1 //===-- InductiveRangeCheckElimination.cpp - ------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 // The InductiveRangeCheckElimination pass splits a loop's iteration space into
10 // three disjoint ranges.  It does that in a way such that the loop running in
11 // the middle loop provably does not need range checks. As an example, it will
12 // convert
13 //
14 //   len = < known positive >
15 //   for (i = 0; i < n; i++) {
16 //     if (0 <= i && i < len) {
17 //       do_something();
18 //     } else {
19 //       throw_out_of_bounds();
20 //     }
21 //   }
22 //
23 // to
24 //
25 //   len = < known positive >
26 //   limit = smin(n, len)
27 //   // no first segment
28 //   for (i = 0; i < limit; i++) {
29 //     if (0 <= i && i < len) { // this check is fully redundant
30 //       do_something();
31 //     } else {
32 //       throw_out_of_bounds();
33 //     }
34 //   }
35 //   for (i = limit; i < n; i++) {
36 //     if (0 <= i && i < len) {
37 //       do_something();
38 //     } else {
39 //       throw_out_of_bounds();
40 //     }
41 //   }
42 //===----------------------------------------------------------------------===//
43 
44 #include "llvm/ADT/Optional.h"
45 #include "llvm/Analysis/BranchProbabilityInfo.h"
46 #include "llvm/Analysis/InstructionSimplify.h"
47 #include "llvm/Analysis/LoopInfo.h"
48 #include "llvm/Analysis/LoopPass.h"
49 #include "llvm/Analysis/ScalarEvolution.h"
50 #include "llvm/Analysis/ScalarEvolutionExpander.h"
51 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
52 #include "llvm/Analysis/ValueTracking.h"
53 #include "llvm/IR/Dominators.h"
54 #include "llvm/IR/Function.h"
55 #include "llvm/IR/IRBuilder.h"
56 #include "llvm/IR/Instructions.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/PatternMatch.h"
59 #include "llvm/IR/ValueHandle.h"
60 #include "llvm/IR/Verifier.h"
61 #include "llvm/Pass.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/Scalar.h"
65 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
66 #include "llvm/Transforms/Utils/Cloning.h"
67 #include "llvm/Transforms/Utils/LoopUtils.h"
68 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
69 #include "llvm/Transforms/Utils/UnrollLoop.h"
70 
71 using namespace llvm;
72 
73 static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
74                                         cl::init(64));
75 
76 static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
77                                        cl::init(false));
78 
79 static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden,
80                                       cl::init(false));
81 
82 static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal",
83                                           cl::Hidden, cl::init(10));
84 
85 #define DEBUG_TYPE "irce"
86 
87 namespace {
88 
89 /// An inductive range check is conditional branch in a loop with
90 ///
91 ///  1. a very cold successor (i.e. the branch jumps to that successor very
92 ///     rarely)
93 ///
94 ///  and
95 ///
96 ///  2. a condition that is provably true for some contiguous range of values
97 ///     taken by the containing loop's induction variable.
98 ///
99 class InductiveRangeCheck {
100   // Classifies a range check
101   enum RangeCheckKind : unsigned {
102     // Range check of the form "0 <= I".
103     RANGE_CHECK_LOWER = 1,
104 
105     // Range check of the form "I < L" where L is known positive.
106     RANGE_CHECK_UPPER = 2,
107 
108     // The logical and of the RANGE_CHECK_LOWER and RANGE_CHECK_UPPER
109     // conditions.
110     RANGE_CHECK_BOTH = RANGE_CHECK_LOWER | RANGE_CHECK_UPPER,
111 
112     // Unrecognized range check condition.
113     RANGE_CHECK_UNKNOWN = (unsigned)-1
114   };
115 
116   static StringRef rangeCheckKindToStr(RangeCheckKind);
117 
118   const SCEV *Offset = nullptr;
119   const SCEV *Scale = nullptr;
120   Value *Length = nullptr;
121   Use *CheckUse = nullptr;
122   RangeCheckKind Kind = RANGE_CHECK_UNKNOWN;
123 
124   static RangeCheckKind parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
125                                             ScalarEvolution &SE, Value *&Index,
126                                             Value *&Length);
127 
128   static void
129   extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse,
130                              SmallVectorImpl<InductiveRangeCheck> &Checks,
131                              SmallPtrSetImpl<Value *> &Visited);
132 
133 public:
getOffset() const134   const SCEV *getOffset() const { return Offset; }
getScale() const135   const SCEV *getScale() const { return Scale; }
getLength() const136   Value *getLength() const { return Length; }
137 
print(raw_ostream & OS) const138   void print(raw_ostream &OS) const {
139     OS << "InductiveRangeCheck:\n";
140     OS << "  Kind: " << rangeCheckKindToStr(Kind) << "\n";
141     OS << "  Offset: ";
142     Offset->print(OS);
143     OS << "  Scale: ";
144     Scale->print(OS);
145     OS << "  Length: ";
146     if (Length)
147       Length->print(OS);
148     else
149       OS << "(null)";
150     OS << "\n  CheckUse: ";
151     getCheckUse()->getUser()->print(OS);
152     OS << " Operand: " << getCheckUse()->getOperandNo() << "\n";
153   }
154 
155 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump()156   void dump() {
157     print(dbgs());
158   }
159 #endif
160 
getCheckUse() const161   Use *getCheckUse() const { return CheckUse; }
162 
163   /// Represents an signed integer range [Range.getBegin(), Range.getEnd()).  If
164   /// R.getEnd() sle R.getBegin(), then R denotes the empty range.
165 
166   class Range {
167     const SCEV *Begin;
168     const SCEV *End;
169 
170   public:
Range(const SCEV * Begin,const SCEV * End)171     Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
172       assert(Begin->getType() == End->getType() && "ill-typed range!");
173     }
174 
getType() const175     Type *getType() const { return Begin->getType(); }
getBegin() const176     const SCEV *getBegin() const { return Begin; }
getEnd() const177     const SCEV *getEnd() const { return End; }
178   };
179 
180   /// This is the value the condition of the branch needs to evaluate to for the
181   /// branch to take the hot successor (see (1) above).
getPassingDirection()182   bool getPassingDirection() { return true; }
183 
184   /// Computes a range for the induction variable (IndVar) in which the range
185   /// check is redundant and can be constant-folded away.  The induction
186   /// variable is not required to be the canonical {0,+,1} induction variable.
187   Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
188                                             const SCEVAddRecExpr *IndVar) const;
189 
190   /// Parse out a set of inductive range checks from \p BI and append them to \p
191   /// Checks.
192   ///
193   /// NB! There may be conditions feeding into \p BI that aren't inductive range
194   /// checks, and hence don't end up in \p Checks.
