1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains logic for simplifying instructions based on information
11 // about how they are used.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "InstCombineInternal.h"
16 #include "llvm/Analysis/ValueTracking.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/PatternMatch.h"
19 
20 using namespace llvm;
21 using namespace llvm::PatternMatch;
22 
23 #define DEBUG_TYPE "instcombine"
24 
25 /// Check to see if the specified operand of the specified instruction is a
26 /// constant integer. If so, check to see if there are any bits set in the
27 /// constant that are not demanded. If so, shrink the constant and return true.
ShrinkDemandedConstant(Instruction * I,unsigned OpNo,APInt Demanded)28 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
29                                    APInt Demanded) {
30   assert(I && "No instruction?");
31   assert(OpNo < I->getNumOperands() && "Operand index too large");
32 
33   // If the operand is not a constant integer, nothing to do.
34   ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
35   if (!OpC) return false;
36 
37   // If there are no bits set that aren't demanded, nothing to do.
38   Demanded = Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
39   if ((~Demanded & OpC->getValue()) == 0)
40     return false;
41 
42   // This instruction is producing bits that are not demanded. Shrink the RHS.
43   Demanded &= OpC->getValue();
44   I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded));
45 
46   return true;
47 }
48 
49 
50 
51 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
52 /// the instruction has any properties that allow us to simplify its operands.
SimplifyDemandedInstructionBits(Instruction & Inst)53 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
54   unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
55   APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
56   APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
57 
58   Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, KnownZero, KnownOne,
59                                      0, &Inst);
60   if (!V) return false;
61   if (V == &Inst) return true;
62   replaceInstUsesWith(Inst, V);
63   return true;
64 }
65 
66 /// This form of SimplifyDemandedBits simplifies the specified instruction
67 /// operand if possible, updating it in place. It returns true if it made any
68 /// change and false otherwise.
SimplifyDemandedBits(Use & U,const APInt & DemandedMask,APInt & KnownZero,APInt & KnownOne,unsigned Depth)69 bool InstCombiner::SimplifyDemandedBits(Use &U, const APInt &DemandedMask,
70                                         APInt &KnownZero, APInt &KnownOne,
71                                         unsigned Depth) {
72   auto *UserI = dyn_cast<Instruction>(U.getUser());
73   Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, KnownZero,
74                                           KnownOne, Depth, UserI);
75   if (!NewVal) return false;
76   U = NewVal;
77   return true;
78 }
79 
80 
81 /// This function attempts to replace V with a simpler value based on the
82 /// demanded bits. When this function is called, it is known that only the bits
83 /// set in DemandedMask of the result of V are ever used downstream.
84 /// Consequently, depending on the mask and V, it may be possible to replace V
85 /// with a constant or one of its operands. In such cases, this function does
86 /// the replacement and returns true. In all other cases, it returns false after
87 /// analyzing the expression and setting KnownOne and known to be one in the
88 /// expression. KnownZero contains all the bits that are known to be zero in the
89 /// expression. These are provided to potentially allow the caller (which might
90 /// recursively be SimplifyDemandedBits itself) to simplify the expression.
91 /// KnownOne and KnownZero always follow the invariant that:
92 ///   KnownOne & KnownZero == 0.
93 /// That is, a bit can't be both 1 and 0. Note that the bits in KnownOne and
94 /// KnownZero may only be accurate for those bits set in DemandedMask. Note also
95 /// that the bitwidth of V, DemandedMask, KnownZero and KnownOne must all be the
96 /// same.
97 ///
98 /// This returns null if it did not change anything and it permits no
99 /// simplification.  This returns V itself if it did some simplification of V's
100 /// operands based on the information about what bits are demanded. This returns
101 /// some other non-null value if it found out that V is equal to another value
102 /// in the context where the specified bits are demanded, but not for all users.
SimplifyDemandedUseBits(Value * V,APInt DemandedMask,APInt & KnownZero,APInt & KnownOne,unsigned Depth,Instruction * CxtI)103 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
104                                              APInt &KnownZero, APInt &KnownOne,
105                                              unsigned Depth,
106                                              Instruction *CxtI) {
107   assert(V != nullptr && "Null pointer of Value???");
108   assert(Depth <= 6 && "Limit Search Depth");
109   uint32_t BitWidth = DemandedMask.getBitWidth();
110   Type *VTy = V->getType();
111   assert(
112       (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
113       KnownZero.getBitWidth() == BitWidth &&
114       KnownOne.getBitWidth() == BitWidth &&
115       "Value *V, DemandedMask, KnownZero and KnownOne "
116       "must have same BitWidth");
117   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
118     // We know all of the bits for a constant!
119     KnownOne = CI->getValue() & DemandedMask;
120     KnownZero = ~KnownOne & DemandedMask;
121     return nullptr;
122   }
123   if (isa<ConstantPointerNull>(V)) {
124     // We know all of the bits for a constant!
125     KnownOne.clearAllBits();
126     KnownZero = DemandedMask;
127     return nullptr;
128   }
129 
130   KnownZero.clearAllBits();
131   KnownOne.clearAllBits();
132   if (DemandedMask == 0) {   // Not demanding any bits from V.
133     if (isa<UndefValue>(V))
134       return nullptr;
135     return UndefValue::get(VTy);
136   }
137 
138   if (Depth == 6)        // Limit search depth.
139     return nullptr;
140 
141   APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
142   APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
143 
144   Instruction *I = dyn_cast<Instruction>(V);
145   if (!I) {
146     computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
147     return nullptr;        // Only analyze instructions.
148   }
149 
150   // If there are multiple uses of this value and we aren't at the root, then
151   // we can't do any simplifications of the operands, because DemandedMask
152   // only reflects the bits demanded by *one* of the users.
153   if (Depth != 0 && !I->hasOneUse()) {
154     // Despite the fact that we can't simplify this instruction in all User's
155     // context, we can at least compute the knownzero/knownone bits, and we can
156     // do simplifications that apply to *just* the one user if we know that
157     // this instruction has a simpler value in that context.
158     if (I->getOpcode() == Instruction::And) {
159       // If either the LHS or the RHS are Zero, the result is zero.
