1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities. It does not define any
11 // actual pass or policy, but provides a single function to perform loop
12 // unrolling.
13 //
14 // The process of unrolling can produce extraneous basic blocks linked with
15 // unconditional branches.  This will be corrected in the future.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/Utils/UnrollLoop.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/InstructionSimplify.h"
24 #include "llvm/Analysis/LoopIterator.h"
25 #include "llvm/Analysis/LoopPass.h"
26 #include "llvm/Analysis/ScalarEvolution.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DiagnosticInfo.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
35 #include "llvm/Transforms/Utils/Cloning.h"
36 #include "llvm/Transforms/Utils/Local.h"
37 #include "llvm/Transforms/Utils/LoopSimplify.h"
38 #include "llvm/Transforms/Utils/LoopUtils.h"
39 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
40 using namespace llvm;
41 
42 #define DEBUG_TYPE "loop-unroll"
43 
44 // TODO: Should these be here or in LoopUnroll?
45 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
46 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
47 
48 static cl::opt<bool>
49 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(true), cl::Hidden,
50                     cl::desc("Allow runtime unrolled loops to be unrolled "
51                              "with epilog instead of prolog."));
52 
53 /// Convert the instruction operands from referencing the current values into
54 /// those specified by VMap.
remapInstruction(Instruction * I,ValueToValueMapTy & VMap)55 static inline void remapInstruction(Instruction *I,
56                                     ValueToValueMapTy &VMap) {
57   for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
58     Value *Op = I->getOperand(op);
59     ValueToValueMapTy::iterator It = VMap.find(Op);
60     if (It != VMap.end())
61       I->setOperand(op, It->second);
62   }
63 
64   if (PHINode *PN = dyn_cast<PHINode>(I)) {
65     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
66       ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
67       if (It != VMap.end())
68         PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
69     }
70   }
71 }
72 
73 /// Folds a basic block into its predecessor if it only has one predecessor, and
74 /// that predecessor only has one successor.
75 /// The LoopInfo Analysis that is passed will be kept consistent.  If folding is
76 /// successful references to the containing loop must be removed from
77 /// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have
78 /// references to the eliminated BB.  The argument ForgottenLoops contains a set
79 /// of loops that have already been forgotten to prevent redundant, expensive
80 /// calls to ScalarEvolution::forgetLoop.  Returns the new combined block.
81 static BasicBlock *
foldBlockIntoPredecessor(BasicBlock * BB,LoopInfo * LI,ScalarEvolution * SE,SmallPtrSetImpl<Loop * > & ForgottenLoops,DominatorTree * DT)82 foldBlockIntoPredecessor(BasicBlock *BB, LoopInfo *LI, ScalarEvolution *SE,
83                          SmallPtrSetImpl<Loop *> &ForgottenLoops,
84                          DominatorTree *DT) {
85   // Merge basic blocks into their predecessor if there is only one distinct
86   // pred, and if there is only one distinct successor of the predecessor, and
87   // if there are no PHI nodes.
88   BasicBlock *OnlyPred = BB->getSinglePredecessor();
89   if (!OnlyPred) return nullptr;
90 
91   if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
92     return nullptr;
93 
94   DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
95 
96   // Resolve any PHI nodes at the start of the block.  They are all
97   // guaranteed to have exactly one entry if they exist, unless there are
98   // multiple duplicate (but guaranteed to be equal) entries for the
99   // incoming edges.  This occurs when there are multiple edges from
100   // OnlyPred to OnlySucc.
101   FoldSingleEntryPHINodes(BB);
102 
103   // Delete the unconditional branch from the predecessor...
104   OnlyPred->getInstList().pop_back();
105 
106   // Make all PHI nodes that referred to BB now refer to Pred as their
107   // source...
108   BB->replaceAllUsesWith(OnlyPred);
109 
110   // Move all definitions in the successor to the predecessor...
111   OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
112 
113   // OldName will be valid until erased.
