)
647 continue;
648 if (K == Attribute::ReadOnly) {
649 ReadAttr = Attribute::ReadOnly;
650 continue;
651 }
652 ReadAttr = K;
653 break;
654 }
655
656 if (ReadAttr != Attribute::None) {
657 AttrBuilder B, R;
658 B.addAttribute(ReadAttr);
659 R.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone);
660 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
661 Argument *A = ArgumentSCC[i]->Definition;
662 // Clear out existing readonly/readnone attributes
663 A->removeAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, R));
664 A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
665 ReadAttr == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
666 Changed = true;
667 }
668 }
669 }
670
671 return Changed;
672 }
673
674 /// Tests whether a function is "malloc-like".
675 ///
676 /// A function is "malloc-like" if it returns either null or a pointer that
677 /// doesn't alias any other pointer visible to the caller.
isFunctionMallocLike(Function * F,const SCCNodeSet & SCCNodes)678 static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) {
679 SmallSetVector<Value *, 8> FlowsToReturn;
680 for (BasicBlock &BB : *F)
681 if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
682 FlowsToReturn.insert(Ret->getReturnValue());
683
684 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
685 Value *RetVal = FlowsToReturn[i];
686
687 if (Constant *C = dyn_cast<Constant>(RetVal)) {
688 if (!C->isNullValue() && !isa<UndefValue>(C))
689 return false;
690
691 continue;
692 }
693
694 if (isa<Argument>(RetVal))
695 return false;
696
697 if (Instruction *RVI = dyn_cast<Instruction>(RetVal))
698 switch (RVI->getOpcode()) {
699 // Extend the analysis by looking upwards.
700 case Instruction::BitCast:
701 case Instruction::GetElementPtr:
702 case Instruction::AddrSpaceCast:
703 FlowsToReturn.insert(RVI->getOperand(0));
704 continue;
705 case Instruction::Select: {
706 SelectInst *SI = cast<SelectInst>(RVI);
707 FlowsToReturn.insert(SI->getTrueValue());
708 FlowsToReturn.insert(SI->getFalseValue());
709 continue;
710 }
711 case Instruction::PHI: {
712 PHINode *PN = cast<PHINode>(RVI);
713 for (Value *IncValue : PN->incoming_values())
714 FlowsToReturn.insert(IncValue);
715 continue;
716 }
717
718 // Check whether the pointer came from an allocation.
719 case Instruction::Alloca:
720 break;
721 case Instruction::Call:
722 case Instruction::Invoke: {
723 CallSite CS(RVI);
724 if (CS.paramHasAttr(0, Attribute::NoAlias))
725 break;
726 if (CS.getCalledFunction() && SCCNodes.count(CS.getCalledFunction()))
727 break;
728 } // fall-through
729 default:
730 return false; // Did not come from an allocation.
731 }
732
733 if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false))
734 return false;
735 }
736
737 return true;
738 }
739
740 /// Deduce noalias attributes for the SCC.
addNoAliasAttrs(const SCCNodeSet & SCCNodes)741 static bool addNoAliasAttrs(const SCCNodeSet &SCCNodes) {
742 // Check each function in turn, determining which functions return noalias
743 // pointers.
744 for (Function *F : SCCNodes) {
745 // Already noalias.
746 if (F->doesNotAlias(0))
747 continue;
748
749 // We can infer and propagate function attributes only when we know that the
750 // definition we'll get at link time is *exactly* the definition we see now.
751 // For more details, see GlobalValue::mayBeDerefined.
752 if (!F->hasExactDefinition())
753 return false;
754
755 // We annotate noalias return values, which are only applicable to
756 // pointer types.
757 if (!F->getReturnType()->isPointerTy())
758 continue;
759
760 if (!isFunctionMallocLike(F, SCCNodes))
761 return false;
762 }
763
764 bool MadeChange = false;
765 for (Function *F : SCCNodes) {
766 if (F->doesNotAlias(0) || !F->getReturnType()->isPointerTy())
767 continue;
768
769 F->setDoesNotAlias(0);
770 ++NumNoAlias;
771 MadeChange = true;
772 }
773
774 return MadeChange;
775 }
776
777 /// Tests whether this function is known to not return null.
778 ///
779 /// Requires that the function returns a pointer.
