1 //===----------------------- AlignmentFromAssumptions.cpp -----------------===//
2 // Set Load/Store Alignments From Assumptions
3 //
4 // The LLVM Compiler Infrastructure
5 //
6 // This file is distributed under the University of Illinois Open Source
7 // License. See LICENSE.TXT for details.
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 // This file implements a ScalarEvolution-based transformation to set
12 // the alignments of load, stores and memory intrinsics based on the truth
13 // expressions of assume intrinsics. The primary motivation is to handle
14 // complex alignment assumptions that apply to vector loads and stores that
15 // appear after vectorization and unrolling.
16 //
17 //===----------------------------------------------------------------------===//
18
19 #define AA_NAME "alignment-from-assumptions"
20 #define DEBUG_TYPE AA_NAME
21 #include "llvm/Transforms/Scalar/AlignmentFromAssumptions.h"
22 #include "llvm/Transforms/Scalar.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Analysis/GlobalsModRef.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/Constant.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/raw_ostream.h"
38 using namespace llvm;
39
40 STATISTIC(NumLoadAlignChanged,
41 "Number of loads changed by alignment assumptions");
42 STATISTIC(NumStoreAlignChanged,
43 "Number of stores changed by alignment assumptions");
44 STATISTIC(NumMemIntAlignChanged,
45 "Number of memory intrinsics changed by alignment assumptions");
46
47 namespace {
48 struct AlignmentFromAssumptions : public FunctionPass {
49 static char ID; // Pass identification, replacement for typeid
AlignmentFromAssumptions__anon5fd9a46e0111::AlignmentFromAssumptions50 AlignmentFromAssumptions() : FunctionPass(ID) {
51 initializeAlignmentFromAssumptionsPass(*PassRegistry::getPassRegistry());
52 }
53
54 bool runOnFunction(Function &F) override;
55
getAnalysisUsage__anon5fd9a46e0111::AlignmentFromAssumptions56 void getAnalysisUsage(AnalysisUsage &AU) const override {
57 AU.addRequired<AssumptionCacheTracker>();
58 AU.addRequired<ScalarEvolutionWrapperPass>();
59 AU.addRequired<DominatorTreeWrapperPass>();
60
61 AU.setPreservesCFG();
62 AU.addPreserved<AAResultsWrapperPass>();
63 AU.addPreserved<GlobalsAAWrapperPass>();
64 AU.addPreserved<LoopInfoWrapperPass>();
65 AU.addPreserved<DominatorTreeWrapperPass>();
66 AU.addPreserved<ScalarEvolutionWrapperPass>();
67 }
68
69 AlignmentFromAssumptionsPass Impl;
70 };
71 }
72
73 char AlignmentFromAssumptions::ID = 0;
74 static const char aip_name[] = "Alignment from assumptions";
INITIALIZE_PASS_BEGIN(AlignmentFromAssumptions,AA_NAME,aip_name,false,false)75 INITIALIZE_PASS_BEGIN(AlignmentFromAssumptions, AA_NAME,
76 aip_name, false, false)
77 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
78 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
79 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
80 INITIALIZE_PASS_END(AlignmentFromAssumptions, AA_NAME,
81 aip_name, false, false)
82
83 FunctionPass *llvm::createAlignmentFromAssumptionsPass() {
84 return new AlignmentFromAssumptions();
85 }
86
87 // Given an expression for the (constant) alignment, AlignSCEV, and an
88 // expression for the displacement between a pointer and the aligned address,
89 // DiffSCEV, compute the alignment of the displaced pointer if it can be reduced
90 // to a constant. Using SCEV to compute alignment handles the case where
91 // DiffSCEV is a recurrence with constant start such that the aligned offset
92 // is constant. e.g. {16,+,32} % 32 -> 16.
