1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for add, fadd, sub, and fsub.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/IR/DataLayout.h"
18 #include "llvm/IR/GetElementPtrTypeIterator.h"
19 #include "llvm/IR/PatternMatch.h"
20
21 using namespace llvm;
22 using namespace PatternMatch;
23
24 #define DEBUG_TYPE "instcombine"
25
26 namespace {
27
28 /// Class representing coefficient of floating-point addend.
29 /// This class needs to be highly efficient, which is especially true for
30 /// the constructor. As of I write this comment, the cost of the default
31 /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
32 /// perform write-merging).
33 ///
34 class FAddendCoef {
35 public:
36 // The constructor has to initialize a APFloat, which is unnecessary for
37 // most addends which have coefficient either 1 or -1. So, the constructor
38 // is expensive. In order to avoid the cost of the constructor, we should
39 // reuse some instances whenever possible. The pre-created instances
40 // FAddCombine::Add[0-5] embodies this idea.
41 //
FAddendCoef()42 FAddendCoef() : IsFp(false), BufHasFpVal(false), IntVal(0) {}
43 ~FAddendCoef();
44
set(short C)45 void set(short C) {
46 assert(!insaneIntVal(C) && "Insane coefficient");
47 IsFp = false; IntVal = C;
48 }
49
50 void set(const APFloat& C);
51
52 void negate();
53
isZero() const54 bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
55 Value *getValue(Type *) const;
56
57 // If possible, don't define operator+/operator- etc because these
58 // operators inevitably call FAddendCoef's constructor which is not cheap.
59 void operator=(const FAddendCoef &A);
60 void operator+=(const FAddendCoef &A);
61 void operator*=(const FAddendCoef &S);
62
isOne() const63 bool isOne() const { return isInt() && IntVal == 1; }
isTwo() const64 bool isTwo() const { return isInt() && IntVal == 2; }
isMinusOne() const65 bool isMinusOne() const { return isInt() && IntVal == -1; }
isMinusTwo() const66 bool isMinusTwo() const { return isInt() && IntVal == -2; }
67
68 private:
insaneIntVal(int V)69 bool insaneIntVal(int V) { return V > 4 || V < -4; }
getFpValPtr()70 APFloat *getFpValPtr()
71 { return reinterpret_cast<APFloat*>(&FpValBuf.buffer[0]); }
getFpValPtr() const72 const APFloat *getFpValPtr() const
73 { return reinterpret_cast<const APFloat*>(&FpValBuf.buffer[0]); }
74
getFpVal() const75 const APFloat &getFpVal() const {
76 assert(IsFp && BufHasFpVal && "Incorret state");
77 return *getFpValPtr();
78 }
79
getFpVal()80 APFloat &getFpVal() {
81 assert(IsFp && BufHasFpVal && "Incorret state");
82 return *getFpValPtr();
83 }
84
isInt() const85 bool isInt() const { return !IsFp; }
86
87 // If the coefficient is represented by an integer, promote it to a
88 // floating point.
89 void convertToFpType(const fltSemantics &Sem);
90
91 // Construct an APFloat from a signed integer.
92 // TODO: We should get rid of this function when APFloat can be constructed
93 // from an *SIGNED* integer.
94 APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
95
96 private:
97 bool IsFp;
98
99 // True iff FpValBuf contains an instance of APFloat.
100 bool BufHasFpVal;
101
102 // The integer coefficient of an individual addend is either 1 or -1,
103 // and we try to simplify at most 4 addends from neighboring at most
104 // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
105 // is overkill of this end.
106 short IntVal;
107
108 AlignedCharArrayUnion<APFloat> FpValBuf;
109 };
110
111 /// FAddend is used to represent floating-point addend. An addend is
112 /// represented as <C, V>, where the V is a symbolic value, and C is a
113 /// constant coefficient. A constant addend is represented as <C, 0>.
114 ///
115 class FAddend {
116 public:
FAddend()117 FAddend() : Val(nullptr) {}
118
getSymVal() const119 Value *getSymVal() const { return Val; }
getCoef() const120 const FAddendCoef &getCoef() const { return Coeff; }
121
isConstant() const122 bool isConstant() const { return Val == nullptr; }
isZero() const123 bool isZero() const { return Coeff.isZero(); }
124
set(short Coefficient,Value * V)125 void set(short Coefficient, Value *V) {
126 Coeff.set(Coefficient);
127 Val = V;
128 }
set(const APFloat & Coefficient,Value * V)129 void set(const APFloat &Coefficient, Value *V) {
130 Coeff.set(Coefficient);
131 Val = V;
132 }
set(const ConstantFP * Coefficient,Value * V)133 void set(const ConstantFP *Coefficient, Value *V) {
134 Coeff.set(Coefficient->getValueAPF());
135 Val = V;
136 }
137
negate()138 void negate() { Coeff.negate(); }
139
140 /// Drill down the U-D chain one step to find the definition of V, and
141 /// try to break the definition into one or two addends.
142 static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
143
144 /// Similar to FAddend::drillDownOneStep() except that the value being
145 /// splitted is the addend itself.
146 unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
147
operator +=(const FAddend & T)148 void operator+=(const FAddend &T) {
149 assert((Val == T.Val) && "Symbolic-values disagree");
150 Coeff += T.Coeff;
151 }
152
153 private:
Scale(const FAddendCoef & ScaleAmt)154 void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
155
156 // This addend has the value of "Coeff * Val".
157 Value *Val;
158 FAddendCoef Coeff;
159 };
160
161 /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
162 /// with its neighboring at most two instructions.
163 ///
164 class FAddCombine {
165 public:
FAddCombine(InstCombiner::BuilderTy * B)166 FAddCombine(InstCombiner::BuilderTy *B) : Builder(B), Instr(nullptr) {}
167 Value *simplify(Instruction *FAdd);
168
169 private:
170 typedef SmallVector<const FAddend*, 4> AddendVect;
171
172 Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
173
174 Value *performFactorization(Instruction *I);
175
176 /// Convert given addend to a Value
177 Value *createAddendVal(const FAddend &A, bool& NeedNeg);
178
179 /// Return the number of instructions needed to emit the N-ary addition.
180 unsigned calcInstrNumber(const AddendVect& Vect);
181 Value *createFSub(Value *Opnd0, Value *Opnd1);
182 Value *createFAdd(Value *Opnd0, Value *Opnd1);
183 Value *createFMul(Value *Opnd0, Value *Opnd1);
184 Value *createFDiv(Value *Opnd0, Value *Opnd1);
185 Value *createFNeg(Value *V);
186 Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
187 void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
188
189 InstCombiner::BuilderTy *Builder;
190 Instruction *Instr;
191
192 // Debugging stuff are clustered here.
193 #ifndef NDEBUG
194 unsigned CreateInstrNum;
initCreateInstNum()195 void initCreateInstNum() { CreateInstrNum = 0; }
incCreateInstNum()196 void incCreateInstNum() { CreateInstrNum++; }
197 #else
initCreateInstNum()198 void initCreateInstNum() {}
incCreateInstNum()199 void incCreateInstNum() {}
200 #endif
201 };
202
203 } // anonymous namespace
204
205 //===----------------------------------------------------------------------===//
206 //
207 // Implementation of
208 // {FAddendCoef, FAddend, FAddition, FAddCombine}.
209 //
210 //===----------------------------------------------------------------------===//
~FAddendCoef()211 FAddendCoef::~FAddendCoef() {
212 if (BufHasFpVal)
213 getFpValPtr()->~APFloat();
214 }
215
set(const APFloat & C)216 void FAddendCoef::set(const APFloat& C) {
217 APFloat *P = getFpValPtr();
218
219 if (isInt()) {
220 // As the buffer is meanless byte stream, we cannot call
221 // APFloat::operator=().