160       computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1,
161                        CxtI);
162       computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
163                        CxtI);
164 
165       // If all of the demanded bits are known 1 on one side, return the other.
166       // These bits cannot contribute to the result of the 'and' in this
167       // context.
168       if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
169           (DemandedMask & ~LHSKnownZero))
170         return I->getOperand(0);
171       if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
172           (DemandedMask & ~RHSKnownZero))
173         return I->getOperand(1);
174 
175       // If all of the demanded bits in the inputs are known zeros, return zero.
176       if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
177         return Constant::getNullValue(VTy);
178 
179     } else if (I->getOpcode() == Instruction::Or) {
180       // We can simplify (X|Y) -> X or Y in the user's context if we know that
181       // only bits from X or Y are demanded.
182 
183       // If either the LHS or the RHS are One, the result is One.
184       computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1,
185                        CxtI);
186       computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
187                        CxtI);
188 
189       // If all of the demanded bits are known zero on one side, return the
190       // other.  These bits cannot contribute to the result of the 'or' in this
191       // context.
192       if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
193           (DemandedMask & ~LHSKnownOne))
194         return I->getOperand(0);
195       if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
196           (DemandedMask & ~RHSKnownOne))
197         return I->getOperand(1);
198 
199       // If all of the potentially set bits on one side are known to be set on
200       // the other side, just use the 'other' side.
201       if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
202           (DemandedMask & (~RHSKnownZero)))
203         return I->getOperand(0);
204       if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
205           (DemandedMask & (~LHSKnownZero)))
206         return I->getOperand(1);
207     } else if (I->getOpcode() == Instruction::Xor) {
208       // We can simplify (X^Y) -> X or Y in the user's context if we know that
209       // only bits from X or Y are demanded.
210 
211       computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1,
212                        CxtI);
213       computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
214                        CxtI);
215 
216       // If all of the demanded bits are known zero on one side, return the
217       // other.
218       if ((DemandedMask & RHSKnownZero) == DemandedMask)
219         return I->getOperand(0);
220       if ((DemandedMask & LHSKnownZero) == DemandedMask)
221         return I->getOperand(1);
222     }
223 
224     // Compute the KnownZero/KnownOne bits to simplify things downstream.
225     computeKnownBits(I, KnownZero, KnownOne, Depth, CxtI);
226     return nullptr;
227   }
228 
229   // If this is the root being simplified, allow it to have multiple uses,
230   // just set the DemandedMask to all bits so that we can try to simplify the
231   // operands.  This allows visitTruncInst (for example) to simplify the
232   // operand of a trunc without duplicating all the logic below.
233   if (Depth == 0 && !V->hasOneUse())
234     DemandedMask = APInt::getAllOnesValue(BitWidth);
235 
236   switch (I->getOpcode()) {
237   default:
238     computeKnownBits(I, KnownZero, KnownOne, Depth, CxtI);
239     break;
240   case Instruction::And:
241     // If either the LHS or the RHS are Zero, the result is zero.
242     if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero,
243                              RHSKnownOne, Depth + 1) ||
244         SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero,
245                              LHSKnownZero, LHSKnownOne, Depth + 1))
246       return I;
247     assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
248     assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
249 
250     // If the client is only demanding bits that we know, return the known
251     // constant.
252     if ((DemandedMask & ((RHSKnownZero | LHSKnownZero)|
253                          (RHSKnownOne & LHSKnownOne))) == DemandedMask)
254       return Constant::getIntegerValue(VTy, RHSKnownOne & LHSKnownOne);
255 
256     // If all of the demanded bits are known 1 on one side, return the other.
257     // These bits cannot contribute to the result of the 'and'.
258     if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
259         (DemandedMask & ~LHSKnownZero))
260       return I->getOperand(0);
261     if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
262         (DemandedMask & ~RHSKnownZero))
263       return I->getOperand(1);
264 
265     // If all of the demanded bits in the inputs are known zeros, return zero.
266     if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
267       return Constant::getNullValue(VTy);
268 
269     // If the RHS is a constant, see if we can simplify it.
270     if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
271       return I;
272 
273     // Output known-1 bits are only known if set in both the LHS & RHS.
274     KnownOne = RHSKnownOne & LHSKnownOne;
275     // Output known-0 are known to be clear if zero in either the LHS | RHS.
276     KnownZero = RHSKnownZero | LHSKnownZero;
277     break;
278   case Instruction::Or:
279     // If either the LHS or the RHS are One, the result is One.
280     if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero,
281                              RHSKnownOne, Depth + 1) ||
282         SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne,
283                              LHSKnownZero, LHSKnownOne, Depth + 1))
284       return I;
285     assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
286     assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
287 
288     // If the client is only demanding bits that we know, return the known
289     // constant.
290     if ((DemandedMask & ((RHSKnownZero & LHSKnownZero)|
291                          (RHSKnownOne | LHSKnownOne))) == DemandedMask)
292       return Constant::getIntegerValue(VTy, RHSKnownOne | LHSKnownOne);
293 
294     // If all of the demanded bits are known zero on one side, return the other.
295     // These bits cannot contribute to the result of the 'or'.
296     if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
297         (DemandedMask & ~LHSKnownOne))
298       return I->getOperand(0);
299     if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
300         (DemandedMask & ~RHSKnownOne))
301       return I->getOperand(1);
302 
303     // If all of the potentially set bits on one side are known to be set on
304     // the other side, just use the 'other' side.
305     if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
306         (DemandedMask & (~RHSKnownZero)))
307       return I->getOperand(0);
308     if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
309         (DemandedMask & (~LHSKnownZero)))
310       return I->getOperand(1);
311 
312     // If the RHS is a constant, see if we can simplify it.
313     if (ShrinkDemandedConstant(I, 1, DemandedMask))
314       return I;
315 
316     // Output known-0 bits are only known if clear in both the LHS & RHS.
317     KnownZero = RHSKnownZero & LHSKnownZero;
318     // Output known-1 are known to be set if set in either the LHS | RHS.
319     KnownOne = RHSKnownOne | LHSKnownOne;
320     break;
321   case Instruction::Xor: {
322     if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero,
323                              RHSKnownOne, Depth + 1) ||
324         SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, LHSKnownZero,
325                              LHSKnownOne, Depth + 1))
326       return I;
327     assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
328     assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
329 
330     // Output known-0 bits are known if clear or set in both the LHS & RHS.