getNewAlignmentDiff(const SCEV * DiffSCEV,const SCEV * AlignSCEV,ScalarEvolution * SE)93 static unsigned getNewAlignmentDiff(const SCEV *DiffSCEV,
94 const SCEV *AlignSCEV,
95 ScalarEvolution *SE) {
96 // DiffUnits = Diff % int64_t(Alignment)
97 const SCEV *DiffAlignDiv = SE->getUDivExpr(DiffSCEV, AlignSCEV);
98 const SCEV *DiffAlign = SE->getMulExpr(DiffAlignDiv, AlignSCEV);
99 const SCEV *DiffUnitsSCEV = SE->getMinusSCEV(DiffAlign, DiffSCEV);
100
101 DEBUG(dbgs() << "\talignment relative to " << *AlignSCEV << " is " <<
102 *DiffUnitsSCEV << " (diff: " << *DiffSCEV << ")\n");
103
104 if (const SCEVConstant *ConstDUSCEV =
105 dyn_cast<SCEVConstant>(DiffUnitsSCEV)) {
106 int64_t DiffUnits = ConstDUSCEV->getValue()->getSExtValue();
107
108 // If the displacement is an exact multiple of the alignment, then the
109 // displaced pointer has the same alignment as the aligned pointer, so
110 // return the alignment value.
111 if (!DiffUnits)
112 return (unsigned)
113 cast<SCEVConstant>(AlignSCEV)->getValue()->getSExtValue();
114
115 // If the displacement is not an exact multiple, but the remainder is a
116 // constant, then return this remainder (but only if it is a power of 2).
117 uint64_t DiffUnitsAbs = std::abs(DiffUnits);
118 if (isPowerOf2_64(DiffUnitsAbs))
119 return (unsigned) DiffUnitsAbs;
120 }
121
122 return 0;
123 }
124
125 // There is an address given by an offset OffSCEV from AASCEV which has an
126 // alignment AlignSCEV. Use that information, if possible, to compute a new
127 // alignment for Ptr.
getNewAlignment(const SCEV * AASCEV,const SCEV * AlignSCEV,const SCEV * OffSCEV,Value * Ptr,ScalarEvolution * SE)128 static unsigned getNewAlignment(const SCEV *AASCEV, const SCEV *AlignSCEV,
129 const SCEV *OffSCEV, Value *Ptr,
130 ScalarEvolution *SE) {
131 const SCEV *PtrSCEV = SE->getSCEV(Ptr);
132 const SCEV *DiffSCEV = SE->getMinusSCEV(PtrSCEV, AASCEV);
133
134 // On 32-bit platforms, DiffSCEV might now have type i32 -- we've always
135 // sign-extended OffSCEV to i64, so make sure they agree again.
136 DiffSCEV = SE->getNoopOrSignExtend(DiffSCEV, OffSCEV->getType());
137
138 // What we really want to know is the overall offset to the aligned
139 // address. This address is displaced by the provided offset.
140 DiffSCEV = SE->getMinusSCEV(DiffSCEV, OffSCEV);
141
142 DEBUG(dbgs() << "AFI: alignment of " << *Ptr << " relative to " <<
143 *AlignSCEV << " and offset " << *OffSCEV <<
144 " using diff " << *DiffSCEV << "\n");
145
146 unsigned NewAlignment = getNewAlignmentDiff(DiffSCEV, AlignSCEV, SE);
147 DEBUG(dbgs() << "\tnew alignment: " << NewAlignment << "\n");
148
149 if (NewAlignment) {
150 return NewAlignment;
151 } else if (const SCEVAddRecExpr *DiffARSCEV =
152 dyn_cast<SCEVAddRecExpr>(DiffSCEV)) {
153 // The relative offset to the alignment assumption did not yield a constant,
154 // but we should try harder: if we assume that a is 32-byte aligned, then in
155 // for (i = 0; i < 1024; i += 4) r += a[i]; not all of the loads from a are
156 // 32-byte aligned, but instead alternate between 32 and 16-byte alignment.
157 // As a result, the new alignment will not be a constant, but can still
158 // be improved over the default (of 4) to 16.
159
160 const SCEV *DiffStartSCEV = DiffARSCEV->getStart();
161 const SCEV *DiffIncSCEV = DiffARSCEV->getStepRecurrence(*SE);
162
163 DEBUG(dbgs() << "\ttrying start/inc alignment using start " <<
164 *DiffStartSCEV << " and inc " << *DiffIncSCEV << "\n");
165
166 // Now compute the new alignment using the displacement to the value in the
167 // first iteration, and also the alignment using the per-iteration delta.