222 new(P) APFloat(C);
223 } else
224 *P = C;
225
226 IsFp = BufHasFpVal = true;
227 }
228
convertToFpType(const fltSemantics & Sem)229 void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
230 if (!isInt())
231 return;
232
233 APFloat *P = getFpValPtr();
234 if (IntVal > 0)
235 new(P) APFloat(Sem, IntVal);
236 else {
237 new(P) APFloat(Sem, 0 - IntVal);
238 P->changeSign();
239 }
240 IsFp = BufHasFpVal = true;
241 }
242
createAPFloatFromInt(const fltSemantics & Sem,int Val)243 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
244 if (Val >= 0)
245 return APFloat(Sem, Val);
246
247 APFloat T(Sem, 0 - Val);
248 T.changeSign();
249
250 return T;
251 }
252
operator =(const FAddendCoef & That)253 void FAddendCoef::operator=(const FAddendCoef &That) {
254 if (That.isInt())
255 set(That.IntVal);
256 else
257 set(That.getFpVal());
258 }
259
operator +=(const FAddendCoef & That)260 void FAddendCoef::operator+=(const FAddendCoef &That) {
261 enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
262 if (isInt() == That.isInt()) {
263 if (isInt())
264 IntVal += That.IntVal;
265 else
266 getFpVal().add(That.getFpVal(), RndMode);
267 return;
268 }
269
270 if (isInt()) {
271 const APFloat &T = That.getFpVal();
272 convertToFpType(T.getSemantics());
273 getFpVal().add(T, RndMode);
274 return;
275 }
276
277 APFloat &T = getFpVal();
278 T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
279 }
280
operator *=(const FAddendCoef & That)281 void FAddendCoef::operator*=(const FAddendCoef &That) {
282 if (That.isOne())
283 return;
284
285 if (That.isMinusOne()) {
286 negate();
287 return;
288 }
289
290 if (isInt() && That.isInt()) {
291 int Res = IntVal * (int)That.IntVal;
292 assert(!insaneIntVal(Res) && "Insane int value");
293 IntVal = Res;
294 return;
295 }
296
297 const fltSemantics &Semantic =
298 isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
299
300 if (isInt())
301 convertToFpType(Semantic);
302 APFloat &F0 = getFpVal();
303
304 if (That.isInt())
305 F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
306 APFloat::rmNearestTiesToEven);
307 else
308 F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
309 }
310
negate()311 void FAddendCoef::negate() {
312 if (isInt())
313 IntVal = 0 - IntVal;
314 else
315 getFpVal().changeSign();
316 }
317
getValue(Type * Ty) const318 Value *FAddendCoef::getValue(Type *Ty) const {
319 return isInt() ?
320 ConstantFP::get(Ty, float(IntVal)) :
321 ConstantFP::get(Ty->getContext(), getFpVal());
322 }
323
324 // The definition of <Val> Addends
325 // =========================================
326 // A + B <1, A>, <1,B>
327 // A - B <1, A>, <1,B>
328 // 0 - B <-1, B>
329 // C * A, <C, A>
330 // A + C <1, A> <C, NULL>
331 // 0 +/- 0 <0, NULL> (corner case)
332 //
333 // Legend: A and B are not constant, C is constant
334 //
drillValueDownOneStep(Value * Val,FAddend & Addend0,FAddend & Addend1)335 unsigned FAddend::drillValueDownOneStep
336 (Value *Val, FAddend &Addend0, FAddend &Addend1) {
337 Instruction *I = nullptr;
338 if (!Val || !(I = dyn_cast<Instruction>(Val)))
339 return 0;
340
341 unsigned Opcode = I->getOpcode();
342
343 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
344 ConstantFP *C0, *C1;
345 Value *Opnd0 = I->getOperand(0);
346 Value *Opnd1 = I->getOperand(1);
347 if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
348 Opnd0 = nullptr;
349
350 if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
351 Opnd1 = nullptr;
352
353 if (Opnd0) {
354 if (!C0)
355 Addend0.set(1, Opnd0);
356 else
357 Addend0.set(C0, nullptr);
358 }
359
360 if (Opnd1) {
361 FAddend &Addend = Opnd0 ? Addend1 : Addend0;
362 if (!C1)
363 Addend.set(1, Opnd1);
364 else
365 Addend.set(C1, nullptr);
366 if (Opcode == Instruction::FSub)
367 Addend.negate();
368 }
369
370 if (Opnd0 || Opnd1)
371 return Opnd0 && Opnd1 ? 2 : 1;
372
373 // Both operands are zero. Weird!
374 Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
375 return 1;
376 }
377
378 if (I->getOpcode() == Instruction::FMul) {
379 Value *V0 = I->getOperand(0);
380 Value *V1 = I->getOperand(1);
381 if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
382 Addend0.set(C, V1);
383 return 1;
384 }
385
386 if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
387 Addend0.set(C, V0);
388 return 1;
389 }
390 }
391
392 return 0;
393 }
394
395 // Try to break *this* addend into two addends. e.g. Suppose this addend is
396 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
397 // i.e. <2.3, X> and <2.3, Y>.
398 //
drillAddendDownOneStep(FAddend & Addend0,FAddend & Addend1) const399 unsigned FAddend::drillAddendDownOneStep
400 (FAddend &Addend0, FAddend &Addend1) const {
401 if (isConstant())
402 return 0;
403
404 unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
405 if (!BreakNum || Coeff.isOne())
406 return BreakNum;
407
408 Addend0.Scale(Coeff);
409
410 if (BreakNum == 2)
411 Addend1.Scale(Coeff);
412
413 return BreakNum;
414 }
415
416 // Try to perform following optimization on the input instruction I. Return the
417 // simplified expression if was successful; otherwise, return 0.
418 //
419 // Instruction "I" is Simplified into
420 // -------------------------------------------------------
421 // (x * y) +/- (x * z) x * (y +/- z)
422 // (y / x) +/- (z / x) (y +/- z) / x
423 //
performFactorization(Instruction * I)424 Value *FAddCombine::performFactorization(Instruction *I) {
425 assert((I->getOpcode() == Instruction::FAdd ||
426 I->getOpcode() == Instruction::FSub) && "Expect add/sub");
427
428 Instruction *I0 = dyn_cast<Instruction>(I->getOperand(0));
429 Instruction *I1 = dyn_cast<Instruction>(I->getOperand(1));
430
431 if (!I0 || !I1 || I0->getOpcode() != I1->getOpcode())
432 return nullptr;
433
434 bool isMpy = false;
435 if (I0->getOpcode() == Instruction::FMul)
436 isMpy = true;
437 else if (I0->getOpcode() != Instruction::FDiv)
438 return nullptr;
439
440 Value *Opnd0_0 = I0->getOperand(0);
441 Value *Opnd0_1 = I0->getOperand(1);
442 Value *Opnd1_0 = I1->getOperand(0);
443 Value *Opnd1_1 = I1->getOperand(1);
444
445 // Input Instr I Factor AddSub0 AddSub1
446 // ----------------------------------------------
447 // (x*y) +/- (x*z) x y z
448 // (y/x) +/- (z/x) x y z
449 //
450 Value *Factor = nullptr;
451 Value *AddSub0 = nullptr, *AddSub1 = nullptr;
452
453 if (isMpy) {
454 if (Opnd0_0 == Opnd1_0 || Opnd0_0 == Opnd1_1)
455 Factor = Opnd0_0;
456 else if (Opnd0_1 == Opnd1_0 || Opnd0_1 == Opnd1_1)
457 Factor = Opnd0_1;
458
459 if (Factor) {
460 AddSub0 = (Factor == Opnd0_0) ? Opnd0_1 : Opnd0_0;
461 AddSub1 = (Factor == Opnd1_0) ? Opnd1_1 : Opnd1_0;
462 }
463 } else if (Opnd0_1 == Opnd1_1) {
464 Factor = Opnd0_1;
465 AddSub0 = Opnd0_0;
466 AddSub1 = Opnd1_0;
467 }
468
469 if (!Factor)
470 return nullptr;
471
472 FastMathFlags Flags;
473 Flags.setUnsafeAlgebra();
474 if (I0) Flags &= I->getFastMathFlags();
475 if (I1) Flags &= I->getFastMathFlags();
476
477 // Create expression "NewAddSub = AddSub0 +/- AddsSub1"
478 Value *NewAddSub = (I->getOpcode() == Instruction::FAdd) ?
479 createFAdd(AddSub0, AddSub1) :
480 createFSub(AddSub0, AddSub1);
481 if (ConstantFP *CFP = dyn_cast<ConstantFP>(NewAddSub)) {
482 const APFloat &F = CFP->getValueAPF();
483 if (!F.isNormal())
484 return nullptr;
485 } else if (Instruction *II = dyn_cast<Instruction>(NewAddSub))
486 II->setFastMathFlags(Flags);
487
488 if (isMpy) {
489 Value *RI = createFMul(Factor, NewAddSub);
490 if (Instruction *II = dyn_cast<Instruction>(RI))
491 II->setFastMathFlags(Flags);
492 return RI;
493 }
494
495 Value *RI = createFDiv(NewAddSub, Factor);
496 if (Instruction *II = dyn_cast<Instruction>(RI))
497 II->setFastMathFlags(Flags);
498 return RI;
499 }
500
simplify(Instruction * I)501 Value *FAddCombine::simplify(Instruction *I) {
502 assert(I->hasUnsafeAlgebra() && "Should be in unsafe mode");
503
504 // Currently we are not able to handle vector type.