114   StringRef OldName = BB->getName();
115 
116   // Erase the old block and update dominator info.
117   if (DT)
118     if (DomTreeNode *DTN = DT->getNode(BB)) {
119       DomTreeNode *PredDTN = DT->getNode(OnlyPred);
120       SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end());
121       for (auto *DI : Children)
122         DT->changeImmediateDominator(DI, PredDTN);
123 
124       DT->eraseNode(BB);
125     }
126 
127   // ScalarEvolution holds references to loop exit blocks.
128   if (SE) {
129     if (Loop *L = LI->getLoopFor(BB)) {
130       if (ForgottenLoops.insert(L).second)
131         SE->forgetLoop(L);
132     }
133   }
134   LI->removeBlock(BB);
135 
136   // Inherit predecessor's name if it exists...
137   if (!OldName.empty() && !OnlyPred->hasName())
138     OnlyPred->setName(OldName);
139 
140   BB->eraseFromParent();
141 
142   return OnlyPred;
143 }
144 
145 /// Check if unrolling created a situation where we need to insert phi nodes to
146 /// preserve LCSSA form.
147 /// \param Blocks is a vector of basic blocks representing unrolled loop.
148 /// \param L is the outer loop.
149 /// It's possible that some of the blocks are in L, and some are not. In this
150 /// case, if there is a use is outside L, and definition is inside L, we need to
151 /// insert a phi-node, otherwise LCSSA will be broken.
152 /// The function is just a helper function for llvm::UnrollLoop that returns
153 /// true if this situation occurs, indicating that LCSSA needs to be fixed.
needToInsertPhisForLCSSA(Loop * L,std::vector<BasicBlock * > Blocks,LoopInfo * LI)154 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks,
155                                      LoopInfo *LI) {
156   for (BasicBlock *BB : Blocks) {
157     if (LI->getLoopFor(BB) == L)
158       continue;
159     for (Instruction &I : *BB) {
160       for (Use &U : I.operands()) {
161         if (auto Def = dyn_cast<Instruction>(U)) {
162           Loop *DefLoop = LI->getLoopFor(Def->getParent());
163           if (!DefLoop)
164             continue;
165           if (DefLoop->contains(L))
166             return true;
167         }
168       }
169     }
170   }
171   return false;
172 }
173 
174 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
175 /// if unrolling was successful, or false if the loop was unmodified. Unrolling
176 /// can only fail when the loop's latch block is not terminated by a conditional
177 /// branch instruction. However, if the trip count (and multiple) are not known,
178 /// loop unrolling will mostly produce more code that is no faster.
179 ///
180 /// TripCount is generally defined as the number of times the loop header
181 /// executes. UnrollLoop relaxes the definition to permit early exits: here
182 /// TripCount is the iteration on which control exits LatchBlock if no early
183 /// exits were taken. Note that UnrollLoop assumes that the loop counter test
184 /// terminates LatchBlock in order to remove unnecesssary instances of the
185 /// test. In other words, control may exit the loop prior to TripCount
186 /// iterations via an early branch, but control may not exit the loop from the
187 /// LatchBlock's terminator prior to TripCount iterations.
188 ///
189 /// Similarly, TripMultiple divides the number of times that the LatchBlock may
190 /// execute without exiting the loop.
191 ///
192 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
193 /// have a runtime (i.e. not compile time constant) trip count.  Unrolling these
194 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
195 /// iterations before branching into the unrolled loop.  UnrollLoop will not
196 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
197 /// AllowExpensiveTripCount is false.
198 ///
199 /// The LoopInfo Analysis that is passed will be kept consistent.
200 ///
201 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
202 /// DominatorTree if they are non-null.