195   static void
196   extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE,
197                                BranchProbabilityInfo &BPI,
198                                SmallVectorImpl<InductiveRangeCheck> &Checks);
199 };
200 
201 class InductiveRangeCheckElimination : public LoopPass {
202 public:
203   static char ID;
InductiveRangeCheckElimination()204   InductiveRangeCheckElimination() : LoopPass(ID) {
205     initializeInductiveRangeCheckEliminationPass(
206         *PassRegistry::getPassRegistry());
207   }
208 
getAnalysisUsage(AnalysisUsage & AU) const209   void getAnalysisUsage(AnalysisUsage &AU) const override {
210     AU.addRequired<BranchProbabilityInfoWrapperPass>();
211     getLoopAnalysisUsage(AU);
212   }
213 
214   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
215 };
216 
217 char InductiveRangeCheckElimination::ID = 0;
218 }
219 
220 INITIALIZE_PASS_BEGIN(InductiveRangeCheckElimination, "irce",
221                       "Inductive range check elimination", false, false)
INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)222 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
223 INITIALIZE_PASS_DEPENDENCY(LoopPass)
224 INITIALIZE_PASS_END(InductiveRangeCheckElimination, "irce",
225                     "Inductive range check elimination", false, false)
226 
227 StringRef InductiveRangeCheck::rangeCheckKindToStr(
228     InductiveRangeCheck::RangeCheckKind RCK) {
229   switch (RCK) {
230   case InductiveRangeCheck::RANGE_CHECK_UNKNOWN:
231     return "RANGE_CHECK_UNKNOWN";
232 
233   case InductiveRangeCheck::RANGE_CHECK_UPPER:
234     return "RANGE_CHECK_UPPER";
235 
236   case InductiveRangeCheck::RANGE_CHECK_LOWER:
237     return "RANGE_CHECK_LOWER";
238 
239   case InductiveRangeCheck::RANGE_CHECK_BOTH:
240     return "RANGE_CHECK_BOTH";
241   }
242 
243   llvm_unreachable("unknown range check type!");
244 }
245 
246 /// Parse a single ICmp instruction, `ICI`, into a range check.  If `ICI` cannot
247 /// be interpreted as a range check, return `RANGE_CHECK_UNKNOWN` and set
248 /// `Index` and `Length` to `nullptr`.  Otherwise set `Index` to the value being
249 /// range checked, and set `Length` to the upper limit `Index` is being range
250 /// checked with if (and only if) the range check type is stronger or equal to
251 /// RANGE_CHECK_UPPER.
252 ///
253 InductiveRangeCheck::RangeCheckKind
parseRangeCheckICmp(Loop * L,ICmpInst * ICI,ScalarEvolution & SE,Value * & Index,Value * & Length)254 InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
255                                          ScalarEvolution &SE, Value *&Index,
256                                          Value *&Length) {
257 
258   auto IsNonNegativeAndNotLoopVarying = [&SE, L](Value *V) {
259     const SCEV *S = SE.getSCEV(V);
260     if (isa<SCEVCouldNotCompute>(S))
261       return false;
262 
263     return SE.getLoopDisposition(S, L) == ScalarEvolution::LoopInvariant &&
264            SE.isKnownNonNegative(S);
265   };
266 
267   using namespace llvm::PatternMatch;
268 
269   ICmpInst::Predicate Pred = ICI->getPredicate();
270   Value *LHS = ICI->getOperand(0);
271   Value *RHS = ICI->getOperand(1);
272 
273   switch (Pred) {
274   default:
275     return RANGE_CHECK_UNKNOWN;
276 
277   case ICmpInst::ICMP_SLE:
278     std::swap(LHS, RHS);
279   // fallthrough
280   case ICmpInst::ICMP_SGE:
281     if (match(RHS, m_ConstantInt<0>())) {
282       Index = LHS;
283       return RANGE_CHECK_LOWER;
284     }
285     return RANGE_CHECK_UNKNOWN;
286 
287   case ICmpInst::ICMP_SLT:
288     std::swap(LHS, RHS);
289   // fallthrough
290   case ICmpInst::ICMP_SGT:
291     if (match(RHS, m_ConstantInt<-1>())) {
292       Index = LHS;
293       return RANGE_CHECK_LOWER;
294     }
295 
296     if (IsNonNegativeAndNotLoopVarying(LHS)) {
297       Index = RHS;
298       Length = LHS;
299       return RANGE_CHECK_UPPER;
300     }
301     return RANGE_CHECK_UNKNOWN;
302 
303   case ICmpInst::ICMP_ULT:
304     std::swap(LHS, RHS);
305   // fallthrough
306   case ICmpInst::ICMP_UGT:
307     if (IsNonNegativeAndNotLoopVarying(LHS)) {
308       Index = RHS;
309       Length = LHS;
310       return RANGE_CHECK_BOTH;
311     }
312     return RANGE_CHECK_UNKNOWN;
313   }
314 
315   llvm_unreachable("default clause returns!");
316 }
317 
extractRangeChecksFromCond(Loop * L,ScalarEvolution & SE,Use & ConditionUse,SmallVectorImpl<InductiveRangeCheck> & Checks,SmallPtrSetImpl<Value * > & Visited)318 void InductiveRangeCheck::extractRangeChecksFromCond(
319     Loop *L, ScalarEvolution &SE, Use &ConditionUse,
320     SmallVectorImpl<InductiveRangeCheck> &Checks,
321     SmallPtrSetImpl<Value *> &Visited) {
322   using namespace llvm::PatternMatch;
323 
324   Value *Condition = ConditionUse.get();
325   if (!Visited.insert(Condition).second)
326     return;
327 
328   if (match(Condition, m_And(m_Value(), m_Value()))) {
329     SmallVector<InductiveRangeCheck, 8> SubChecks;
330     extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0),
331                                SubChecks, Visited);
332     extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1),
333                                SubChecks, Visited);
334 
335     if (SubChecks.size() == 2) {
336       // Handle a special case where we know how to merge two checks separately
337       // checking the upper and lower bounds into a full range check.
338       const auto &RChkA = SubChecks[0];
339       const auto &RChkB = SubChecks[1];
340       if ((RChkA.Length == RChkB.Length || !RChkA.Length || !RChkB.Length) &&
341           RChkA.Offset == RChkB.Offset && RChkA.Scale == RChkB.Scale) {
342 
343         // If RChkA.Kind == RChkB.Kind then we just found two identical checks.
344         // But if one of them is a RANGE_CHECK_LOWER and the other is a
345         // RANGE_CHECK_UPPER (only possibility if they're different) then
346         // together they form a RANGE_CHECK_BOTH.
347         SubChecks[0].Kind =
348             (InductiveRangeCheck::RangeCheckKind)(RChkA.Kind | RChkB.Kind);
349         SubChecks[0].Length = RChkA.Length ? RChkA.Length : RChkB.Length;
350         SubChecks[0].CheckUse = &ConditionUse;
351 
352         // We updated one of the checks in place, now erase the other.