505 if (I->getType()->isVectorTy())
506 return nullptr;
507
508 assert((I->getOpcode() == Instruction::FAdd ||
509 I->getOpcode() == Instruction::FSub) && "Expect add/sub");
510
511 // Save the instruction before calling other member-functions.
512 Instr = I;
513
514 FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
515
516 unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
517
518 // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
519 unsigned Opnd0_ExpNum = 0;
520 unsigned Opnd1_ExpNum = 0;
521
522 if (!Opnd0.isConstant())
523 Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
524
525 // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
526 if (OpndNum == 2 && !Opnd1.isConstant())
527 Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
528
529 // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
530 if (Opnd0_ExpNum && Opnd1_ExpNum) {
531 AddendVect AllOpnds;
532 AllOpnds.push_back(&Opnd0_0);
533 AllOpnds.push_back(&Opnd1_0);
534 if (Opnd0_ExpNum == 2)
535 AllOpnds.push_back(&Opnd0_1);
536 if (Opnd1_ExpNum == 2)
537 AllOpnds.push_back(&Opnd1_1);
538
539 // Compute instruction quota. We should save at least one instruction.
540 unsigned InstQuota = 0;
541
542 Value *V0 = I->getOperand(0);
543 Value *V1 = I->getOperand(1);
544 InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
545 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
546
547 if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
548 return R;
549 }
550
551 if (OpndNum != 2) {
552 // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
553 // splitted into two addends, say "V = X - Y", the instruction would have
554 // been optimized into "I = Y - X" in the previous steps.
555 //
556 const FAddendCoef &CE = Opnd0.getCoef();
557 return CE.isOne() ? Opnd0.getSymVal() : nullptr;
558 }
559
560 // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
561 if (Opnd1_ExpNum) {
562 AddendVect AllOpnds;
563 AllOpnds.push_back(&Opnd0);
564 AllOpnds.push_back(&Opnd1_0);
565 if (Opnd1_ExpNum == 2)
566 AllOpnds.push_back(&Opnd1_1);
567
568 if (Value *R = simplifyFAdd(AllOpnds, 1))
569 return R;
570 }
571
572 // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
573 if (Opnd0_ExpNum) {
574 AddendVect AllOpnds;
575 AllOpnds.push_back(&Opnd1);
576 AllOpnds.push_back(&Opnd0_0);
577 if (Opnd0_ExpNum == 2)
578 AllOpnds.push_back(&Opnd0_1);
579
580 if (Value *R = simplifyFAdd(AllOpnds, 1))
581 return R;
582 }
583
584 // step 6: Try factorization as the last resort,
585 return performFactorization(I);
586 }
587
simplifyFAdd(AddendVect & Addends,unsigned InstrQuota)588 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
589 unsigned AddendNum = Addends.size();
590 assert(AddendNum <= 4 && "Too many addends");
591
592 // For saving intermediate results;
593 unsigned NextTmpIdx = 0;
594 FAddend TmpResult[3];
595
596 // Points to the constant addend of the resulting simplified expression.
597 // If the resulting expr has constant-addend, this constant-addend is
598 // desirable to reside at the top of the resulting expression tree. Placing
599 // constant close to supper-expr(s) will potentially reveal some optimization
600 // opportunities in super-expr(s).
601 //
602 const FAddend *ConstAdd = nullptr;
603
604 // Simplified addends are placed <SimpVect>.
605 AddendVect SimpVect;
606
607 // The outer loop works on one symbolic-value at a time. Suppose the input
608 // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
609 // The symbolic-values will be processed in this order: x, y, z.
610 //
611 for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
612
613 const FAddend *ThisAddend = Addends[SymIdx];
614 if (!ThisAddend) {
615 // This addend was processed before.
616 continue;
617 }
618
619 Value *Val = ThisAddend->getSymVal();
620 unsigned StartIdx = SimpVect.size();
621 SimpVect.push_back(ThisAddend);
622
623 // The inner loop collects addends sharing same symbolic-value, and these
624 // addends will be later on folded into a single addend. Following above
625 // example, if the symbolic value "y" is being processed, the inner loop
626 // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
627 // be later on folded into "<b1+b2, y>".
628 //
629 for (unsigned SameSymIdx = SymIdx + 1;
630 SameSymIdx < AddendNum; SameSymIdx++) {
631 const FAddend *T = Addends[SameSymIdx];
632 if (T && T->getSymVal() == Val) {
633 // Set null such that next iteration of the outer loop will not process
634 // this addend again.
635 Addends[SameSymIdx] = nullptr;
636 SimpVect.push_back(T);
637 }
638 }
639
640 // If multiple addends share same symbolic value, fold them together.
641 if (StartIdx + 1 != SimpVect.size()) {
642 FAddend &R = TmpResult[NextTmpIdx ++];
643 R = *SimpVect[StartIdx];
644 for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
645 R += *SimpVect[Idx];
646
647 // Pop all addends being folded and push the resulting folded addend.
648 SimpVect.resize(StartIdx);
649 if (Val) {
650 if (!R.isZero()) {
651 SimpVect.push_back(&R);
652 }
653 } else {
654 // Don't push constant addend at this time. It will be the last element
655 // of <SimpVect>.
656 ConstAdd = &R;
657 }
658 }
659 }
660
661 assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) &&
662 "out-of-bound access");
663
664 if (ConstAdd)
665 SimpVect.push_back(ConstAdd);
666
667 Value *Result;
668 if (!SimpVect.empty())
669 Result = createNaryFAdd(SimpVect, InstrQuota);
670 else {
671 // The addition is folded to 0.0.
672 Result = ConstantFP::get(Instr->getType(), 0.0);
673 }
674
675 return Result;
676 }
677
createNaryFAdd(const AddendVect & Opnds,unsigned InstrQuota)678 Value *FAddCombine::createNaryFAdd
679 (const AddendVect &Opnds, unsigned InstrQuota) {
680 assert(!Opnds.empty() && "Expect at least one addend");
681
682 // Step 1: Check if the # of instructions needed exceeds the quota.
683 //
684 unsigned InstrNeeded = calcInstrNumber(Opnds);
685 if (InstrNeeded > InstrQuota)
686 return nullptr;
687
688 initCreateInstNum();
689
690 // step 2: Emit the N-ary addition.
691 // Note that at most three instructions are involved in Fadd-InstCombine: the
692 // addition in question, and at most two neighboring instructions.
693 // The resulting optimized addition should have at least one less instruction
694 // than the original addition expression tree. This implies that the resulting
695 // N-ary addition has at most two instructions, and we don't need to worry
696 // about tree-height when constructing the N-ary addition.
697
698 Value *LastVal = nullptr;
699 bool LastValNeedNeg = false;
700
701 // Iterate the addends, creating fadd/fsub using adjacent two addends.
