1 //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // BreakCriticalEdges pass - Break all of the critical edges in the CFG by
11 // inserting a dummy basic block. This pass may be "required" by passes that
12 // cannot deal with critical edges. For this usage, the structure type is
13 // forward declared. This pass obviously invalidates the CFG, but can update
14 // dominator trees.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "llvm/Transforms/Scalar.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/Analysis/LoopInfo.h"
24 #include "llvm/IR/CFG.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/Type.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
31 using namespace llvm;
32
33 #define DEBUG_TYPE "break-crit-edges"
34
35 STATISTIC(NumBroken, "Number of blocks inserted");
36
37 namespace {
38 struct BreakCriticalEdges : public FunctionPass {
39 static char ID; // Pass identification, replacement for typeid
BreakCriticalEdges__anon4fc7a4880111::BreakCriticalEdges40 BreakCriticalEdges() : FunctionPass(ID) {
41 initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
42 }
43
runOnFunction__anon4fc7a4880111::BreakCriticalEdges44 bool runOnFunction(Function &F) override {
45 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
46 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
47 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
48 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
49 unsigned N =
50 SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI));
51 NumBroken += N;
52 return N > 0;
53 }
54
getAnalysisUsage__anon4fc7a4880111::BreakCriticalEdges55 void getAnalysisUsage(AnalysisUsage &AU) const override {
56 AU.addPreserved<DominatorTreeWrapperPass>();
57 AU.addPreserved<LoopInfoWrapperPass>();
58
59 // No loop canonicalization guarantees are broken by this pass.
60 AU.addPreservedID(LoopSimplifyID);
61 }
62 };
63 }
64
65 char BreakCriticalEdges::ID = 0;
66 INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges",
67 "Break critical edges in CFG", false, false)
68
69 // Publicly exposed interface to pass...
70 char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID;
createBreakCriticalEdgesPass()71 FunctionPass *llvm::createBreakCriticalEdgesPass() {
72 return new BreakCriticalEdges();
73 }
74
75 //===----------------------------------------------------------------------===//
76 // Implementation of the external critical edge manipulation functions
77 //===----------------------------------------------------------------------===//
78
79 /// When a loop exit edge is split, LCSSA form may require new PHIs in the new
80 /// exit block. This function inserts the new PHIs, as needed. Preds is a list
81 /// of preds inside the loop, SplitBB is the new loop exit block, and DestBB is
82 /// the old loop exit, now the successor of SplitBB.
createPHIsForSplitLoopExit(ArrayRef<BasicBlock * > Preds,BasicBlock * SplitBB,BasicBlock * DestBB)83 static void createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
84 BasicBlock *SplitBB,
85 BasicBlock *DestBB) {
86 // SplitBB shouldn't have anything non-trivial in it yet.
87 assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
88 SplitBB->isLandingPad()) && "SplitBB has non-PHI nodes!");
89
90 // For each PHI in the destination block.
91 for (BasicBlock::iterator I = DestBB->begin();
92 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
93 unsigned Idx = PN->getBasicBlockIndex(SplitBB);
94 Value *V = PN->getIncomingValue(Idx);
95
96 // If the input is a PHI which already satisfies LCSSA, don't create
97 // a new one.
98 if (const PHINode *VP = dyn_cast<PHINode>(V))
99 if (VP->getParent() == SplitBB)
100 continue;
101
102 // Otherwise a new PHI is needed. Create one and populate it.
103 PHINode *NewPN = PHINode::Create(
104 PN->getType(), Preds.size(), "split",
105 SplitBB->isLandingPad() ? &SplitBB->front() : SplitBB->getTerminator());
106 for (unsigned i = 0, e = Preds.size(); i != e; ++i)
107 NewPN->addIncoming(V, Preds[i]);
108
109 // Update the original PHI.
110 PN->setIncomingValue(Idx, NewPN);
111 }
112 }
113
114 BasicBlock *
SplitCriticalEdge(TerminatorInst * TI,unsigned SuccNum,const CriticalEdgeSplittingOptions & Options)115 llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
116 const CriticalEdgeSplittingOptions &Options) {
117 if (!isCriticalEdge(TI, SuccNum, Options.MergeIdenticalEdges))
118 return nullptr;
119
120 assert(!isa<IndirectBrInst>(TI) &&
121 "Cannot split critical edge from IndirectBrInst");
122
123 BasicBlock *TIBB = TI->getParent();
124 BasicBlock *DestBB = TI->getSuccessor(SuccNum);
125
126 // Splitting the critical edge to a pad block is non-trivial. Don't do
127 // it in this generic function.