331     APInt IKnownZero = (RHSKnownZero & LHSKnownZero) |
332                        (RHSKnownOne & LHSKnownOne);
333     // Output known-1 are known to be set if set in only one of the LHS, RHS.
334     APInt IKnownOne =  (RHSKnownZero & LHSKnownOne) |
335                        (RHSKnownOne & LHSKnownZero);
336 
337     // If the client is only demanding bits that we know, return the known
338     // constant.
339     if ((DemandedMask & (IKnownZero|IKnownOne)) == DemandedMask)
340       return Constant::getIntegerValue(VTy, IKnownOne);
341 
342     // If all of the demanded bits are known zero on one side, return the other.
343     // These bits cannot contribute to the result of the 'xor'.
344     if ((DemandedMask & RHSKnownZero) == DemandedMask)
345       return I->getOperand(0);
346     if ((DemandedMask & LHSKnownZero) == DemandedMask)
347       return I->getOperand(1);
348 
349     // If all of the demanded bits are known to be zero on one side or the
350     // other, turn this into an *inclusive* or.
351     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
352     if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
353       Instruction *Or =
354         BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
355                                  I->getName());
356       return InsertNewInstWith(Or, *I);
357     }
358 
359     // If all of the demanded bits on one side are known, and all of the set
360     // bits on that side are also known to be set on the other side, turn this
361     // into an AND, as we know the bits will be cleared.
362     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
363     if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
364       // all known
365       if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
366         Constant *AndC = Constant::getIntegerValue(VTy,
367                                                    ~RHSKnownOne & DemandedMask);
368         Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
369         return InsertNewInstWith(And, *I);
370       }
371     }
372 
373     // If the RHS is a constant, see if we can simplify it.
374     // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
375     if (ShrinkDemandedConstant(I, 1, DemandedMask))
376       return I;
377 
378     // If our LHS is an 'and' and if it has one use, and if any of the bits we
379     // are flipping are known to be set, then the xor is just resetting those
380     // bits to zero.  We can just knock out bits from the 'and' and the 'xor',
381     // simplifying both of them.
382     if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
383       if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
384           isa<ConstantInt>(I->getOperand(1)) &&
385           isa<ConstantInt>(LHSInst->getOperand(1)) &&
386           (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) {
387         ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
388         ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
389         APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask);
390 
391         Constant *AndC =
392           ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
393         Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
394         InsertNewInstWith(NewAnd, *I);
395 
396         Constant *XorC =
397           ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
398         Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
399         return InsertNewInstWith(NewXor, *I);
400       }
401 
402     // Output known-0 bits are known if clear or set in both the LHS & RHS.
403     KnownZero= (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne);
404     // Output known-1 are known to be set if set in only one of the LHS, RHS.
405     KnownOne = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero);
406     break;
407   }
408   case Instruction::Select:
409     // If this is a select as part of a min/max pattern, don't simplify any
410     // further in case we break the structure.
411     Value *LHS, *RHS;
412     if (matchSelectPattern(I, LHS, RHS).Flavor != SPF_UNKNOWN)
413       return nullptr;
414 
415     if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask, RHSKnownZero,
416                              RHSKnownOne, Depth + 1) ||
417         SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, LHSKnownZero,
418                              LHSKnownOne, Depth + 1))
419       return I;
420     assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
421     assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
422 
423     // If the operands are constants, see if we can simplify them.
424     if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
425         ShrinkDemandedConstant(I, 2, DemandedMask))
426       return I;
427 
428     // Only known if known in both the LHS and RHS.
429     KnownOne = RHSKnownOne & LHSKnownOne;
430     KnownZero = RHSKnownZero & LHSKnownZero;
431     break;
432   case Instruction::Trunc: {
433     unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits();
434     DemandedMask = DemandedMask.zext(truncBf);
435     KnownZero = KnownZero.zext(truncBf);
436     KnownOne = KnownOne.zext(truncBf);
437     if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero,
438                              KnownOne, Depth + 1))
439       return I;
440     DemandedMask = DemandedMask.trunc(BitWidth);
441     KnownZero = KnownZero.trunc(BitWidth);
442     KnownOne = KnownOne.trunc(BitWidth);
443     assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
444     break;
445   }
446   case Instruction::BitCast:
447     if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
448       return nullptr;  // vector->int or fp->int?
449 
450     if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
451       if (VectorType *SrcVTy =
452             dyn_cast<VectorType>(I->getOperand(0)->getType())) {
453         if (DstVTy->getNumElements() != SrcVTy->getNumElements())
454           // Don't touch a bitcast between vectors of different element counts.
455           return nullptr;
456       } else
457         // Don't touch a scalar-to-vector bitcast.
458         return nullptr;
459     } else if (I->getOperand(0)->getType()->isVectorTy())
460       // Don't touch a vector-to-scalar bitcast.
461       return nullptr;
462 
463     if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero,
464                              KnownOne, Depth + 1))
465       return I;
466     assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
467     break;
468   case Instruction::ZExt: {
469     // Compute the bits in the result that are not present in the input.
470     unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
471 
472     DemandedMask = DemandedMask.trunc(SrcBitWidth);
473     KnownZero = KnownZero.trunc(SrcBitWidth);
474     KnownOne = KnownOne.trunc(SrcBitWidth);
475     if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero,
476                              KnownOne, Depth + 1))
477       return I;
478     DemandedMask = DemandedMask.zext(BitWidth);
479     KnownZero = KnownZero.zext(BitWidth);
480     KnownOne = KnownOne.zext(BitWidth);
481     assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
482     // The top bits are known to be zero.
483     KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
484     break;
485   }
486   case Instruction::SExt: {
487     // Compute the bits in the result that are not present in the input.
488     unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
489 
490     APInt InputDemandedBits = DemandedMask &
491                               APInt::getLowBitsSet(BitWidth, SrcBitWidth);
492 
493     APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
494     // If any of the sign extended bits are demanded, we know that the sign
495     // bit is demanded.