780 ///
781 /// Returns true if it believes the function will not return a null, and sets
782 /// \p Speculative based on whether the returned conclusion is a speculative
783 /// conclusion due to SCC calls.
isReturnNonNull(Function * F,const SCCNodeSet & SCCNodes,bool & Speculative)784 static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes,
785 bool &Speculative) {
786 assert(F->getReturnType()->isPointerTy() &&
787 "nonnull only meaningful on pointer types");
788 Speculative = false;
789
790 SmallSetVector<Value *, 8> FlowsToReturn;
791 for (BasicBlock &BB : *F)
792 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
793 FlowsToReturn.insert(Ret->getReturnValue());
794
795 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
796 Value *RetVal = FlowsToReturn[i];
797
798 // If this value is locally known to be non-null, we're good
799 if (isKnownNonNull(RetVal))
800 continue;
801
802 // Otherwise, we need to look upwards since we can't make any local
803 // conclusions.
804 Instruction *RVI = dyn_cast<Instruction>(RetVal);
805 if (!RVI)
806 return false;
807 switch (RVI->getOpcode()) {
808 // Extend the analysis by looking upwards.
809 case Instruction::BitCast:
810 case Instruction::GetElementPtr:
811 case Instruction::AddrSpaceCast:
812 FlowsToReturn.insert(RVI->getOperand(0));
813 continue;
814 case Instruction::Select: {
815 SelectInst *SI = cast<SelectInst>(RVI);
816 FlowsToReturn.insert(SI->getTrueValue());
817 FlowsToReturn.insert(SI->getFalseValue());
818 continue;
819 }
820 case Instruction::PHI: {
821 PHINode *PN = cast<PHINode>(RVI);
822 for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
823 FlowsToReturn.insert(PN->getIncomingValue(i));
824 continue;
825 }
826 case Instruction::Call:
827 case Instruction::Invoke: {
828 CallSite CS(RVI);
829 Function *Callee = CS.getCalledFunction();
830 // A call to a node within the SCC is assumed to return null until
831 // proven otherwise
832 if (Callee && SCCNodes.count(Callee)) {
833 Speculative = true;
834 continue;
835 }
836 return false;
837 }
838 default:
839 return false; // Unknown source, may be null
840 };
841 llvm_unreachable("should have either continued or returned");
842 }
843
844 return true;
845 }
846
847 /// Deduce nonnull attributes for the SCC.
addNonNullAttrs(const SCCNodeSet & SCCNodes)848 static bool addNonNullAttrs(const SCCNodeSet &SCCNodes) {
849 // Speculative that all functions in the SCC return only nonnull
850 // pointers. We may refute this as we analyze functions.
851 bool SCCReturnsNonNull = true;
852
853 bool MadeChange = false;
854
855 // Check each function in turn, determining which functions return nonnull
856 // pointers.
857 for (Function *F : SCCNodes) {
858 // Already nonnull.
859 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
860 Attribute::NonNull))
861 continue;
862
863 // We can infer and propagate function attributes only when we know that the
864 // definition we'll get at link time is *exactly* the definition we see now.
865 // For more details, see GlobalValue::mayBeDerefined.
866 if (!F->hasExactDefinition())
867 return false;
868
869 // We annotate nonnull return values, which are only applicable to
870 // pointer types.
871 if (!F->getReturnType()->isPointerTy())
872 continue;
873
874 bool Speculative = false;
875 if (isReturnNonNull(F, SCCNodes, Speculative)) {
876 if (!Speculative) {
877 // Mark the function eagerly since we may discover a function
878 // which prevents us from speculating about the entire SCC
879 DEBUG(dbgs() << "Eagerly marking " << F->getName() << " as nonnull\n");
880 F->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
881 ++NumNonNullReturn;
882 MadeChange = true;
883 }
884 continue;
885 }
886 // At least one function returns something which could be null, can't
887 // speculate any more.
888 SCCReturnsNonNull = false;
889 }
890
891 if (SCCReturnsNonNull) {
892 for (Function *F : SCCNodes) {
893 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
894 Attribute::NonNull) ||
895 !F->getReturnType()->isPointerTy())
896 continue;
897
898 DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n");
899 F->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
900 ++NumNonNullReturn;
901 MadeChange = true;
902 }
903 }
904
905 return MadeChange;
906 }
907
908 /// Remove the convergent attribute from all functions in the SCC if every
909 /// callsite within the SCC is not convergent (except for calls to functions
910 /// within the SCC). Returns true if changes were made.
removeConvergentAttrs(const SCCNodeSet & SCCNodes)911 static bool removeConvergentAttrs(const SCCNodeSet &SCCNodes) {
912 // For every function in SCC, ensure that either
913 // * it is not convergent, or
914 // * we can remove its convergent attribute.