168 // If these are the same, then use that answer. Otherwise, use the smaller
169 // one, but only if it divides the larger one.
170 NewAlignment = getNewAlignmentDiff(DiffStartSCEV, AlignSCEV, SE);
171 unsigned NewIncAlignment = getNewAlignmentDiff(DiffIncSCEV, AlignSCEV, SE);
172
173 DEBUG(dbgs() << "\tnew start alignment: " << NewAlignment << "\n");
174 DEBUG(dbgs() << "\tnew inc alignment: " << NewIncAlignment << "\n");
175
176 if (!NewAlignment || !NewIncAlignment) {
177 return 0;
178 } else if (NewAlignment > NewIncAlignment) {
179 if (NewAlignment % NewIncAlignment == 0) {
180 DEBUG(dbgs() << "\tnew start/inc alignment: " <<
181 NewIncAlignment << "\n");
182 return NewIncAlignment;
183 }
184 } else if (NewIncAlignment > NewAlignment) {
185 if (NewIncAlignment % NewAlignment == 0) {
186 DEBUG(dbgs() << "\tnew start/inc alignment: " <<
187 NewAlignment << "\n");
188 return NewAlignment;
189 }
190 } else if (NewIncAlignment == NewAlignment) {
191 DEBUG(dbgs() << "\tnew start/inc alignment: " <<
192 NewAlignment << "\n");
193 return NewAlignment;
194 }
195 }
196
197 return 0;
198 }
199
extractAlignmentInfo(CallInst * I,Value * & AAPtr,const SCEV * & AlignSCEV,const SCEV * & OffSCEV)200 bool AlignmentFromAssumptionsPass::extractAlignmentInfo(CallInst *I,
201 Value *&AAPtr,
202 const SCEV *&AlignSCEV,
203 const SCEV *&OffSCEV) {
204 // An alignment assume must be a statement about the least-significant
205 // bits of the pointer being zero, possibly with some offset.
206 ICmpInst *ICI = dyn_cast<ICmpInst>(I->getArgOperand(0));
207 if (!ICI)
208 return false;
209
210 // This must be an expression of the form: x & m == 0.
211 if (ICI->getPredicate() != ICmpInst::ICMP_EQ)
212 return false;
213
214 // Swap things around so that the RHS is 0.
215 Value *CmpLHS = ICI->getOperand(0);
216 Value *CmpRHS = ICI->getOperand(1);
217 const SCEV *CmpLHSSCEV = SE->getSCEV(CmpLHS);
218 const SCEV *CmpRHSSCEV = SE->getSCEV(CmpRHS);
219 if (CmpLHSSCEV->isZero())
220 std::swap(CmpLHS, CmpRHS);
221 else if (!CmpRHSSCEV->isZero())
222 return false;
223
224 BinaryOperator *CmpBO = dyn_cast<BinaryOperator>(CmpLHS);
225 if (!CmpBO || CmpBO->getOpcode() != Instruction::And)
226 return false;
227
228 // Swap things around so that the right operand of the and is a constant
229 // (the mask); we cannot deal with variable masks.
230 Value *AndLHS = CmpBO->getOperand(0);
231 Value *AndRHS = CmpBO->getOperand(1);
232 const SCEV *AndLHSSCEV = SE->getSCEV(AndLHS);
233 const SCEV *AndRHSSCEV = SE->getSCEV(AndRHS);
234 if (isa<SCEVConstant>(AndLHSSCEV)) {
235 std::swap(AndLHS, AndRHS);
236 std::swap(AndLHSSCEV, AndRHSSCEV);
237 }
238
239 const SCEVConstant *MaskSCEV = dyn_cast<SCEVConstant>(AndRHSSCEV);
240 if (!MaskSCEV)
241 return false;
242
243 // The mask must have some trailing ones (otherwise the condition is
244 // trivial and tells us nothing about the alignment of the left operand).
245 unsigned TrailingOnes = MaskSCEV->getAPInt().countTrailingOnes();
246 if (!TrailingOnes)
247 return false;
248
249 // Cap the alignment at the maximum with which LLVM can deal (and make sure
250 // we don't overflow the shift).
