1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms simple global variables that never have their address
11 // taken. If obviously true, it marks read/write globals as constant, deletes
12 // variables only stored to, etc.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/Transforms/IPO/GlobalOpt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/ConstantFolding.h"
24 #include "llvm/Analysis/MemoryBuiltins.h"
25 #include "llvm/Analysis/TargetLibraryInfo.h"
26 #include "llvm/IR/CallSite.h"
27 #include "llvm/IR/CallingConv.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/GetElementPtrTypeIterator.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/ValueHandle.h"
38 #include "llvm/Pass.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/IPO.h"
44 #include "llvm/Transforms/Utils/CtorUtils.h"
45 #include "llvm/Transforms/Utils/Evaluator.h"
46 #include "llvm/Transforms/Utils/GlobalStatus.h"
47 #include <algorithm>
48 using namespace llvm;
49
50 #define DEBUG_TYPE "globalopt"
51
52 STATISTIC(NumMarked , "Number of globals marked constant");
53 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr");
54 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars");
55 STATISTIC(NumHeapSRA , "Number of heap objects SRA'd");
56 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
57 STATISTIC(NumDeleted , "Number of globals deleted");
58 STATISTIC(NumGlobUses , "Number of global uses devirtualized");
59 STATISTIC(NumLocalized , "Number of globals localized");
60 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans");
61 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc");
62 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
63 STATISTIC(NumNestRemoved , "Number of nest attributes removed");
64 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
65 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
66 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
67
68 /// Is this global variable possibly used by a leak checker as a root? If so,
69 /// we might not really want to eliminate the stores to it.
isLeakCheckerRoot(GlobalVariable * GV)70 static bool isLeakCheckerRoot(GlobalVariable *GV) {
71 // A global variable is a root if it is a pointer, or could plausibly contain
72 // a pointer. There are two challenges; one is that we could have a struct
73 // the has an inner member which is a pointer. We recurse through the type to
74 // detect these (up to a point). The other is that we may actually be a union
75 // of a pointer and another type, and so our LLVM type is an integer which
76 // gets converted into a pointer, or our type is an [i8 x #] with a pointer
77 // potentially contained here.
78
79 if (GV->hasPrivateLinkage())
80 return false;
81
82 SmallVector<Type *, 4> Types;
83 Types.push_back(GV->getValueType());
84
85 unsigned Limit = 20;
86 do {
87 Type *Ty = Types.pop_back_val();
88 switch (Ty->getTypeID()) {
89 default: break;
90 case Type::PointerTyID: return true;
91 case Type::ArrayTyID:
92 case Type::VectorTyID: {
93 SequentialType *STy = cast<SequentialType>(Ty);
94 Types.push_back(STy->getElementType());
95 break;
96 }
97 case Type::StructTyID: {
98 StructType *STy = cast<StructType>(Ty);
99 if (STy->isOpaque()) return true;
100 for (StructType::element_iterator I = STy->element_begin(),
101 E = STy->element_end(); I != E; ++I) {
102 Type *InnerTy = *I;
103 if (isa<PointerType>(InnerTy)) return true;
104 if (isa<CompositeType>(InnerTy))
105 Types.push_back(InnerTy);
106 }
107 break;
108 }
109 }
110 if (--Limit == 0) return true;
111 } while (!Types.empty());
112 return false;
113 }
114
115 /// Given a value that is stored to a global but never read, determine whether
116 /// it's safe to remove the store and the chain of computation that feeds the
117 /// store.
IsSafeComputationToRemove(Value * V,const TargetLibraryInfo * TLI)118 static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) {
119 do {
120 if (isa<Constant>(V))
121 return true;
122 if (!V->hasOneUse())
123 return false;
124 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
125 isa<GlobalValue>(V))
126 return false;
127 if (isAllocationFn(V, TLI))
128 return true;
129
130 Instruction *I = cast<Instruction>(V);
131 if (I->mayHaveSideEffects())
132 return false;
133 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
134 if (!GEP->hasAllConstantIndices())
135 return false;
136 } else if (I->getNumOperands() != 1) {
137 return false;
138 }
139
140 V = I->getOperand(0);
141 } while (1);
142 }
143
144 /// This GV is a pointer root. Loop over all users of the global and clean up
145 /// any that obviously don't assign the global a value that isn't dynamically
146 /// allocated.
CleanupPointerRootUsers(GlobalVariable * GV,const TargetLibraryInfo * TLI)147 static bool CleanupPointerRootUsers(GlobalVariable *GV,
148 const TargetLibraryInfo *TLI) {
149 // A brief explanation of leak checkers. The goal is to find bugs where
150 // pointers are forgotten, causing an accumulating growth in memory
151 // usage over time. The common strategy for leak checkers is to whitelist the
152 // memory pointed to by globals at exit. This is popular because it also
153 // solves another problem where the main thread of a C++ program may shut down
154 // before other threads that are still expecting to use those globals. To
155 // handle that case, we expect the program may create a singleton and never
156 // destroy it.
157
158 bool Changed = false;
159
160 // If Dead[n].first is the only use of a malloc result, we can delete its
161 // chain of computation and the store to the global in Dead[n].second.
162 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
163
164 // Constants can't be pointers to dynamically allocated memory.
165 for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
166 UI != E;) {
167 User *U = *UI++;
168 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
169 Value *V = SI->getValueOperand();
170 if (isa<Constant>(V)) {
171 Changed = true;
172 SI->eraseFromParent();
173 } else if (Instruction *I = dyn_cast<Instruction>(V)) {
174 if (I->hasOneUse())
175 Dead.push_back(std::make_pair(I, SI));
176 }
177 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
178 if (isa<Constant>(MSI->getValue())) {
179 Changed = true;
180 MSI->eraseFromParent();
181 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
182 if (I->hasOneUse())
183 Dead.push_back(std::make_pair(I, MSI));
184 }
185 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
186 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
187 if (MemSrc && MemSrc->isConstant()) {
188 Changed = true;
189 MTI->eraseFromParent();
190 } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
191 if (I->hasOneUse())
192 Dead.push_back(std::make_pair(I, MTI));
193 }
194 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
195 if (CE->use_empty()) {
196 CE->destroyConstant();
197 Changed = true;
198 }
199 } else if (Constant *C = dyn_cast<Constant>(U)) {
200 if (isSafeToDestroyConstant(C)) {
201 C->destroyConstant();
202 // This could have invalidated UI, start over from scratch.
203 Dead.clear();
204 CleanupPointerRootUsers(GV, TLI);
205 return true;
206 }
207 }
208 }
209
210 for (int i = 0, e = Dead.size(); i != e; ++i) {
211 if (IsSafeComputationToRemove(Dead[i].first, TLI)) {
212 Dead[i].second->eraseFromParent();
213 Instruction *I = Dead[i].first;
214 do {
215 if (isAllocationFn(I, TLI))
216 break;
217 Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
218 if (!J)
219 break;
220 I->eraseFromParent();
221 I = J;
222 } while (1);
223 I->eraseFromParent();
224 }
225 }
226
227 return Changed;
228 }
229
230 /// We just marked GV constant. Loop over all users of the global, cleaning up
231 /// the obvious ones. This is largely just a quick scan over the use list to
232 /// clean up the easy and obvious cruft. This returns true if it made a change.
CleanupConstantGlobalUsers(Value * V,Constant * Init,const DataLayout & DL,TargetLibraryInfo * TLI)233 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
234 const DataLayout &DL,
235 TargetLibraryInfo *TLI) {
236 bool Changed = false;
237 // Note that we need to use a weak value handle for the worklist items. When
238 // we delete a constant array, we may also be holding pointer to one of its
239 // elements (or an element of one of its elements if we're dealing with an
240 // array of arrays) in the worklist.
241 SmallVector<WeakVH, 8> WorkList(V->user_begin(), V->user_end());
242 while (!WorkList.empty()) {
243 Value *UV = WorkList.pop_back_val();
244 if (!UV)
245 continue;
246
247 User *U = cast<User>(UV);
248
249 if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
250 if (Init) {
251 // Replace the load with the initializer.
252 LI->replaceAllUsesWith(Init);
253 LI->eraseFromParent();
254 Changed = true;
255 }
256 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
257 // Store must be unreachable or storing Init into the global.
258 SI->eraseFromParent();
259 Changed = true;
260 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
261 if (CE->getOpcode() == Instruction::GetElementPtr) {
262 Constant *SubInit = nullptr;
263 if (Init)
264 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
265 Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI);
266 } else if ((CE->getOpcode() == Instruction::BitCast &&
267 CE->getType()->isPointerTy()) ||
268 CE->getOpcode() == Instruction::AddrSpaceCast) {
269 // Pointer cast, delete any stores and memsets to the global.
270 Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI);
271 }
272
273 if (CE->use_empty()) {
274 CE->destroyConstant();
275 Changed = true;
276 }
277 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
278 // Do not transform "gepinst (gep constexpr (GV))" here, because forming
279 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
280 // and will invalidate our notion of what Init is.
281 Constant *SubInit = nullptr;
282 if (!isa<ConstantExpr>(GEP->getOperand(0))) {
283 ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(
284 ConstantFoldInstruction(GEP, DL, TLI));
285 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
286 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
287
288 // If the initializer is an all-null value and we have an inbounds GEP,
289 // we already know what the result of any load from that GEP is.
290 // TODO: Handle splats.
291 if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
292 SubInit = Constant::getNullValue(GEP->getResultElementType());
293 }
294 Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI);
295
296 if (GEP->use_empty()) {
297 GEP->eraseFromParent();
298 Changed = true;
299 }
300 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
301 if (MI->getRawDest() == V) {
302 MI->eraseFromParent();
303 Changed = true;
304 }
305
306 } else if (Constant *C = dyn_cast<Constant>(U)) {
307 // If we have a chain of dead constantexprs or other things dangling from
308 // us, and if they are all dead, nuke them without remorse.
309 if (isSafeToDestroyConstant(C)) {
310 C->destroyConstant();
311 CleanupConstantGlobalUsers(V, Init, DL, TLI);
312 return true;
313 }
314 }
315 }
316 return Changed;
317 }
318
319 /// Return true if the specified instruction is a safe user of a derived
320 /// expression from a global that we want to SROA.
isSafeSROAElementUse(Value * V)321 static bool isSafeSROAElementUse(Value *V) {
322 // We might have a dead and dangling constant hanging off of here.
323 if (Constant *C = dyn_cast<Constant>(V))
324 return isSafeToDestroyConstant(C);
325
326 Instruction *I = dyn_cast<Instruction>(V);
327 if (!I) return false;
328
329 // Loads are ok.
330 if (isa<LoadInst>(I)) return true;
331
332 // Stores *to* the pointer are ok.
333 if (StoreInst *SI = dyn_cast<StoreInst>(I))
334 return SI->getOperand(0) != V;
335
336 // Otherwise, it must be a GEP.
337 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
338 if (!GEPI) return false;
339
340 if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
341 !cast<Constant>(GEPI->getOperand(1))->isNullValue())
342 return false;
343
344 for (User *U : GEPI->users())
345 if (!isSafeSROAElementUse(U))
346 return false;
347 return true;
348 }
349
350
351 /// U is a direct user of the specified global value. Look at it and its uses
352 /// and decide whether it is safe to SROA this global.
IsUserOfGlobalSafeForSRA(User * U,GlobalValue * GV)353 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
354 // The user of the global must be a GEP Inst or a ConstantExpr GEP.
355 if (!isa<GetElementPtrInst>(U) &&
356 (!isa<ConstantExpr>(U) ||
357 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
358 return false;
359
360 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we
361 // don't like < 3 operand CE's, and we don't like non-constant integer
362 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some
363 // value of C.