702 for (const FAddend *Opnd : Opnds) {
703 bool NeedNeg;
704 Value *V = createAddendVal(*Opnd, NeedNeg);
705 if (!LastVal) {
706 LastVal = V;
707 LastValNeedNeg = NeedNeg;
708 continue;
709 }
710
711 if (LastValNeedNeg == NeedNeg) {
712 LastVal = createFAdd(LastVal, V);
713 continue;
714 }
715
716 if (LastValNeedNeg)
717 LastVal = createFSub(V, LastVal);
718 else
719 LastVal = createFSub(LastVal, V);
720
721 LastValNeedNeg = false;
722 }
723
724 if (LastValNeedNeg) {
725 LastVal = createFNeg(LastVal);
726 }
727
728 #ifndef NDEBUG
729 assert(CreateInstrNum == InstrNeeded &&
730 "Inconsistent in instruction numbers");
731 #endif
732
733 return LastVal;
734 }
735
createFSub(Value * Opnd0,Value * Opnd1)736 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
737 Value *V = Builder->CreateFSub(Opnd0, Opnd1);
738 if (Instruction *I = dyn_cast<Instruction>(V))
739 createInstPostProc(I);
740 return V;
741 }
742
createFNeg(Value * V)743 Value *FAddCombine::createFNeg(Value *V) {
744 Value *Zero = cast<Value>(ConstantFP::getZeroValueForNegation(V->getType()));
745 Value *NewV = createFSub(Zero, V);
746 if (Instruction *I = dyn_cast<Instruction>(NewV))
747 createInstPostProc(I, true); // fneg's don't receive instruction numbers.
748 return NewV;
749 }
750
createFAdd(Value * Opnd0,Value * Opnd1)751 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
752 Value *V = Builder->CreateFAdd(Opnd0, Opnd1);
753 if (Instruction *I = dyn_cast<Instruction>(V))
754 createInstPostProc(I);
755 return V;
756 }
757
createFMul(Value * Opnd0,Value * Opnd1)758 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
759 Value *V = Builder->CreateFMul(Opnd0, Opnd1);
760 if (Instruction *I = dyn_cast<Instruction>(V))
761 createInstPostProc(I);
762 return V;
763 }
764
createFDiv(Value * Opnd0,Value * Opnd1)765 Value *FAddCombine::createFDiv(Value *Opnd0, Value *Opnd1) {
766 Value *V = Builder->CreateFDiv(Opnd0, Opnd1);
767 if (Instruction *I = dyn_cast<Instruction>(V))
768 createInstPostProc(I);
769 return V;
770 }
771
createInstPostProc(Instruction * NewInstr,bool NoNumber)772 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
773 NewInstr->setDebugLoc(Instr->getDebugLoc());
774
775 // Keep track of the number of instruction created.
776 if (!NoNumber)
777 incCreateInstNum();
778
779 // Propagate fast-math flags
780 NewInstr->setFastMathFlags(Instr->getFastMathFlags());
781 }
782
783 // Return the number of instruction needed to emit the N-ary addition.
784 // NOTE: Keep this function in sync with createAddendVal().
calcInstrNumber(const AddendVect & Opnds)785 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
786 unsigned OpndNum = Opnds.size();
787 unsigned InstrNeeded = OpndNum - 1;
788
789 // The number of addends in the form of "(-1)*x".
790 unsigned NegOpndNum = 0;
791
792 // Adjust the number of instructions needed to emit the N-ary add.
793 for (const FAddend *Opnd : Opnds) {
794 if (Opnd->isConstant())
795 continue;
796
797 const FAddendCoef &CE = Opnd->getCoef();
798 if (CE.isMinusOne() || CE.isMinusTwo())
799 NegOpndNum++;
800
801 // Let the addend be "c * x". If "c == +/-1", the value of the addend
802 // is immediately available; otherwise, it needs exactly one instruction
803 // to evaluate the value.
804 if (!CE.isMinusOne() && !CE.isOne())
805 InstrNeeded++;
806 }
807 if (NegOpndNum == OpndNum)
808 InstrNeeded++;
809 return InstrNeeded;
810 }
811
812 // Input Addend Value NeedNeg(output)
813 // ================================================================
814 // Constant C C false
815 // <+/-1, V> V coefficient is -1
816 // <2/-2, V> "fadd V, V" coefficient is -2
817 // <C, V> "fmul V, C" false
818 //
819 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
createAddendVal(const FAddend & Opnd,bool & NeedNeg)820 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
821 const FAddendCoef &Coeff = Opnd.getCoef();
822
823 if (Opnd.isConstant()) {
824 NeedNeg = false;
825 return Coeff.getValue(Instr->getType());
826 }
827
828 Value *OpndVal = Opnd.getSymVal();
829
830 if (Coeff.isMinusOne() || Coeff.isOne()) {
831 NeedNeg = Coeff.isMinusOne();
832 return OpndVal;
833 }
834
835 if (Coeff.isTwo() || Coeff.isMinusTwo()) {
836 NeedNeg = Coeff.isMinusTwo();
837 return createFAdd(OpndVal, OpndVal);
838 }
839
840 NeedNeg = false;
841 return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
842 }
843
844 // If one of the operands only has one non-zero bit, and if the other
845 // operand has a known-zero bit in a more significant place than it (not
846 // including the sign bit) the ripple may go up to and fill the zero, but
847 // won't change the sign. For example, (X & ~4) + 1.
checkRippleForAdd(const APInt & Op0KnownZero,const APInt & Op1KnownZero)848 static bool checkRippleForAdd(const APInt &Op0KnownZero,
849 const APInt &Op1KnownZero) {
850 APInt Op1MaybeOne = ~Op1KnownZero;
851 // Make sure that one of the operand has at most one bit set to 1.
852 if (Op1MaybeOne.countPopulation() != 1)
853 return false;
854
855 // Find the most significant known 0 other than the sign bit.
856 int BitWidth = Op0KnownZero.getBitWidth();
857 APInt Op0KnownZeroTemp(Op0KnownZero);
858 Op0KnownZeroTemp.clearBit(BitWidth - 1);
859 int Op0ZeroPosition = BitWidth - Op0KnownZeroTemp.countLeadingZeros() - 1;
860
861 int Op1OnePosition = BitWidth - Op1MaybeOne.countLeadingZeros() - 1;
862 assert(Op1OnePosition >= 0);
863
864 // This also covers the case of no known zero, since in that case
865 // Op0ZeroPosition is -1.
866 return Op0ZeroPosition >= Op1OnePosition;
867 }
868
869 /// Return true if we can prove that:
870 /// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS))
871 /// This basically requires proving that the add in the original type would not
872 /// overflow to change the sign bit or have a carry out.
WillNotOverflowSignedAdd(Value * LHS,Value * RHS,Instruction & CxtI)873 bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS,
874 Instruction &CxtI) {
875 // There are different heuristics we can use for this. Here are some simple
876 // ones.
877
878 // If LHS and RHS each have at least two sign bits, the addition will look
879 // like
880 //
881 // XX..... +
882 // YY.....
883 //
884 // If the carry into the most significant position is 0, X and Y can't both
885 // be 1 and therefore the carry out of the addition is also 0.
886 //
887 // If the carry into the most significant position is 1, X and Y can't both
888 // be 0 and therefore the carry out of the addition is also 1.
889 //
890 // Since the carry into the most significant position is always equal to
891 // the carry out of the addition, there is no signed overflow.
892 if (ComputeNumSignBits(LHS, 0, &CxtI) > 1 &&
893 ComputeNumSignBits(RHS, 0, &CxtI) > 1)
894 return true;
895
896 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
897 APInt LHSKnownZero(BitWidth, 0);
898 APInt LHSKnownOne(BitWidth, 0);
899 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, &CxtI);
900
901 APInt RHSKnownZero(BitWidth, 0);
902 APInt RHSKnownOne(BitWidth, 0);
903 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, &CxtI);
904
905 // Addition of two 2's compliment numbers having opposite signs will never
906 // overflow.
907 if ((LHSKnownOne[BitWidth - 1] && RHSKnownZero[BitWidth - 1]) ||
908 (LHSKnownZero[BitWidth - 1] && RHSKnownOne[BitWidth - 1]))
909 return true;
910
911 // Check if carry bit of addition will not cause overflow.
