1 //===- CorrelatedValuePropagation.cpp - Propagate CFG-derived info --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Correlated Value Propagation pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/CorrelatedValuePropagation.h"
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/GlobalsModRef.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/LazyValueInfo.h"
20 #include "llvm/IR/CFG.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/Function.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Pass.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "correlated-value-propagation"
32 
33 STATISTIC(NumPhis,      "Number of phis propagated");
34 STATISTIC(NumSelects,   "Number of selects propagated");
35 STATISTIC(NumMemAccess, "Number of memory access targets propagated");
36 STATISTIC(NumCmps,      "Number of comparisons propagated");
37 STATISTIC(NumReturns,   "Number of return values propagated");
38 STATISTIC(NumDeadCases, "Number of switch cases removed");
39 STATISTIC(NumSDivs,     "Number of sdiv converted to udiv");
40 STATISTIC(NumSRems,     "Number of srem converted to urem");
41 
42 namespace {
43   class CorrelatedValuePropagation : public FunctionPass {
44   public:
45     static char ID;
CorrelatedValuePropagation()46     CorrelatedValuePropagation(): FunctionPass(ID) {
47      initializeCorrelatedValuePropagationPass(*PassRegistry::getPassRegistry());
48     }
49 
50     bool runOnFunction(Function &F) override;
51 
getAnalysisUsage(AnalysisUsage & AU) const52     void getAnalysisUsage(AnalysisUsage &AU) const override {
53       AU.addRequired<LazyValueInfoWrapperPass>();
54       AU.addPreserved<GlobalsAAWrapperPass>();
55     }
56   };
57 }
58 
59 char CorrelatedValuePropagation::ID = 0;
60 INITIALIZE_PASS_BEGIN(CorrelatedValuePropagation, "correlated-propagation",
61                 "Value Propagation", false, false)
INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)62 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
63 INITIALIZE_PASS_END(CorrelatedValuePropagation, "correlated-propagation",
64                 "Value Propagation", false, false)
65 
66 // Public interface to the Value Propagation pass
67 Pass *llvm::createCorrelatedValuePropagationPass() {
68   return new CorrelatedValuePropagation();
69 }
70 
processSelect(SelectInst * S,LazyValueInfo * LVI)71 static bool processSelect(SelectInst *S, LazyValueInfo *LVI) {
72   if (S->getType()->isVectorTy()) return false;
73   if (isa<Constant>(S->getOperand(0))) return false;
74 
75   Constant *C = LVI->getConstant(S->getOperand(0), S->getParent(), S);
76   if (!C) return false;
77 
78   ConstantInt *CI = dyn_cast<ConstantInt>(C);
79   if (!CI) return false;
80 
81   Value *ReplaceWith = S->getOperand(1);
82   Value *Other = S->getOperand(2);
83   if (!CI->isOne()) std::swap(ReplaceWith, Other);
84   if (ReplaceWith == S) ReplaceWith = UndefValue::get(S->getType());
85 
86   S->replaceAllUsesWith(ReplaceWith);
87   S->eraseFromParent();
88 
89   ++NumSelects;
90 
91   return true;
92 }
93 
processPHI(PHINode * P,LazyValueInfo * LVI)94 static bool processPHI(PHINode *P, LazyValueInfo *LVI) {
95   bool Changed = false;
96 
97   BasicBlock *BB = P->getParent();
98   for (unsigned i = 0, e = P->getNumIncomingValues(); i < e; ++i) {
99     Value *Incoming = P->getIncomingValue(i);
100     if (isa<Constant>(Incoming)) continue;
101 
102     Value *V = LVI->getConstantOnEdge(Incoming, P->getIncomingBlock(i), BB, P);
103 
104     // Look if the incoming value is a select with a scalar condition for which
105     // LVI can tells us the value. In that case replace the incoming value with
106     // the appropriate value of the select. This often allows us to remove the
107     // select later.