364 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
365 !cast<Constant>(U->getOperand(1))->isNullValue() ||
366 !isa<ConstantInt>(U->getOperand(2)))
367 return false;
368
369 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
370 ++GEPI; // Skip over the pointer index.
371
372 // If this is a use of an array allocation, do a bit more checking for sanity.
373 if (ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
374 uint64_t NumElements = AT->getNumElements();
375 ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
376
377 // Check to make sure that index falls within the array. If not,
378 // something funny is going on, so we won't do the optimization.
379 //
380 if (Idx->getZExtValue() >= NumElements)
381 return false;
382
383 // We cannot scalar repl this level of the array unless any array
384 // sub-indices are in-range constants. In particular, consider:
385 // A[0][i]. We cannot know that the user isn't doing invalid things like
386 // allowing i to index an out-of-range subscript that accesses A[1].
387 //
388 // Scalar replacing *just* the outer index of the array is probably not
389 // going to be a win anyway, so just give up.
390 for (++GEPI; // Skip array index.
391 GEPI != E;
392 ++GEPI) {
393 uint64_t NumElements;
394 if (ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
395 NumElements = SubArrayTy->getNumElements();
396 else if (VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI))
397 NumElements = SubVectorTy->getNumElements();
398 else {
399 assert((*GEPI)->isStructTy() &&
400 "Indexed GEP type is not array, vector, or struct!");
401 continue;
402 }
403
404 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
405 if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
406 return false;
407 }
408 }
409
410 for (User *UU : U->users())
411 if (!isSafeSROAElementUse(UU))
412 return false;
413
414 return true;
415 }
416
417 /// Look at all uses of the global and decide whether it is safe for us to
418 /// perform this transformation.
GlobalUsersSafeToSRA(GlobalValue * GV)419 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
420 for (User *U : GV->users())
421 if (!IsUserOfGlobalSafeForSRA(U, GV))
422 return false;
423
424 return true;
425 }
426
427
428 /// Perform scalar replacement of aggregates on the specified global variable.
429 /// This opens the door for other optimizations by exposing the behavior of the
430 /// program in a more fine-grained way. We have determined that this
431 /// transformation is safe already. We return the first global variable we
432 /// insert so that the caller can reprocess it.
SRAGlobal(GlobalVariable * GV,const DataLayout & DL)433 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
434 // Make sure this global only has simple uses that we can SRA.
435 if (!GlobalUsersSafeToSRA(GV))
436 return nullptr;
437
438 assert(GV->hasLocalLinkage());
439 Constant *Init = GV->getInitializer();
440 Type *Ty = Init->getType();
441
442 std::vector<GlobalVariable*> NewGlobals;
443 Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
444
445 // Get the alignment of the global, either explicit or target-specific.
446 unsigned StartAlignment = GV->getAlignment();
447 if (StartAlignment == 0)
448 StartAlignment = DL.getABITypeAlignment(GV->getType());
449
450 if (StructType *STy = dyn_cast<StructType>(Ty)) {
451 NewGlobals.reserve(STy->getNumElements());
452 const StructLayout &Layout = *DL.getStructLayout(STy);
453 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
454 Constant *In = Init->getAggregateElement(i);
455 assert(In && "Couldn't get element of initializer?");
456 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
457 GlobalVariable::InternalLinkage,
458 In, GV->getName()+"."+Twine(i),
459 GV->getThreadLocalMode(),
460 GV->getType()->getAddressSpace());
461 NGV->setExternallyInitialized(GV->isExternallyInitialized());
462 NGV->copyAttributesFrom(GV);
463 Globals.push_back(NGV);
464 NewGlobals.push_back(NGV);
465
466 // Calculate the known alignment of the field. If the original aggregate
467 // had 256 byte alignment for example, something might depend on that:
468 // propagate info to each field.
469 uint64_t FieldOffset = Layout.getElementOffset(i);
470 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
471 if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i)))
472 NGV->setAlignment(NewAlign);
473 }
474 } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
475 unsigned NumElements = 0;
476 if (ArrayType *ATy = dyn_cast<ArrayType>(STy))
477 NumElements = ATy->getNumElements();
478 else
479 NumElements = cast<VectorType>(STy)->getNumElements();
480
481 if (NumElements > 16 && GV->hasNUsesOrMore(16))
482 return nullptr; // It's not worth it.
483 NewGlobals.reserve(NumElements);
484
485 uint64_t EltSize = DL.getTypeAllocSize(STy->getElementType());
486 unsigned EltAlign = DL.getABITypeAlignment(STy->getElementType());
487 for (unsigned i = 0, e = NumElements; i != e; ++i) {
488 Constant *In = Init->getAggregateElement(i);
489 assert(In && "Couldn't get element of initializer?");
490
491 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
492 GlobalVariable::InternalLinkage,
493 In, GV->getName()+"."+Twine(i),
494 GV->getThreadLocalMode(),
495 GV->getType()->getAddressSpace());
496 NGV->setExternallyInitialized(GV->isExternallyInitialized());
497 NGV->copyAttributesFrom(GV);
498 Globals.push_back(NGV);
499 NewGlobals.push_back(NGV);
500
501 // Calculate the known alignment of the field. If the original aggregate
502 // had 256 byte alignment for example, something might depend on that:
503 // propagate info to each field.
504 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
505 if (NewAlign > EltAlign)
506 NGV->setAlignment(NewAlign);
507 }
508 }
509
510 if (NewGlobals.empty())
511 return nullptr;
512
513 DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
514
515 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
516
517 // Loop over all of the uses of the global, replacing the constantexpr geps,
518 // with smaller constantexpr geps or direct references.
519 while (!GV->use_empty()) {
520 User *GEP = GV->user_back();
521 assert(((isa<ConstantExpr>(GEP) &&
522 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
523 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
524
525 // Ignore the 1th operand, which has to be zero or else the program is quite
526 // broken (undefined). Get the 2nd operand, which is the structure or array
527 // index.
528 unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
529 if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
530
531 Value *NewPtr = NewGlobals[Val];
532 Type *NewTy = NewGlobals[Val]->getValueType();
533
534 // Form a shorter GEP if needed.
535 if (GEP->getNumOperands() > 3) {
536 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
537 SmallVector<Constant*, 8> Idxs;
538 Idxs.push_back(NullInt);
539 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
540 Idxs.push_back(CE->getOperand(i));
541 NewPtr =
542 ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
543 } else {
544 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
545 SmallVector<Value*, 8> Idxs;
546 Idxs.push_back(NullInt);
547 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
548 Idxs.push_back(GEPI->getOperand(i));
549 NewPtr = GetElementPtrInst::Create(
550 NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI);
551 }
552 }
553 GEP->replaceAllUsesWith(NewPtr);
554
555 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
556 GEPI->eraseFromParent();
557 else
558 cast<ConstantExpr>(GEP)->destroyConstant();
559 }
560
561 // Delete the old global, now that it is dead.
562 Globals.erase(GV);
563 ++NumSRA;
564
565 // Loop over the new globals array deleting any globals that are obviously
566 // dead. This can arise due to scalarization of a structure or an array that
567 // has elements that are dead.
568 unsigned FirstGlobal = 0;
569 for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
570 if (NewGlobals[i]->use_empty()) {
571 Globals.erase(NewGlobals[i]);
572 if (FirstGlobal == i) ++FirstGlobal;
573 }
574
575 return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr;
576 }
577
578 /// Return true if all users of the specified value will trap if the value is
579 /// dynamically null. PHIs keeps track of any phi nodes we've seen to avoid
580 /// reprocessing them.
AllUsesOfValueWillTrapIfNull(const Value * V,SmallPtrSetImpl<const PHINode * > & PHIs)581 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
582 SmallPtrSetImpl<const PHINode*> &PHIs) {
583 for (const User *U : V->users())
584 if (isa<LoadInst>(U)) {
585 // Will trap.
586 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
587 if (SI->getOperand(0) == V) {
588 //cerr << "NONTRAPPING USE: " << *U;
589 return false; // Storing the value.
590 }
591 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
592 if (CI->getCalledValue() != V) {
593 //cerr << "NONTRAPPING USE: " << *U;
594 return false; // Not calling the ptr
595 }
596 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
597 if (II->getCalledValue() != V) {
598 //cerr << "NONTRAPPING USE: " << *U;
599 return false; // Not calling the ptr
600 }
601 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
602 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
603 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
604 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
605 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
606 // If we've already seen this phi node, ignore it, it has already been
607 // checked.
608 if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
609 return false;
610 } else if (isa<ICmpInst>(U) &&
611 isa<ConstantPointerNull>(U->getOperand(1))) {
612 // Ignore icmp X, null
613 } else {
614 //cerr << "NONTRAPPING USE: " << *U;
615 return false;
616 }
617
618 return true;
619 }
620
621 /// Return true if all uses of any loads from GV will trap if the loaded value
622 /// is null. Note that this also permits comparisons of the loaded value
623 /// against null, as a special case.
AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable * GV)624 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
625 for (const User *U : GV->users())
626 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
627 SmallPtrSet<const PHINode*, 8> PHIs;
628 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
629 return false;
630 } else if (isa<StoreInst>(U)) {
631 // Ignore stores to the global.
632 } else {
633 // We don't know or understand this user, bail out.
634 //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
635 return false;
636 }
637 return true;
638 }
639
OptimizeAwayTrappingUsesOfValue(Value * V,Constant * NewV)640 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
641 bool Changed = false;
642 for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
643 Instruction *I = cast<Instruction>(*UI++);
644 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
645 LI->setOperand(0, NewV);
646 Changed = true;
647 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
648 if (SI->getOperand(1) == V) {
649 SI->setOperand(1, NewV);
650 Changed = true;
651 }
652 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
653 CallSite CS(I);
654 if (CS.getCalledValue() == V) {
655 // Calling through the pointer! Turn into a direct call, but be careful
656 // that the pointer is not also being passed as an argument.
657 CS.setCalledFunction(NewV);
658 Changed = true;
659 bool PassedAsArg = false;
660 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
661 if (CS.getArgument(i) == V) {
662 PassedAsArg = true;
663 CS.setArgument(i, NewV);
664 }
665
666 if (PassedAsArg) {
667 // Being passed as an argument also. Be careful to not invalidate UI!
668 UI = V->user_begin();
669 }
670 }
671 } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
672 Changed |= OptimizeAwayTrappingUsesOfValue(CI,
673 ConstantExpr::getCast(CI->getOpcode(),
674 NewV, CI->getType()));
675 if (CI->use_empty()) {
676 Changed = true;
677 CI->eraseFromParent();
678 }
679 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
680 // Should handle GEP here.
681 SmallVector<Constant*, 8> Idxs;
682 Idxs.reserve(GEPI->getNumOperands()-1);
683 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
684 i != e; ++i)
685 if (Constant *C = dyn_cast<Constant>(*i))
686 Idxs.push_back(C);
687 else
688 break;
689 if (Idxs.size() == GEPI->getNumOperands()-1)
690 Changed |= OptimizeAwayTrappingUsesOfValue(
691 GEPI, ConstantExpr::getGetElementPtr(nullptr, NewV, Idxs));
692 if (GEPI->use_empty()) {
693 Changed = true;
694 GEPI->eraseFromParent();
695 }
696 }
697 }
698
699 return Changed;
700 }
701
702
703 /// The specified global has only one non-null value stored into it. If there
704 /// are uses of the loaded value that would trap if the loaded value is
705 /// dynamically null, then we know that they cannot be reachable with a null
706 /// optimize away the load.
OptimizeAwayTrappingUsesOfLoads(GlobalVariable * GV,Constant * LV,const DataLayout & DL,TargetLibraryInfo * TLI)707 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
708 const DataLayout &DL,
709 TargetLibraryInfo *TLI) {
710 bool Changed = false;
711
712 // Keep track of whether we are able to remove all the uses of the global
713 // other than the store that defines it.