496     if ((NewBits & DemandedMask) != 0)
497       InputDemandedBits.setBit(SrcBitWidth-1);
498 
499     InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth);
500     KnownZero = KnownZero.trunc(SrcBitWidth);
501     KnownOne = KnownOne.trunc(SrcBitWidth);
502     if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits, KnownZero,
503                              KnownOne, Depth + 1))
504       return I;
505     InputDemandedBits = InputDemandedBits.zext(BitWidth);
506     KnownZero = KnownZero.zext(BitWidth);
507     KnownOne = KnownOne.zext(BitWidth);
508     assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
509 
510     // If the sign bit of the input is known set or clear, then we know the
511     // top bits of the result.
512 
513     // If the input sign bit is known zero, or if the NewBits are not demanded
514     // convert this into a zero extension.
515     if (KnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) {
516       // Convert to ZExt cast
517       CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
518       return InsertNewInstWith(NewCast, *I);
519     } else if (KnownOne[SrcBitWidth-1]) {    // Input sign bit known set
520       KnownOne |= NewBits;
521     }
522     break;
523   }
524   case Instruction::Add:
525   case Instruction::Sub: {
526     /// If the high-bits of an ADD/SUB are not demanded, then we do not care
527     /// about the high bits of the operands.
528     unsigned NLZ = DemandedMask.countLeadingZeros();
529     if (NLZ > 0) {
530       // Right fill the mask of bits for this ADD/SUB to demand the most
531       // significant bit and all those below it.
532       APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
533       if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
534                                LHSKnownZero, LHSKnownOne, Depth + 1) ||
535           ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
536           SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
537                                LHSKnownZero, LHSKnownOne, Depth + 1)) {
538         // Disable the nsw and nuw flags here: We can no longer guarantee that
539         // we won't wrap after simplification. Removing the nsw/nuw flags is
540         // legal here because the top bit is not demanded.
541         BinaryOperator &BinOP = *cast<BinaryOperator>(I);
542         BinOP.setHasNoSignedWrap(false);
543         BinOP.setHasNoUnsignedWrap(false);
544         return I;
545       }
546     }
547 
548     // Otherwise just hand the add/sub off to computeKnownBits to fill in
549     // the known zeros and ones.
550     computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
551     break;
552   }
553   case Instruction::Shl:
554     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
555       {
556         Value *VarX; ConstantInt *C1;
557         if (match(I->getOperand(0), m_Shr(m_Value(VarX), m_ConstantInt(C1)))) {
558           Instruction *Shr = cast<Instruction>(I->getOperand(0));
559           Value *R = SimplifyShrShlDemandedBits(Shr, I, DemandedMask,
560                                                 KnownZero, KnownOne);
561           if (R)
562             return R;
563         }
564       }
565 
566       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
567       APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
568 
569       // If the shift is NUW/NSW, then it does demand the high bits.
570       ShlOperator *IOp = cast<ShlOperator>(I);
571       if (IOp->hasNoSignedWrap())
572         DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
573       else if (IOp->hasNoUnsignedWrap())
574         DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
575 
576       if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero,
577                                KnownOne, Depth + 1))
578         return I;
579       assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
580       KnownZero <<= ShiftAmt;
581       KnownOne  <<= ShiftAmt;
582       // low bits known zero.
583       if (ShiftAmt)
584         KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
585     }
586     break;
587   case Instruction::LShr:
588     // For a logical shift right
589     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
590       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
591 
592       // Unsigned shift right.
593       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
594 
595       // If the shift is exact, then it does demand the low bits (and knows that
596       // they are zero).
597       if (cast<LShrOperator>(I)->isExact())
598         DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
599 
600       if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero,
601                                KnownOne, Depth + 1))
602         return I;
603       assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
604       KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
605       KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
606       if (ShiftAmt) {
607         // Compute the new bits that are at the top now.
608         APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
609         KnownZero |= HighBits;  // high bits known zero.
610       }
611     }
612     break;
613   case Instruction::AShr:
614     // If this is an arithmetic shift right and only the low-bit is set, we can
615     // always convert this into a logical shr, even if the shift amount is
616     // variable.  The low bit of the shift cannot be an input sign bit unless
617     // the shift amount is >= the size of the datatype, which is undefined.
618     if (DemandedMask == 1) {
619       // Perform the logical shift right.
620       Instruction *NewVal = BinaryOperator::CreateLShr(
621                         I->getOperand(0), I->getOperand(1), I->getName());
622       return InsertNewInstWith(NewVal, *I);
623     }
624 
625     // If the sign bit is the only bit demanded by this ashr, then there is no
626     // need to do it, the shift doesn't change the high bit.
627     if (DemandedMask.isSignBit())
628       return I->getOperand(0);
629 
630     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
631       uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
632 
633       // Signed shift right.
634       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
635       // If any of the "high bits" are demanded, we should set the sign bit as
636       // demanded.
637       if (DemandedMask.countLeadingZeros() <= ShiftAmt)
638         DemandedMaskIn.setBit(BitWidth-1);
639 
640       // If the shift is exact, then it does demand the low bits (and knows that
641       // they are zero).
642       if (cast<AShrOperator>(I)->isExact())
643         DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
644 
645       if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero,
646                                KnownOne, Depth + 1))
647         return I;
648       assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
649       // Compute the new bits that are at the top now.
650       APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
651       KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
652       KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
653 
654       // Handle the sign bits.
655       APInt SignBit(APInt::getSignBit(BitWidth));
656       // Adjust to where it is now in the mask.
657       SignBit = APIntOps::lshr(SignBit, ShiftAmt);
658 
659       // If the input sign bit is known to be zero, or if none of the top bits
660       // are demanded, turn this into an unsigned shift right.
661       if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] ||
662           (HighBits & ~DemandedMask) == HighBits) {
663         // Perform the logical shift right.
664         BinaryOperator *NewVal = BinaryOperator::CreateLShr(I->getOperand(0),
665                                                             SA, I->getName());
666         NewVal->setIsExact(cast<BinaryOperator>(I)->isExact());
667         return InsertNewInstWith(NewVal, *I);
668       } else if ((KnownOne & SignBit) != 0) { // New bits are known one.