108     if (!V) {
109       SelectInst *SI = dyn_cast<SelectInst>(Incoming);
110       if (!SI) continue;
111 
112       Value *Condition = SI->getCondition();
113       if (!Condition->getType()->isVectorTy()) {
114         if (Constant *C = LVI->getConstantOnEdge(
115                 Condition, P->getIncomingBlock(i), BB, P)) {
116           if (C->isOneValue()) {
117             V = SI->getTrueValue();
118           } else if (C->isZeroValue()) {
119             V = SI->getFalseValue();
120           }
121           // Once LVI learns to handle vector types, we could also add support
122           // for vector type constants that are not all zeroes or all ones.
123         }
124       }
125 
126       // Look if the select has a constant but LVI tells us that the incoming
127       // value can never be that constant. In that case replace the incoming
128       // value with the other value of the select. This often allows us to
129       // remove the select later.
130       if (!V) {
131         Constant *C = dyn_cast<Constant>(SI->getFalseValue());
132         if (!C) continue;
133 
134         if (LVI->getPredicateOnEdge(ICmpInst::ICMP_EQ, SI, C,
135               P->getIncomingBlock(i), BB, P) !=
136             LazyValueInfo::False)
137           continue;
138         V = SI->getTrueValue();
139       }
140 
141       DEBUG(dbgs() << "CVP: Threading PHI over " << *SI << '\n');
142     }
143 
144     P->setIncomingValue(i, V);
145     Changed = true;
146   }
147 
148   // FIXME: Provide TLI, DT, AT to SimplifyInstruction.
149   const DataLayout &DL = BB->getModule()->getDataLayout();
150   if (Value *V = SimplifyInstruction(P, DL)) {
151     P->replaceAllUsesWith(V);
152     P->eraseFromParent();
153     Changed = true;
154   }
155 
156   if (Changed)
157     ++NumPhis;
158 
159   return Changed;
160 }
161 
processMemAccess(Instruction * I,LazyValueInfo * LVI)162 static bool processMemAccess(Instruction *I, LazyValueInfo *LVI) {
163   Value *Pointer = nullptr;
164   if (LoadInst *L = dyn_cast<LoadInst>(I))
165     Pointer = L->getPointerOperand();
166   else
167     Pointer = cast<StoreInst>(I)->getPointerOperand();
168 
169   if (isa<Constant>(Pointer)) return false;
170 
171   Constant *C = LVI->getConstant(Pointer, I->getParent(), I);
172   if (!C) return false;
173 
174   ++NumMemAccess;
175   I->replaceUsesOfWith(Pointer, C);
176   return true;
177 }
178 
179 /// See if LazyValueInfo's ability to exploit edge conditions or range
180 /// information is sufficient to prove this comparison. Even for local
181 /// conditions, this can sometimes prove conditions instcombine can't by
182 /// exploiting range information.
processCmp(CmpInst * C,LazyValueInfo * LVI)183 static bool processCmp(CmpInst *C, LazyValueInfo *LVI) {
184   Value *Op0 = C->getOperand(0);
185   Constant *Op1 = dyn_cast<Constant>(C->getOperand(1));
186   if (!Op1) return false;
187 
188   // As a policy choice, we choose not to waste compile time on anything where
189   // the comparison is testing local values.  While LVI can sometimes reason
190   // about such cases, it's not its primary purpose.  We do make sure to do
191   // the block local query for uses from terminator instructions, but that's
192   // handled in the code for each terminator.
193   auto *I = dyn_cast<Instruction>(Op0);
194   if (I && I->getParent() == C->getParent())
195     return false;
196 
197   LazyValueInfo::Tristate Result =
198     LVI->getPredicateAt(C->getPredicate(), Op0, Op1, C);
199   if (Result == LazyValueInfo::Unknown) return false;
200 
201   ++NumCmps;
202   if (Result == LazyValueInfo::True)
203     C->replaceAllUsesWith(ConstantInt::getTrue(C->getContext()));
204   else
205     C->replaceAllUsesWith(ConstantInt::getFalse(C->getContext()));
206   C->eraseFromParent();
207 
208   return true;
209 }
210 
211 /// Simplify a switch instruction by removing cases which can never fire. If the
212 /// uselessness of a case could be determined locally then constant propagation
213 /// would already have figured it out. Instead, walk the predecessors and
214 /// statically evaluate cases based on information available on that edge. Cases
215 /// that cannot fire no matter what the incoming edge can safely be removed. If
216 /// a case fires on every incoming edge then the entire switch can be removed
217 /// and replaced with a branch to the case destination.