714 bool AllNonStoreUsesGone = true;
715
716 // Replace all uses of loads with uses of uses of the stored value.
717 for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
718 User *GlobalUser = *GUI++;
719 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
720 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
721 // If we were able to delete all uses of the loads
722 if (LI->use_empty()) {
723 LI->eraseFromParent();
724 Changed = true;
725 } else {
726 AllNonStoreUsesGone = false;
727 }
728 } else if (isa<StoreInst>(GlobalUser)) {
729 // Ignore the store that stores "LV" to the global.
730 assert(GlobalUser->getOperand(1) == GV &&
731 "Must be storing *to* the global");
732 } else {
733 AllNonStoreUsesGone = false;
734
735 // If we get here we could have other crazy uses that are transitively
736 // loaded.
737 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
738 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
739 isa<BitCastInst>(GlobalUser) ||
740 isa<GetElementPtrInst>(GlobalUser)) &&
741 "Only expect load and stores!");
742 }
743 }
744
745 if (Changed) {
746 DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV << "\n");
747 ++NumGlobUses;
748 }
749
750 // If we nuked all of the loads, then none of the stores are needed either,
751 // nor is the global.
752 if (AllNonStoreUsesGone) {
753 if (isLeakCheckerRoot(GV)) {
754 Changed |= CleanupPointerRootUsers(GV, TLI);
755 } else {
756 Changed = true;
757 CleanupConstantGlobalUsers(GV, nullptr, DL, TLI);
758 }
759 if (GV->use_empty()) {
760 DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n");
761 Changed = true;
762 GV->eraseFromParent();
763 ++NumDeleted;
764 }
765 }
766 return Changed;
767 }
768
769 /// Walk the use list of V, constant folding all of the instructions that are
770 /// foldable.
ConstantPropUsersOf(Value * V,const DataLayout & DL,TargetLibraryInfo * TLI)771 static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
772 TargetLibraryInfo *TLI) {
773 for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
774 if (Instruction *I = dyn_cast<Instruction>(*UI++))
775 if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
776 I->replaceAllUsesWith(NewC);
777
778 // Advance UI to the next non-I use to avoid invalidating it!
779 // Instructions could multiply use V.
780 while (UI != E && *UI == I)
781 ++UI;
782 I->eraseFromParent();
783 }
784 }
785
786 /// This function takes the specified global variable, and transforms the
787 /// program as if it always contained the result of the specified malloc.
788 /// Because it is always the result of the specified malloc, there is no reason
789 /// to actually DO the malloc. Instead, turn the malloc into a global, and any
790 /// loads of GV as uses of the new global.
791 static GlobalVariable *
OptimizeGlobalAddressOfMalloc(GlobalVariable * GV,CallInst * CI,Type * AllocTy,ConstantInt * NElements,const DataLayout & DL,TargetLibraryInfo * TLI)792 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
793 ConstantInt *NElements, const DataLayout &DL,
794 TargetLibraryInfo *TLI) {
795 DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI << '\n');
796
797 Type *GlobalType;
798 if (NElements->getZExtValue() == 1)
799 GlobalType = AllocTy;
800 else
801 // If we have an array allocation, the global variable is of an array.
802 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
803
804 // Create the new global variable. The contents of the malloc'd memory is
805 // undefined, so initialize with an undef value.
806 GlobalVariable *NewGV = new GlobalVariable(
807 *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
808 UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
809 GV->getThreadLocalMode());
810
811 // If there are bitcast users of the malloc (which is typical, usually we have
812 // a malloc + bitcast) then replace them with uses of the new global. Update
813 // other users to use the global as well.
814 BitCastInst *TheBC = nullptr;
815 while (!CI->use_empty()) {
816 Instruction *User = cast<Instruction>(CI->user_back());
817 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
818 if (BCI->getType() == NewGV->getType()) {
819 BCI->replaceAllUsesWith(NewGV);
820 BCI->eraseFromParent();
821 } else {
822 BCI->setOperand(0, NewGV);
823 }
824 } else {
825 if (!TheBC)
826 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
827 User->replaceUsesOfWith(CI, TheBC);
828 }
829 }
830
831 Constant *RepValue = NewGV;
832 if (NewGV->getType() != GV->getValueType())
833 RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType());
834
835 // If there is a comparison against null, we will insert a global bool to
836 // keep track of whether the global was initialized yet or not.
837 GlobalVariable *InitBool =
838 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
839 GlobalValue::InternalLinkage,
840 ConstantInt::getFalse(GV->getContext()),
841 GV->getName()+".init", GV->getThreadLocalMode());
842 bool InitBoolUsed = false;
843
844 // Loop over all uses of GV, processing them in turn.
845 while (!GV->use_empty()) {
846 if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) {
847 // The global is initialized when the store to it occurs.
848 new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0,
849 SI->getOrdering(), SI->getSynchScope(), SI);
850 SI->eraseFromParent();
851 continue;
852 }
853
854 LoadInst *LI = cast<LoadInst>(GV->user_back());
855 while (!LI->use_empty()) {
856 Use &LoadUse = *LI->use_begin();
857 ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
858 if (!ICI) {
859 LoadUse = RepValue;
860 continue;
861 }
862
863 // Replace the cmp X, 0 with a use of the bool value.
864 // Sink the load to where the compare was, if atomic rules allow us to.
865 Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0,
866 LI->getOrdering(), LI->getSynchScope(),
867 LI->isUnordered() ? (Instruction*)ICI : LI);
868 InitBoolUsed = true;
869 switch (ICI->getPredicate()) {
870 default: llvm_unreachable("Unknown ICmp Predicate!");
871 case ICmpInst::ICMP_ULT:
872 case ICmpInst::ICMP_SLT: // X < null -> always false
873 LV = ConstantInt::getFalse(GV->getContext());
874 break;
875 case ICmpInst::ICMP_ULE:
876 case ICmpInst::ICMP_SLE:
877 case ICmpInst::ICMP_EQ:
878 LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
879 break;
880 case ICmpInst::ICMP_NE:
881 case ICmpInst::ICMP_UGE:
882 case ICmpInst::ICMP_SGE:
883 case ICmpInst::ICMP_UGT:
884 case ICmpInst::ICMP_SGT:
885 break; // no change.
886 }
887 ICI->replaceAllUsesWith(LV);
888 ICI->eraseFromParent();
889 }
890 LI->eraseFromParent();
891 }
892
893 // If the initialization boolean was used, insert it, otherwise delete it.
894 if (!InitBoolUsed) {
895 while (!InitBool->use_empty()) // Delete initializations
896 cast<StoreInst>(InitBool->user_back())->eraseFromParent();
897 delete InitBool;
898 } else
899 GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
900
901 // Now the GV is dead, nuke it and the malloc..
902 GV->eraseFromParent();
903 CI->eraseFromParent();
904
905 // To further other optimizations, loop over all users of NewGV and try to
906 // constant prop them. This will promote GEP instructions with constant
907 // indices into GEP constant-exprs, which will allow global-opt to hack on it.
908 ConstantPropUsersOf(NewGV, DL, TLI);
909 if (RepValue != NewGV)
910 ConstantPropUsersOf(RepValue, DL, TLI);
911
912 return NewGV;
913 }
914
915 /// Scan the use-list of V checking to make sure that there are no complex uses
916 /// of V. We permit simple things like dereferencing the pointer, but not
917 /// storing through the address, unless it is to the specified global.
ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction * V,const GlobalVariable * GV,SmallPtrSetImpl<const PHINode * > & PHIs)918 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
919 const GlobalVariable *GV,
920 SmallPtrSetImpl<const PHINode*> &PHIs) {
921 for (const User *U : V->users()) {
922 const Instruction *Inst = cast<Instruction>(U);
923
924 if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
925 continue; // Fine, ignore.
926 }
927
928 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
929 if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
930 return false; // Storing the pointer itself... bad.
931 continue; // Otherwise, storing through it, or storing into GV... fine.
932 }
933
934 // Must index into the array and into the struct.
935 if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
936 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
937 return false;
938 continue;
939 }
940
941 if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
942 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI
943 // cycles.
944 if (PHIs.insert(PN).second)
945 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
946 return false;
947 continue;
948 }
949
950 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
951 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
952 return false;
953 continue;
954 }
955
956 return false;
957 }
958 return true;
959 }
960
961 /// The Alloc pointer is stored into GV somewhere. Transform all uses of the
962 /// allocation into loads from the global and uses of the resultant pointer.
963 /// Further, delete the store into GV. This assumes that these value pass the
964 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
ReplaceUsesOfMallocWithGlobal(Instruction * Alloc,GlobalVariable * GV)965 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
966 GlobalVariable *GV) {
967 while (!Alloc->use_empty()) {
968 Instruction *U = cast<Instruction>(*Alloc->user_begin());
969 Instruction *InsertPt = U;
970 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
971 // If this is the store of the allocation into the global, remove it.
972 if (SI->getOperand(1) == GV) {
973 SI->eraseFromParent();
974 continue;
975 }
976 } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
977 // Insert the load in the corresponding predecessor, not right before the
978 // PHI.
979 InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator();
980 } else if (isa<BitCastInst>(U)) {
981 // Must be bitcast between the malloc and store to initialize the global.
982 ReplaceUsesOfMallocWithGlobal(U, GV);
983 U->eraseFromParent();
984 continue;
985 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
986 // If this is a "GEP bitcast" and the user is a store to the global, then
987 // just process it as a bitcast.
988 if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
989 if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back()))
990 if (SI->getOperand(1) == GV) {
991 // Must be bitcast GEP between the malloc and store to initialize
992 // the global.
993 ReplaceUsesOfMallocWithGlobal(GEPI, GV);
994 GEPI->eraseFromParent();
995 continue;
996 }
997 }
998
999 // Insert a load from the global, and use it instead of the malloc.
1000 Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1001 U->replaceUsesOfWith(Alloc, NL);
1002 }
1003 }
1004
1005 /// Verify that all uses of V (a load, or a phi of a load) are simple enough to
1006 /// perform heap SRA on. This permits GEP's that index through the array and
1007 /// struct field, icmps of null, and PHIs.
LoadUsesSimpleEnoughForHeapSRA(const Value * V,SmallPtrSetImpl<const PHINode * > & LoadUsingPHIs,SmallPtrSetImpl<const PHINode * > & LoadUsingPHIsPerLoad)1008 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1009 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs,
1010 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) {
1011 // We permit two users of the load: setcc comparing against the null
1012 // pointer, and a getelementptr of a specific form.
1013 for (const User *U : V->users()) {
1014 const Instruction *UI = cast<Instruction>(U);
1015
1016 // Comparison against null is ok.
1017 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) {
1018 if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1019 return false;
1020 continue;
1021 }
1022
1023 // getelementptr is also ok, but only a simple form.
1024 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
1025 // Must index into the array and into the struct.
1026 if (GEPI->getNumOperands() < 3)
1027 return false;
1028
1029 // Otherwise the GEP is ok.
1030 continue;
1031 }
1032
1033 if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1034 if (!LoadUsingPHIsPerLoad.insert(PN).second)
1035 // This means some phi nodes are dependent on each other.
1036 // Avoid infinite looping!
1037 return false;
1038 if (!LoadUsingPHIs.insert(PN).second)
1039 // If we have already analyzed this PHI, then it is safe.
1040 continue;
1041
1042 // Make sure all uses of the PHI are simple enough to transform.
1043 if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1044 LoadUsingPHIs, LoadUsingPHIsPerLoad))
1045 return false;
1046
1047 continue;
1048 }
1049
1050 // Otherwise we don't know what this is, not ok.
1051 return false;
1052 }
1053
1054 return true;
1055 }
1056
1057
1058 /// If all users of values loaded from GV are simple enough to perform HeapSRA,
1059 /// return true.
AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable * GV,Instruction * StoredVal)1060 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1061 Instruction *StoredVal) {
1062 SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1063 SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1064 for (const User *U : GV->users())
1065 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
1066 if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1067 LoadUsingPHIsPerLoad))
1068 return false;
1069 LoadUsingPHIsPerLoad.clear();
1070 }
1071
1072 // If we reach here, we know that all uses of the loads and transitive uses
1073 // (through PHI nodes) are simple enough to transform. However, we don't know
1074 // that all inputs the to the PHI nodes are in the same equivalence sets.
1075 // Check to verify that all operands of the PHIs are either PHIS that can be
1076 // transformed, loads from GV, or MI itself.
1077 for (const PHINode *PN : LoadUsingPHIs) {
1078 for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1079 Value *InVal = PN->getIncomingValue(op);
1080
1081 // PHI of the stored value itself is ok.
1082 if (InVal == StoredVal) continue;
1083
1084 if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1085 // One of the PHIs in our set is (optimistically) ok.
1086 if (LoadUsingPHIs.count(InPN))
1087 continue;
1088 return false;
1089 }
1090
1091 // Load from GV is ok.
1092 if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1093 if (LI->getOperand(0) == GV)
1094 continue;
1095
1096 // UNDEF? NULL?
1097
1098 // Anything else is rejected.
1099 return false;
1100 }
1101 }
1102
1103 return true;
1104 }
1105
GetHeapSROAValue(Value * V,unsigned FieldNo,DenseMap<Value *,std::vector<Value * >> & InsertedScalarizedValues,std::vector<std::pair<PHINode *,unsigned>> & PHIsToRewrite)1106 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1107 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1108 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1109 std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
1110
1111 if (FieldNo >= FieldVals.size())
1112 FieldVals.resize(FieldNo+1);
1113
1114 // If we already have this value, just reuse the previously scalarized
1115 // version.
1116 if (Value *FieldVal = FieldVals[FieldNo])
1117 return FieldVal;
1118
1119 // Depending on what instruction this is, we have several cases.
1120 Value *Result;
1121 if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1122 // This is a scalarized version of the load from the global. Just create
1123 // a new Load of the scalarized global.
1124 Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1125 InsertedScalarizedValues,
1126 PHIsToRewrite),
1127 LI->getName()+".f"+Twine(FieldNo), LI);
1128 } else {
1129 PHINode *PN = cast<PHINode>(V);
1130 // PN's type is pointer to struct. Make a new PHI of pointer to struct
1131 // field.
1132
1133 PointerType *PTy = cast<PointerType>(PN->getType());
1134 StructType *ST = cast<StructType>(PTy->getElementType());
1135
1136 unsigned AS = PTy->getAddressSpace();
1137 PHINode *NewPN =
1138 PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS),
1139 PN->getNumIncomingValues(),
1140 PN->getName()+".f"+Twine(FieldNo), PN);
1141 Result = NewPN;
1142 PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1143 }
1144
1145 return FieldVals[FieldNo] = Result;
1146 }
1147
1148 /// Given a load instruction and a value derived from the load, rewrite the
1149 /// derived value to use the HeapSRoA'd load.
RewriteHeapSROALoadUser(Instruction * LoadUser,DenseMap<Value *,std::vector<Value * >> & InsertedScalarizedValues,std::vector<std::pair<PHINode *,unsigned>> & PHIsToRewrite)1150 static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1151 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1152 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1153 // If this is a comparison against null, handle it.
1154 if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1155 assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1156 // If we have a setcc of the loaded pointer, we can use a setcc of any
1157 // field.
1158 Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1159 InsertedScalarizedValues, PHIsToRewrite);
1160
1161 Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1162 Constant::getNullValue(NPtr->getType()),
1163 SCI->getName());
1164 SCI->replaceAllUsesWith(New);
1165 SCI->eraseFromParent();
1166 return;
1167 }
1168
1169 // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1170 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1171 assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1172 && "Unexpected GEPI!");
1173
1174 // Load the pointer for this field.
1175 unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1176 Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1177 InsertedScalarizedValues, PHIsToRewrite);
1178
1179 // Create the new GEP idx vector.
1180 SmallVector<Value*, 8> GEPIdx;
1181 GEPIdx.push_back(GEPI->getOperand(1));
1182 GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1183
1184 Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx,
1185 GEPI->getName(), GEPI);
1186 GEPI->replaceAllUsesWith(NGEPI);
1187 GEPI->eraseFromParent();
1188 return;
1189 }
1190
1191 // Recursively transform the users of PHI nodes. This will lazily create the
1192 // PHIs that are needed for individual elements. Keep track of what PHIs we
1193 // see in InsertedScalarizedValues so that we don't get infinite loops (very
1194 // antisocial). If the PHI is already in InsertedScalarizedValues, it has
1195 // already been seen first by another load, so its uses have already been
1196 // processed.
1197 PHINode *PN = cast<PHINode>(LoadUser);
1198 if (!InsertedScalarizedValues.insert(std::make_pair(PN,
1199 std::vector<Value*>())).second)
1200 return;
1201
1202 // If this is the first time we've seen this PHI, recursively process all
1203 // users.
1204 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1205 Instruction *User = cast<Instruction>(*UI++);
1206 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1207 }
1208 }
1209
1210 /// We are performing Heap SRoA on a global. Ptr is a value loaded from the
1211 /// global. Eliminate all uses of Ptr, making them use FieldGlobals instead.
1212 /// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA.
RewriteUsesOfLoadForHeapSRoA(LoadInst * Load,DenseMap<Value *,std::vector<Value * >> & InsertedScalarizedValues,std::vector<std::pair<PHINode *,unsigned>> & PHIsToRewrite)1213 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1214 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1215 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1216 for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) {
1217 Instruction *User = cast<Instruction>(*UI++);
1218 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1219 }
1220
1221 if (Load->use_empty()) {
1222 Load->eraseFromParent();
1223 InsertedScalarizedValues.erase(Load);
1224 }
1225 }
1226
1227 /// CI is an allocation of an array of structures. Break it up into multiple
1228 /// allocations of arrays of the fields.
PerformHeapAllocSRoA(GlobalVariable * GV,CallInst * CI,Value * NElems,const DataLayout & DL,const TargetLibraryInfo * TLI)1229 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1230 Value *NElems, const DataLayout &DL,
1231 const TargetLibraryInfo *TLI) {
1232 DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI << '\n');
1233 Type *MAT = getMallocAllocatedType(CI, TLI);
1234 StructType *STy = cast<StructType>(MAT);
1235
1236 // There is guaranteed to be at least one use of the malloc (storing
1237 // it into GV). If there are other uses, change them to be uses of
1238 // the global to simplify later code. This also deletes the store
1239 // into GV.
1240 ReplaceUsesOfMallocWithGlobal(CI, GV);
1241
1242 // Okay, at this point, there are no users of the malloc. Insert N
1243 // new mallocs at the same place as CI, and N globals.
1244 std::vector<Value*> FieldGlobals;
1245 std::vector<Value*> FieldMallocs;
1246
1247 SmallVector<OperandBundleDef, 1> OpBundles;
1248 CI->getOperandBundlesAsDefs(OpBundles);
1249
1250 unsigned AS = GV->getType()->getPointerAddressSpace();
1251 for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1252 Type *FieldTy = STy->getElementType(FieldNo);
1253 PointerType *PFieldTy = PointerType::get(FieldTy, AS);
1254
1255 GlobalVariable *NGV = new GlobalVariable(
1256 *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage,
1257 Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo),
1258 nullptr, GV->getThreadLocalMode());
1259 NGV->copyAttributesFrom(GV);
1260 FieldGlobals.push_back(NGV);
1261
1262 unsigned TypeSize = DL.getTypeAllocSize(FieldTy);
1263 if (StructType *ST = dyn_cast<StructType>(FieldTy))
1264 TypeSize = DL.getStructLayout(ST)->getSizeInBytes();
1265 Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1266 Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1267 ConstantInt::get(IntPtrTy, TypeSize),
1268 NElems, OpBundles, nullptr,
1269 CI->getName() + ".f" + Twine(FieldNo));
1270 FieldMallocs.push_back(NMI);
1271 new StoreInst(NMI, NGV, CI);
1272 }
1273
1274 // The tricky aspect of this transformation is handling the case when malloc
1275 // fails. In the original code, malloc failing would set the result pointer
1276 // of malloc to null. In this case, some mallocs could succeed and others
1277 // could fail. As such, we emit code that looks like this:
1278 // F0 = malloc(field0)
1279 // F1 = malloc(field1)
1280 // F2 = malloc(field2)
1281 // if (F0 == 0 || F1 == 0 || F2 == 0) {
1282 // if (F0) { free(F0); F0 = 0; }
1283 // if (F1) { free(F1); F1 = 0; }
1284 // if (F2) { free(F2); F2 = 0; }
1285 // }
1286 // The malloc can also fail if its argument is too large.
1287 Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1288 Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1289 ConstantZero, "isneg");
1290 for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1291 Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1292 Constant::getNullValue(FieldMallocs[i]->getType()),
1293 "isnull");
1294 RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1295 }
1296
1297 // Split the basic block at the old malloc.
1298 BasicBlock *OrigBB = CI->getParent();
1299 BasicBlock *ContBB =
1300 OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont");
1301
1302 // Create the block to check the first condition. Put all these blocks at the
1303 // end of the function as they are unlikely to be executed.
1304 BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1305 "malloc_ret_null",
1306 OrigBB->getParent());
1307
1308 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1309 // branch on RunningOr.
1310 OrigBB->getTerminator()->eraseFromParent();
1311 BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1312
1313 // Within the NullPtrBlock, we need to emit a comparison and branch for each
1314 // pointer, because some may be null while others are not.
1315 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1316 Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1317 Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1318 Constant::getNullValue(GVVal->getType()));
1319 BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1320 OrigBB->getParent());
1321 BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1322 OrigBB->getParent());
1323 Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1324 Cmp, NullPtrBlock);
1325
1326 // Fill in FreeBlock.
1327 CallInst::CreateFree(GVVal, OpBundles, BI);
1328 new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1329 FreeBlock);
1330 BranchInst::Create(NextBlock, FreeBlock);
1331
1332 NullPtrBlock = NextBlock;
1333 }
1334
1335 BranchInst::Create(ContBB, NullPtrBlock);
1336
1337 // CI is no longer needed, remove it.
1338 CI->eraseFromParent();
1339
1340 /// As we process loads, if we can't immediately update all uses of the load,
1341 /// keep track of what scalarized loads are inserted for a given load.
1342 DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
1343 InsertedScalarizedValues[GV] = FieldGlobals;
1344
1345 std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
1346
1347 // Okay, the malloc site is completely handled. All of the uses of GV are now
1348 // loads, and all uses of those loads are simple. Rewrite them to use loads
1349 // of the per-field globals instead.
1350 for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) {
1351 Instruction *User = cast<Instruction>(*UI++);
1352
1353 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1354 RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1355 continue;
1356 }
1357
1358 // Must be a store of null.
1359 StoreInst *SI = cast<StoreInst>(User);
1360 assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1361 "Unexpected heap-sra user!");
1362
1363 // Insert a store of null into each global.
1364 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1365 Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType();
1366 Constant *Null = Constant::getNullValue(ValTy);
1367 new StoreInst(Null, FieldGlobals[i], SI);
1368 }
1369 // Erase the original store.
1370 SI->eraseFromParent();
1371 }
1372
1373 // While we have PHIs that are interesting to rewrite, do it.
1374 while (!PHIsToRewrite.empty()) {
1375 PHINode *PN = PHIsToRewrite.back().first;
1376 unsigned FieldNo = PHIsToRewrite.back().second;
1377 PHIsToRewrite.pop_back();
1378 PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1379 assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1380
1381 // Add all the incoming values. This can materialize more phis.