128 if (DestBB->isEHPad()) return nullptr;
129
130 // Create a new basic block, linking it into the CFG.
131 BasicBlock *NewBB = BasicBlock::Create(TI->getContext(),
132 TIBB->getName() + "." + DestBB->getName() + "_crit_edge");
133 // Create our unconditional branch.
134 BranchInst *NewBI = BranchInst::Create(DestBB, NewBB);
135 NewBI->setDebugLoc(TI->getDebugLoc());
136
137 // Branch to the new block, breaking the edge.
138 TI->setSuccessor(SuccNum, NewBB);
139
140 // Insert the block into the function... right after the block TI lives in.
141 Function &F = *TIBB->getParent();
142 Function::iterator FBBI = TIBB->getIterator();
143 F.getBasicBlockList().insert(++FBBI, NewBB);
144
145 // If there are any PHI nodes in DestBB, we need to update them so that they
146 // merge incoming values from NewBB instead of from TIBB.
147 {
148 unsigned BBIdx = 0;
149 for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
150 // We no longer enter through TIBB, now we come in through NewBB.
151 // Revector exactly one entry in the PHI node that used to come from
152 // TIBB to come from NewBB.
153 PHINode *PN = cast<PHINode>(I);
154
155 // Reuse the previous value of BBIdx if it lines up. In cases where we
156 // have multiple phi nodes with *lots* of predecessors, this is a speed
157 // win because we don't have to scan the PHI looking for TIBB. This
158 // happens because the BB list of PHI nodes are usually in the same
159 // order.
160 if (PN->getIncomingBlock(BBIdx) != TIBB)
161 BBIdx = PN->getBasicBlockIndex(TIBB);
162 PN->setIncomingBlock(BBIdx, NewBB);
163 }
164 }
165
166 // If there are any other edges from TIBB to DestBB, update those to go
167 // through the split block, making those edges non-critical as well (and
168 // reducing the number of phi entries in the DestBB if relevant).
169 if (Options.MergeIdenticalEdges) {
170 for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
171 if (TI->getSuccessor(i) != DestBB) continue;
172
173 // Remove an entry for TIBB from DestBB phi nodes.
174 DestBB->removePredecessor(TIBB, Options.DontDeleteUselessPHIs);
175
176 // We found another edge to DestBB, go to NewBB instead.
177 TI->setSuccessor(i, NewBB);
178 }
179 }
180
181 // If we have nothing to update, just return.
182 auto *DT = Options.DT;
183 auto *LI = Options.LI;
184 if (!DT && !LI)
185 return NewBB;
186
187 // Now update analysis information. Since the only predecessor of NewBB is
188 // the TIBB, TIBB clearly dominates NewBB. TIBB usually doesn't dominate
189 // anything, as there are other successors of DestBB. However, if all other
190 // predecessors of DestBB are already dominated by DestBB (e.g. DestBB is a
191 // loop header) then NewBB dominates DestBB.
192 SmallVector<BasicBlock*, 8> OtherPreds;
193
194 // If there is a PHI in the block, loop over predecessors with it, which is
195 // faster than iterating pred_begin/end.
196 if (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
197 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
198 if (PN->getIncomingBlock(i) != NewBB)
199 OtherPreds.push_back(PN->getIncomingBlock(i));
200 } else {
201 for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB);
202 I != E; ++I) {
203 BasicBlock *P = *I;
204 if (P != NewBB)
205 OtherPreds.push_back(P);
206 }
207 }
208
209 bool NewBBDominatesDestBB = true;
210
211 // Should we update DominatorTree information?
212 if (DT) {
213 DomTreeNode *TINode = DT->getNode(TIBB);
214
215 // The new block is not the immediate dominator for any other nodes, but
216 // TINode is the immediate dominator for the new node.
217 //
218 if (TINode) { // Don't break unreachable code!