912 if (checkRippleForAdd(LHSKnownZero, RHSKnownZero))
913 return true;
914 if (checkRippleForAdd(RHSKnownZero, LHSKnownZero))
915 return true;
916
917 return false;
918 }
919
920 /// \brief Return true if we can prove that:
921 /// (sub LHS, RHS) === (sub nsw LHS, RHS)
922 /// This basically requires proving that the add in the original type would not
923 /// overflow to change the sign bit or have a carry out.
924 /// TODO: Handle this for Vectors.
WillNotOverflowSignedSub(Value * LHS,Value * RHS,Instruction & CxtI)925 bool InstCombiner::WillNotOverflowSignedSub(Value *LHS, Value *RHS,
926 Instruction &CxtI) {
927 // If LHS and RHS each have at least two sign bits, the subtraction
928 // cannot overflow.
929 if (ComputeNumSignBits(LHS, 0, &CxtI) > 1 &&
930 ComputeNumSignBits(RHS, 0, &CxtI) > 1)
931 return true;
932
933 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
934 APInt LHSKnownZero(BitWidth, 0);
935 APInt LHSKnownOne(BitWidth, 0);
936 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, &CxtI);
937
938 APInt RHSKnownZero(BitWidth, 0);
939 APInt RHSKnownOne(BitWidth, 0);
940 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, &CxtI);
941
942 // Subtraction of two 2's compliment numbers having identical signs will
943 // never overflow.
944 if ((LHSKnownOne[BitWidth - 1] && RHSKnownOne[BitWidth - 1]) ||
945 (LHSKnownZero[BitWidth - 1] && RHSKnownZero[BitWidth - 1]))
946 return true;
947
948 // TODO: implement logic similar to checkRippleForAdd
949 return false;
950 }
951
952 /// \brief Return true if we can prove that:
953 /// (sub LHS, RHS) === (sub nuw LHS, RHS)
WillNotOverflowUnsignedSub(Value * LHS,Value * RHS,Instruction & CxtI)954 bool InstCombiner::WillNotOverflowUnsignedSub(Value *LHS, Value *RHS,
955 Instruction &CxtI) {
956 // If the LHS is negative and the RHS is non-negative, no unsigned wrap.
957 bool LHSKnownNonNegative, LHSKnownNegative;
958 bool RHSKnownNonNegative, RHSKnownNegative;
959 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, /*Depth=*/0,
960 &CxtI);
961 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, /*Depth=*/0,
962 &CxtI);
963 if (LHSKnownNegative && RHSKnownNonNegative)
964 return true;
965
966 return false;
967 }
968
969 // Checks if any operand is negative and we can convert add to sub.
970 // This function checks for following negative patterns
971 // ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
972 // ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
973 // XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
checkForNegativeOperand(BinaryOperator & I,InstCombiner::BuilderTy * Builder)974 static Value *checkForNegativeOperand(BinaryOperator &I,
975 InstCombiner::BuilderTy *Builder) {
976 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
977
978 // This function creates 2 instructions to replace ADD, we need at least one
979 // of LHS or RHS to have one use to ensure benefit in transform.
980 if (!LHS->hasOneUse() && !RHS->hasOneUse())
981 return nullptr;
982
983 Value *X = nullptr, *Y = nullptr, *Z = nullptr;
984 const APInt *C1 = nullptr, *C2 = nullptr;
985
986 // if ONE is on other side, swap
987 if (match(RHS, m_Add(m_Value(X), m_One())))
988 std::swap(LHS, RHS);
989
990 if (match(LHS, m_Add(m_Value(X), m_One()))) {
991 // if XOR on other side, swap
992 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
993 std::swap(X, RHS);
994
995 if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
996 // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
997 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
998 if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
999 Value *NewAnd = Builder->CreateAnd(Z, *C1);
1000 return Builder->CreateSub(RHS, NewAnd, "sub");
1001 } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
1002 // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
1003 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
1004 Value *NewOr = Builder->CreateOr(Z, ~(*C1));
1005 return Builder->CreateSub(RHS, NewOr, "sub");
1006 }
1007 }
1008 }
1009
1010 // Restore LHS and RHS
1011 LHS = I.getOperand(0);
1012 RHS = I.getOperand(1);
1013
1014 // if XOR is on other side, swap
1015 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
1016 std::swap(LHS, RHS);
1017
1018 // C2 is ODD
1019 // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
1020 // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
1021 if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
1022 if (C1->countTrailingZeros() == 0)
1023 if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
1024 Value *NewOr = Builder->CreateOr(Z, ~(*C2));
1025 return Builder->CreateSub(RHS, NewOr, "sub");
1026 }
1027 return nullptr;
1028 }
1029
visitAdd(BinaryOperator & I)1030 Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
1031 bool Changed = SimplifyAssociativeOrCommutative(I);
1032 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1033
1034 if (Value *V = SimplifyVectorOp(I))
1035 return replaceInstUsesWith(I, V);
1036
1037 if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
1038 I.hasNoUnsignedWrap(), DL, TLI, DT, AC))
1039 return replaceInstUsesWith(I, V);
1040
1041 // (A*B)+(A*C) -> A*(B+C) etc
1042 if (Value *V = SimplifyUsingDistributiveLaws(I))
1043 return replaceInstUsesWith(I, V);
1044
1045 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1046 // X + (signbit) --> X ^ signbit
1047 const APInt &Val = CI->getValue();
1048 if (Val.isSignBit())
1049 return BinaryOperator::CreateXor(LHS, RHS);
1050
1051 // See if SimplifyDemandedBits can simplify this. This handles stuff like
1052 // (X & 254)+1 -> (X&254)|1
1053 if (SimplifyDemandedInstructionBits(I))
1054 return &I;
1055
1056 // zext(bool) + C -> bool ? C + 1 : C
1057 if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
1058 if (ZI->getSrcTy()->isIntegerTy(1))
1059 return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
1060
1061 Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr;
1062 if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
1063 uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
1064 const APInt &RHSVal = CI->getValue();
1065 unsigned ExtendAmt = 0;
1066 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
1067 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
1068 if (XorRHS->getValue() == -RHSVal) {
1069 if (RHSVal.isPowerOf2())
1070 ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
1071 else if (XorRHS->getValue().isPowerOf2())
1072 ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
1073 }
1074
1075 if (ExtendAmt) {
1076 APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
1077 if (!MaskedValueIsZero(XorLHS, Mask, 0, &I))
1078 ExtendAmt = 0;
1079 }
1080
1081 if (ExtendAmt) {
1082 Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt);
1083 Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext");
1084 return BinaryOperator::CreateAShr(NewShl, ShAmt);
1085 }
1086
1087 // If this is a xor that was canonicalized from a sub, turn it back into
1088 // a sub and fuse this add with it.
1089 if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
1090 IntegerType *IT = cast<IntegerType>(I.getType());
1091 APInt LHSKnownOne(IT->getBitWidth(), 0);
1092 APInt LHSKnownZero(IT->getBitWidth(), 0);
1093 computeKnownBits(XorLHS, LHSKnownZero, LHSKnownOne, 0, &I);
1094 if ((XorRHS->getValue() | LHSKnownZero).isAllOnesValue())
1095 return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
1096 XorLHS);
1097 }
1098 // (X + signbit) + C could have gotten canonicalized to (X ^ signbit) + C,
1099 // transform them into (X + (signbit ^ C))
1100 if (XorRHS->getValue().isSignBit())
1101 return BinaryOperator::CreateAdd(XorLHS,
1102 ConstantExpr::getXor(XorRHS, CI));
1103 }
1104 }
1105
1106 if (isa<Constant>(RHS) && isa<PHINode>(LHS))
1107 if (Instruction *NV = FoldOpIntoPhi(I))
1108 return NV;
1109
1110 if (I.getType()->getScalarType()->isIntegerTy(1))
1111 return BinaryOperator::CreateXor(LHS, RHS);
1112
1113 // X + X --> X << 1
1114 if (LHS == RHS) {
1115 BinaryOperator *New =
1116 BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1));
1117 New->setHasNoSignedWrap(I.hasNoSignedWrap());
1118 New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1119 return New;
1120 }
1121
1122 // -A + B --> B - A
1123 // -A + -B --> -(A + B)
1124 if (Value *LHSV = dyn_castNegVal(LHS)) {
1125 if (!isa<Constant>(RHS))
1126 if (Value *RHSV = dyn_castNegVal(RHS)) {
1127 Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
1128 return BinaryOperator::CreateNeg(NewAdd);
1129 }
1130
1131 return BinaryOperator::CreateSub(RHS, LHSV);
1132 }
1133
1134 // A + -B --> A - B
1135 if (!isa<Constant>(RHS))
1136 if (Value *V = dyn_castNegVal(RHS))
1137 return BinaryOperator::CreateSub(LHS, V);
1138
1139 if (Value *V = checkForNegativeOperand(I, Builder))
1140 return replaceInstUsesWith(I, V);
1141
1142 // A+B --> A|B iff A and B have no bits set in common.