1382 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1383 Value *InVal = PN->getIncomingValue(i);
1384 InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1385 PHIsToRewrite);
1386 FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1387 }
1388 }
1389
1390 // Drop all inter-phi links and any loads that made it this far.
1391 for (DenseMap<Value*, std::vector<Value*> >::iterator
1392 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1393 I != E; ++I) {
1394 if (PHINode *PN = dyn_cast<PHINode>(I->first))
1395 PN->dropAllReferences();
1396 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1397 LI->dropAllReferences();
1398 }
1399
1400 // Delete all the phis and loads now that inter-references are dead.
1401 for (DenseMap<Value*, std::vector<Value*> >::iterator
1402 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1403 I != E; ++I) {
1404 if (PHINode *PN = dyn_cast<PHINode>(I->first))
1405 PN->eraseFromParent();
1406 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1407 LI->eraseFromParent();
1408 }
1409
1410 // The old global is now dead, remove it.
1411 GV->eraseFromParent();
1412
1413 ++NumHeapSRA;
1414 return cast<GlobalVariable>(FieldGlobals[0]);
1415 }
1416
1417 /// This function is called when we see a pointer global variable with a single
1418 /// value stored it that is a malloc or cast of malloc.
tryToOptimizeStoreOfMallocToGlobal(GlobalVariable * GV,CallInst * CI,Type * AllocTy,AtomicOrdering Ordering,const DataLayout & DL,TargetLibraryInfo * TLI)1419 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
1420 Type *AllocTy,
1421 AtomicOrdering Ordering,
1422 const DataLayout &DL,
1423 TargetLibraryInfo *TLI) {
1424 // If this is a malloc of an abstract type, don't touch it.
1425 if (!AllocTy->isSized())
1426 return false;
1427
1428 // We can't optimize this global unless all uses of it are *known* to be
1429 // of the malloc value, not of the null initializer value (consider a use
1430 // that compares the global's value against zero to see if the malloc has
1431 // been reached). To do this, we check to see if all uses of the global
1432 // would trap if the global were null: this proves that they must all
1433 // happen after the malloc.
1434 if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1435 return false;
1436
1437 // We can't optimize this if the malloc itself is used in a complex way,
1438 // for example, being stored into multiple globals. This allows the
1439 // malloc to be stored into the specified global, loaded icmp'd, and
1440 // GEP'd. These are all things we could transform to using the global
1441 // for.
1442 SmallPtrSet<const PHINode*, 8> PHIs;
1443 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1444 return false;
1445
1446 // If we have a global that is only initialized with a fixed size malloc,
1447 // transform the program to use global memory instead of malloc'd memory.
1448 // This eliminates dynamic allocation, avoids an indirection accessing the
1449 // data, and exposes the resultant global to further GlobalOpt.
1450 // We cannot optimize the malloc if we cannot determine malloc array size.
1451 Value *NElems = getMallocArraySize(CI, DL, TLI, true);
1452 if (!NElems)
1453 return false;
1454
1455 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1456 // Restrict this transformation to only working on small allocations
1457 // (2048 bytes currently), as we don't want to introduce a 16M global or
1458 // something.
1459 if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
1460 OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
1461 return true;
1462 }
1463
1464 // If the allocation is an array of structures, consider transforming this
1465 // into multiple malloc'd arrays, one for each field. This is basically
1466 // SRoA for malloc'd memory.
1467
1468 if (Ordering != AtomicOrdering::NotAtomic)
1469 return false;
1470
1471 // If this is an allocation of a fixed size array of structs, analyze as a
1472 // variable size array. malloc [100 x struct],1 -> malloc struct, 100
1473 if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1474 if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1475 AllocTy = AT->getElementType();
1476
1477 StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1478 if (!AllocSTy)
1479 return false;
1480
1481 // This the structure has an unreasonable number of fields, leave it
1482 // alone.
1483 if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1484 AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1485
1486 // If this is a fixed size array, transform the Malloc to be an alloc of
1487 // structs. malloc [100 x struct],1 -> malloc struct, 100
1488 if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
1489 Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1490 unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes();
1491 Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1492 Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1493 SmallVector<OperandBundleDef, 1> OpBundles;
1494 CI->getOperandBundlesAsDefs(OpBundles);
1495 Instruction *Malloc =
1496 CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements,
1497 OpBundles, nullptr, CI->getName());
1498 Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1499 CI->replaceAllUsesWith(Cast);
1500 CI->eraseFromParent();
1501 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
1502 CI = cast<CallInst>(BCI->getOperand(0));
1503 else
1504 CI = cast<CallInst>(Malloc);
1505 }
1506
1507 PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL,
1508 TLI);
1509 return true;
1510 }
1511
1512 return false;
1513 }
1514
1515 // Try to optimize globals based on the knowledge that only one value (besides
1516 // its initializer) is ever stored to the global.
optimizeOnceStoredGlobal(GlobalVariable * GV,Value * StoredOnceVal,AtomicOrdering Ordering,const DataLayout & DL,TargetLibraryInfo * TLI)1517 static bool optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1518 AtomicOrdering Ordering,
1519 const DataLayout &DL,
1520 TargetLibraryInfo *TLI) {
1521 // Ignore no-op GEPs and bitcasts.
1522 StoredOnceVal = StoredOnceVal->stripPointerCasts();
1523
1524 // If we are dealing with a pointer global that is initialized to null and
1525 // only has one (non-null) value stored into it, then we can optimize any
1526 // users of the loaded value (often calls and loads) that would trap if the
1527 // value was null.
1528 if (GV->getInitializer()->getType()->isPointerTy() &&
1529 GV->getInitializer()->isNullValue()) {
1530 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1531 if (GV->getInitializer()->getType() != SOVC->getType())
1532 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1533
1534 // Optimize away any trapping uses of the loaded value.
1535 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI))
1536 return true;
1537 } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) {
1538 Type *MallocType = getMallocAllocatedType(CI, TLI);
1539 if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1540 Ordering, DL, TLI))
1541 return true;
1542 }
1543 }
1544
1545 return false;
1546 }
1547
1548 /// At this point, we have learned that the only two values ever stored into GV
1549 /// are its initializer and OtherVal. See if we can shrink the global into a
1550 /// boolean and select between the two values whenever it is used. This exposes
1551 /// the values to other scalar optimizations.
TryToShrinkGlobalToBoolean(GlobalVariable * GV,Constant * OtherVal)1552 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1553 Type *GVElType = GV->getValueType();
1554
1555 // If GVElType is already i1, it is already shrunk. If the type of the GV is
1556 // an FP value, pointer or vector, don't do this optimization because a select
1557 // between them is very expensive and unlikely to lead to later
1558 // simplification. In these cases, we typically end up with "cond ? v1 : v2"
1559 // where v1 and v2 both require constant pool loads, a big loss.
1560 if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1561 GVElType->isFloatingPointTy() ||
1562 GVElType->isPointerTy() || GVElType->isVectorTy())
1563 return false;
1564
1565 // Walk the use list of the global seeing if all the uses are load or store.
1566 // If there is anything else, bail out.
1567 for (User *U : GV->users())
1568 if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1569 return false;
1570
1571 DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV << "\n");
1572
1573 // Create the new global, initializing it to false.
1574 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1575 false,
1576 GlobalValue::InternalLinkage,
1577 ConstantInt::getFalse(GV->getContext()),
1578 GV->getName()+".b",
1579 GV->getThreadLocalMode(),
1580 GV->getType()->getAddressSpace());
1581 NewGV->copyAttributesFrom(GV);
1582 GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
1583
1584 Constant *InitVal = GV->getInitializer();
1585 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1586 "No reason to shrink to bool!");
1587
1588 // If initialized to zero and storing one into the global, we can use a cast
1589 // instead of a select to synthesize the desired value.
1590 bool IsOneZero = false;
1591 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1592 IsOneZero = InitVal->isNullValue() && CI->isOne();
1593
1594 while (!GV->use_empty()) {
1595 Instruction *UI = cast<Instruction>(GV->user_back());
1596 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1597 // Change the store into a boolean store.
1598 bool StoringOther = SI->getOperand(0) == OtherVal;
1599 // Only do this if we weren't storing a loaded value.
1600 Value *StoreVal;
1601 if (StoringOther || SI->getOperand(0) == InitVal) {
1602 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1603 StoringOther);
1604 } else {
1605 // Otherwise, we are storing a previously loaded copy. To do this,
1606 // change the copy from copying the original value to just copying the
1607 // bool.
1608 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1609
1610 // If we've already replaced the input, StoredVal will be a cast or
1611 // select instruction. If not, it will be a load of the original
1612 // global.
1613 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1614 assert(LI->getOperand(0) == GV && "Not a copy!");
1615 // Insert a new load, to preserve the saved value.
1616 StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1617 LI->getOrdering(), LI->getSynchScope(), LI);
1618 } else {
1619 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1620 "This is not a form that we understand!");
1621 StoreVal = StoredVal->getOperand(0);
1622 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1623 }
1624 }
1625 new StoreInst(StoreVal, NewGV, false, 0,
1626 SI->getOrdering(), SI->getSynchScope(), SI);
1627 } else {
1628 // Change the load into a load of bool then a select.
1629 LoadInst *LI = cast<LoadInst>(UI);
1630 LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1631 LI->getOrdering(), LI->getSynchScope(), LI);
1632 Value *NSI;
1633 if (IsOneZero)
1634 NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1635 else
1636 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1637 NSI->takeName(LI);
1638 LI->replaceAllUsesWith(NSI);
1639 }
1640 UI->eraseFromParent();
1641 }
1642
1643 // Retain the name of the old global variable. People who are debugging their
1644 // programs may expect these variables to be named the same.
1645 NewGV->takeName(GV);
1646 GV->eraseFromParent();
1647 return true;
1648 }
1649
deleteIfDead(GlobalValue & GV,SmallSet<const Comdat *,8> & NotDiscardableComdats)1650 static bool deleteIfDead(GlobalValue &GV,
1651 SmallSet<const Comdat *, 8> &NotDiscardableComdats) {
1652 GV.removeDeadConstantUsers();
1653
1654 if (!GV.isDiscardableIfUnused())
1655 return false;
1656
1657 if (const Comdat *C = GV.getComdat())
1658 if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
1659 return false;
1660
1661 bool Dead;
1662 if (auto *F = dyn_cast<Function>(&GV))
1663 Dead = F->isDefTriviallyDead();
1664 else
1665 Dead = GV.use_empty();
1666 if (!Dead)
1667 return false;
1668
1669 DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
1670 GV.eraseFromParent();
1671 ++NumDeleted;
1672 return true;
1673 }
1674
isPointerValueDeadOnEntryToFunction(const Function * F,GlobalValue * GV,function_ref<DominatorTree & (Function &)> LookupDomTree)1675 static bool isPointerValueDeadOnEntryToFunction(
1676 const Function *F, GlobalValue *GV,
1677 function_ref<DominatorTree &(Function &)> LookupDomTree) {
1678 // Find all uses of GV. We expect them all to be in F, and if we can't
1679 // identify any of the uses we bail out.
1680 //
1681 // On each of these uses, identify if the memory that GV points to is
1682 // used/required/live at the start of the function. If it is not, for example
1683 // if the first thing the function does is store to the GV, the GV can
1684 // possibly be demoted.
1685 //
1686 // We don't do an exhaustive search for memory operations - simply look
1687 // through bitcasts as they're quite common and benign.