251 uint64_t Alignment;
252 TrailingOnes = std::min(TrailingOnes,
253 unsigned(sizeof(unsigned) * CHAR_BIT - 1));
254 Alignment = std::min(1u << TrailingOnes, +Value::MaximumAlignment);
255
256 Type *Int64Ty = Type::getInt64Ty(I->getParent()->getParent()->getContext());
257 AlignSCEV = SE->getConstant(Int64Ty, Alignment);
258
259 // The LHS might be a ptrtoint instruction, or it might be the pointer
260 // with an offset.
261 AAPtr = nullptr;
262 OffSCEV = nullptr;
263 if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(AndLHS)) {
264 AAPtr = PToI->getPointerOperand();
265 OffSCEV = SE->getZero(Int64Ty);
266 } else if (const SCEVAddExpr* AndLHSAddSCEV =
267 dyn_cast<SCEVAddExpr>(AndLHSSCEV)) {
268 // Try to find the ptrtoint; subtract it and the rest is the offset.
269 for (SCEVAddExpr::op_iterator J = AndLHSAddSCEV->op_begin(),
270 JE = AndLHSAddSCEV->op_end(); J != JE; ++J)
271 if (const SCEVUnknown *OpUnk = dyn_cast<SCEVUnknown>(*J))
272 if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(OpUnk->getValue())) {
273 AAPtr = PToI->getPointerOperand();
274 OffSCEV = SE->getMinusSCEV(AndLHSAddSCEV, *J);
275 break;
276 }
277 }
278
279 if (!AAPtr)
280 return false;
281
282 // Sign extend the offset to 64 bits (so that it is like all of the other
283 // expressions).
284 unsigned OffSCEVBits = OffSCEV->getType()->getPrimitiveSizeInBits();
285 if (OffSCEVBits < 64)
286 OffSCEV = SE->getSignExtendExpr(OffSCEV, Int64Ty);
287 else if (OffSCEVBits > 64)
288 return false;
289
290 AAPtr = AAPtr->stripPointerCasts();
291 return true;
292 }
293
processAssumption(CallInst * ACall)294 bool AlignmentFromAssumptionsPass::processAssumption(CallInst *ACall) {
295 Value *AAPtr;
296 const SCEV *AlignSCEV, *OffSCEV;
297 if (!extractAlignmentInfo(ACall, AAPtr, AlignSCEV, OffSCEV))
298 return false;
299
300 const SCEV *AASCEV = SE->getSCEV(AAPtr);
301
302 // Apply the assumption to all other users of the specified pointer.
303 SmallPtrSet<Instruction *, 32> Visited;
304 SmallVector<Instruction*, 16> WorkList;
305 for (User *J : AAPtr->users()) {
306 if (J == ACall)
307 continue;
308
309 if (Instruction *K = dyn_cast<Instruction>(J))
310 if (isValidAssumeForContext(ACall, K, DT))
311 WorkList.push_back(K);
312 }
313
314 while (!WorkList.empty()) {
315 Instruction *J = WorkList.pop_back_val();
316
317 if (LoadInst *LI = dyn_cast<LoadInst>(J)) {
318 unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
319 LI->getPointerOperand(), SE);
320
321 if (NewAlignment > LI->getAlignment()) {
322 LI->setAlignment(NewAlignment);
323 ++NumLoadAlignChanged;
324 }
325 } else if (StoreInst *SI = dyn_cast<StoreInst>(J)) {
326 unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
327 SI->getPointerOperand(), SE);
328
329 if (NewAlignment > SI->getAlignment()) {
330 SI->setAlignment(NewAlignment);
331 ++NumStoreAlignChanged;
332 }
333 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(J)) {
334 unsigned NewDestAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
335 MI->getDest(), SE);
336
337 // For memory transfers, we need a common alignment for both the
338 // source and destination. If we have a new alignment for this
339 // instruction, but only for one operand, save it. If we reach the
340 // other operand through another assumption later, then we may
341 // change the alignment at that point.
342 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
343 unsigned NewSrcAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
344 MTI->getSource(), SE);
345
346 DenseMap<MemTransferInst *, unsigned>::iterator DI =
347 NewDestAlignments.find(MTI);
348 unsigned AltDestAlignment = (DI == NewDestAlignments.end()) ?