669         KnownOne |= HighBits;
670       }
671     }
672     break;
673   case Instruction::SRem:
674     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
675       // X % -1 demands all the bits because we don't want to introduce
676       // INT_MIN % -1 (== undef) by accident.
677       if (Rem->isAllOnesValue())
678         break;
679       APInt RA = Rem->getValue().abs();
680       if (RA.isPowerOf2()) {
681         if (DemandedMask.ult(RA))    // srem won't affect demanded bits
682           return I->getOperand(0);
683 
684         APInt LowBits = RA - 1;
685         APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
686         if (SimplifyDemandedBits(I->getOperandUse(0), Mask2, LHSKnownZero,
687                                  LHSKnownOne, Depth + 1))
688           return I;
689 
690         // The low bits of LHS are unchanged by the srem.
691         KnownZero = LHSKnownZero & LowBits;
692         KnownOne = LHSKnownOne & LowBits;
693 
694         // If LHS is non-negative or has all low bits zero, then the upper bits
695         // are all zero.
696         if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
697           KnownZero |= ~LowBits;
698 
699         // If LHS is negative and not all low bits are zero, then the upper bits
700         // are all one.
701         if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0))
702           KnownOne |= ~LowBits;
703 
704         assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
705       }
706     }
707 
708     // The sign bit is the LHS's sign bit, except when the result of the
709     // remainder is zero.
710     if (DemandedMask.isNegative() && KnownZero.isNonNegative()) {
711       APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
712       computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
713                        CxtI);
714       // If it's known zero, our sign bit is also zero.
715       if (LHSKnownZero.isNegative())
716         KnownZero.setBit(KnownZero.getBitWidth() - 1);
717     }
718     break;
719   case Instruction::URem: {
720     APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
721     APInt AllOnes = APInt::getAllOnesValue(BitWidth);
722     if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes, KnownZero2,
723                              KnownOne2, Depth + 1) ||
724         SimplifyDemandedBits(I->getOperandUse(1), AllOnes, KnownZero2,
725                              KnownOne2, Depth + 1))
726       return I;
727 
728     unsigned Leaders = KnownZero2.countLeadingOnes();
729     Leaders = std::max(Leaders,
730                        KnownZero2.countLeadingOnes());
731     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
732     break;
733   }
734   case Instruction::Call:
735     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
736       switch (II->getIntrinsicID()) {
737       default: break;
738       case Intrinsic::bswap: {
739         // If the only bits demanded come from one byte of the bswap result,
740         // just shift the input byte into position to eliminate the bswap.
741         unsigned NLZ = DemandedMask.countLeadingZeros();
742         unsigned NTZ = DemandedMask.countTrailingZeros();
743 
744         // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
745         // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
746         // have 14 leading zeros, round to 8.
747         NLZ &= ~7;
748         NTZ &= ~7;
749         // If we need exactly one byte, we can do this transformation.
750         if (BitWidth-NLZ-NTZ == 8) {
751           unsigned ResultBit = NTZ;
752           unsigned InputBit = BitWidth-NTZ-8;
753 
754           // Replace this with either a left or right shift to get the byte into
755           // the right place.
756           Instruction *NewVal;
757           if (InputBit > ResultBit)
758             NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
759                     ConstantInt::get(I->getType(), InputBit-ResultBit));
760           else
761             NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
762                     ConstantInt::get(I->getType(), ResultBit-InputBit));
763           NewVal->takeName(I);
764           return InsertNewInstWith(NewVal, *I);
765         }
766 
767         // TODO: Could compute known zero/one bits based on the input.
768         break;
769       }
770       case Intrinsic::x86_mmx_pmovmskb:
771       case Intrinsic::x86_sse_movmsk_ps:
772       case Intrinsic::x86_sse2_movmsk_pd:
773       case Intrinsic::x86_sse2_pmovmskb_128:
774       case Intrinsic::x86_avx_movmsk_ps_256:
775       case Intrinsic::x86_avx_movmsk_pd_256:
776       case Intrinsic::x86_avx2_pmovmskb: {
777         // MOVMSK copies the vector elements' sign bits to the low bits
778         // and zeros the high bits.
779         unsigned ArgWidth;
780         if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) {
781           ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>.
782         } else {
783           auto Arg = II->getArgOperand(0);
784           auto ArgType = cast<VectorType>(Arg->getType());
785           ArgWidth = ArgType->getNumElements();
786         }
787 
788         // If we don't need any of low bits then return zero,
789         // we know that DemandedMask is non-zero already.
790         APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth);
791         if (DemandedElts == 0)
792           return ConstantInt::getNullValue(VTy);
793 
794         // We know that the upper bits are set to zero.
795         KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - ArgWidth);
796         return nullptr;
797       }
798       case Intrinsic::x86_sse42_crc32_64_64:
799         KnownZero = APInt::getHighBitsSet(64, 32);
800         return nullptr;
801       }
802     }
803     computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
804     break;
805   }
806 
807   // If the client is only demanding bits that we know, return the known
808   // constant.
809   if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
810     return Constant::getIntegerValue(VTy, KnownOne);
811   return nullptr;
812 }
813 
814 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify
815 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
816 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
817 /// of "C2-C1".
818 ///
819 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
820 /// ..., bn}, without considering the specific value X is holding.
821 /// This transformation is legal iff one of following conditions is hold:
822 ///  1) All the bit in S are 0, in this case E1 == E2.
823 ///  2) We don't care those bits in S, per the input DemandedMask.
824 ///  3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
825 ///     rest bits.
826 ///
827 /// Currently we only test condition 2).
828 ///
829 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
830 /// not successful.
SimplifyShrShlDemandedBits(Instruction * Shr,Instruction * Shl,const APInt & DemandedMask,APInt & KnownZero,APInt & KnownOne)831 Value *InstCombiner::SimplifyShrShlDemandedBits(Instruction *Shr,
832                                                 Instruction *Shl,
833                                                 const APInt &DemandedMask,
834                                                 APInt &KnownZero,
835                                                 APInt &KnownOne) {
836 
837   const APInt &ShlOp1 = cast<ConstantInt>(Shl->getOperand(1))->getValue();
838   const APInt &ShrOp1 = cast<ConstantInt>(Shr->getOperand(1))->getValue();
839   if (!ShlOp1 || !ShrOp1)
840       return nullptr; // Noop.