353         SubChecks.pop_back();
354       }
355     }
356 
357     Checks.insert(Checks.end(), SubChecks.begin(), SubChecks.end());
358     return;
359   }
360 
361   ICmpInst *ICI = dyn_cast<ICmpInst>(Condition);
362   if (!ICI)
363     return;
364 
365   Value *Length = nullptr, *Index;
366   auto RCKind = parseRangeCheckICmp(L, ICI, SE, Index, Length);
367   if (RCKind == InductiveRangeCheck::RANGE_CHECK_UNKNOWN)
368     return;
369 
370   const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index));
371   bool IsAffineIndex =
372       IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine();
373 
374   if (!IsAffineIndex)
375     return;
376 
377   InductiveRangeCheck IRC;
378   IRC.Length = Length;
379   IRC.Offset = IndexAddRec->getStart();
380   IRC.Scale = IndexAddRec->getStepRecurrence(SE);
381   IRC.CheckUse = &ConditionUse;
382   IRC.Kind = RCKind;
383   Checks.push_back(IRC);
384 }
385 
extractRangeChecksFromBranch(BranchInst * BI,Loop * L,ScalarEvolution & SE,BranchProbabilityInfo & BPI,SmallVectorImpl<InductiveRangeCheck> & Checks)386 void InductiveRangeCheck::extractRangeChecksFromBranch(
387     BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo &BPI,
388     SmallVectorImpl<InductiveRangeCheck> &Checks) {
389 
390   if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
391     return;
392 
393   BranchProbability LikelyTaken(15, 16);
394 
395   if (BPI.getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken)
396     return;
397 
398   SmallPtrSet<Value *, 8> Visited;
399   InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0),
400                                                   Checks, Visited);
401 }
402 
403 namespace {
404 
405 // Keeps track of the structure of a loop.  This is similar to llvm::Loop,
406 // except that it is more lightweight and can track the state of a loop through
407 // changing and potentially invalid IR.  This structure also formalizes the
408 // kinds of loops we can deal with -- ones that have a single latch that is also
409 // an exiting block *and* have a canonical induction variable.
410 struct LoopStructure {
411   const char *Tag;
412 
413   BasicBlock *Header;
414   BasicBlock *Latch;
415 
416   // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
417   // successor is `LatchExit', the exit block of the loop.
418   BranchInst *LatchBr;
419   BasicBlock *LatchExit;
420   unsigned LatchBrExitIdx;
421 
422   Value *IndVarNext;
423   Value *IndVarStart;
424   Value *LoopExitAt;
425   bool IndVarIncreasing;
426 
LoopStructure__anon764fa5440311::LoopStructure427   LoopStructure()
428       : Tag(""), Header(nullptr), Latch(nullptr), LatchBr(nullptr),
429         LatchExit(nullptr), LatchBrExitIdx(-1), IndVarNext(nullptr),
430         IndVarStart(nullptr), LoopExitAt(nullptr), IndVarIncreasing(false) {}
431 
map__anon764fa5440311::LoopStructure432   template <typename M> LoopStructure map(M Map) const {
433     LoopStructure Result;
434     Result.Tag = Tag;
435     Result.Header = cast<BasicBlock>(Map(Header));
436     Result.Latch = cast<BasicBlock>(Map(Latch));
437     Result.LatchBr = cast<BranchInst>(Map(LatchBr));
438     Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
439     Result.LatchBrExitIdx = LatchBrExitIdx;
440     Result.IndVarNext = Map(IndVarNext);
441     Result.IndVarStart = Map(IndVarStart);
442     Result.LoopExitAt = Map(LoopExitAt);
443     Result.IndVarIncreasing = IndVarIncreasing;
444     return Result;
445   }
446 
447   static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &,
448                                                     BranchProbabilityInfo &BPI,
449                                                     Loop &,
450                                                     const char *&);
451 };
452 
453 /// This class is used to constrain loops to run within a given iteration space.
454 /// The algorithm this class implements is given a Loop and a range [Begin,
455 /// End).  The algorithm then tries to break out a "main loop" out of the loop
456 /// it is given in a way that the "main loop" runs with the induction variable
457 /// in a subset of [Begin, End).  The algorithm emits appropriate pre and post
458 /// loops to run any remaining iterations.  The pre loop runs any iterations in
459 /// which the induction variable is < Begin, and the post loop runs any
460 /// iterations in which the induction variable is >= End.
461 ///
462 class LoopConstrainer {
463   // The representation of a clone of the original loop we started out with.
464   struct ClonedLoop {
465     // The cloned blocks
466     std::vector<BasicBlock *> Blocks;
467 
468     // `Map` maps values in the clonee into values in the cloned version
469     ValueToValueMapTy Map;
470 
471     // An instance of `LoopStructure` for the cloned loop
472     LoopStructure Structure;
473   };
474 
475   // Result of rewriting the range of a loop.  See changeIterationSpaceEnd for
476   // more details on what these fields mean.
477   struct RewrittenRangeInfo {
478     BasicBlock *PseudoExit;
479     BasicBlock *ExitSelector;
480     std::vector<PHINode *> PHIValuesAtPseudoExit;
481     PHINode *IndVarEnd;
482 
RewrittenRangeInfo__anon764fa5440311::LoopConstrainer::RewrittenRangeInfo483     RewrittenRangeInfo()
484         : PseudoExit(nullptr), ExitSelector(nullptr), IndVarEnd(nullptr) {}
485   };
486 
487   // Calculated subranges we restrict the iteration space of the main loop to.
488   // See the implementation of `calculateSubRanges' for more details on how
489   // these fields are computed.  `LowLimit` is None if there is no restriction
490   // on low end of the restricted iteration space of the main loop.  `HighLimit`
491   // is None if there is no restriction on high end of the restricted iteration
492   // space of the main loop.
493 
494   struct SubRanges {
495     Optional<const SCEV *> LowLimit;
496     Optional<const SCEV *> HighLimit;
497   };
498 
499   // A utility function that does a `replaceUsesOfWith' on the incoming block
500   // set of a `PHINode' -- replaces instances of `Block' in the `PHINode's
501   // incoming block list with `ReplaceBy'.
502   static void replacePHIBlock(PHINode *PN, BasicBlock *Block,
503                               BasicBlock *ReplaceBy);
504 
505   // Compute a safe set of limits for the main loop to run in -- effectively the
506   // intersection of `Range' and the iteration space of the original loop.
507   // Return None if unable to compute the set of subranges.
508   //
509   Optional<SubRanges> calculateSubRanges() const;
510 
511   // Clone `OriginalLoop' and return the result in CLResult.  The IR after
512   // running `cloneLoop' is well formed except for the PHI nodes in CLResult --
513   // the PHI nodes say that there is an incoming edge from `OriginalPreheader`
514   // but there is no such edge.
515   //
516   void cloneLoop(ClonedLoop &CLResult, const char *Tag) const;
517 
518   // Rewrite the iteration space of the loop denoted by (LS, Preheader). The
519   // iteration space of the rewritten loop ends at ExitLoopAt.  The start of the
520   // iteration space is not changed.  `ExitLoopAt' is assumed to be slt
521   // `OriginalHeaderCount'.
522   //
523   // If there are iterations left to execute, control is made to jump to
524   // `ContinuationBlock', otherwise they take the normal loop exit.  The
525   // returned `RewrittenRangeInfo' object is populated as follows:
526   //
527   //  .PseudoExit is a basic block that unconditionally branches to
528   //      `ContinuationBlock'.
529   //
530   //  .ExitSelector is a basic block that decides, on exit from the loop,
531   //      whether to branch to the "true" exit or to `PseudoExit'.
532   //
533   //  .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value
534   //      for each PHINode in the loop header on taking the pseudo exit.
535   //
536   // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate
537   // preheader because it is made to branch to the loop header only
538   // conditionally.
539   //
540   RewrittenRangeInfo
541   changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader,
542                           Value *ExitLoopAt,
543                           BasicBlock *ContinuationBlock) const;
544 
545   // The loop denoted by `LS' has `OldPreheader' as its preheader.  This
546   // function creates a new preheader for `LS' and returns it.
547   //
548   BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader,
549                               const char *Tag) const;
550 
551   // `ContinuationBlockAndPreheader' was the continuation block for some call to
552   // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'.