915 bool HasConvergentFn = false;
916 for (Function *F : SCCNodes) {
917 if (!F->isConvergent()) continue;
918 HasConvergentFn = true;
919
920 // Can't remove convergent from function declarations.
921 if (F->isDeclaration()) return false;
922
923 // Can't remove convergent if any of our functions has a convergent call to a
924 // function not in the SCC.
925 for (Instruction &I : instructions(*F)) {
926 CallSite CS(&I);
927 // Bail if CS is a convergent call to a function not in the SCC.
928 if (CS && CS.isConvergent() &&
929 SCCNodes.count(CS.getCalledFunction()) == 0)
930 return false;
931 }
932 }
933
934 // If the SCC doesn't have any convergent functions, we have nothing to do.
935 if (!HasConvergentFn) return false;
936
937 // If we got here, all of the calls the SCC makes to functions not in the SCC
938 // are non-convergent. Therefore all of the SCC's functions can also be made
939 // non-convergent. We'll remove the attr from the callsites in
940 // InstCombineCalls.
941 for (Function *F : SCCNodes) {
942 if (!F->isConvergent()) continue;
943
944 DEBUG(dbgs() << "Removing convergent attr from fn " << F->getName()
945 << "\n");
946 F->setNotConvergent();
947 }
948 return true;
949 }
950
setDoesNotRecurse(Function & F)951 static bool setDoesNotRecurse(Function &F) {
952 if (F.doesNotRecurse())
953 return false;
954 F.setDoesNotRecurse();
955 ++NumNoRecurse;
956 return true;
957 }
958
addNoRecurseAttrs(const SCCNodeSet & SCCNodes)959 static bool addNoRecurseAttrs(const SCCNodeSet &SCCNodes) {
960 // Try and identify functions that do not recurse.
961
962 // If the SCC contains multiple nodes we know for sure there is recursion.
963 if (SCCNodes.size() != 1)
964 return false;
965
966 Function *F = *SCCNodes.begin();
967 if (!F || F->isDeclaration() || F->doesNotRecurse())
968 return false;
969
970 // If all of the calls in F are identifiable and are to norecurse functions, F
971 // is norecurse. This check also detects self-recursion as F is not currently
972 // marked norecurse, so any called from F to F will not be marked norecurse.
973 for (Instruction &I : instructions(*F))
974 if (auto CS = CallSite(&I)) {
975 Function *Callee = CS.getCalledFunction();
976 if (!Callee || Callee == F || !Callee->doesNotRecurse())
977 // Function calls a potentially recursive function.
978 return false;
979 }
980
981 // Every call was to a non-recursive function other than this function, and
982 // we have no indirect recursion as the SCC size is one. This function cannot
983 // recurse.
984 return setDoesNotRecurse(*F);
985 }
986
run(LazyCallGraph::SCC & C,CGSCCAnalysisManager & AM)987 PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C,
988 CGSCCAnalysisManager &AM) {
989 FunctionAnalysisManager &FAM =
990 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C).getManager();
991
992 // We pass a lambda into functions to wire them up to the analysis manager
993 // for getting function analyses.
994 auto AARGetter = [&](Function &F) -> AAResults & {
995 return FAM.getResult<AAManager>(F);
996 };
997
998 // Fill SCCNodes with the elements of the SCC. Also track whether there are
999 // any external or opt-none nodes that will prevent us from optimizing any
1000 // part of the SCC.
1001 SCCNodeSet SCCNodes;
1002 bool HasUnknownCall = false;
1003 for (LazyCallGraph::Node &N : C) {
1004 Function &F = N.getFunction();
1005 if (F.hasFnAttribute(Attribute::OptimizeNone)) {
1006 // Treat any function we're trying not to optimize as if it were an
1007 // indirect call and omit it from the node set used below.
1008 HasUnknownCall = true;
1009 continue;
1010 }
1011 // Track whether any functions in this SCC have an unknown call edge.
1012 // Note: if this is ever a performance hit, we can common it with
1013 // subsequent routines which also do scans over the instructions of the
1014 // function.
1015 if (!HasUnknownCall)
1016 for (Instruction &I : instructions(F))
1017 if (auto CS = CallSite(&I))
1018 if (!CS.getCalledFunction()) {
1019 HasUnknownCall = true;
1020 break;
1021 }
1022
1023 SCCNodes.insert(&F);
1024 }
1025
1026 bool Changed = false;
1027 Changed |= addReadAttrs(SCCNodes, AARGetter);
1028 Changed |= addArgumentAttrs(SCCNodes);
1029
1030 // If we have no external nodes participating in the SCC, we can deduce some
1031 // more precise attributes as well.