841 
842   Value *VarX = Shr->getOperand(0);
843   Type *Ty = VarX->getType();
844   unsigned BitWidth = Ty->getIntegerBitWidth();
845   if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
846     return nullptr; // Undef.
847 
848   unsigned ShlAmt = ShlOp1.getZExtValue();
849   unsigned ShrAmt = ShrOp1.getZExtValue();
850 
851   KnownOne.clearAllBits();
852   KnownZero = APInt::getBitsSet(KnownZero.getBitWidth(), 0, ShlAmt-1);
853   KnownZero &= DemandedMask;
854 
855   APInt BitMask1(APInt::getAllOnesValue(BitWidth));
856   APInt BitMask2(APInt::getAllOnesValue(BitWidth));
857 
858   bool isLshr = (Shr->getOpcode() == Instruction::LShr);
859   BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
860                       (BitMask1.ashr(ShrAmt) << ShlAmt);
861 
862   if (ShrAmt <= ShlAmt) {
863     BitMask2 <<= (ShlAmt - ShrAmt);
864   } else {
865     BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
866                         BitMask2.ashr(ShrAmt - ShlAmt);
867   }
868 
869   // Check if condition-2 (see the comment to this function) is satified.
870   if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
871     if (ShrAmt == ShlAmt)
872       return VarX;
873 
874     if (!Shr->hasOneUse())
875       return nullptr;
876 
877     BinaryOperator *New;
878     if (ShrAmt < ShlAmt) {
879       Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
880       New = BinaryOperator::CreateShl(VarX, Amt);
881       BinaryOperator *Orig = cast<BinaryOperator>(Shl);
882       New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
883       New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
884     } else {
885       Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
886       New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
887                      BinaryOperator::CreateAShr(VarX, Amt);
888       if (cast<BinaryOperator>(Shr)->isExact())
889         New->setIsExact(true);
890     }
891 
892     return InsertNewInstWith(New, *Shl);
893   }
894 
895   return nullptr;
896 }
897 
898 /// The specified value produces a vector with any number of elements.
899 /// DemandedElts contains the set of elements that are actually used by the
900 /// caller. This method analyzes which elements of the operand are undef and
901 /// returns that information in UndefElts.
902 ///
903 /// If the information about demanded elements can be used to simplify the
904 /// operation, the operation is simplified, then the resultant value is
905 /// returned.  This returns null if no change was made.
SimplifyDemandedVectorElts(Value * V,APInt DemandedElts,APInt & UndefElts,unsigned Depth)906 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
907                                                 APInt &UndefElts,
908                                                 unsigned Depth) {
909   unsigned VWidth = V->getType()->getVectorNumElements();
910   APInt EltMask(APInt::getAllOnesValue(VWidth));
911   assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
912 
913   if (isa<UndefValue>(V)) {
914     // If the entire vector is undefined, just return this info.
915     UndefElts = EltMask;
916     return nullptr;
917   }
918 
919   if (DemandedElts == 0) { // If nothing is demanded, provide undef.
920     UndefElts = EltMask;
921     return UndefValue::get(V->getType());
922   }
923 
924   UndefElts = 0;
925 
926   // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential.
927   if (Constant *C = dyn_cast<Constant>(V)) {
928     // Check if this is identity. If so, return 0 since we are not simplifying
929     // anything.
930     if (DemandedElts.isAllOnesValue())
931       return nullptr;
932 
933     Type *EltTy = cast<VectorType>(V->getType())->getElementType();
934     Constant *Undef = UndefValue::get(EltTy);
935 
936     SmallVector<Constant*, 16> Elts;
937     for (unsigned i = 0; i != VWidth; ++i) {
938       if (!DemandedElts[i]) {   // If not demanded, set to undef.
939         Elts.push_back(Undef);
940         UndefElts.setBit(i);
941         continue;
942       }
943 
944       Constant *Elt = C->getAggregateElement(i);
945       if (!Elt) return nullptr;
946 
947       if (isa<UndefValue>(Elt)) {   // Already undef.
948         Elts.push_back(Undef);
949         UndefElts.setBit(i);
950       } else {                               // Otherwise, defined.
951         Elts.push_back(Elt);
952       }
953     }
954 
955     // If we changed the constant, return it.
956     Constant *NewCV = ConstantVector::get(Elts);
957     return NewCV != C ? NewCV : nullptr;
958   }
959 
960   // Limit search depth.
961   if (Depth == 10)
962     return nullptr;
963 
964   // If multiple users are using the root value, proceed with
965   // simplification conservatively assuming that all elements
966   // are needed.
967   if (!V->hasOneUse()) {
968     // Quit if we find multiple users of a non-root value though.
969     // They'll be handled when it's their turn to be visited by
970     // the main instcombine process.
971     if (Depth != 0)
972       // TODO: Just compute the UndefElts information recursively.
973       return nullptr;
974 
975     // Conservatively assume that all elements are needed.
976     DemandedElts = EltMask;
977   }
978 
979   Instruction *I = dyn_cast<Instruction>(V);
980   if (!I) return nullptr;        // Only analyze instructions.
981 
982   bool MadeChange = false;
983   APInt UndefElts2(VWidth, 0);
984   Value *TmpV;
985   switch (I->getOpcode()) {
986   default: break;
987 
988   case Instruction::InsertElement: {
989     // If this is a variable index, we don't know which element it overwrites.
990     // demand exactly the same input as we produce.
991     ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
992     if (!Idx) {
993       // Note that we can't propagate undef elt info, because we don't know
994       // which elt is getting updated.
995       TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
996                                         UndefElts2, Depth + 1);
997       if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
998       break;
999     }
1000 
1001     // If this is inserting an element that isn't demanded, remove this
1002     // insertelement.
1003     unsigned IdxNo = Idx->getZExtValue();
1004     if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1005       Worklist.Add(I);
1006       return I->getOperand(0);
1007     }
1008 
1009     // Otherwise, the element inserted overwrites whatever was there, so the
1010     // input demanded set is simpler than the output set.
1011     APInt DemandedElts2 = DemandedElts;
1012     DemandedElts2.clearBit(IdxNo);
1013     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
1014                                       UndefElts, Depth + 1);
1015     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1016 
1017     // The inserted element is defined.