553   // This function rewrites the PHI nodes in `LS.Header' to start with the
554   // correct value.
555   void rewriteIncomingValuesForPHIs(
556       LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader,
557       const LoopConstrainer::RewrittenRangeInfo &RRI) const;
558 
559   // Even though we do not preserve any passes at this time, we at least need to
560   // keep the parent loop structure consistent.  The `LPPassManager' seems to
561   // verify this after running a loop pass.  This function adds the list of
562   // blocks denoted by BBs to this loops parent loop if required.
563   void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs);
564 
565   // Some global state.
566   Function &F;
567   LLVMContext &Ctx;
568   ScalarEvolution &SE;
569 
570   // Information about the original loop we started out with.
571   Loop &OriginalLoop;
572   LoopInfo &OriginalLoopInfo;
573   const SCEV *LatchTakenCount;
574   BasicBlock *OriginalPreheader;
575 
576   // The preheader of the main loop.  This may or may not be different from
577   // `OriginalPreheader'.
578   BasicBlock *MainLoopPreheader;
579 
580   // The range we need to run the main loop in.
581   InductiveRangeCheck::Range Range;
582 
583   // The structure of the main loop (see comment at the beginning of this class
584   // for a definition)
585   LoopStructure MainLoopStructure;
586 
587 public:
LoopConstrainer(Loop & L,LoopInfo & LI,const LoopStructure & LS,ScalarEvolution & SE,InductiveRangeCheck::Range R)588   LoopConstrainer(Loop &L, LoopInfo &LI, const LoopStructure &LS,
589                   ScalarEvolution &SE, InductiveRangeCheck::Range R)
590       : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()),
591         SE(SE), OriginalLoop(L), OriginalLoopInfo(LI), LatchTakenCount(nullptr),
592         OriginalPreheader(nullptr), MainLoopPreheader(nullptr), Range(R),
593         MainLoopStructure(LS) {}
594 
595   // Entry point for the algorithm.  Returns true on success.
596   bool run();
597 };
598 
599 }
600 
replacePHIBlock(PHINode * PN,BasicBlock * Block,BasicBlock * ReplaceBy)601 void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block,
602                                       BasicBlock *ReplaceBy) {
603   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
604     if (PN->getIncomingBlock(i) == Block)
605       PN->setIncomingBlock(i, ReplaceBy);
606 }
607 
CanBeSMax(ScalarEvolution & SE,const SCEV * S)608 static bool CanBeSMax(ScalarEvolution &SE, const SCEV *S) {
609   APInt SMax =
610       APInt::getSignedMaxValue(cast<IntegerType>(S->getType())->getBitWidth());
611   return SE.getSignedRange(S).contains(SMax) &&
612          SE.getUnsignedRange(S).contains(SMax);
613 }
614 
CanBeSMin(ScalarEvolution & SE,const SCEV * S)615 static bool CanBeSMin(ScalarEvolution &SE, const SCEV *S) {
616   APInt SMin =
617       APInt::getSignedMinValue(cast<IntegerType>(S->getType())->getBitWidth());
618   return SE.getSignedRange(S).contains(SMin) &&
619          SE.getUnsignedRange(S).contains(SMin);
620 }
621 
622 Optional<LoopStructure>
parseLoopStructure(ScalarEvolution & SE,BranchProbabilityInfo & BPI,Loop & L,const char * & FailureReason)623 LoopStructure::parseLoopStructure(ScalarEvolution &SE, BranchProbabilityInfo &BPI,
624                                   Loop &L, const char *&FailureReason) {
625   assert(L.isLoopSimplifyForm() && "should follow from addRequired<>");
626 
627   BasicBlock *Latch = L.getLoopLatch();
628   if (!L.isLoopExiting(Latch)) {
629     FailureReason = "no loop latch";
630     return None;
631   }
632 
633   BasicBlock *Header = L.getHeader();
634   BasicBlock *Preheader = L.getLoopPreheader();
635   if (!Preheader) {
636     FailureReason = "no preheader";
637     return None;
638   }
639 
640   BranchInst *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
641   if (!LatchBr || LatchBr->isUnconditional()) {
642     FailureReason = "latch terminator not conditional branch";
643     return None;
644   }
645 
646   unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0;
647 
648   BranchProbability ExitProbability =
649     BPI.getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx);
650 
651   if (ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) {
652     FailureReason = "short running loop, not profitable";
653     return None;
654   }
655 
656   ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition());
657   if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) {
658     FailureReason = "latch terminator branch not conditional on integral icmp";
659     return None;
660   }
661 
662   const SCEV *LatchCount = SE.getExitCount(&L, Latch);
663   if (isa<SCEVCouldNotCompute>(LatchCount)) {
664     FailureReason = "could not compute latch count";
665     return None;
666   }
667 
668   ICmpInst::Predicate Pred = ICI->getPredicate();
669   Value *LeftValue = ICI->getOperand(0);
670   const SCEV *LeftSCEV = SE.getSCEV(LeftValue);
671   IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType());
672 
673   Value *RightValue = ICI->getOperand(1);
674   const SCEV *RightSCEV = SE.getSCEV(RightValue);
675 
676   // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence.
677   if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
678     if (isa<SCEVAddRecExpr>(RightSCEV)) {
679       std::swap(LeftSCEV, RightSCEV);
680       std::swap(LeftValue, RightValue);
681       Pred = ICmpInst::getSwappedPredicate(Pred);
682     } else {
683       FailureReason = "no add recurrences in the icmp";
684       return None;
685     }
686   }
687 
688   auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) {
689     if (AR->getNoWrapFlags(SCEV::FlagNSW))
690       return true;
691 
692     IntegerType *Ty = cast<IntegerType>(AR->getType());
693     IntegerType *WideTy =
694         IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
695 
696     const SCEVAddRecExpr *ExtendAfterOp =
697         dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
698     if (ExtendAfterOp) {
699       const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy);
700       const SCEV *ExtendedStep =
701           SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy);
702 
703       bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart &&
704                           ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep;
705 
706       if (NoSignedWrap)
707         return true;
708     }
709 
710     // We may have proved this when computing the sign extension above.
711     return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap;
712   };
713 
714   auto IsInductionVar = [&](const SCEVAddRecExpr *AR, bool &IsIncreasing) {
715     if (!AR->isAffine())
716       return false;
717 
718     // Currently we only work with induction variables that have been proved to
719     // not wrap.  This restriction can potentially be lifted in the future.
720 
721     if (!HasNoSignedWrap(AR))
722       return false;
723 
724     if (const SCEVConstant *StepExpr =
725             dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) {
726       ConstantInt *StepCI = StepExpr->getValue();
727       if (StepCI->isOne() || StepCI->isMinusOne()) {
728         IsIncreasing = StepCI->isOne();
729         return true;
730       }
731     }
732 
733     return false;
734   };
735 
736   // `ICI` is interpreted as taking the backedge if the *next* value of the
737   // induction variable satisfies some constraint.
738 
739   const SCEVAddRecExpr *IndVarNext = cast<SCEVAddRecExpr>(LeftSCEV);
740   bool IsIncreasing = false;
741   if (!IsInductionVar(IndVarNext, IsIncreasing)) {
742     FailureReason = "LHS in icmp not induction variable";
743     return None;
744   }
745 
746   ConstantInt *One = ConstantInt::get(IndVarTy, 1);
747   // TODO: generalize the predicates here to also match their unsigned variants.