processSwitch(SwitchInst * SI,LazyValueInfo * LVI)218 static bool processSwitch(SwitchInst *SI, LazyValueInfo *LVI) {
219   Value *Cond = SI->getCondition();
220   BasicBlock *BB = SI->getParent();
221 
222   // If the condition was defined in same block as the switch then LazyValueInfo
223   // currently won't say anything useful about it, though in theory it could.
224   if (isa<Instruction>(Cond) && cast<Instruction>(Cond)->getParent() == BB)
225     return false;
226 
227   // If the switch is unreachable then trying to improve it is a waste of time.
228   pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
229   if (PB == PE) return false;
230 
231   // Analyse each switch case in turn.  This is done in reverse order so that
232   // removing a case doesn't cause trouble for the iteration.
233   bool Changed = false;
234   for (SwitchInst::CaseIt CI = SI->case_end(), CE = SI->case_begin(); CI-- != CE;
235        ) {
236     ConstantInt *Case = CI.getCaseValue();
237 
238     // Check to see if the switch condition is equal to/not equal to the case
239     // value on every incoming edge, equal/not equal being the same each time.
240     LazyValueInfo::Tristate State = LazyValueInfo::Unknown;
241     for (pred_iterator PI = PB; PI != PE; ++PI) {
242       // Is the switch condition equal to the case value?
243       LazyValueInfo::Tristate Value = LVI->getPredicateOnEdge(CmpInst::ICMP_EQ,
244                                                               Cond, Case, *PI,
245                                                               BB, SI);
246       // Give up on this case if nothing is known.
247       if (Value == LazyValueInfo::Unknown) {
248         State = LazyValueInfo::Unknown;
249         break;
250       }
251 
252       // If this was the first edge to be visited, record that all other edges
253       // need to give the same result.
254       if (PI == PB) {
255         State = Value;
256         continue;
257       }
258 
259       // If this case is known to fire for some edges and known not to fire for
260       // others then there is nothing we can do - give up.
261       if (Value != State) {
262         State = LazyValueInfo::Unknown;
263         break;
264       }
265     }
266 
267     if (State == LazyValueInfo::False) {
268       // This case never fires - remove it.
269       CI.getCaseSuccessor()->removePredecessor(BB);
270       SI->removeCase(CI); // Does not invalidate the iterator.
271 
272       // The condition can be modified by removePredecessor's PHI simplification
273       // logic.
274       Cond = SI->getCondition();
275 
276       ++NumDeadCases;
277       Changed = true;
278     } else if (State == LazyValueInfo::True) {
279       // This case always fires.  Arrange for the switch to be turned into an
280       // unconditional branch by replacing the switch condition with the case
281       // value.
282       SI->setCondition(Case);
283       NumDeadCases += SI->getNumCases();
284       Changed = true;
285       break;
286     }
287   }
288 
289   if (Changed)
290     // If the switch has been simplified to the point where it can be replaced
291     // by a branch then do so now.
292     ConstantFoldTerminator(BB);
293 
294   return Changed;
295 }
296 
297 /// Infer nonnull attributes for the arguments at the specified callsite.
processCallSite(CallSite CS,LazyValueInfo * LVI)298 static bool processCallSite(CallSite CS, LazyValueInfo *LVI) {
299   SmallVector<unsigned, 4> Indices;
300   unsigned ArgNo = 0;
301 
302   for (Value *V : CS.args()) {
303     PointerType *Type = dyn_cast<PointerType>(V->getType());
304     // Try to mark pointer typed parameters as non-null.  We skip the
305     // relatively expensive analysis for constants which are obviously either
306     // null or non-null to start with.