1018     UndefElts.clearBit(IdxNo);
1019     break;
1020   }
1021   case Instruction::ShuffleVector: {
1022     ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
1023     uint64_t LHSVWidth =
1024       cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
1025     APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
1026     for (unsigned i = 0; i < VWidth; i++) {
1027       if (DemandedElts[i]) {
1028         unsigned MaskVal = Shuffle->getMaskValue(i);
1029         if (MaskVal != -1u) {
1030           assert(MaskVal < LHSVWidth * 2 &&
1031                  "shufflevector mask index out of range!");
1032           if (MaskVal < LHSVWidth)
1033             LeftDemanded.setBit(MaskVal);
1034           else
1035             RightDemanded.setBit(MaskVal - LHSVWidth);
1036         }
1037       }
1038     }
1039 
1040     APInt UndefElts4(LHSVWidth, 0);
1041     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
1042                                       UndefElts4, Depth + 1);
1043     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1044 
1045     APInt UndefElts3(LHSVWidth, 0);
1046     TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
1047                                       UndefElts3, Depth + 1);
1048     if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1049 
1050     bool NewUndefElts = false;
1051     for (unsigned i = 0; i < VWidth; i++) {
1052       unsigned MaskVal = Shuffle->getMaskValue(i);
1053       if (MaskVal == -1u) {
1054         UndefElts.setBit(i);
1055       } else if (!DemandedElts[i]) {
1056         NewUndefElts = true;
1057         UndefElts.setBit(i);
1058       } else if (MaskVal < LHSVWidth) {
1059         if (UndefElts4[MaskVal]) {
1060           NewUndefElts = true;
1061           UndefElts.setBit(i);
1062         }
1063       } else {
1064         if (UndefElts3[MaskVal - LHSVWidth]) {
1065           NewUndefElts = true;
1066           UndefElts.setBit(i);
1067         }
1068       }
1069     }
1070 
1071     if (NewUndefElts) {
1072       // Add additional discovered undefs.
1073       SmallVector<Constant*, 16> Elts;
1074       for (unsigned i = 0; i < VWidth; ++i) {
1075         if (UndefElts[i])
1076           Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
1077         else
1078           Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
1079                                           Shuffle->getMaskValue(i)));
1080       }
1081       I->setOperand(2, ConstantVector::get(Elts));
1082       MadeChange = true;
1083     }
1084     break;
1085   }
1086   case Instruction::Select: {
1087     APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts);
1088     if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) {
1089       for (unsigned i = 0; i < VWidth; i++) {
1090         Constant *CElt = CV->getAggregateElement(i);
1091         // Method isNullValue always returns false when called on a
1092         // ConstantExpr. If CElt is a ConstantExpr then skip it in order to
1093         // to avoid propagating incorrect information.
1094         if (isa<ConstantExpr>(CElt))
1095           continue;
1096         if (CElt->isNullValue())
1097           LeftDemanded.clearBit(i);
1098         else
1099           RightDemanded.clearBit(i);
1100       }
1101     }
1102 
1103     TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded, UndefElts,
1104                                       Depth + 1);
1105     if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1106 
1107     TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded,
1108                                       UndefElts2, Depth + 1);
1109     if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; }
1110 
1111     // Output elements are undefined if both are undefined.
1112     UndefElts &= UndefElts2;
1113     break;
1114   }
1115   case Instruction::BitCast: {
1116     // Vector->vector casts only.
1117     VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1118     if (!VTy) break;
1119     unsigned InVWidth = VTy->getNumElements();
1120     APInt InputDemandedElts(InVWidth, 0);
1121     UndefElts2 = APInt(InVWidth, 0);
1122     unsigned Ratio;
1123 
1124     if (VWidth == InVWidth) {
1125       // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1126       // elements as are demanded of us.
1127       Ratio = 1;
1128       InputDemandedElts = DemandedElts;
1129     } else if ((VWidth % InVWidth) == 0) {
1130       // If the number of elements in the output is a multiple of the number of
1131       // elements in the input then an input element is live if any of the
1132       // corresponding output elements are live.
1133       Ratio = VWidth / InVWidth;
1134       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1135         if (DemandedElts[OutIdx])
1136           InputDemandedElts.setBit(OutIdx / Ratio);
1137     } else if ((InVWidth % VWidth) == 0) {
1138       // If the number of elements in the input is a multiple of the number of
1139       // elements in the output then an input element is live if the
1140       // corresponding output element is live.
1141       Ratio = InVWidth / VWidth;
1142       for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1143         if (DemandedElts[InIdx / Ratio])
1144           InputDemandedElts.setBit(InIdx);
1145     } else {
1146       // Unsupported so far.
1147       break;
1148     }
1149 
1150     // div/rem demand all inputs, because they don't want divide by zero.
1151     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1152                                       UndefElts2, Depth + 1);
1153     if (TmpV) {
1154       I->setOperand(0, TmpV);
1155       MadeChange = true;
1156     }
1157 
1158     if (VWidth == InVWidth) {
1159       UndefElts = UndefElts2;
1160     } else if ((VWidth % InVWidth) == 0) {
1161       // If the number of elements in the output is a multiple of the number of
1162       // elements in the input then an output element is undef if the
1163       // corresponding input element is undef.
1164       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1165         if (UndefElts2[OutIdx / Ratio])
1166           UndefElts.setBit(OutIdx);
1167     } else if ((InVWidth % VWidth) == 0) {
1168       // If the number of elements in the input is a multiple of the number of
1169       // elements in the output then an output element is undef if all of the
1170       // corresponding input elements are undef.
1171       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1172         APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
1173         if (SubUndef.countPopulation() == Ratio)
1174           UndefElts.setBit(OutIdx);
1175       }
1176     } else {
1177       llvm_unreachable("Unimp");
1178     }
1179     break;
1180   }
1181   case Instruction::And:
1182   case Instruction::Or:
1183   case Instruction::Xor:
1184   case Instruction::Add:
1185   case Instruction::Sub:
1186   case Instruction::Mul:
1187     // div/rem demand all inputs, because they don't want divide by zero.