1032 if (!HasUnknownCall) {
1033 Changed |= addNoAliasAttrs(SCCNodes);
1034 Changed |= addNonNullAttrs(SCCNodes);
1035 Changed |= removeConvergentAttrs(SCCNodes);
1036 Changed |= addNoRecurseAttrs(SCCNodes);
1037 }
1038
1039 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
1040 }
1041
1042 namespace {
1043 struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass {
1044 static char ID; // Pass identification, replacement for typeid
PostOrderFunctionAttrsLegacyPass__anon4eb4aa3b0611::PostOrderFunctionAttrsLegacyPass1045 PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) {
1046 initializePostOrderFunctionAttrsLegacyPassPass(*PassRegistry::getPassRegistry());
1047 }
1048
1049 bool runOnSCC(CallGraphSCC &SCC) override;
1050
getAnalysisUsage__anon4eb4aa3b0611::PostOrderFunctionAttrsLegacyPass1051 void getAnalysisUsage(AnalysisUsage &AU) const override {
1052 AU.setPreservesCFG();
1053 AU.addRequired<AssumptionCacheTracker>();
1054 getAAResultsAnalysisUsage(AU);
1055 CallGraphSCCPass::getAnalysisUsage(AU);
1056 }
1057 };
1058 }
1059
1060 char PostOrderFunctionAttrsLegacyPass::ID = 0;
1061 INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "functionattrs",
1062 "Deduce function attributes", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)1063 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1064 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1065 INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "functionattrs",
1066 "Deduce function attributes", false, false)
1067
1068 Pass *llvm::createPostOrderFunctionAttrsLegacyPass() { return new PostOrderFunctionAttrsLegacyPass(); }
1069
1070 template <typename AARGetterT>
runImpl(CallGraphSCC & SCC,AARGetterT AARGetter)1071 static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) {
1072 bool Changed = false;
1073
1074 // Fill SCCNodes with the elements of the SCC. Used for quickly looking up
1075 // whether a given CallGraphNode is in this SCC. Also track whether there are
1076 // any external or opt-none nodes that will prevent us from optimizing any
1077 // part of the SCC.
1078 SCCNodeSet SCCNodes;
1079 bool ExternalNode = false;
1080 for (CallGraphNode *I : SCC) {
1081 Function *F = I->getFunction();
1082 if (!F || F->hasFnAttribute(Attribute::OptimizeNone)) {
1083 // External node or function we're trying not to optimize - we both avoid
1084 // transform them and avoid leveraging information they provide.
1085 ExternalNode = true;
1086 continue;
1087 }
1088
1089 SCCNodes.insert(F);
1090 }
1091
1092 Changed |= addReadAttrs(SCCNodes, AARGetter);
1093 Changed |= addArgumentAttrs(SCCNodes);
1094
1095 // If we have no external nodes participating in the SCC, we can deduce some
1096 // more precise attributes as well.
1097 if (!ExternalNode) {
1098 Changed |= addNoAliasAttrs(SCCNodes);
1099 Changed |= addNonNullAttrs(SCCNodes);
1100 Changed |= removeConvergentAttrs(SCCNodes);
1101 Changed |= addNoRecurseAttrs(SCCNodes);
1102 }
1103
1104 return Changed;
1105 }
1106
runOnSCC(CallGraphSCC & SCC)1107 bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) {
1108 if (skipSCC(SCC))
1109 return false;
1110
1111 // We compute dedicated AA results for each function in the SCC as needed. We
1112 // use a lambda referencing external objects so that they live long enough to
1113 // be queried, but we re-use them each time.