307     if (Type && !CS.paramHasAttr(ArgNo + 1, Attribute::NonNull) &&
308         !isa<Constant>(V) &&
309         LVI->getPredicateAt(ICmpInst::ICMP_EQ, V,
310                             ConstantPointerNull::get(Type),
311                             CS.getInstruction()) == LazyValueInfo::False)
312       Indices.push_back(ArgNo + 1);
313     ArgNo++;
314   }
315 
316   assert(ArgNo == CS.arg_size() && "sanity check");
317 
318   if (Indices.empty())
319     return false;
320 
321   AttributeSet AS = CS.getAttributes();
322   LLVMContext &Ctx = CS.getInstruction()->getContext();
323   AS = AS.addAttribute(Ctx, Indices, Attribute::get(Ctx, Attribute::NonNull));
324   CS.setAttributes(AS);
325 
326   return true;
327 }
328 
329 // Helper function to rewrite srem and sdiv. As a policy choice, we choose not
330 // to waste compile time on anything where the operands are local defs.  While
331 // LVI can sometimes reason about such cases, it's not its primary purpose.
hasLocalDefs(BinaryOperator * SDI)332 static bool hasLocalDefs(BinaryOperator *SDI) {
333   for (Value *O : SDI->operands()) {
334     auto *I = dyn_cast<Instruction>(O);
335     if (I && I->getParent() == SDI->getParent())
336       return true;
337   }
338   return false;
339 }
340 
hasPositiveOperands(BinaryOperator * SDI,LazyValueInfo * LVI)341 static bool hasPositiveOperands(BinaryOperator *SDI, LazyValueInfo *LVI) {
342   Constant *Zero = ConstantInt::get(SDI->getType(), 0);
343   for (Value *O : SDI->operands()) {
344     auto Result = LVI->getPredicateAt(ICmpInst::ICMP_SGE, O, Zero, SDI);
345     if (Result != LazyValueInfo::True)
346       return false;
347   }
348   return true;
349 }
350 
processSRem(BinaryOperator * SDI,LazyValueInfo * LVI)351 static bool processSRem(BinaryOperator *SDI, LazyValueInfo *LVI) {
352   if (SDI->getType()->isVectorTy() || hasLocalDefs(SDI) ||
353       !hasPositiveOperands(SDI, LVI))
354     return false;
355 
356   ++NumSRems;
357   auto *BO = BinaryOperator::CreateURem(SDI->getOperand(0), SDI->getOperand(1),
358                                         SDI->getName(), SDI);
359   SDI->replaceAllUsesWith(BO);
360   SDI->eraseFromParent();
361   return true;
362 }
363 
364 /// See if LazyValueInfo's ability to exploit edge conditions or range
365 /// information is sufficient to prove the both operands of this SDiv are
366 /// positive.  If this is the case, replace the SDiv with a UDiv. Even for local
367 /// conditions, this can sometimes prove conditions instcombine can't by
368 /// exploiting range information.
processSDiv(BinaryOperator * SDI,LazyValueInfo * LVI)369 static bool processSDiv(BinaryOperator *SDI, LazyValueInfo *LVI) {
370   if (SDI->getType()->isVectorTy() || hasLocalDefs(SDI) ||
371       !hasPositiveOperands(SDI, LVI))
372     return false;
373 
374   ++NumSDivs;
375   auto *BO = BinaryOperator::CreateUDiv(SDI->getOperand(0), SDI->getOperand(1),
376                                         SDI->getName(), SDI);
377   BO->setIsExact(SDI->isExact());
378   SDI->replaceAllUsesWith(BO);
379   SDI->eraseFromParent();
380 
381   return true;
382 }
383 
getConstantAt(Value * V,Instruction * At,LazyValueInfo * LVI)384 static Constant *getConstantAt(Value *V, Instruction *At, LazyValueInfo *LVI) {
385   if (Constant *C = LVI->getConstant(V, At->getParent(), At))
386     return C;
387 
388   // TODO: The following really should be sunk inside LVI's core algorithm, or
389   // at least the outer shims around such.