219 DomTreeNode *NewBBNode = DT->addNewBlock(NewBB, TIBB);
220 DomTreeNode *DestBBNode = nullptr;
221
222 // If NewBBDominatesDestBB hasn't been computed yet, do so with DT.
223 if (!OtherPreds.empty()) {
224 DestBBNode = DT->getNode(DestBB);
225 while (!OtherPreds.empty() && NewBBDominatesDestBB) {
226 if (DomTreeNode *OPNode = DT->getNode(OtherPreds.back()))
227 NewBBDominatesDestBB = DT->dominates(DestBBNode, OPNode);
228 OtherPreds.pop_back();
229 }
230 OtherPreds.clear();
231 }
232
233 // If NewBBDominatesDestBB, then NewBB dominates DestBB, otherwise it
234 // doesn't dominate anything.
235 if (NewBBDominatesDestBB) {
236 if (!DestBBNode) DestBBNode = DT->getNode(DestBB);
237 DT->changeImmediateDominator(DestBBNode, NewBBNode);
238 }
239 }
240 }
241
242 // Update LoopInfo if it is around.
243 if (LI) {
244 if (Loop *TIL = LI->getLoopFor(TIBB)) {
245 // If one or the other blocks were not in a loop, the new block is not
246 // either, and thus LI doesn't need to be updated.
247 if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
248 if (TIL == DestLoop) {
249 // Both in the same loop, the NewBB joins loop.
250 DestLoop->addBasicBlockToLoop(NewBB, *LI);
251 } else if (TIL->contains(DestLoop)) {
252 // Edge from an outer loop to an inner loop. Add to the outer loop.
253 TIL->addBasicBlockToLoop(NewBB, *LI);
254 } else if (DestLoop->contains(TIL)) {
255 // Edge from an inner loop to an outer loop. Add to the outer loop.
256 DestLoop->addBasicBlockToLoop(NewBB, *LI);
257 } else {
258 // Edge from two loops with no containment relation. Because these
259 // are natural loops, we know that the destination block must be the
260 // header of its loop (adding a branch into a loop elsewhere would
261 // create an irreducible loop).
262 assert(DestLoop->getHeader() == DestBB &&
263 "Should not create irreducible loops!");
264 if (Loop *P = DestLoop->getParentLoop())
265 P->addBasicBlockToLoop(NewBB, *LI);
266 }
267 }
268
269 // If TIBB is in a loop and DestBB is outside of that loop, we may need
270 // to update LoopSimplify form and LCSSA form.
271 if (!TIL->contains(DestBB)) {
272 assert(!TIL->contains(NewBB) &&
273 "Split point for loop exit is contained in loop!");
274
275 // Update LCSSA form in the newly created exit block.
276 if (Options.PreserveLCSSA) {
277 createPHIsForSplitLoopExit(TIBB, NewBB, DestBB);
278 }
279
280 // The only that we can break LoopSimplify form by splitting a critical
281 // edge is if after the split there exists some edge from TIL to DestBB
282 // *and* the only edge into DestBB from outside of TIL is that of
283 // NewBB. If the first isn't true, then LoopSimplify still holds, NewBB
284 // is the new exit block and it has no non-loop predecessors. If the
285 // second isn't true, then DestBB was not in LoopSimplify form prior to
286 // the split as it had a non-loop predecessor. In both of these cases,
287 // the predecessor must be directly in TIL, not in a subloop, or again
288 // LoopSimplify doesn't hold.
289 SmallVector<BasicBlock *, 4> LoopPreds;
290 for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); I != E;
291 ++I) {
292 BasicBlock *P = *I;
293 if (P == NewBB)
294 continue; // The new block is known.
295 if (LI->getLoopFor(P) != TIL) {
296 // No need to re-simplify, it wasn't to start with.
297 LoopPreds.clear();
298 break;
299 }
300 LoopPreds.push_back(P);
301 }
302 if (!LoopPreds.empty()) {
303 assert(!DestBB->isEHPad() && "We don't split edges to EH pads!");
304 BasicBlock *NewExitBB = SplitBlockPredecessors(
305 DestBB, LoopPreds, "split", DT, LI, Options.PreserveLCSSA);
306 if (Options.PreserveLCSSA)
307 createPHIsForSplitLoopExit(LoopPreds, NewExitBB, DestBB);
308 }
309 }
310 }
311 }
312
313 return NewBB;
314 }
315