1 //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // BreakCriticalEdges pass - Break all of the critical edges in the CFG by
11 // inserting a dummy basic block.  This pass may be "required" by passes that
12 // cannot deal with critical edges.  For this usage, the structure type is
13 // forward declared.  This pass obviously invalidates the CFG, but can update
14 // dominator trees.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/Transforms/Scalar.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/Analysis/LoopInfo.h"
24 #include "llvm/IR/CFG.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/Type.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
31 using namespace llvm;
32 
33 #define DEBUG_TYPE "break-crit-edges"
34 
35 STATISTIC(NumBroken, "Number of blocks inserted");
36 
37 namespace {
38   struct BreakCriticalEdges : public FunctionPass {
39     static char ID; // Pass identification, replacement for typeid
BreakCriticalEdges__anon4fc7a4880111::BreakCriticalEdges40     BreakCriticalEdges() : FunctionPass(ID) {
41       initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
42     }
43 
runOnFunction__anon4fc7a4880111::BreakCriticalEdges44     bool runOnFunction(Function &F) override {
45       auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
46       auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
47       auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
48       auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
49       unsigned N =
50           SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI));
51       NumBroken += N;
52       return N > 0;
53     }
54 
getAnalysisUsage__anon4fc7a4880111::BreakCriticalEdges55     void getAnalysisUsage(AnalysisUsage &AU) const override {
56       AU.addPreserved<DominatorTreeWrapperPass>();
57       AU.addPreserved<LoopInfoWrapperPass>();
58 
59       // No loop canonicalization guarantees are broken by this pass.
60       AU.addPreservedID(LoopSimplifyID);
61     }
62   };
63 }
64 
65 char BreakCriticalEdges::ID = 0;
66 INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges",
67                 "Break critical edges in CFG", false, false)
68 
69 // Publicly exposed interface to pass...
70 char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID;
createBreakCriticalEdgesPass()71 FunctionPass *llvm::createBreakCriticalEdgesPass() {
72   return new BreakCriticalEdges();
73 }
74 
75 //===----------------------------------------------------------------------===//
76 //    Implementation of the external critical edge manipulation functions
77 //===----------------------------------------------------------------------===//
78 
79 /// When a loop exit edge is split, LCSSA form may require new PHIs in the new
80 /// exit block. This function inserts the new PHIs, as needed. Preds is a list
81 /// of preds inside the loop, SplitBB is the new loop exit block, and DestBB is
82 /// the old loop exit, now the successor of SplitBB.
createPHIsForSplitLoopExit(ArrayRef<BasicBlock * > Preds,BasicBlock * SplitBB,BasicBlock * DestBB)83 static void createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
84                                        BasicBlock *SplitBB,
85                                        BasicBlock *DestBB) {
86   // SplitBB shouldn't have anything non-trivial in it yet.
87   assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
88           SplitBB->isLandingPad()) && "SplitBB has non-PHI nodes!");
89 
90   // For each PHI in the destination block.
91   for (BasicBlock::iterator I = DestBB->begin();
92        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
93     unsigned Idx = PN->getBasicBlockIndex(SplitBB);
94     Value *V = PN->getIncomingValue(Idx);
95 
96     // If the input is a PHI which already satisfies LCSSA, don't create
97     // a new one.
98     if (const PHINode *VP = dyn_cast<PHINode>(V))
99       if (VP->getParent() == SplitBB)
100         continue;
101 
102     // Otherwise a new PHI is needed. Create one and populate it.
103     PHINode *NewPN = PHINode::Create(
104         PN->getType(), Preds.size(), "split",
105         SplitBB->isLandingPad() ? &SplitBB->front() : SplitBB->getTerminator());
106     for (unsigned i = 0, e = Preds.size(); i != e; ++i)
107       NewPN->addIncoming(V, Preds[i]);
108 
109     // Update the original PHI.
110     PN->setIncomingValue(Idx, NewPN);
111   }
112 }
113 
114 BasicBlock *
SplitCriticalEdge(TerminatorInst * TI,unsigned SuccNum,const CriticalEdgeSplittingOptions & Options)115 llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
116                         const CriticalEdgeSplittingOptions &Options) {
117   if (!isCriticalEdge(TI, SuccNum, Options.MergeIdenticalEdges))
118     return nullptr;
119 
120   assert(!isa<IndirectBrInst>(TI) &&
121          "Cannot split critical edge from IndirectBrInst");
122 
123   BasicBlock *TIBB = TI->getParent();
124   BasicBlock *DestBB = TI->getSuccessor(SuccNum);
125 
126   // Splitting the critical edge to a pad block is non-trivial. Don't do
127   // it in this generic function.