748   if (IsIncreasing) {
749     bool FoundExpectedPred =
750         (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 1) ||
751         (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 0);
752 
753     if (!FoundExpectedPred) {
754       FailureReason = "expected icmp slt semantically, found something else";
755       return None;
756     }
757 
758     if (LatchBrExitIdx == 0) {
759       if (CanBeSMax(SE, RightSCEV)) {
760         // TODO: this restriction is easily removable -- we just have to
761         // remember that the icmp was an slt and not an sle.
762         FailureReason = "limit may overflow when coercing sle to slt";
763         return None;
764       }
765 
766       IRBuilder<> B(Preheader->getTerminator());
767       RightValue = B.CreateAdd(RightValue, One);
768     }
769 
770   } else {
771     bool FoundExpectedPred =
772         (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 1) ||
773         (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 0);
774 
775     if (!FoundExpectedPred) {
776       FailureReason = "expected icmp sgt semantically, found something else";
777       return None;
778     }
779 
780     if (LatchBrExitIdx == 0) {
781       if (CanBeSMin(SE, RightSCEV)) {
782         // TODO: this restriction is easily removable -- we just have to
783         // remember that the icmp was an sgt and not an sge.
784         FailureReason = "limit may overflow when coercing sge to sgt";
785         return None;
786       }
787 
788       IRBuilder<> B(Preheader->getTerminator());
789       RightValue = B.CreateSub(RightValue, One);
790     }
791   }
792 
793   const SCEV *StartNext = IndVarNext->getStart();
794   const SCEV *Addend = SE.getNegativeSCEV(IndVarNext->getStepRecurrence(SE));
795   const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend);
796 
797   BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx);
798 
799   assert(SE.getLoopDisposition(LatchCount, &L) ==
800              ScalarEvolution::LoopInvariant &&
801          "loop variant exit count doesn't make sense!");
802 
803   assert(!L.contains(LatchExit) && "expected an exit block!");
804   const DataLayout &DL = Preheader->getModule()->getDataLayout();
805   Value *IndVarStartV =
806       SCEVExpander(SE, DL, "irce")
807           .expandCodeFor(IndVarStart, IndVarTy, Preheader->getTerminator());
808   IndVarStartV->setName("indvar.start");
809 
810   LoopStructure Result;
811 
812   Result.Tag = "main";
813   Result.Header = Header;
814   Result.Latch = Latch;
815   Result.LatchBr = LatchBr;
816   Result.LatchExit = LatchExit;
817   Result.LatchBrExitIdx = LatchBrExitIdx;
818   Result.IndVarStart = IndVarStartV;
819   Result.IndVarNext = LeftValue;
820   Result.IndVarIncreasing = IsIncreasing;
821   Result.LoopExitAt = RightValue;
822 
823   FailureReason = nullptr;
824 
825   return Result;
826 }
827 
828 Optional<LoopConstrainer::SubRanges>
calculateSubRanges() const829 LoopConstrainer::calculateSubRanges() const {
830   IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
831 
832   if (Range.getType() != Ty)
833     return None;
834 
835   LoopConstrainer::SubRanges Result;
836 
837   // I think we can be more aggressive here and make this nuw / nsw if the
838   // addition that feeds into the icmp for the latch's terminating branch is nuw
839   // / nsw.  In any case, a wrapping 2's complement addition is safe.
840   ConstantInt *One = ConstantInt::get(Ty, 1);
841   const SCEV *Start = SE.getSCEV(MainLoopStructure.IndVarStart);
842   const SCEV *End = SE.getSCEV(MainLoopStructure.LoopExitAt);
843 
844   bool Increasing = MainLoopStructure.IndVarIncreasing;
845 
846   // We compute `Smallest` and `Greatest` such that [Smallest, Greatest) is the
847   // range of values the induction variable takes.
848 
849   const SCEV *Smallest = nullptr, *Greatest = nullptr;
850 
851   if (Increasing) {
852     Smallest = Start;
853     Greatest = End;
854   } else {
855     // These two computations may sign-overflow.  Here is why that is okay:
856     //
857     // We know that the induction variable does not sign-overflow on any
858     // iteration except the last one, and it starts at `Start` and ends at
859     // `End`, decrementing by one every time.
860     //
861     //  * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the
862     //    induction variable is decreasing we know that that the smallest value
863     //    the loop body is actually executed with is `INT_SMIN` == `Smallest`.
864     //
865     //  * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`.  In
866     //    that case, `Clamp` will always return `Smallest` and
867     //    [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`)
868     //    will be an empty range.  Returning an empty range is always safe.
869     //
870 
871     Smallest = SE.getAddExpr(End, SE.getSCEV(One));
872     Greatest = SE.getAddExpr(Start, SE.getSCEV(One));
873   }
874 
875   auto Clamp = [this, Smallest, Greatest](const SCEV *S) {
876     return SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S));
877   };
878 
879   // In some cases we can prove that we don't need a pre or post loop
880 
881   bool ProvablyNoPreloop =
882       SE.isKnownPredicate(ICmpInst::ICMP_SLE, Range.getBegin(), Smallest);
883   if (!ProvablyNoPreloop)
884     Result.LowLimit = Clamp(Range.getBegin());
885 
886   bool ProvablyNoPostLoop =
887       SE.isKnownPredicate(ICmpInst::ICMP_SLE, Greatest, Range.getEnd());
888   if (!ProvablyNoPostLoop)
889     Result.HighLimit = Clamp(Range.getEnd());
890 
891   return Result;
892 }
893 
cloneLoop(LoopConstrainer::ClonedLoop & Result,const char * Tag) const894 void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
895                                 const char *Tag) const {
896   for (BasicBlock *BB : OriginalLoop.getBlocks()) {
897     BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F);
898     Result.Blocks.push_back(Clone);
899     Result.Map[BB] = Clone;
900   }
901 
902   auto GetClonedValue = [&Result](Value *V) {
903     assert(V && "null values not in domain!");
904     auto It = Result.Map.find(V);
905     if (It == Result.Map.end())
906       return V;
907     return static_cast<Value *>(It->second);
908   };
909 
910   Result.Structure = MainLoopStructure.map(GetClonedValue);
911   Result.Structure.Tag = Tag;
912 
913   for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) {
914     BasicBlock *ClonedBB = Result.Blocks[i];
915     BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i];
916 
917     assert(Result.Map[OriginalBB] == ClonedBB && "invariant!");
918 
919     for (Instruction &I : *ClonedBB)
920       RemapInstruction(&I, Result.Map,
921                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
922 
923     // Exit blocks will now have one more predecessor and their PHI nodes need
924     // to be edited to reflect that.  No phi nodes need to be introduced because
925     // the loop is in LCSSA.