1688 const DataLayout &DL = GV->getParent()->getDataLayout();
1689 SmallVector<LoadInst *, 4> Loads;
1690 SmallVector<StoreInst *, 4> Stores;
1691 for (auto *U : GV->users()) {
1692 if (Operator::getOpcode(U) == Instruction::BitCast) {
1693 for (auto *UU : U->users()) {
1694 if (auto *LI = dyn_cast<LoadInst>(UU))
1695 Loads.push_back(LI);
1696 else if (auto *SI = dyn_cast<StoreInst>(UU))
1697 Stores.push_back(SI);
1698 else
1699 return false;
1700 }
1701 continue;
1702 }
1703
1704 Instruction *I = dyn_cast<Instruction>(U);
1705 if (!I)
1706 return false;
1707 assert(I->getParent()->getParent() == F);
1708
1709 if (auto *LI = dyn_cast<LoadInst>(I))
1710 Loads.push_back(LI);
1711 else if (auto *SI = dyn_cast<StoreInst>(I))
1712 Stores.push_back(SI);
1713 else
1714 return false;
1715 }
1716
1717 // We have identified all uses of GV into loads and stores. Now check if all
1718 // of them are known not to depend on the value of the global at the function
1719 // entry point. We do this by ensuring that every load is dominated by at
1720 // least one store.
1721 auto &DT = LookupDomTree(*const_cast<Function *>(F));
1722
1723 // The below check is quadratic. Check we're not going to do too many tests.
1724 // FIXME: Even though this will always have worst-case quadratic time, we
1725 // could put effort into minimizing the average time by putting stores that
1726 // have been shown to dominate at least one load at the beginning of the
1727 // Stores array, making subsequent dominance checks more likely to succeed
1728 // early.
1729 //
1730 // The threshold here is fairly large because global->local demotion is a
1731 // very powerful optimization should it fire.
1732 const unsigned Threshold = 100;
1733 if (Loads.size() * Stores.size() > Threshold)
1734 return false;
1735
1736 for (auto *L : Loads) {
1737 auto *LTy = L->getType();
1738 if (!std::any_of(Stores.begin(), Stores.end(), [&](StoreInst *S) {
1739 auto *STy = S->getValueOperand()->getType();
1740 // The load is only dominated by the store if DomTree says so
1741 // and the number of bits loaded in L is less than or equal to
1742 // the number of bits stored in S.
1743 return DT.dominates(S, L) &&
1744 DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy);
1745 }))
1746 return false;
1747 }
1748 // All loads have known dependences inside F, so the global can be localized.
1749 return true;
1750 }
1751
1752 /// C may have non-instruction users. Can all of those users be turned into
1753 /// instructions?
allNonInstructionUsersCanBeMadeInstructions(Constant * C)1754 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
1755 // We don't do this exhaustively. The most common pattern that we really need
1756 // to care about is a constant GEP or constant bitcast - so just looking
1757 // through one single ConstantExpr.
1758 //
1759 // The set of constants that this function returns true for must be able to be
1760 // handled by makeAllConstantUsesInstructions.
1761 for (auto *U : C->users()) {
1762 if (isa<Instruction>(U))
1763 continue;
1764 if (!isa<ConstantExpr>(U))
1765 // Non instruction, non-constantexpr user; cannot convert this.
1766 return false;
1767 for (auto *UU : U->users())
1768 if (!isa<Instruction>(UU))
1769 // A constantexpr used by another constant. We don't try and recurse any
1770 // further but just bail out at this point.
1771 return false;
1772 }
1773
1774 return true;
1775 }
1776
1777 /// C may have non-instruction users, and
1778 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
1779 /// non-instruction users to instructions.
makeAllConstantUsesInstructions(Constant * C)1780 static void makeAllConstantUsesInstructions(Constant *C) {
1781 SmallVector<ConstantExpr*,4> Users;
1782 for (auto *U : C->users()) {
1783 if (isa<ConstantExpr>(U))
1784 Users.push_back(cast<ConstantExpr>(U));
1785 else
1786 // We should never get here; allNonInstructionUsersCanBeMadeInstructions
1787 // should not have returned true for C.
1788 assert(
1789 isa<Instruction>(U) &&
1790 "Can't transform non-constantexpr non-instruction to instruction!");
1791 }
1792
1793 SmallVector<Value*,4> UUsers;
1794 for (auto *U : Users) {
1795 UUsers.clear();
1796 for (auto *UU : U->users())
1797 UUsers.push_back(UU);
1798 for (auto *UU : UUsers) {
1799 Instruction *UI = cast<Instruction>(UU);
1800 Instruction *NewU = U->getAsInstruction();
1801 NewU->insertBefore(UI);
1802 UI->replaceUsesOfWith(U, NewU);
1803 }
1804 U->dropAllReferences();
1805 }
1806 }
1807
1808 /// Analyze the specified global variable and optimize
1809 /// it if possible. If we make a change, return true.
processInternalGlobal(GlobalVariable * GV,const GlobalStatus & GS,TargetLibraryInfo * TLI,function_ref<DominatorTree & (Function &)> LookupDomTree)1810 static bool processInternalGlobal(
1811 GlobalVariable *GV, const GlobalStatus &GS, TargetLibraryInfo *TLI,
1812 function_ref<DominatorTree &(Function &)> LookupDomTree) {
1813 auto &DL = GV->getParent()->getDataLayout();
1814 // If this is a first class global and has only one accessing function and
1815 // this function is non-recursive, we replace the global with a local alloca
1816 // in this function.
1817 //
1818 // NOTE: It doesn't make sense to promote non-single-value types since we
1819 // are just replacing static memory to stack memory.
1820 //
1821 // If the global is in different address space, don't bring it to stack.
1822 if (!GS.HasMultipleAccessingFunctions &&
1823 GS.AccessingFunction &&
1824 GV->getValueType()->isSingleValueType() &&
1825 GV->getType()->getAddressSpace() == 0 &&
1826 !GV->isExternallyInitialized() &&
1827 allNonInstructionUsersCanBeMadeInstructions(GV) &&
1828 GS.AccessingFunction->doesNotRecurse() &&
1829 isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV,
1830 LookupDomTree)) {
1831 DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
1832 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1833 ->getEntryBlock().begin());
1834 Type *ElemTy = GV->getValueType();
1835 // FIXME: Pass Global's alignment when globals have alignment
1836 AllocaInst *Alloca = new AllocaInst(ElemTy, nullptr,
1837 GV->getName(), &FirstI);
1838 if (!isa<UndefValue>(GV->getInitializer()))
1839 new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1840
1841 makeAllConstantUsesInstructions(GV);
1842
1843 GV->replaceAllUsesWith(Alloca);
1844 GV->eraseFromParent();
1845 ++NumLocalized;
1846 return true;
1847 }
1848
1849 // If the global is never loaded (but may be stored to), it is dead.
1850 // Delete it now.
1851 if (!GS.IsLoaded) {
1852 DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
1853
1854 bool Changed;
1855 if (isLeakCheckerRoot(GV)) {
1856 // Delete any constant stores to the global.
1857 Changed = CleanupPointerRootUsers(GV, TLI);
1858 } else {
1859 // Delete any stores we can find to the global. We may not be able to
1860 // make it completely dead though.
1861 Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1862 }
1863
1864 // If the global is dead now, delete it.
1865 if (GV->use_empty()) {
1866 GV->eraseFromParent();
1867 ++NumDeleted;
1868 Changed = true;
1869 }
1870 return Changed;
1871
1872 }
1873 if (GS.StoredType <= GlobalStatus::InitializerStored) {
1874 DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
1875 GV->setConstant(true);
1876
1877 // Clean up any obviously simplifiable users now.
1878 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1879
1880 // If the global is dead now, just nuke it.
1881 if (GV->use_empty()) {
1882 DEBUG(dbgs() << " *** Marking constant allowed us to simplify "
1883 << "all users and delete global!\n");
1884 GV->eraseFromParent();
1885 ++NumDeleted;
1886 return true;
1887 }
1888
1889 // Fall through to the next check; see if we can optimize further.
1890 ++NumMarked;
1891 }
1892 if (!GV->getInitializer()->getType()->isSingleValueType()) {
1893 const DataLayout &DL = GV->getParent()->getDataLayout();
1894 if (SRAGlobal(GV, DL))
1895 return true;
1896 }
1897 if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) {
1898 // If the initial value for the global was an undef value, and if only
1899 // one other value was stored into it, we can just change the
1900 // initializer to be the stored value, then delete all stores to the
1901 // global. This allows us to mark it constant.
1902 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1903 if (isa<UndefValue>(GV->getInitializer())) {
1904 // Change the initial value here.
1905 GV->setInitializer(SOVConstant);
1906
1907 // Clean up any obviously simplifiable users now.
1908 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1909
1910 if (GV->use_empty()) {
1911 DEBUG(dbgs() << " *** Substituting initializer allowed us to "
1912 << "simplify all users and delete global!\n");
1913 GV->eraseFromParent();
1914 ++NumDeleted;
1915 }
1916 ++NumSubstitute;
1917 return true;
1918 }
1919
1920 // Try to optimize globals based on the knowledge that only one value
1921 // (besides its initializer) is ever stored to the global.
1922 if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL, TLI))
1923 return true;
1924
1925 // Otherwise, if the global was not a boolean, we can shrink it to be a
1926 // boolean.
1927 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
1928 if (GS.Ordering == AtomicOrdering::NotAtomic) {
1929 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1930 ++NumShrunkToBool;
1931 return true;
1932 }
1933 }
1934 }
1935 }
1936
1937 return false;
1938 }
1939
1940 /// Analyze the specified global variable and optimize it if possible. If we
1941 /// make a change, return true.
1942 static bool
processGlobal(GlobalValue & GV,TargetLibraryInfo * TLI,function_ref<DominatorTree & (Function &)> LookupDomTree)1943 processGlobal(GlobalValue &GV, TargetLibraryInfo *TLI,
1944 function_ref<DominatorTree &(Function &)> LookupDomTree) {
1945 if (GV.getName().startswith("llvm."))
1946 return false;
1947
1948 GlobalStatus GS;
1949
1950 if (GlobalStatus::analyzeGlobal(&GV, GS))
1951 return false;
1952
1953 bool Changed = false;
1954 if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) {
1955 auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
1956 : GlobalValue::UnnamedAddr::Local;
1957 if (NewUnnamedAddr != GV.getUnnamedAddr()) {
1958 GV.setUnnamedAddr(NewUnnamedAddr);
1959 NumUnnamed++;
1960 Changed = true;
1961 }
1962 }
1963
1964 // Do more involved optimizations if the global is internal.
1965 if (!GV.hasLocalLinkage())
1966 return Changed;
1967
1968 auto *GVar = dyn_cast<GlobalVariable>(&GV);
1969 if (!GVar)
1970 return Changed;
1971
1972 if (GVar->isConstant() || !GVar->hasInitializer())
1973 return Changed;
1974
1975 return processInternalGlobal(GVar, GS, TLI, LookupDomTree) || Changed;
1976 }
1977
1978 /// Walk all of the direct calls of the specified function, changing them to
1979 /// FastCC.
ChangeCalleesToFastCall(Function * F)1980 static void ChangeCalleesToFastCall(Function *F) {
1981 for (User *U : F->users()) {
1982 if (isa<BlockAddress>(U))
1983 continue;
1984 CallSite CS(cast<Instruction>(U));
1985 CS.setCallingConv(CallingConv::Fast);
1986 }
1987 }
1988
StripNest(LLVMContext & C,const AttributeSet & Attrs)1989 static AttributeSet StripNest(LLVMContext &C, const AttributeSet &Attrs) {
1990 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1991 unsigned Index = Attrs.getSlotIndex(i);
1992 if (!Attrs.getSlotAttributes(i).hasAttribute(Index, Attribute::Nest))
1993 continue;
1994
1995 // There can be only one.