1143 if (haveNoCommonBitsSet(LHS, RHS, DL, AC, &I, DT))
1144 return BinaryOperator::CreateOr(LHS, RHS);
1145
1146 if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
1147 Value *X;
1148 if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
1149 return BinaryOperator::CreateSub(SubOne(CRHS), X);
1150 }
1151
1152 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
1153 // (X & FF00) + xx00 -> (X+xx00) & FF00
1154 Value *X;
1155 ConstantInt *C2;
1156 if (LHS->hasOneUse() &&
1157 match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
1158 CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
1159 // See if all bits from the first bit set in the Add RHS up are included
1160 // in the mask. First, get the rightmost bit.
1161 const APInt &AddRHSV = CRHS->getValue();
1162
1163 // Form a mask of all bits from the lowest bit added through the top.
1164 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
1165
1166 // See if the and mask includes all of these bits.
1167 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
1168
1169 if (AddRHSHighBits == AddRHSHighBitsAnd) {
1170 // Okay, the xform is safe. Insert the new add pronto.
1171 Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
1172 return BinaryOperator::CreateAnd(NewAdd, C2);
1173 }
1174 }
1175
1176 // Try to fold constant add into select arguments.
1177 if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
1178 if (Instruction *R = FoldOpIntoSelect(I, SI))
1179 return R;
1180 }
1181
1182 // add (select X 0 (sub n A)) A --> select X A n
1183 {
1184 SelectInst *SI = dyn_cast<SelectInst>(LHS);
1185 Value *A = RHS;
1186 if (!SI) {
1187 SI = dyn_cast<SelectInst>(RHS);
1188 A = LHS;
1189 }
1190 if (SI && SI->hasOneUse()) {
1191 Value *TV = SI->getTrueValue();
1192 Value *FV = SI->getFalseValue();
1193 Value *N;
1194
1195 // Can we fold the add into the argument of the select?
1196 // We check both true and false select arguments for a matching subtract.
1197 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
1198 // Fold the add into the true select value.
1199 return SelectInst::Create(SI->getCondition(), N, A);
1200
1201 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
1202 // Fold the add into the false select value.
1203 return SelectInst::Create(SI->getCondition(), A, N);
1204 }
1205 }
1206
1207 // Check for (add (sext x), y), see if we can merge this into an
1208 // integer add followed by a sext.
1209 if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
1210 // (add (sext x), cst) --> (sext (add x, cst'))
1211 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
1212 Constant *CI =
1213 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
1214 if (LHSConv->hasOneUse() &&
1215 ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
1216 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) {
1217 // Insert the new, smaller add.
1218 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1219 CI, "addconv");
1220 return new SExtInst(NewAdd, I.getType());
1221 }
1222 }
1223
1224 // (add (sext x), (sext y)) --> (sext (add int x, y))
1225 if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
1226 // Only do this if x/y have the same type, if at last one of them has a
1227 // single use (so we don't increase the number of sexts), and if the
1228 // integer add will not overflow.
1229 if (LHSConv->getOperand(0)->getType() ==
1230 RHSConv->getOperand(0)->getType() &&
1231 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1232 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
1233 RHSConv->getOperand(0), I)) {
1234 // Insert the new integer add.
1235 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1236 RHSConv->getOperand(0), "addconv");
1237 return new SExtInst(NewAdd, I.getType());
1238 }
1239 }
1240 }
1241
1242 // (add (xor A, B) (and A, B)) --> (or A, B)
1243 {
1244 Value *A = nullptr, *B = nullptr;
1245 if (match(RHS, m_Xor(m_Value(A), m_Value(B))) &&
1246 (match(LHS, m_And(m_Specific(A), m_Specific(B))) ||
1247 match(LHS, m_And(m_Specific(B), m_Specific(A)))))
1248 return BinaryOperator::CreateOr(A, B);
1249
1250 if (match(LHS, m_Xor(m_Value(A), m_Value(B))) &&
1251 (match(RHS, m_And(m_Specific(A), m_Specific(B))) ||
1252 match(RHS, m_And(m_Specific(B), m_Specific(A)))))
1253 return BinaryOperator::CreateOr(A, B);
1254 }
1255
1256 // (add (or A, B) (and A, B)) --> (add A, B)
1257 {
1258 Value *A = nullptr, *B = nullptr;
1259 if (match(RHS, m_Or(m_Value(A), m_Value(B))) &&
1260 (match(LHS, m_And(m_Specific(A), m_Specific(B))) ||
1261 match(LHS, m_And(m_Specific(B), m_Specific(A))))) {
1262 auto *New = BinaryOperator::CreateAdd(A, B);
1263 New->setHasNoSignedWrap(I.hasNoSignedWrap());
1264 New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1265 return New;
1266 }
1267
1268 if (match(LHS, m_Or(m_Value(A), m_Value(B))) &&
1269 (match(RHS, m_And(m_Specific(A), m_Specific(B))) ||
1270 match(RHS, m_And(m_Specific(B), m_Specific(A))))) {
1271 auto *New = BinaryOperator::CreateAdd(A, B);
1272 New->setHasNoSignedWrap(I.hasNoSignedWrap());
1273 New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1274 return New;
1275 }
1276 }
1277
1278 // TODO(jingyue): Consider WillNotOverflowSignedAdd and
1279 // WillNotOverflowUnsignedAdd to reduce the number of invocations of
1280 // computeKnownBits.
1281 if (!I.hasNoSignedWrap() && WillNotOverflowSignedAdd(LHS, RHS, I)) {
1282 Changed = true;
1283 I.setHasNoSignedWrap(true);
1284 }
1285 if (!I.hasNoUnsignedWrap() &&
1286 computeOverflowForUnsignedAdd(LHS, RHS, &I) ==
1287 OverflowResult::NeverOverflows) {
1288 Changed = true;
1289 I.setHasNoUnsignedWrap(true);
1290 }
1291
1292 return Changed ? &I : nullptr;
1293 }
1294
visitFAdd(BinaryOperator & I)1295 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
1296 bool Changed = SimplifyAssociativeOrCommutative(I);
1297 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1298
1299 if (Value *V = SimplifyVectorOp(I))
1300 return replaceInstUsesWith(I, V);
1301
1302 if (Value *V =
1303 SimplifyFAddInst(LHS, RHS, I.getFastMathFlags(), DL, TLI, DT, AC))
1304 return replaceInstUsesWith(I, V);
1305
1306 if (isa<Constant>(RHS)) {
1307 if (isa<PHINode>(LHS))
1308 if (Instruction *NV = FoldOpIntoPhi(I))
1309 return NV;
1310
1311 if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
1312 if (Instruction *NV = FoldOpIntoSelect(I, SI))
1313 return NV;
1314 }
1315
1316 // -A + B --> B - A
1317 // -A + -B --> -(A + B)
1318 if (Value *LHSV = dyn_castFNegVal(LHS)) {
1319 Instruction *RI = BinaryOperator::CreateFSub(RHS, LHSV);
1320 RI->copyFastMathFlags(&I);
1321 return RI;
1322 }
1323
1324 // A + -B --> A - B
1325 if (!isa<Constant>(RHS))
1326 if (Value *V = dyn_castFNegVal(RHS)) {
1327 Instruction *RI = BinaryOperator::CreateFSub(LHS, V);
1328 RI->copyFastMathFlags(&I);
1329 return RI;
1330 }
1331
1332 // Check for (fadd double (sitofp x), y), see if we can merge this into an
1333 // integer add followed by a promotion.