926 
927     for (auto SBBI = succ_begin(OriginalBB), SBBE = succ_end(OriginalBB);
928          SBBI != SBBE; ++SBBI) {
929 
930       if (OriginalLoop.contains(*SBBI))
931         continue; // not an exit block
932 
933       for (Instruction &I : **SBBI) {
934         if (!isa<PHINode>(&I))
935           break;
936 
937         PHINode *PN = cast<PHINode>(&I);
938         Value *OldIncoming = PN->getIncomingValueForBlock(OriginalBB);
939         PN->addIncoming(GetClonedValue(OldIncoming), ClonedBB);
940       }
941     }
942   }
943 }
944 
changeIterationSpaceEnd(const LoopStructure & LS,BasicBlock * Preheader,Value * ExitSubloopAt,BasicBlock * ContinuationBlock) const945 LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
946     const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt,
947     BasicBlock *ContinuationBlock) const {
948 
949   // We start with a loop with a single latch:
950   //
951   //    +--------------------+
952   //    |                    |
953   //    |     preheader      |
954   //    |                    |
955   //    +--------+-----------+
956   //             |      ----------------\
957   //             |     /                |
958   //    +--------v----v------+          |
959   //    |                    |          |
960   //    |      header        |          |
961   //    |                    |          |
962   //    +--------------------+          |
963   //                                    |
964   //            .....                   |
965   //                                    |
966   //    +--------------------+          |
967   //    |                    |          |
968   //    |       latch        >----------/
969   //    |                    |
970   //    +-------v------------+
971   //            |
972   //            |
973   //            |   +--------------------+
974   //            |   |                    |
975   //            +--->   original exit    |
976   //                |                    |
977   //                +--------------------+
978   //
979   // We change the control flow to look like
980   //
981   //
982   //    +--------------------+
983   //    |                    |
984   //    |     preheader      >-------------------------+
985   //    |                    |                         |
986   //    +--------v-----------+                         |
987   //             |    /-------------+                  |
988   //             |   /              |                  |
989   //    +--------v--v--------+      |                  |
990   //    |                    |      |                  |
991   //    |      header        |      |   +--------+     |
992   //    |                    |      |   |        |     |
993   //    +--------------------+      |   |  +-----v-----v-----------+
994   //                                |   |  |                       |
995   //                                |   |  |     .pseudo.exit      |
996   //                                |   |  |                       |
997   //                                |   |  +-----------v-----------+
998   //                                |   |              |
999   //            .....               |   |              |
1000   //                                |   |     +--------v-------------+
1001   //    +--------------------+      |   |     |                      |
1002   //    |                    |      |   |     |   ContinuationBlock  |
1003   //    |       latch        >------+   |     |                      |
1004   //    |                    |          |     +----------------------+
1005   //    +---------v----------+          |
1006   //              |                     |
1007   //              |                     |
1008   //              |     +---------------^-----+
1009   //              |     |                     |
1010   //              +----->    .exit.selector   |
1011   //                    |                     |
1012   //                    +----------v----------+
1013   //                               |
1014   //     +--------------------+    |
1015   //     |                    |    |
1016   //     |   original exit    <----+
1017   //     |                    |
1018   //     +--------------------+
1019   //
1020 
1021   RewrittenRangeInfo RRI;
1022 
1023   auto BBInsertLocation = std::next(Function::iterator(LS.Latch));
1024   RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector",
1025                                         &F, &*BBInsertLocation);
1026   RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F,
1027                                       &*BBInsertLocation);
1028 
1029   BranchInst *PreheaderJump = cast<BranchInst>(Preheader->getTerminator());
1030   bool Increasing = LS.IndVarIncreasing;
1031 
1032   IRBuilder<> B(PreheaderJump);
1033 
1034   // EnterLoopCond - is it okay to start executing this `LS'?
1035   Value *EnterLoopCond = Increasing
1036                              ? B.CreateICmpSLT(LS.IndVarStart, ExitSubloopAt)
1037                              : B.CreateICmpSGT(LS.IndVarStart, ExitSubloopAt);
1038 
1039   B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit);
1040   PreheaderJump->eraseFromParent();
1041 
1042   LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector);
1043   B.SetInsertPoint(LS.LatchBr);
1044   Value *TakeBackedgeLoopCond =
1045       Increasing ? B.CreateICmpSLT(LS.IndVarNext, ExitSubloopAt)
1046                  : B.CreateICmpSGT(LS.IndVarNext, ExitSubloopAt);
1047   Value *CondForBranch = LS.LatchBrExitIdx == 1
1048                              ? TakeBackedgeLoopCond
1049                              : B.CreateNot(TakeBackedgeLoopCond);
1050 
1051   LS.LatchBr->setCondition(CondForBranch);
1052 
1053   B.SetInsertPoint(RRI.ExitSelector);
1054 
1055   // IterationsLeft - are there any more iterations left, given the original
1056   // upper bound on the induction variable?  If not, we branch to the "real"
1057   // exit.
1058   Value *IterationsLeft = Increasing
1059                               ? B.CreateICmpSLT(LS.IndVarNext, LS.LoopExitAt)
1060                               : B.CreateICmpSGT(LS.IndVarNext, LS.LoopExitAt);
1061   B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit);
1062 
1063   BranchInst *BranchToContinuation =
1064       BranchInst::Create(ContinuationBlock, RRI.PseudoExit);
1065 
1066   // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of
1067   // each of the PHI nodes in the loop header.  This feeds into the initial
1068   // value of the same PHI nodes if/when we continue execution.
1069   for (Instruction &I : *LS.Header) {
1070     if (!isa<PHINode>(&I))
1071       break;
1072 
1073     PHINode *PN = cast<PHINode>(&I);
1074 
1075     PHINode *NewPHI = PHINode::Create(PN->getType(), 2, PN->getName() + ".copy",
1076                                       BranchToContinuation);
1077 
1078     NewPHI->addIncoming(PN->getIncomingValueForBlock(Preheader), Preheader);
1079     NewPHI->addIncoming(PN->getIncomingValueForBlock(LS.Latch),
1080                         RRI.ExitSelector);
1081     RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
1082   }
1083 
1084   RRI.IndVarEnd = PHINode::Create(LS.IndVarNext->getType(), 2, "indvar.end",
1085                                   BranchToContinuation);
1086   RRI.IndVarEnd->addIncoming(LS.IndVarStart, Preheader);
1087   RRI.IndVarEnd->addIncoming(LS.IndVarNext, RRI.ExitSelector);
1088 
1089   // The latch exit now has a branch from `RRI.ExitSelector' instead of
1090   // `LS.Latch'.  The PHI nodes need to be updated to reflect that.