1114 Optional<BasicAAResult> BAR;
1115 Optional<AAResults> AAR;
1116 auto AARGetter = [&](Function &F) -> AAResults & {
1117 BAR.emplace(createLegacyPMBasicAAResult(*this, F));
1118 AAR.emplace(createLegacyPMAAResults(*this, F, *BAR));
1119 return *AAR;
1120 };
1121
1122 return runImpl(SCC, AARGetter);
1123 }
1124
1125 namespace {
1126 struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass {
1127 static char ID; // Pass identification, replacement for typeid
ReversePostOrderFunctionAttrsLegacyPass__anon4eb4aa3b0811::ReversePostOrderFunctionAttrsLegacyPass1128 ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) {
1129 initializeReversePostOrderFunctionAttrsLegacyPassPass(*PassRegistry::getPassRegistry());
1130 }
1131
1132 bool runOnModule(Module &M) override;
1133
getAnalysisUsage__anon4eb4aa3b0811::ReversePostOrderFunctionAttrsLegacyPass1134 void getAnalysisUsage(AnalysisUsage &AU) const override {
1135 AU.setPreservesCFG();
1136 AU.addRequired<CallGraphWrapperPass>();
1137 AU.addPreserved<CallGraphWrapperPass>();
1138 }
1139 };
1140 }
1141
1142 char ReversePostOrderFunctionAttrsLegacyPass::ID = 0;
1143 INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs",
1144 "Deduce function attributes in RPO", false, false)
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)1145 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1146 INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs",
1147 "Deduce function attributes in RPO", false, false)
1148
1149 Pass *llvm::createReversePostOrderFunctionAttrsPass() {
1150 return new ReversePostOrderFunctionAttrsLegacyPass();
1151 }
1152
addNoRecurseAttrsTopDown(Function & F)1153 static bool addNoRecurseAttrsTopDown(Function &F) {
1154 // We check the preconditions for the function prior to calling this to avoid
1155 // the cost of building up a reversible post-order list. We assert them here
1156 // to make sure none of the invariants this relies on were violated.
1157 assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!");
1158 assert(!F.doesNotRecurse() &&
1159 "This function has already been deduced as norecurs!");
1160 assert(F.hasInternalLinkage() &&
1161 "Can only do top-down deduction for internal linkage functions!");
1162
1163 // If F is internal and all of its uses are calls from a non-recursive
1164 // functions, then none of its calls could in fact recurse without going
1165 // through a function marked norecurse, and so we can mark this function too
1166 // as norecurse. Note that the uses must actually be calls -- otherwise
1167 // a pointer to this function could be returned from a norecurse function but
1168 // this function could be recursively (indirectly) called. Note that this
1169 // also detects if F is directly recursive as F is not yet marked as
1170 // a norecurse function.
1171 for (auto *U : F.users()) {
1172 auto *I = dyn_cast<Instruction>(U);
1173 if (!I)
1174 return false;
1175 CallSite CS(I);
1176 if (!CS || !CS.getParent()->getParent()->doesNotRecurse())
1177 return false;
1178 }
1179 return setDoesNotRecurse(F);
1180 }
1181
deduceFunctionAttributeInRPO(Module & M,CallGraph & CG)1182 static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) {
1183 // We only have a post-order SCC traversal (because SCCs are inherently
1184 // discovered in post-order), so we accumulate them in a vector and then walk
1185 // it in reverse. This is simpler than using the RPO iterator infrastructure
1186 // because we need to combine SCC detection and the PO walk of the call
1187 // graph. We can also cheat egregiously because we're primarily interested in
1188 // synthesizing norecurse and so we can only save the singular SCCs as SCCs
1189 // with multiple functions in them will clearly be recursive.
1190 SmallVector<Function *, 16> Worklist;
1191 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
1192 if (I->size() != 1)
1193 continue;
1194
1195 Function *F = I->front()->getFunction();
1196 if (F && !F->isDeclaration() && !F->doesNotRecurse() &&
1197 F->hasInternalLinkage())
1198 Worklist.push_back(F);
1199 }
1200
1201 bool Changed = false;
1202 for (auto *F : reverse(Worklist))
1203 Changed |= addNoRecurseAttrsTopDown(*F);
1204
1205 return Changed;
1206 }
1207
runOnModule(Module & M)1208 bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) {
1209 if (skipModule(M))
1210 return false;
1211
1212 auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1213
1214 return deduceFunctionAttributeInRPO(M, CG);
1215 }
1216
1217 PreservedAnalyses
run(Module & M,AnalysisManager<Module> & AM)1218 ReversePostOrderFunctionAttrsPass::run(Module &M, AnalysisManager<Module> &AM) {
1219 auto &CG = AM.getResult<CallGraphAnalysis>(M);
1220
1221 bool Changed = deduceFunctionAttributeInRPO(M, CG);
1222 if (!Changed)
1223 return PreservedAnalyses::all();
1224 PreservedAnalyses PA;
1225 PA.preserve<CallGraphAnalysis>();
1226 return PA;
1227 }
1228