390   auto *C = dyn_cast<CmpInst>(V);
391   if (!C) return nullptr;
392 
393   Value *Op0 = C->getOperand(0);
394   Constant *Op1 = dyn_cast<Constant>(C->getOperand(1));
395   if (!Op1) return nullptr;
396 
397   LazyValueInfo::Tristate Result =
398     LVI->getPredicateAt(C->getPredicate(), Op0, Op1, At);
399   if (Result == LazyValueInfo::Unknown)
400     return nullptr;
401 
402   return (Result == LazyValueInfo::True) ?
403     ConstantInt::getTrue(C->getContext()) :
404     ConstantInt::getFalse(C->getContext());
405 }
406 
runImpl(Function & F,LazyValueInfo * LVI)407 static bool runImpl(Function &F, LazyValueInfo *LVI) {
408   bool FnChanged = false;
409 
410   for (BasicBlock &BB : F) {
411     bool BBChanged = false;
412     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
413       Instruction *II = &*BI++;
414       switch (II->getOpcode()) {
415       case Instruction::Select:
416         BBChanged |= processSelect(cast<SelectInst>(II), LVI);
417         break;
418       case Instruction::PHI:
419         BBChanged |= processPHI(cast<PHINode>(II), LVI);
420         break;
421       case Instruction::ICmp:
422       case Instruction::FCmp:
423         BBChanged |= processCmp(cast<CmpInst>(II), LVI);
424         break;
425       case Instruction::Load:
426       case Instruction::Store:
427         BBChanged |= processMemAccess(II, LVI);
428         break;
429       case Instruction::Call:
430       case Instruction::Invoke:
431         BBChanged |= processCallSite(CallSite(II), LVI);
432         break;
433       case Instruction::SRem:
434         BBChanged |= processSRem(cast<BinaryOperator>(II), LVI);
435         break;
436       case Instruction::SDiv:
437         BBChanged |= processSDiv(cast<BinaryOperator>(II), LVI);
438         break;
439       }
440     }
441 
442     Instruction *Term = BB.getTerminator();
443     switch (Term->getOpcode()) {
444     case Instruction::Switch:
445       BBChanged |= processSwitch(cast<SwitchInst>(Term), LVI);
446       break;
447     case Instruction::Ret: {
448       auto *RI = cast<ReturnInst>(Term);
449       // Try to determine the return value if we can.  This is mainly here to
450       // simplify the writing of unit tests, but also helps to enable IPO by
451       // constant folding the return values of callees.
452       auto *RetVal = RI->getReturnValue();
453       if (!RetVal) break; // handle "ret void"
454       if (isa<Constant>(RetVal)) break; // nothing to do
455       if (auto *C = getConstantAt(RetVal, RI, LVI)) {
456         ++NumReturns;
457         RI->replaceUsesOfWith(RetVal, C);
458         BBChanged = true;
459       }
460     }
461     };
462 
463     FnChanged |= BBChanged;
464   }
465 
466   return FnChanged;
467 }
468 
runOnFunction(Function & F)469 bool CorrelatedValuePropagation::runOnFunction(Function &F) {
470   if (skipFunction(F))
471     return false;
472 
473   LazyValueInfo *LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
474   return runImpl(F, LVI);
475 }
476 
477 PreservedAnalyses
run(Function & F,FunctionAnalysisManager & AM)478 CorrelatedValuePropagationPass::run(Function &F, FunctionAnalysisManager &AM) {
479 
480   LazyValueInfo *LVI = &AM.getResult<LazyValueAnalysis>(F);
481   bool Changed = runImpl(F, LVI);
482 
483   // FIXME: We need to invalidate LVI to avoid PR28400. Is there a better
484   // solution?
485   AM.invalidate<LazyValueAnalysis>(F);
486 
487   if (!Changed)
488     return PreservedAnalyses::all();
489   PreservedAnalyses PA;
490   PA.preserve<GlobalsAA>();
491   return PA;
492 }
493