1334 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
1335 // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
1336 // ... if the constant fits in the integer value. This is useful for things
1337 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
1338 // requires a constant pool load, and generally allows the add to be better
1339 // instcombined.
1340 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
1341 Constant *CI =
1342 ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
1343 if (LHSConv->hasOneUse() &&
1344 ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
1345 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) {
1346 // Insert the new integer add.
1347 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1348 CI, "addconv");
1349 return new SIToFPInst(NewAdd, I.getType());
1350 }
1351 }
1352
1353 // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
1354 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
1355 // Only do this if x/y have the same type, if at last one of them has a
1356 // single use (so we don't increase the number of int->fp conversions),
1357 // and if the integer add will not overflow.
1358 if (LHSConv->getOperand(0)->getType() ==
1359 RHSConv->getOperand(0)->getType() &&
1360 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1361 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
1362 RHSConv->getOperand(0), I)) {
1363 // Insert the new integer add.
1364 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1365 RHSConv->getOperand(0),"addconv");
1366 return new SIToFPInst(NewAdd, I.getType());
1367 }
1368 }
1369 }
1370
1371 // select C, 0, B + select C, A, 0 -> select C, A, B
1372 {
1373 Value *A1, *B1, *C1, *A2, *B2, *C2;
1374 if (match(LHS, m_Select(m_Value(C1), m_Value(A1), m_Value(B1))) &&
1375 match(RHS, m_Select(m_Value(C2), m_Value(A2), m_Value(B2)))) {
1376 if (C1 == C2) {
1377 Constant *Z1=nullptr, *Z2=nullptr;
1378 Value *A, *B, *C=C1;
1379 if (match(A1, m_AnyZero()) && match(B2, m_AnyZero())) {
1380 Z1 = dyn_cast<Constant>(A1); A = A2;
1381 Z2 = dyn_cast<Constant>(B2); B = B1;
1382 } else if (match(B1, m_AnyZero()) && match(A2, m_AnyZero())) {
1383 Z1 = dyn_cast<Constant>(B1); B = B2;
1384 Z2 = dyn_cast<Constant>(A2); A = A1;
1385 }
1386
1387 if (Z1 && Z2 &&
1388 (I.hasNoSignedZeros() ||
1389 (Z1->isNegativeZeroValue() && Z2->isNegativeZeroValue()))) {
1390 return SelectInst::Create(C, A, B);
1391 }
1392 }
1393 }
1394 }
1395
1396 if (I.hasUnsafeAlgebra()) {
1397 if (Value *V = FAddCombine(Builder).simplify(&I))
1398 return replaceInstUsesWith(I, V);
1399 }
1400
1401 return Changed ? &I : nullptr;
1402 }
1403
1404 /// Optimize pointer differences into the same array into a size. Consider:
1405 /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer
1406 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
1407 ///
OptimizePointerDifference(Value * LHS,Value * RHS,Type * Ty)1408 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
1409 Type *Ty) {
1410 // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
1411 // this.
1412 bool Swapped = false;
1413 GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
1414
1415 // For now we require one side to be the base pointer "A" or a constant
1416 // GEP derived from it.
1417 if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1418 // (gep X, ...) - X
1419 if (LHSGEP->getOperand(0) == RHS) {
1420 GEP1 = LHSGEP;
1421 Swapped = false;
1422 } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1423 // (gep X, ...) - (gep X, ...)
1424 if (LHSGEP->getOperand(0)->stripPointerCasts() ==
1425 RHSGEP->getOperand(0)->stripPointerCasts()) {
1426 GEP2 = RHSGEP;
1427 GEP1 = LHSGEP;
1428 Swapped = false;
1429 }
1430 }
1431 }
1432
1433 if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1434 // X - (gep X, ...)
1435 if (RHSGEP->getOperand(0) == LHS) {
1436 GEP1 = RHSGEP;
1437 Swapped = true;
1438 } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1439 // (gep X, ...) - (gep X, ...)
1440 if (RHSGEP->getOperand(0)->stripPointerCasts() ==
1441 LHSGEP->getOperand(0)->stripPointerCasts()) {
1442 GEP2 = LHSGEP;
1443 GEP1 = RHSGEP;
1444 Swapped = true;
1445 }
1446 }
1447 }
1448
1449 // Avoid duplicating the arithmetic if GEP2 has non-constant indices and
1450 // multiple users.
1451 if (!GEP1 ||
1452 (GEP2 && !GEP2->hasAllConstantIndices() && !GEP2->hasOneUse()))
1453 return nullptr;
1454
1455 // Emit the offset of the GEP and an intptr_t.
1456 Value *Result = EmitGEPOffset(GEP1);
1457
1458 // If we had a constant expression GEP on the other side offsetting the
1459 // pointer, subtract it from the offset we have.
1460 if (GEP2) {
1461 Value *Offset = EmitGEPOffset(GEP2);
1462 Result = Builder->CreateSub(Result, Offset);
1463 }
1464
1465 // If we have p - gep(p, ...) then we have to negate the result.
1466 if (Swapped)
1467 Result = Builder->CreateNeg(Result, "diff.neg");
1468
1469 return Builder->CreateIntCast(Result, Ty, true);
1470 }
1471
visitSub(BinaryOperator & I)1472 Instruction *InstCombiner::visitSub(BinaryOperator &I) {
1473 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1474
1475 if (Value *V = SimplifyVectorOp(I))
1476 return replaceInstUsesWith(I, V);
1477
1478 if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(),
1479 I.hasNoUnsignedWrap(), DL, TLI, DT, AC))
1480 return replaceInstUsesWith(I, V);
1481
1482 // (A*B)-(A*C) -> A*(B-C) etc
1483 if (Value *V = SimplifyUsingDistributiveLaws(I))
1484 return replaceInstUsesWith(I, V);
1485
1486 // If this is a 'B = x-(-A)', change to B = x+A.
1487 if (Value *V = dyn_castNegVal(Op1)) {
1488 BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
1489
1490 if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
1491 assert(BO->getOpcode() == Instruction::Sub &&
1492 "Expected a subtraction operator!");
1493 if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
1494 Res->setHasNoSignedWrap(true);
1495 } else {
1496 if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
1497 Res->setHasNoSignedWrap(true);
1498 }
1499
1500 return Res;
1501 }
1502
1503 if (I.getType()->isIntegerTy(1))
1504 return BinaryOperator::CreateXor(Op0, Op1);
1505
1506 // Replace (-1 - A) with (~A).
1507 if (match(Op0, m_AllOnes()))
1508 return BinaryOperator::CreateNot(Op1);
1509
1510 if (Constant *C = dyn_cast<Constant>(Op0)) {
1511 // C - ~X == X + (1+C)
1512 Value *X = nullptr;
1513 if (match(Op1, m_Not(m_Value(X))))
1514 return BinaryOperator::CreateAdd(X, AddOne(C));
1515
1516 // Try to fold constant sub into select arguments.
1517 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1518 if (Instruction *R = FoldOpIntoSelect(I, SI))
1519 return R;
1520
1521 // C-(X+C2) --> (C-C2)-X
1522 Constant *C2;
1523 if (match(Op1, m_Add(m_Value(X), m_Constant(C2))))
1524 return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
1525
1526 if (SimplifyDemandedInstructionBits(I))
1527 return &I;
1528
1529 // Fold (sub 0, (zext bool to B)) --> (sext bool to B)
1530 if (C->isNullValue() && match(Op1, m_ZExt(m_Value(X))))
1531 if (X->getType()->getScalarType()->isIntegerTy(1))
1532 return CastInst::CreateSExtOrBitCast(X, Op1->getType());
1533
1534 // Fold (sub 0, (sext bool to B)) --> (zext bool to B)
1535 if (C->isNullValue() && match(Op1, m_SExt(m_Value(X))))
1536 if (X->getType()->getScalarType()->isIntegerTy(1))
1537 return CastInst::CreateZExtOrBitCast(X, Op1->getType());
1538 }
1539
1540 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
1541 // -(X >>u 31) -> (X >>s 31)
1542 // -(X >>s 31) -> (X >>u 31)
1543 if (C->isZero()) {
1544 Value *X;
1545 ConstantInt *CI;
1546 if (match(Op1, m_LShr(m_Value(X), m_ConstantInt(CI))) &&
1547 // Verify we are shifting out everything but the sign bit.