1996 return Attrs.removeAttribute(C, Index, Attribute::Nest);
1997 }
1998
1999 return Attrs;
2000 }
2001
RemoveNestAttribute(Function * F)2002 static void RemoveNestAttribute(Function *F) {
2003 F->setAttributes(StripNest(F->getContext(), F->getAttributes()));
2004 for (User *U : F->users()) {
2005 if (isa<BlockAddress>(U))
2006 continue;
2007 CallSite CS(cast<Instruction>(U));
2008 CS.setAttributes(StripNest(F->getContext(), CS.getAttributes()));
2009 }
2010 }
2011
2012 /// Return true if this is a calling convention that we'd like to change. The
2013 /// idea here is that we don't want to mess with the convention if the user
2014 /// explicitly requested something with performance implications like coldcc,
2015 /// GHC, or anyregcc.
isProfitableToMakeFastCC(Function * F)2016 static bool isProfitableToMakeFastCC(Function *F) {
2017 CallingConv::ID CC = F->getCallingConv();
2018 // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
2019 return CC == CallingConv::C || CC == CallingConv::X86_ThisCall;
2020 }
2021
2022 static bool
OptimizeFunctions(Module & M,TargetLibraryInfo * TLI,function_ref<DominatorTree & (Function &)> LookupDomTree,SmallSet<const Comdat *,8> & NotDiscardableComdats)2023 OptimizeFunctions(Module &M, TargetLibraryInfo *TLI,
2024 function_ref<DominatorTree &(Function &)> LookupDomTree,
2025 SmallSet<const Comdat *, 8> &NotDiscardableComdats) {
2026 bool Changed = false;
2027 // Optimize functions.
2028 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
2029 Function *F = &*FI++;
2030 // Functions without names cannot be referenced outside this module.
2031 if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
2032 F->setLinkage(GlobalValue::InternalLinkage);
2033
2034 if (deleteIfDead(*F, NotDiscardableComdats)) {
2035 Changed = true;
2036 continue;
2037 }
2038
2039 Changed |= processGlobal(*F, TLI, LookupDomTree);
2040
2041 if (!F->hasLocalLinkage())
2042 continue;
2043 if (isProfitableToMakeFastCC(F) && !F->isVarArg() &&
2044 !F->hasAddressTaken()) {
2045 // If this function has a calling convention worth changing, is not a
2046 // varargs function, and is only called directly, promote it to use the
2047 // Fast calling convention.
2048 F->setCallingConv(CallingConv::Fast);
2049 ChangeCalleesToFastCall(F);
2050 ++NumFastCallFns;
2051 Changed = true;
2052 }
2053
2054 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
2055 !F->hasAddressTaken()) {
2056 // The function is not used by a trampoline intrinsic, so it is safe
2057 // to remove the 'nest' attribute.
2058 RemoveNestAttribute(F);
2059 ++NumNestRemoved;
2060 Changed = true;
2061 }
2062 }
2063 return Changed;
2064 }
2065
2066 static bool
OptimizeGlobalVars(Module & M,TargetLibraryInfo * TLI,function_ref<DominatorTree & (Function &)> LookupDomTree,SmallSet<const Comdat *,8> & NotDiscardableComdats)2067 OptimizeGlobalVars(Module &M, TargetLibraryInfo *TLI,
2068 function_ref<DominatorTree &(Function &)> LookupDomTree,
2069 SmallSet<const Comdat *, 8> &NotDiscardableComdats) {
2070 bool Changed = false;
2071
2072 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
2073 GVI != E; ) {
2074 GlobalVariable *GV = &*GVI++;
2075 // Global variables without names cannot be referenced outside this module.
2076 if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage())
2077 GV->setLinkage(GlobalValue::InternalLinkage);
2078 // Simplify the initializer.
2079 if (GV->hasInitializer())
2080 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) {
2081 auto &DL = M.getDataLayout();
2082 Constant *New = ConstantFoldConstantExpression(CE, DL, TLI);
2083 if (New && New != CE)
2084 GV->setInitializer(New);
2085 }
2086
2087 if (deleteIfDead(*GV, NotDiscardableComdats)) {
2088 Changed = true;
2089 continue;
2090 }
2091
2092 Changed |= processGlobal(*GV, TLI, LookupDomTree);
2093 }
2094 return Changed;
2095 }
2096
2097 /// Evaluate a piece of a constantexpr store into a global initializer. This
2098 /// returns 'Init' modified to reflect 'Val' stored into it. At this point, the
2099 /// GEP operands of Addr [0, OpNo) have been stepped into.
EvaluateStoreInto(Constant * Init,Constant * Val,ConstantExpr * Addr,unsigned OpNo)2100 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2101 ConstantExpr *Addr, unsigned OpNo) {
2102 // Base case of the recursion.
2103 if (OpNo == Addr->getNumOperands()) {
2104 assert(Val->getType() == Init->getType() && "Type mismatch!");
2105 return Val;
2106 }
2107
2108 SmallVector<Constant*, 32> Elts;
2109 if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2110 // Break up the constant into its elements.
2111 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2112 Elts.push_back(Init->getAggregateElement(i));
2113
2114 // Replace the element that we are supposed to.
2115 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2116 unsigned Idx = CU->getZExtValue();
2117 assert(Idx < STy->getNumElements() && "Struct index out of range!");
2118 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2119
2120 // Return the modified struct.
2121 return ConstantStruct::get(STy, Elts);
2122 }
2123
2124 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2125 SequentialType *InitTy = cast<SequentialType>(Init->getType());
2126
2127 uint64_t NumElts;
2128 if (ArrayType *ATy = dyn_cast<ArrayType>(InitTy))
2129 NumElts = ATy->getNumElements();
2130 else
2131 NumElts = InitTy->getVectorNumElements();
2132
2133 // Break up the array into elements.
2134 for (uint64_t i = 0, e = NumElts; i != e; ++i)
2135 Elts.push_back(Init->getAggregateElement(i));
2136
2137 assert(CI->getZExtValue() < NumElts);
2138 Elts[CI->getZExtValue()] =
2139 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2140
2141 if (Init->getType()->isArrayTy())
2142 return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2143 return ConstantVector::get(Elts);
2144 }
2145
2146 /// We have decided that Addr (which satisfies the predicate
2147 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen.
CommitValueTo(Constant * Val,Constant * Addr)2148 static void CommitValueTo(Constant *Val, Constant *Addr) {
2149 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2150 assert(GV->hasInitializer());
2151 GV->setInitializer(Val);
2152 return;
2153 }
2154
2155 ConstantExpr *CE = cast<ConstantExpr>(Addr);
2156 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2157 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2158 }
2159
2160 /// Evaluate static constructors in the function, if we can. Return true if we
2161 /// can, false otherwise.
EvaluateStaticConstructor(Function * F,const DataLayout & DL,TargetLibraryInfo * TLI)2162 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
2163 TargetLibraryInfo *TLI) {
2164 // Call the function.
2165 Evaluator Eval(DL, TLI);
2166 Constant *RetValDummy;
2167 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2168 SmallVector<Constant*, 0>());
2169
2170 if (EvalSuccess) {
2171 ++NumCtorsEvaluated;
2172
2173 // We succeeded at evaluation: commit the result.
2174 DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2175 << F->getName() << "' to " << Eval.getMutatedMemory().size()
2176 << " stores.\n");
2177 for (const auto &I : Eval.getMutatedMemory())
2178 CommitValueTo(I.second, I.first);
2179 for (GlobalVariable *GV : Eval.getInvariants())
2180 GV->setConstant(true);
2181 }
2182
2183 return EvalSuccess;
2184 }
2185
compareNames(Constant * const * A,Constant * const * B)2186 static int compareNames(Constant *const *A, Constant *const *B) {
2187 Value *AStripped = (*A)->stripPointerCastsNoFollowAliases();
2188 Value *BStripped = (*B)->stripPointerCastsNoFollowAliases();
2189 return AStripped->getName().compare(BStripped->getName());
2190 }
2191
setUsedInitializer(GlobalVariable & V,const SmallPtrSet<GlobalValue *,8> & Init)2192 static void setUsedInitializer(GlobalVariable &V,
2193 const SmallPtrSet<GlobalValue *, 8> &Init) {
2194 if (Init.empty()) {
2195 V.eraseFromParent();
2196 return;
2197 }
2198
2199 // Type of pointer to the array of pointers.
2200 PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2201
2202 SmallVector<llvm::Constant *, 8> UsedArray;
2203 for (GlobalValue *GV : Init) {
2204 Constant *Cast
2205 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
2206 UsedArray.push_back(Cast);
2207 }
2208 // Sort to get deterministic order.
2209 array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2210 ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2211
2212 Module *M = V.getParent();
2213 V.removeFromParent();
2214 GlobalVariable *NV =
2215 new GlobalVariable(*M, ATy, false, llvm::GlobalValue::AppendingLinkage,
2216 llvm::ConstantArray::get(ATy, UsedArray), "");
2217 NV->takeName(&V);
2218 NV->setSection("llvm.metadata");
2219 delete &V;
2220 }
2221
2222 namespace {
2223 /// An easy to access representation of llvm.used and llvm.compiler.used.
2224 class LLVMUsed {
2225 SmallPtrSet<GlobalValue *, 8> Used;
2226 SmallPtrSet<GlobalValue *, 8> CompilerUsed;
2227 GlobalVariable *UsedV;
2228 GlobalVariable *CompilerUsedV;
2229
2230 public:
LLVMUsed(Module & M)2231 LLVMUsed(Module &M) {
2232 UsedV = collectUsedGlobalVariables(M, Used, false);
2233 CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true);
2234 }
2235 typedef SmallPtrSet<GlobalValue *, 8>::iterator iterator;
2236 typedef iterator_range<iterator> used_iterator_range;
usedBegin()2237 iterator usedBegin() { return Used.begin(); }
usedEnd()2238 iterator usedEnd() { return Used.end(); }
used()2239 used_iterator_range used() {
2240 return used_iterator_range(usedBegin(), usedEnd());
2241 }
compilerUsedBegin()2242 iterator compilerUsedBegin() { return CompilerUsed.begin(); }
compilerUsedEnd()2243 iterator compilerUsedEnd() { return CompilerUsed.end(); }
compilerUsed()2244 used_iterator_range compilerUsed() {
2245 return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2246 }
usedCount(GlobalValue * GV) const2247 bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
compilerUsedCount(GlobalValue * GV) const2248 bool compilerUsedCount(GlobalValue *GV) const {
2249 return CompilerUsed.count(GV);
2250 }
usedErase(GlobalValue * GV)2251 bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
compilerUsedErase(GlobalValue * GV)2252 bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
usedInsert(GlobalValue * GV)2253 bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
compilerUsedInsert(GlobalValue * GV)2254 bool compilerUsedInsert(GlobalValue *GV) {
2255 return CompilerUsed.insert(GV).second;
2256 }
2257
syncVariablesAndSets()2258 void syncVariablesAndSets() {
2259 if (UsedV)
2260 setUsedInitializer(*UsedV, Used);
2261 if (CompilerUsedV)
2262 setUsedInitializer(*CompilerUsedV, CompilerUsed);
2263 }
2264 };
2265 }
2266
hasUseOtherThanLLVMUsed(GlobalAlias & GA,const LLVMUsed & U)2267 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2268 if (GA.use_empty()) // No use at all.
2269 return false;
2270
2271 assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2272 "We should have removed the duplicated "
2273 "element from llvm.compiler.used");
2274 if (!GA.hasOneUse())
2275 // Strictly more than one use. So at least one is not in llvm.used and
2276 // llvm.compiler.used.