128   if (DestBB->isEHPad()) return nullptr;
129 
130   // Create a new basic block, linking it into the CFG.
131   BasicBlock *NewBB = BasicBlock::Create(TI->getContext(),
132                       TIBB->getName() + "." + DestBB->getName() + "_crit_edge");
133   // Create our unconditional branch.
134   BranchInst *NewBI = BranchInst::Create(DestBB, NewBB);
135   NewBI->setDebugLoc(TI->getDebugLoc());
136 
137   // Branch to the new block, breaking the edge.
138   TI->setSuccessor(SuccNum, NewBB);
139 
140   // Insert the block into the function... right after the block TI lives in.
141   Function &F = *TIBB->getParent();
142   Function::iterator FBBI = TIBB->getIterator();
143   F.getBasicBlockList().insert(++FBBI, NewBB);
144 
145   // If there are any PHI nodes in DestBB, we need to update them so that they
146   // merge incoming values from NewBB instead of from TIBB.
147   {
148     unsigned BBIdx = 0;
149     for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
150       // We no longer enter through TIBB, now we come in through NewBB.
151       // Revector exactly one entry in the PHI node that used to come from
152       // TIBB to come from NewBB.
153       PHINode *PN = cast<PHINode>(I);
154 
155       // Reuse the previous value of BBIdx if it lines up.  In cases where we
156       // have multiple phi nodes with *lots* of predecessors, this is a speed
157       // win because we don't have to scan the PHI looking for TIBB.  This
158       // happens because the BB list of PHI nodes are usually in the same
159       // order.
160       if (PN->getIncomingBlock(BBIdx) != TIBB)
161         BBIdx = PN->getBasicBlockIndex(TIBB);
162       PN->setIncomingBlock(BBIdx, NewBB);
163     }
164   }
165 
166   // If there are any other edges from TIBB to DestBB, update those to go
167   // through the split block, making those edges non-critical as well (and
168   // reducing the number of phi entries in the DestBB if relevant).
169   if (Options.MergeIdenticalEdges) {
170     for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
171       if (TI->getSuccessor(i) != DestBB) continue;
172 
173       // Remove an entry for TIBB from DestBB phi nodes.
174       DestBB->removePredecessor(TIBB, Options.DontDeleteUselessPHIs);
175 
176       // We found another edge to DestBB, go to NewBB instead.
177       TI->setSuccessor(i, NewBB);
178     }
179   }
180 
181   // If we have nothing to update, just return.
182   auto *DT = Options.DT;
183   auto *LI = Options.LI;
184   if (!DT && !LI)
185     return NewBB;
186 
187   // Now update analysis information.  Since the only predecessor of NewBB is
188   // the TIBB, TIBB clearly dominates NewBB.  TIBB usually doesn't dominate
189   // anything, as there are other successors of DestBB.  However, if all other
190   // predecessors of DestBB are already dominated by DestBB (e.g. DestBB is a
191   // loop header) then NewBB dominates DestBB.
192   SmallVector<BasicBlock*, 8> OtherPreds;
193 
194   // If there is a PHI in the block, loop over predecessors with it, which is
195   // faster than iterating pred_begin/end.
196   if (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
197     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
198       if (PN->getIncomingBlock(i) != NewBB)
199         OtherPreds.push_back(PN->getIncomingBlock(i));
200   } else {
201     for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB);
202          I != E; ++I) {
203       BasicBlock *P = *I;
204       if (P != NewBB)
205         OtherPreds.push_back(P);
206     }
207   }
208 
209   bool NewBBDominatesDestBB = true;
210 
211   // Should we update DominatorTree information?
212   if (DT) {
213     DomTreeNode *TINode = DT->getNode(TIBB);
214 
215     // The new block is not the immediate dominator for any other nodes, but
216     // TINode is the immediate dominator for the new node.
217     //
218     if (TINode) {       // Don't break unreachable code!