1091   for (Instruction &I : *LS.LatchExit) {
1092     if (PHINode *PN = dyn_cast<PHINode>(&I))
1093       replacePHIBlock(PN, LS.Latch, RRI.ExitSelector);
1094     else
1095       break;
1096   }
1097 
1098   return RRI;
1099 }
1100 
rewriteIncomingValuesForPHIs(LoopStructure & LS,BasicBlock * ContinuationBlock,const LoopConstrainer::RewrittenRangeInfo & RRI) const1101 void LoopConstrainer::rewriteIncomingValuesForPHIs(
1102     LoopStructure &LS, BasicBlock *ContinuationBlock,
1103     const LoopConstrainer::RewrittenRangeInfo &RRI) const {
1104 
1105   unsigned PHIIndex = 0;
1106   for (Instruction &I : *LS.Header) {
1107     if (!isa<PHINode>(&I))
1108       break;
1109 
1110     PHINode *PN = cast<PHINode>(&I);
1111 
1112     for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
1113       if (PN->getIncomingBlock(i) == ContinuationBlock)
1114         PN->setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]);
1115   }
1116 
1117   LS.IndVarStart = RRI.IndVarEnd;
1118 }
1119 
createPreheader(const LoopStructure & LS,BasicBlock * OldPreheader,const char * Tag) const1120 BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS,
1121                                              BasicBlock *OldPreheader,
1122                                              const char *Tag) const {
1123 
1124   BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header);
1125   BranchInst::Create(LS.Header, Preheader);
1126 
1127   for (Instruction &I : *LS.Header) {
1128     if (!isa<PHINode>(&I))
1129       break;
1130 
1131     PHINode *PN = cast<PHINode>(&I);
1132     for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
1133       replacePHIBlock(PN, OldPreheader, Preheader);
1134   }
1135 
1136   return Preheader;
1137 }
1138 
addToParentLoopIfNeeded(ArrayRef<BasicBlock * > BBs)1139 void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) {
1140   Loop *ParentLoop = OriginalLoop.getParentLoop();
1141   if (!ParentLoop)
1142     return;
1143 
1144   for (BasicBlock *BB : BBs)
1145     ParentLoop->addBasicBlockToLoop(BB, OriginalLoopInfo);
1146 }
1147 
run()1148 bool LoopConstrainer::run() {
1149   BasicBlock *Preheader = nullptr;
1150   LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch);
1151   Preheader = OriginalLoop.getLoopPreheader();
1152   assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr &&
1153          "preconditions!");
1154 
1155   OriginalPreheader = Preheader;
1156   MainLoopPreheader = Preheader;
1157 
1158   Optional<SubRanges> MaybeSR = calculateSubRanges();
1159   if (!MaybeSR.hasValue()) {
1160     DEBUG(dbgs() << "irce: could not compute subranges\n");
1161     return false;
1162   }
1163 
1164   SubRanges SR = MaybeSR.getValue();
1165   bool Increasing = MainLoopStructure.IndVarIncreasing;
1166   IntegerType *IVTy =
1167       cast<IntegerType>(MainLoopStructure.IndVarNext->getType());
1168 
1169   SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce");
1170   Instruction *InsertPt = OriginalPreheader->getTerminator();
1171 
1172   // It would have been better to make `PreLoop' and `PostLoop'
1173   // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy
1174   // constructor.
1175   ClonedLoop PreLoop, PostLoop;
1176   bool NeedsPreLoop =
1177       Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue();
1178   bool NeedsPostLoop =
1179       Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue();
1180 
1181   Value *ExitPreLoopAt = nullptr;
1182   Value *ExitMainLoopAt = nullptr;
1183   const SCEVConstant *MinusOneS =
1184       cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */));
1185 
1186   if (NeedsPreLoop) {
1187     const SCEV *ExitPreLoopAtSCEV = nullptr;
1188 
1189     if (Increasing)
1190       ExitPreLoopAtSCEV = *SR.LowLimit;
1191     else {
1192       if (CanBeSMin(SE, *SR.HighLimit)) {
1193         DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1194                      << "preloop exit limit.  HighLimit = " << *(*SR.HighLimit)
1195                      << "\n");
1196         return false;
1197       }
1198       ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS);
1199     }
1200 
1201     ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt);
1202     ExitPreLoopAt->setName("exit.preloop.at");
1203   }
1204 
1205   if (NeedsPostLoop) {
1206     const SCEV *ExitMainLoopAtSCEV = nullptr;
1207 
1208     if (Increasing)
1209       ExitMainLoopAtSCEV = *SR.HighLimit;
1210     else {
1211       if (CanBeSMin(SE, *SR.LowLimit)) {
1212         DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1213                      << "mainloop exit limit.  LowLimit = " << *(*SR.LowLimit)
1214                      << "\n");
1215         return false;
1216       }
1217       ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS);
1218     }
1219 
1220     ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt);
1221     ExitMainLoopAt->setName("exit.mainloop.at");
1222   }
1223 
1224   // We clone these ahead of time so that we don't have to deal with changing
1225   // and temporarily invalid IR as we transform the loops.
1226   if (NeedsPreLoop)
1227     cloneLoop(PreLoop, "preloop");
1228   if (NeedsPostLoop)
1229     cloneLoop(PostLoop, "postloop");
1230 
1231   RewrittenRangeInfo PreLoopRRI;
1232 
1233   if (NeedsPreLoop) {
1234     Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header,
1235                                                   PreLoop.Structure.Header);
1236 
1237     MainLoopPreheader =
1238         createPreheader(MainLoopStructure, Preheader, "mainloop");
1239     PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader,
1240                                          ExitPreLoopAt, MainLoopPreheader);
1241     rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
1242                                  PreLoopRRI);
1243   }
1244 
1245   BasicBlock *PostLoopPreheader = nullptr;
1246   RewrittenRangeInfo PostLoopRRI;
1247 
1248   if (NeedsPostLoop) {
1249     PostLoopPreheader =
1250         createPreheader(PostLoop.Structure, Preheader, "postloop");
1251     PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
1252                                           ExitMainLoopAt, PostLoopPreheader);
1253     rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
1254                                  PostLoopRRI);
1255   }
1256 
1257   BasicBlock *NewMainLoopPreheader =
1258       MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr;
1259   BasicBlock *NewBlocks[] = {PostLoopPreheader,        PreLoopRRI.PseudoExit,
1260                              PreLoopRRI.ExitSelector,  PostLoopRRI.PseudoExit,
1261                              PostLoopRRI.ExitSelector, NewMainLoopPreheader};
1262 
1263   // Some of the above may be nullptr, filter them out before passing to
1264   // addToParentLoopIfNeeded.
1265   auto NewBlocksEnd =
1266       std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr);
1267 
1268   addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd));
1269   addToParentLoopIfNeeded(PreLoop.Blocks);
1270   addToParentLoopIfNeeded(PostLoop.Blocks);
1271 
1272   return true;
1273 }
1274 
1275 /// Computes and returns a range of values for the induction variable (IndVar)
1276 /// in which the range check can be safely elided.  If it cannot compute such a
1277 /// range, returns None.
1278 Optional<InductiveRangeCheck::Range>
computeSafeIterationSpace(ScalarEvolution & SE,const SCEVAddRecExpr * IndVar) const1279 InductiveRangeCheck::computeSafeIterationSpace(
1280     ScalarEvolution &SE, const SCEVAddRecExpr *IndVar) const {
1281   // IndVar is of the form "A + B * I" (where "I" is the canonical induction
1282   // variable, that may or may not exist as a real llvm::Value in the loop) and
1283   // this inductive range check is a range check on the "C + D * I" ("C" is
1284   // getOffset() and "D" is getScale()).  We rewrite the value being range
1285   // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
1286   // Currently we support this only for "B" = "D" = { 1 or -1 }, but the code
1287   // can be generalized as needed.
1288   //
1289   // The actual inequalities we solve are of the form
1290   //
1291   //   0 <= M + 1 * IndVar < L given L >= 0  (i.e. N == 1)
1292   //
1293   // The inequality is satisfied by -M <= IndVar < (L - M) [^1].  All additions
1294   // and subtractions are twos-complement wrapping and comparisons are signed.
1295   //
1296   // Proof:
1297   //
1298   //   If there exists IndVar such that -M <= IndVar < (L - M) then it follows
1299   //   that -M <= (-M + L) [== Eq. 1].  Since L >= 0, if (-M + L) sign-overflows
1300   //   then (-M + L) < (-M).  Hence by [Eq. 1], (-M + L) could not have
1301   //   overflown.