349 0 : DI->second;
350
351 DenseMap<MemTransferInst *, unsigned>::iterator SI =
352 NewSrcAlignments.find(MTI);
353 unsigned AltSrcAlignment = (SI == NewSrcAlignments.end()) ?
354 0 : SI->second;
355
356 DEBUG(dbgs() << "\tmem trans: " << NewDestAlignment << " " <<
357 AltDestAlignment << " " << NewSrcAlignment <<
358 " " << AltSrcAlignment << "\n");
359
360 // Of these four alignments, pick the largest possible...
361 unsigned NewAlignment = 0;
362 if (NewDestAlignment <= std::max(NewSrcAlignment, AltSrcAlignment))
363 NewAlignment = std::max(NewAlignment, NewDestAlignment);
364 if (AltDestAlignment <= std::max(NewSrcAlignment, AltSrcAlignment))
365 NewAlignment = std::max(NewAlignment, AltDestAlignment);
366 if (NewSrcAlignment <= std::max(NewDestAlignment, AltDestAlignment))
367 NewAlignment = std::max(NewAlignment, NewSrcAlignment);
368 if (AltSrcAlignment <= std::max(NewDestAlignment, AltDestAlignment))
369 NewAlignment = std::max(NewAlignment, AltSrcAlignment);
370
371 if (NewAlignment > MI->getAlignment()) {
372 MI->setAlignment(ConstantInt::get(Type::getInt32Ty(
373 MI->getParent()->getContext()), NewAlignment));
374 ++NumMemIntAlignChanged;
375 }
376
377 NewDestAlignments.insert(std::make_pair(MTI, NewDestAlignment));
378 NewSrcAlignments.insert(std::make_pair(MTI, NewSrcAlignment));
379 } else if (NewDestAlignment > MI->getAlignment()) {
380 assert((!isa<MemIntrinsic>(MI) || isa<MemSetInst>(MI)) &&
381 "Unknown memory intrinsic");
382
383 MI->setAlignment(ConstantInt::get(Type::getInt32Ty(
384 MI->getParent()->getContext()), NewDestAlignment));
385 ++NumMemIntAlignChanged;
386 }
387 }
388
389 // Now that we've updated that use of the pointer, look for other uses of
390 // the pointer to update.
391 Visited.insert(J);
392 for (User *UJ : J->users()) {
393 Instruction *K = cast<Instruction>(UJ);
394 if (!Visited.count(K) && isValidAssumeForContext(ACall, K, DT))
395 WorkList.push_back(K);
396 }
397 }
398
399 return true;
400 }
401
runOnFunction(Function & F)402 bool AlignmentFromAssumptions::runOnFunction(Function &F) {
403 if (skipFunction(F))
404 return false;
405
406 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
407 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
408 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
409
410 return Impl.runImpl(F, AC, SE, DT);
411 }
412
runImpl(Function & F,AssumptionCache & AC,ScalarEvolution * SE_,DominatorTree * DT_)413 bool AlignmentFromAssumptionsPass::runImpl(Function &F, AssumptionCache &AC,
414 ScalarEvolution *SE_,
415 DominatorTree *DT_) {
416 SE = SE_;
417 DT = DT_;
418
419 NewDestAlignments.clear();
420 NewSrcAlignments.clear();
421
422 bool Changed = false;
423 for (auto &AssumeVH : AC.assumptions())
424 if (AssumeVH)
425 Changed |= processAssumption(cast<CallInst>(AssumeVH));
426
427 return Changed;
428 }
429
430 PreservedAnalyses
run(Function & F,FunctionAnalysisManager & AM)431 AlignmentFromAssumptionsPass::run(Function &F, FunctionAnalysisManager &AM) {
432
433 AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);
434 ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
435 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
436 bool Changed = runImpl(F, AC, &SE, &DT);
437 if (!Changed)
438 return PreservedAnalyses::all();
439 PreservedAnalyses PA;
440 PA.preserve<AAManager>();
441 PA.preserve<ScalarEvolutionAnalysis>();
442 PA.preserve<GlobalsAA>();
443 PA.preserve<LoopAnalysis>();
444 PA.preserve<DominatorTreeAnalysis>();
445 return PA;
446 }
447