219       DomTreeNode *NewBBNode = DT->addNewBlock(NewBB, TIBB);
220       DomTreeNode *DestBBNode = nullptr;
221 
222       // If NewBBDominatesDestBB hasn't been computed yet, do so with DT.
223       if (!OtherPreds.empty()) {
224         DestBBNode = DT->getNode(DestBB);
225         while (!OtherPreds.empty() && NewBBDominatesDestBB) {
226           if (DomTreeNode *OPNode = DT->getNode(OtherPreds.back()))
227             NewBBDominatesDestBB = DT->dominates(DestBBNode, OPNode);
228           OtherPreds.pop_back();
229         }
230         OtherPreds.clear();
231       }
232 
233       // If NewBBDominatesDestBB, then NewBB dominates DestBB, otherwise it
234       // doesn't dominate anything.
235       if (NewBBDominatesDestBB) {
236         if (!DestBBNode) DestBBNode = DT->getNode(DestBB);
237         DT->changeImmediateDominator(DestBBNode, NewBBNode);
238       }
239     }
240   }
241 
242   // Update LoopInfo if it is around.
243   if (LI) {
244     if (Loop *TIL = LI->getLoopFor(TIBB)) {
245       // If one or the other blocks were not in a loop, the new block is not
246       // either, and thus LI doesn't need to be updated.
247       if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
248         if (TIL == DestLoop) {
249           // Both in the same loop, the NewBB joins loop.
250           DestLoop->addBasicBlockToLoop(NewBB, *LI);
251         } else if (TIL->contains(DestLoop)) {
252           // Edge from an outer loop to an inner loop.  Add to the outer loop.
253           TIL->addBasicBlockToLoop(NewBB, *LI);
254         } else if (DestLoop->contains(TIL)) {
255           // Edge from an inner loop to an outer loop.  Add to the outer loop.
256           DestLoop->addBasicBlockToLoop(NewBB, *LI);
257         } else {
258           // Edge from two loops with no containment relation.  Because these
259           // are natural loops, we know that the destination block must be the
260           // header of its loop (adding a branch into a loop elsewhere would
261           // create an irreducible loop).
262           assert(DestLoop->getHeader() == DestBB &&
263                  "Should not create irreducible loops!");
264           if (Loop *P = DestLoop->getParentLoop())
265             P->addBasicBlockToLoop(NewBB, *LI);
266         }
267       }
268 
269       // If TIBB is in a loop and DestBB is outside of that loop, we may need
270       // to update LoopSimplify form and LCSSA form.
271       if (!TIL->contains(DestBB)) {
272         assert(!TIL->contains(NewBB) &&
273                "Split point for loop exit is contained in loop!");
274 
275         // Update LCSSA form in the newly created exit block.
276         if (Options.PreserveLCSSA) {
277           createPHIsForSplitLoopExit(TIBB, NewBB, DestBB);
278         }
279 
280         // The only that we can break LoopSimplify form by splitting a critical
281         // edge is if after the split there exists some edge from TIL to DestBB
282         // *and* the only edge into DestBB from outside of TIL is that of
283         // NewBB. If the first isn't true, then LoopSimplify still holds, NewBB
284         // is the new exit block and it has no non-loop predecessors. If the
285         // second isn't true, then DestBB was not in LoopSimplify form prior to
286         // the split as it had a non-loop predecessor. In both of these cases,
287         // the predecessor must be directly in TIL, not in a subloop, or again
288         // LoopSimplify doesn't hold.
289         SmallVector<BasicBlock *, 4> LoopPreds;
290         for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); I != E;
291              ++I) {
292           BasicBlock *P = *I;
293           if (P == NewBB)
294             continue; // The new block is known.
295           if (LI->getLoopFor(P) != TIL) {
296             // No need to re-simplify, it wasn't to start with.
297             LoopPreds.clear();
298             break;
299           }
300           LoopPreds.push_back(P);
301         }
302         if (!LoopPreds.empty()) {
303           assert(!DestBB->isEHPad() && "We don't split edges to EH pads!");
304           BasicBlock *NewExitBB = SplitBlockPredecessors(
305               DestBB, LoopPreds, "split", DT, LI, Options.PreserveLCSSA);
306           if (Options.PreserveLCSSA)
307             createPHIsForSplitLoopExit(LoopPreds, NewExitBB, DestBB);
308         }
309       }
310     }
311   }
312 
313   return NewBB;
314 }
315