2277 return true;
2278
2279 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2280 return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2281 }
2282
hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue & V,const LLVMUsed & U)2283 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2284 const LLVMUsed &U) {
2285 unsigned N = 2;
2286 assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2287 "We should have removed the duplicated "
2288 "element from llvm.compiler.used");
2289 if (U.usedCount(&V) || U.compilerUsedCount(&V))
2290 ++N;
2291 return V.hasNUsesOrMore(N);
2292 }
2293
mayHaveOtherReferences(GlobalAlias & GA,const LLVMUsed & U)2294 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2295 if (!GA.hasLocalLinkage())
2296 return true;
2297
2298 return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2299 }
2300
hasUsesToReplace(GlobalAlias & GA,const LLVMUsed & U,bool & RenameTarget)2301 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2302 bool &RenameTarget) {
2303 RenameTarget = false;
2304 bool Ret = false;
2305 if (hasUseOtherThanLLVMUsed(GA, U))
2306 Ret = true;
2307
2308 // If the alias is externally visible, we may still be able to simplify it.
2309 if (!mayHaveOtherReferences(GA, U))
2310 return Ret;
2311
2312 // If the aliasee has internal linkage, give it the name and linkage
2313 // of the alias, and delete the alias. This turns:
2314 // define internal ... @f(...)
2315 // @a = alias ... @f
2316 // into:
2317 // define ... @a(...)
2318 Constant *Aliasee = GA.getAliasee();
2319 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2320 if (!Target->hasLocalLinkage())
2321 return Ret;
2322
2323 // Do not perform the transform if multiple aliases potentially target the
2324 // aliasee. This check also ensures that it is safe to replace the section
2325 // and other attributes of the aliasee with those of the alias.
2326 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2327 return Ret;
2328
2329 RenameTarget = true;
2330 return true;
2331 }
2332
2333 static bool
OptimizeGlobalAliases(Module & M,SmallSet<const Comdat *,8> & NotDiscardableComdats)2334 OptimizeGlobalAliases(Module &M,
2335 SmallSet<const Comdat *, 8> &NotDiscardableComdats) {
2336 bool Changed = false;
2337 LLVMUsed Used(M);
2338
2339 for (GlobalValue *GV : Used.used())
2340 Used.compilerUsedErase(GV);
2341
2342 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2343 I != E;) {
2344 GlobalAlias *J = &*I++;
2345
2346 // Aliases without names cannot be referenced outside this module.
2347 if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage())
2348 J->setLinkage(GlobalValue::InternalLinkage);
2349
2350 if (deleteIfDead(*J, NotDiscardableComdats)) {
2351 Changed = true;
2352 continue;
2353 }
2354
2355 // If the aliasee may change at link time, nothing can be done - bail out.
2356 if (J->isInterposable())
2357 continue;
2358
2359 Constant *Aliasee = J->getAliasee();
2360 GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
2361 // We can't trivially replace the alias with the aliasee if the aliasee is
2362 // non-trivial in some way.
2363 // TODO: Try to handle non-zero GEPs of local aliasees.
2364 if (!Target)
2365 continue;
2366 Target->removeDeadConstantUsers();
2367
2368 // Make all users of the alias use the aliasee instead.
2369 bool RenameTarget;
2370 if (!hasUsesToReplace(*J, Used, RenameTarget))
2371 continue;
2372
2373 J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
2374 ++NumAliasesResolved;
2375 Changed = true;
2376
2377 if (RenameTarget) {
2378 // Give the aliasee the name, linkage and other attributes of the alias.
2379 Target->takeName(&*J);
2380 Target->setLinkage(J->getLinkage());
2381 Target->setVisibility(J->getVisibility());
2382 Target->setDLLStorageClass(J->getDLLStorageClass());
2383
2384 if (Used.usedErase(&*J))
2385 Used.usedInsert(Target);
2386
2387 if (Used.compilerUsedErase(&*J))
2388 Used.compilerUsedInsert(Target);
2389 } else if (mayHaveOtherReferences(*J, Used))
2390 continue;
2391
2392 // Delete the alias.
2393 M.getAliasList().erase(J);
2394 ++NumAliasesRemoved;
2395 Changed = true;
2396 }
2397
2398 Used.syncVariablesAndSets();
2399
2400 return Changed;
2401 }
2402
FindCXAAtExit(Module & M,TargetLibraryInfo * TLI)2403 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) {
2404 LibFunc::Func F = LibFunc::cxa_atexit;
2405 if (!TLI->has(F))
2406 return nullptr;
2407
2408 Function *Fn = M.getFunction(TLI->getName(F));
2409 if (!Fn)
2410 return nullptr;
2411
2412 // Make sure that the function has the correct prototype.
2413 if (!TLI->getLibFunc(*Fn, F) || F != LibFunc::cxa_atexit)
2414 return nullptr;
2415
2416 return Fn;
2417 }
2418
2419 /// Returns whether the given function is an empty C++ destructor and can
2420 /// therefore be eliminated.
2421 /// Note that we assume that other optimization passes have already simplified
2422 /// the code so we only look for a function with a single basic block, where
2423 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and
2424 /// other side-effect free instructions.
cxxDtorIsEmpty(const Function & Fn,SmallPtrSet<const Function *,8> & CalledFunctions)2425 static bool cxxDtorIsEmpty(const Function &Fn,
2426 SmallPtrSet<const Function *, 8> &CalledFunctions) {
2427 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2428 // nounwind, but that doesn't seem worth doing.
2429 if (Fn.isDeclaration())
2430 return false;
2431
2432 if (++Fn.begin() != Fn.end())
2433 return false;
2434
2435 const BasicBlock &EntryBlock = Fn.getEntryBlock();
2436 for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end();
2437 I != E; ++I) {
2438 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
2439 // Ignore debug intrinsics.
2440 if (isa<DbgInfoIntrinsic>(CI))
2441 continue;
2442
2443 const Function *CalledFn = CI->getCalledFunction();
2444
2445 if (!CalledFn)
2446 return false;
2447
2448 SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions);
2449
2450 // Don't treat recursive functions as empty.
2451 if (!NewCalledFunctions.insert(CalledFn).second)
2452 return false;
2453
2454 if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions))
2455 return false;
2456 } else if (isa<ReturnInst>(*I))
2457 return true; // We're done.
2458 else if (I->mayHaveSideEffects())
2459 return false; // Destructor with side effects, bail.
2460 }
2461
2462 return false;
2463 }
2464
OptimizeEmptyGlobalCXXDtors(Function * CXAAtExitFn)2465 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2466 /// Itanium C++ ABI p3.3.5:
2467 ///
2468 /// After constructing a global (or local static) object, that will require
2469 /// destruction on exit, a termination function is registered as follows:
2470 ///
2471 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2472 ///
2473 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2474 /// call f(p) when DSO d is unloaded, before all such termination calls
2475 /// registered before this one. It returns zero if registration is
2476 /// successful, nonzero on failure.
2477
2478 // This pass will look for calls to __cxa_atexit where the function is trivial
2479 // and remove them.
2480 bool Changed = false;
2481
2482 for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
2483 I != E;) {
2484 // We're only interested in calls. Theoretically, we could handle invoke
2485 // instructions as well, but neither llvm-gcc nor clang generate invokes
2486 // to __cxa_atexit.
2487 CallInst *CI = dyn_cast<CallInst>(*I++);
2488 if (!CI)
2489 continue;
2490
2491 Function *DtorFn =
2492 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
2493 if (!DtorFn)
2494 continue;
2495
2496 SmallPtrSet<const Function *, 8> CalledFunctions;
2497 if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions))
2498 continue;
2499
2500 // Just remove the call.
2501 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
2502 CI->eraseFromParent();
2503
2504 ++NumCXXDtorsRemoved;
2505
2506 Changed |= true;
2507 }
2508
2509 return Changed;
2510 }
2511
optimizeGlobalsInModule(Module & M,const DataLayout & DL,TargetLibraryInfo * TLI,function_ref<DominatorTree & (Function &)> LookupDomTree)2512 static bool optimizeGlobalsInModule(
2513 Module &M, const DataLayout &DL, TargetLibraryInfo *TLI,
2514 function_ref<DominatorTree &(Function &)> LookupDomTree) {
2515 SmallSet<const Comdat *, 8> NotDiscardableComdats;
2516 bool Changed = false;
2517 bool LocalChange = true;
2518 while (LocalChange) {
2519 LocalChange = false;
2520
2521 NotDiscardableComdats.clear();
2522 for (const GlobalVariable &GV : M.globals())
2523 if (const Comdat *C = GV.getComdat())
2524 if (!GV.isDiscardableIfUnused() || !GV.use_empty())
2525 NotDiscardableComdats.insert(C);
2526 for (Function &F : M)
2527 if (const Comdat *C = F.getComdat())
2528 if (!F.isDefTriviallyDead())
2529 NotDiscardableComdats.insert(C);
2530 for (GlobalAlias &GA : M.aliases())
2531 if (const Comdat *C = GA.getComdat())
2532 if (!GA.isDiscardableIfUnused() || !GA.use_empty())
2533 NotDiscardableComdats.insert(C);
2534
2535 // Delete functions that are trivially dead, ccc -> fastcc
2536 LocalChange |=
2537 OptimizeFunctions(M, TLI, LookupDomTree, NotDiscardableComdats);
2538
2539 // Optimize global_ctors list.
2540 LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
2541 return EvaluateStaticConstructor(F, DL, TLI);
2542 });
2543
2544 // Optimize non-address-taken globals.
2545 LocalChange |= OptimizeGlobalVars(M, TLI, LookupDomTree,
2546 NotDiscardableComdats);
2547
2548 // Resolve aliases, when possible.
2549 LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats);
2550
2551 // Try to remove trivial global destructors if they are not removed
2552 // already.
2553 Function *CXAAtExitFn = FindCXAAtExit(M, TLI);
2554 if (CXAAtExitFn)
2555 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
2556
2557 Changed |= LocalChange;
2558 }
2559
2560 // TODO: Move all global ctors functions to the end of the module for code
2561 // layout.
2562
2563 return Changed;
2564 }
2565
run(Module & M,AnalysisManager<Module> & AM)2566 PreservedAnalyses GlobalOptPass::run(Module &M, AnalysisManager<Module> &AM) {
2567 auto &DL = M.getDataLayout();
2568 auto &TLI = AM.getResult<TargetLibraryAnalysis>(M);
2569 auto &FAM =
2570 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2571 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{
2572 return FAM.getResult<DominatorTreeAnalysis>(F);
2573 };
2574 if (!optimizeGlobalsInModule(M, DL, &TLI, LookupDomTree))
2575 return PreservedAnalyses::all();
2576 return PreservedAnalyses::none();
2577 }
2578
2579 namespace {
2580 struct GlobalOptLegacyPass : public ModulePass {
2581 static char ID; // Pass identification, replacement for typeid
GlobalOptLegacyPass__anone1b9d84b0511::GlobalOptLegacyPass2582 GlobalOptLegacyPass() : ModulePass(ID) {
2583 initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
2584 }
2585
runOnModule__anone1b9d84b0511::GlobalOptLegacyPass2586 bool runOnModule(Module &M) override {
2587 if (skipModule(M))
2588 return false;
2589
2590 auto &DL = M.getDataLayout();
2591 auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
2592 auto LookupDomTree = [this](Function &F) -> DominatorTree & {
2593 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
2594 };
2595 return optimizeGlobalsInModule(M, DL, TLI, LookupDomTree);
2596 }
2597
getAnalysisUsage__anone1b9d84b0511::GlobalOptLegacyPass2598 void getAnalysisUsage(AnalysisUsage &AU) const override {
2599 AU.addRequired<TargetLibraryInfoWrapperPass>();
2600 AU.addRequired<DominatorTreeWrapperPass>();
2601 }
2602 };
2603 }
2604
2605 char GlobalOptLegacyPass::ID = 0;
2606 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt",
2607 "Global Variable Optimizer", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)2608 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2609 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2610 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt",
2611 "Global Variable Optimizer", false, false)
2612
2613 ModulePass *llvm::createGlobalOptimizerPass() {
2614 return new GlobalOptLegacyPass();
2615 }
2616