1548 CI->getValue() == I.getType()->getPrimitiveSizeInBits() - 1)
1549 return BinaryOperator::CreateAShr(X, CI);
1550
1551 if (match(Op1, m_AShr(m_Value(X), m_ConstantInt(CI))) &&
1552 // Verify we are shifting out everything but the sign bit.
1553 CI->getValue() == I.getType()->getPrimitiveSizeInBits() - 1)
1554 return BinaryOperator::CreateLShr(X, CI);
1555 }
1556
1557 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
1558 // zero.
1559 APInt IntVal = C->getValue();
1560 if ((IntVal + 1).isPowerOf2()) {
1561 unsigned BitWidth = I.getType()->getScalarSizeInBits();
1562 APInt KnownZero(BitWidth, 0);
1563 APInt KnownOne(BitWidth, 0);
1564 computeKnownBits(&I, KnownZero, KnownOne, 0, &I);
1565 if ((IntVal | KnownZero).isAllOnesValue()) {
1566 return BinaryOperator::CreateXor(Op1, C);
1567 }
1568 }
1569 }
1570
1571 {
1572 Value *Y;
1573 // X-(X+Y) == -Y X-(Y+X) == -Y
1574 if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) ||
1575 match(Op1, m_Add(m_Value(Y), m_Specific(Op0))))
1576 return BinaryOperator::CreateNeg(Y);
1577
1578 // (X-Y)-X == -Y
1579 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
1580 return BinaryOperator::CreateNeg(Y);
1581 }
1582
1583 // (sub (or A, B) (xor A, B)) --> (and A, B)
1584 {
1585 Value *A = nullptr, *B = nullptr;
1586 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
1587 (match(Op0, m_Or(m_Specific(A), m_Specific(B))) ||
1588 match(Op0, m_Or(m_Specific(B), m_Specific(A)))))
1589 return BinaryOperator::CreateAnd(A, B);
1590 }
1591
1592 if (Op0->hasOneUse()) {
1593 Value *Y = nullptr;
1594 // ((X | Y) - X) --> (~X & Y)
1595 if (match(Op0, m_Or(m_Value(Y), m_Specific(Op1))) ||
1596 match(Op0, m_Or(m_Specific(Op1), m_Value(Y))))
1597 return BinaryOperator::CreateAnd(
1598 Y, Builder->CreateNot(Op1, Op1->getName() + ".not"));
1599 }
1600
1601 if (Op1->hasOneUse()) {
1602 Value *X = nullptr, *Y = nullptr, *Z = nullptr;
1603 Constant *C = nullptr;
1604 Constant *CI = nullptr;
1605
1606 // (X - (Y - Z)) --> (X + (Z - Y)).
1607 if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
1608 return BinaryOperator::CreateAdd(Op0,
1609 Builder->CreateSub(Z, Y, Op1->getName()));
1610
1611 // (X - (X & Y)) --> (X & ~Y)
1612 //
1613 if (match(Op1, m_And(m_Value(Y), m_Specific(Op0))) ||
1614 match(Op1, m_And(m_Specific(Op0), m_Value(Y))))
1615 return BinaryOperator::CreateAnd(Op0,
1616 Builder->CreateNot(Y, Y->getName() + ".not"));
1617
1618 // 0 - (X sdiv C) -> (X sdiv -C) provided the negation doesn't overflow.
1619 if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) && match(Op0, m_Zero()) &&
1620 C->isNotMinSignedValue() && !C->isOneValue())
1621 return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C));
1622
1623 // 0 - (X << Y) -> (-X << Y) when X is freely negatable.
1624 if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
1625 if (Value *XNeg = dyn_castNegVal(X))
1626 return BinaryOperator::CreateShl(XNeg, Y);
1627
1628 // X - A*-B -> X + A*B
1629 // X - -A*B -> X + A*B
1630 Value *A, *B;
1631 if (match(Op1, m_Mul(m_Value(A), m_Neg(m_Value(B)))) ||
1632 match(Op1, m_Mul(m_Neg(m_Value(A)), m_Value(B))))
1633 return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B));
1634
1635 // X - A*CI -> X + A*-CI
1636 // X - CI*A -> X + A*-CI
1637 if (match(Op1, m_Mul(m_Value(A), m_Constant(CI))) ||
1638 match(Op1, m_Mul(m_Constant(CI), m_Value(A)))) {
1639 Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(CI));
1640 return BinaryOperator::CreateAdd(Op0, NewMul);
1641 }
1642 }
1643
1644 // Optimize pointer differences into the same array into a size. Consider:
1645 // &A[10] - &A[0]: we should compile this to "10".
1646 Value *LHSOp, *RHSOp;
1647 if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
1648 match(Op1, m_PtrToInt(m_Value(RHSOp))))
1649 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1650 return replaceInstUsesWith(I, Res);
1651
1652 // trunc(p)-trunc(q) -> trunc(p-q)
1653 if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
1654 match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
1655 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1656 return replaceInstUsesWith(I, Res);
1657
1658 bool Changed = false;
1659 if (!I.hasNoSignedWrap() && WillNotOverflowSignedSub(Op0, Op1, I)) {
1660 Changed = true;
1661 I.setHasNoSignedWrap(true);
1662 }
1663 if (!I.hasNoUnsignedWrap() && WillNotOverflowUnsignedSub(Op0, Op1, I)) {
1664 Changed = true;
1665 I.setHasNoUnsignedWrap(true);
1666 }
1667
1668 return Changed ? &I : nullptr;
1669 }
1670
visitFSub(BinaryOperator & I)1671 Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
1672 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1673
1674 if (Value *V = SimplifyVectorOp(I))
1675 return replaceInstUsesWith(I, V);
1676
1677 if (Value *V =
1678 SimplifyFSubInst(Op0, Op1, I.getFastMathFlags(), DL, TLI, DT, AC))
1679 return replaceInstUsesWith(I, V);
1680
1681 // fsub nsz 0, X ==> fsub nsz -0.0, X
1682 if (I.getFastMathFlags().noSignedZeros() && match(Op0, m_Zero())) {
1683 // Subtraction from -0.0 is the canonical form of fneg.
1684 Instruction *NewI = BinaryOperator::CreateFNeg(Op1);
1685 NewI->copyFastMathFlags(&I);
1686 return NewI;
1687 }
1688
1689 if (isa<Constant>(Op0))
1690 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1691 if (Instruction *NV = FoldOpIntoSelect(I, SI))
1692 return NV;
1693
1694 // If this is a 'B = x-(-A)', change to B = x+A, potentially looking
1695 // through FP extensions/truncations along the way.
1696 if (Value *V = dyn_castFNegVal(Op1)) {
1697 Instruction *NewI = BinaryOperator::CreateFAdd(Op0, V);
1698 NewI->copyFastMathFlags(&I);
1699 return NewI;
1700 }
1701 if (FPTruncInst *FPTI = dyn_cast<FPTruncInst>(Op1)) {
1702 if (Value *V = dyn_castFNegVal(FPTI->getOperand(0))) {
1703 Value *NewTrunc = Builder->CreateFPTrunc(V, I.getType());
1704 Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewTrunc);
1705 NewI->copyFastMathFlags(&I);
1706 return NewI;
1707 }
1708 } else if (FPExtInst *FPEI = dyn_cast<FPExtInst>(Op1)) {
1709 if (Value *V = dyn_castFNegVal(FPEI->getOperand(0))) {
1710 Value *NewExt = Builder->CreateFPExt(V, I.getType());
1711 Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewExt);
1712 NewI->copyFastMathFlags(&I);
1713 return NewI;
1714 }
1715 }
1716
1717 if (I.hasUnsafeAlgebra()) {
1718 if (Value *V = FAddCombine(Builder).simplify(&I))
1719 return replaceInstUsesWith(I, V);
1720 }
1721
1722 return nullptr;
1723 }
1724