1302   //
1303   //   This means IndVar = t + (-M) for t in [0, L).  Hence (IndVar + M) = t.
1304   //   Hence 0 <= (IndVar + M) < L
1305 
1306   // [^1]: Note that the solution does _not_ apply if L < 0; consider values M =
1307   // 127, IndVar = 126 and L = -2 in an i8 world.
1308 
1309   if (!IndVar->isAffine())
1310     return None;
1311 
1312   const SCEV *A = IndVar->getStart();
1313   const SCEVConstant *B = dyn_cast<SCEVConstant>(IndVar->getStepRecurrence(SE));
1314   if (!B)
1315     return None;
1316 
1317   const SCEV *C = getOffset();
1318   const SCEVConstant *D = dyn_cast<SCEVConstant>(getScale());
1319   if (D != B)
1320     return None;
1321 
1322   ConstantInt *ConstD = D->getValue();
1323   if (!(ConstD->isMinusOne() || ConstD->isOne()))
1324     return None;
1325 
1326   const SCEV *M = SE.getMinusSCEV(C, A);
1327 
1328   const SCEV *Begin = SE.getNegativeSCEV(M);
1329   const SCEV *UpperLimit = nullptr;
1330 
1331   // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L".
1332   // We can potentially do much better here.
1333   if (Value *V = getLength()) {
1334     UpperLimit = SE.getSCEV(V);
1335   } else {
1336     assert(Kind == InductiveRangeCheck::RANGE_CHECK_LOWER && "invariant!");
1337     unsigned BitWidth = cast<IntegerType>(IndVar->getType())->getBitWidth();
1338     UpperLimit = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
1339   }
1340 
1341   const SCEV *End = SE.getMinusSCEV(UpperLimit, M);
1342   return InductiveRangeCheck::Range(Begin, End);
1343 }
1344 
1345 static Optional<InductiveRangeCheck::Range>
IntersectRange(ScalarEvolution & SE,const Optional<InductiveRangeCheck::Range> & R1,const InductiveRangeCheck::Range & R2)1346 IntersectRange(ScalarEvolution &SE,
1347                const Optional<InductiveRangeCheck::Range> &R1,
1348                const InductiveRangeCheck::Range &R2) {
1349   if (!R1.hasValue())
1350     return R2;
1351   auto &R1Value = R1.getValue();
1352 
1353   // TODO: we could widen the smaller range and have this work; but for now we
1354   // bail out to keep things simple.
1355   if (R1Value.getType() != R2.getType())
1356     return None;
1357 
1358   const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
1359   const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
1360 
1361   return InductiveRangeCheck::Range(NewBegin, NewEnd);
1362 }
1363 
runOnLoop(Loop * L,LPPassManager & LPM)1364 bool InductiveRangeCheckElimination::runOnLoop(Loop *L, LPPassManager &LPM) {
1365   if (skipLoop(L))
1366     return false;
1367 
1368   if (L->getBlocks().size() >= LoopSizeCutoff) {
1369     DEBUG(dbgs() << "irce: giving up constraining loop, too large\n";);
1370     return false;
1371   }
1372 
1373   BasicBlock *Preheader = L->getLoopPreheader();
1374   if (!Preheader) {
1375     DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
1376     return false;
1377   }
1378 
1379   LLVMContext &Context = Preheader->getContext();
1380   SmallVector<InductiveRangeCheck, 16> RangeChecks;
1381   ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1382   BranchProbabilityInfo &BPI =
1383       getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
1384 
1385   for (auto BBI : L->getBlocks())
1386     if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
1387       InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI,
1388                                                         RangeChecks);
1389 
1390   if (RangeChecks.empty())
1391     return false;
1392 
1393   auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) {
1394     OS << "irce: looking at loop "; L->print(OS);
1395     OS << "irce: loop has " << RangeChecks.size()
1396        << " inductive range checks: \n";
1397     for (InductiveRangeCheck &IRC : RangeChecks)
1398       IRC.print(OS);
1399   };
1400 
1401   DEBUG(PrintRecognizedRangeChecks(dbgs()));
1402 
1403   if (PrintRangeChecks)
1404     PrintRecognizedRangeChecks(errs());
1405 
1406   const char *FailureReason = nullptr;
1407   Optional<LoopStructure> MaybeLoopStructure =
1408       LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason);
1409   if (!MaybeLoopStructure.hasValue()) {
1410     DEBUG(dbgs() << "irce: could not parse loop structure: " << FailureReason
1411                  << "\n";);
1412     return false;
1413   }
1414   LoopStructure LS = MaybeLoopStructure.getValue();
1415   bool Increasing = LS.IndVarIncreasing;
1416   const SCEV *MinusOne =
1417       SE.getConstant(LS.IndVarNext->getType(), Increasing ? -1 : 1, true);
1418   const SCEVAddRecExpr *IndVar =
1419       cast<SCEVAddRecExpr>(SE.getAddExpr(SE.getSCEV(LS.IndVarNext), MinusOne));
1420 
1421   Optional<InductiveRangeCheck::Range> SafeIterRange;
1422   Instruction *ExprInsertPt = Preheader->getTerminator();
1423 
1424   SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate;
1425 
1426   IRBuilder<> B(ExprInsertPt);
1427   for (InductiveRangeCheck &IRC : RangeChecks) {
1428     auto Result = IRC.computeSafeIterationSpace(SE, IndVar);
1429     if (Result.hasValue()) {
1430       auto MaybeSafeIterRange =
1431           IntersectRange(SE, SafeIterRange, Result.getValue());
1432       if (MaybeSafeIterRange.hasValue()) {
1433         RangeChecksToEliminate.push_back(IRC);
1434         SafeIterRange = MaybeSafeIterRange.getValue();
1435       }
1436     }
1437   }
1438 
1439   if (!SafeIterRange.hasValue())
1440     return false;
1441 
1442   LoopConstrainer LC(*L, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), LS,
1443                      SE, SafeIterRange.getValue());
1444   bool Changed = LC.run();
1445 
1446   if (Changed) {
1447     auto PrintConstrainedLoopInfo = [L]() {
1448       dbgs() << "irce: in function ";
1449       dbgs() << L->getHeader()->getParent()->getName() << ": ";
1450       dbgs() << "constrained ";
1451       L->print(dbgs());
1452     };
1453 
1454     DEBUG(PrintConstrainedLoopInfo());
1455 
1456     if (PrintChangedLoops)
1457       PrintConstrainedLoopInfo();
1458 
1459     // Optimize away the now-redundant range checks.
1460 
1461     for (InductiveRangeCheck &IRC : RangeChecksToEliminate) {
1462       ConstantInt *FoldedRangeCheck = IRC.getPassingDirection()
1463                                           ? ConstantInt::getTrue(Context)
1464                                           : ConstantInt::getFalse(Context);
1465       IRC.getCheckUse()->set(FoldedRangeCheck);
1466     }
1467   }
1468 
1469   return Changed;
1470 }
1471 
createInductiveRangeCheckEliminationPass()1472 Pass *llvm::createInductiveRangeCheckEliminationPass() {
1473   return new InductiveRangeCheckElimination;
1474 }
1475