1188     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
1189                                       Depth + 1);
1190     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1191     TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1192                                       UndefElts2, Depth + 1);
1193     if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1194 
1195     // Output elements are undefined if both are undefined.  Consider things
1196     // like undef&0.  The result is known zero, not undef.
1197     UndefElts &= UndefElts2;
1198     break;
1199   case Instruction::FPTrunc:
1200   case Instruction::FPExt:
1201     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
1202                                       Depth + 1);
1203     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1204     break;
1205 
1206   case Instruction::Call: {
1207     IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1208     if (!II) break;
1209     switch (II->getIntrinsicID()) {
1210     default: break;
1211 
1212     // Unary scalar-as-vector operations that work column-wise.
1213     case Intrinsic::x86_sse_rcp_ss:
1214     case Intrinsic::x86_sse_rsqrt_ss:
1215     case Intrinsic::x86_sse_sqrt_ss:
1216     case Intrinsic::x86_sse2_sqrt_sd:
1217     case Intrinsic::x86_xop_vfrcz_ss:
1218     case Intrinsic::x86_xop_vfrcz_sd:
1219       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1220                                         UndefElts, Depth + 1);
1221       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1222 
1223       // If lowest element of a scalar op isn't used then use Arg0.
1224       if (DemandedElts.getLoBits(1) != 1)
1225         return II->getArgOperand(0);
1226       // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions
1227       // checks).
1228       break;
1229 
1230     // Binary scalar-as-vector operations that work column-wise.  A dest element
1231     // is a function of the corresponding input elements from the two inputs.
1232     case Intrinsic::x86_sse_add_ss:
1233     case Intrinsic::x86_sse_sub_ss:
1234     case Intrinsic::x86_sse_mul_ss:
1235     case Intrinsic::x86_sse_div_ss:
1236     case Intrinsic::x86_sse_min_ss:
1237     case Intrinsic::x86_sse_max_ss:
1238     case Intrinsic::x86_sse_cmp_ss:
1239     case Intrinsic::x86_sse2_add_sd:
1240     case Intrinsic::x86_sse2_sub_sd:
1241     case Intrinsic::x86_sse2_mul_sd:
1242     case Intrinsic::x86_sse2_div_sd:
1243     case Intrinsic::x86_sse2_min_sd:
1244     case Intrinsic::x86_sse2_max_sd:
1245     case Intrinsic::x86_sse2_cmp_sd:
1246     case Intrinsic::x86_sse41_round_ss:
1247     case Intrinsic::x86_sse41_round_sd:
1248       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1249                                         UndefElts, Depth + 1);
1250       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1251       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1252                                         UndefElts2, Depth + 1);
1253       if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1254 
1255       // If only the low elt is demanded and this is a scalarizable intrinsic,
1256       // scalarize it now.
1257       if (DemandedElts == 1) {
1258         switch (II->getIntrinsicID()) {
1259         default: break;
1260         case Intrinsic::x86_sse_add_ss:
1261         case Intrinsic::x86_sse_sub_ss:
1262         case Intrinsic::x86_sse_mul_ss:
1263         case Intrinsic::x86_sse_div_ss:
1264         case Intrinsic::x86_sse2_add_sd:
1265         case Intrinsic::x86_sse2_sub_sd:
1266         case Intrinsic::x86_sse2_mul_sd:
1267         case Intrinsic::x86_sse2_div_sd:
1268           // TODO: Lower MIN/MAX/etc.
1269           Value *LHS = II->getArgOperand(0);
1270           Value *RHS = II->getArgOperand(1);
1271           // Extract the element as scalars.
1272           LHS = InsertNewInstWith(ExtractElementInst::Create(LHS,
1273             ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
1274           RHS = InsertNewInstWith(ExtractElementInst::Create(RHS,
1275             ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
1276 
1277           switch (II->getIntrinsicID()) {
1278           default: llvm_unreachable("Case stmts out of sync!");
1279           case Intrinsic::x86_sse_add_ss:
1280           case Intrinsic::x86_sse2_add_sd:
1281             TmpV = InsertNewInstWith(BinaryOperator::CreateFAdd(LHS, RHS,
1282                                                         II->getName()), *II);
1283             break;
1284           case Intrinsic::x86_sse_sub_ss:
1285           case Intrinsic::x86_sse2_sub_sd:
1286             TmpV = InsertNewInstWith(BinaryOperator::CreateFSub(LHS, RHS,
1287                                                         II->getName()), *II);
1288             break;
1289           case Intrinsic::x86_sse_mul_ss:
1290           case Intrinsic::x86_sse2_mul_sd:
1291             TmpV = InsertNewInstWith(BinaryOperator::CreateFMul(LHS, RHS,
1292                                                          II->getName()), *II);
1293             break;
1294           case Intrinsic::x86_sse_div_ss:
1295           case Intrinsic::x86_sse2_div_sd:
1296             TmpV = InsertNewInstWith(BinaryOperator::CreateFDiv(LHS, RHS,
1297                                                          II->getName()), *II);
1298             break;
1299           }
1300 
1301           Instruction *New =
1302             InsertElementInst::Create(
1303               UndefValue::get(II->getType()), TmpV,
1304               ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U, false),
1305                                       II->getName());
1306           InsertNewInstWith(New, *II);
1307           return New;
1308         }
1309       }
1310 
1311       // If lowest element of a scalar op isn't used then use Arg0.
1312       if (DemandedElts.getLoBits(1) != 1)
1313         return II->getArgOperand(0);
1314 
1315       // Output elements are undefined if both are undefined.  Consider things
1316       // like undef&0.  The result is known zero, not undef.
1317       UndefElts &= UndefElts2;
1318       break;
1319 
1320     // SSE4A instructions leave the upper 64-bits of the 128-bit result
1321     // in an undefined state.
1322     case Intrinsic::x86_sse4a_extrq:
1323     case Intrinsic::x86_sse4a_extrqi:
1324     case Intrinsic::x86_sse4a_insertq:
1325     case Intrinsic::x86_sse4a_insertqi:
1326       UndefElts |= APInt::getHighBitsSet(VWidth, VWidth / 2);
1327       break;
1328     }
1329     break;
1330   }
1331   }
1332   return MadeChange ? I : nullptr;
1333 }
1334