UnrollLoop(Loop * L,unsigned Count,unsigned TripCount,bool Force,bool AllowRuntime,bool AllowExpensiveTripCount,unsigned TripMultiple,LoopInfo * LI,ScalarEvolution * SE,DominatorTree * DT,AssumptionCache * AC,bool PreserveLCSSA)203 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, bool Force,
204                       bool AllowRuntime, bool AllowExpensiveTripCount,
205                       unsigned TripMultiple, LoopInfo *LI, ScalarEvolution *SE,
206                       DominatorTree *DT, AssumptionCache *AC,
207                       bool PreserveLCSSA) {
208   BasicBlock *Preheader = L->getLoopPreheader();
209   if (!Preheader) {
210     DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
211     return false;
212   }
213 
214   BasicBlock *LatchBlock = L->getLoopLatch();
215   if (!LatchBlock) {
216     DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
217     return false;
218   }
219 
220   // Loops with indirectbr cannot be cloned.
221   if (!L->isSafeToClone()) {
222     DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
223     return false;
224   }
225 
226   BasicBlock *Header = L->getHeader();
227   BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
228 
229   if (!BI || BI->isUnconditional()) {
230     // The loop-rotate pass can be helpful to avoid this in many cases.
231     DEBUG(dbgs() <<
232              "  Can't unroll; loop not terminated by a conditional branch.\n");
233     return false;
234   }
235 
236   if (Header->hasAddressTaken()) {
237     // The loop-rotate pass can be helpful to avoid this in many cases.
238     DEBUG(dbgs() <<
239           "  Won't unroll loop: address of header block is taken.\n");
240     return false;
241   }
242 
243   if (TripCount != 0)
244     DEBUG(dbgs() << "  Trip Count = " << TripCount << "\n");
245   if (TripMultiple != 1)
246     DEBUG(dbgs() << "  Trip Multiple = " << TripMultiple << "\n");
247 
248   // Effectively "DCE" unrolled iterations that are beyond the tripcount
249   // and will never be executed.
250   if (TripCount != 0 && Count > TripCount)
251     Count = TripCount;
252 
253   // Don't enter the unroll code if there is nothing to do. This way we don't
254   // need to support "partial unrolling by 1".
255   if (TripCount == 0 && Count < 2)
256     return false;
257 
258   assert(Count > 0);
259   assert(TripMultiple > 0);
260   assert(TripCount == 0 || TripCount % TripMultiple == 0);
261 
262   // Are we eliminating the loop control altogether?
263   bool CompletelyUnroll = Count == TripCount;
264   SmallVector<BasicBlock *, 4> ExitBlocks;
265   L->getExitBlocks(ExitBlocks);
266   std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks();
267 
268   // Go through all exits of L and see if there are any phi-nodes there. We just
269   // conservatively assume that they're inserted to preserve LCSSA form, which
270   // means that complete unrolling might break this form. We need to either fix
271   // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
272   // now we just recompute LCSSA for the outer loop, but it should be possible
273   // to fix it in-place.
274   bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll &&
275       std::any_of(ExitBlocks.begin(), ExitBlocks.end(),
276                   [&](BasicBlock *BB) { return isa<PHINode>(BB->begin()); });
277 
278   // We assume a run-time trip count if the compiler cannot
279   // figure out the loop trip count and the unroll-runtime
280   // flag is specified.
281   bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
282 
283   // Loops containing convergent instructions must have a count that divides
284   // their TripMultiple.
285   DEBUG(
286       {
287         bool HasConvergent = false;
288         for (auto &BB : L->blocks())
289           for (auto &I : *BB)
290             if (auto CS = CallSite(&I))
291               HasConvergent |= CS.isConvergent();
292         assert((!HasConvergent || TripMultiple % Count == 0) &&
293                "Unroll count must divide trip multiple if loop contains a "
294                "convergent operation.");
295       });
296   // Don't output the runtime loop remainder if Count is a multiple of
297   // TripMultiple.  Such a remainder is never needed, and is unsafe if the loop
298   // contains a convergent instruction.
299   if (RuntimeTripCount && TripMultiple % Count != 0 &&
300       !UnrollRuntimeLoopRemainder(L, Count, AllowExpensiveTripCount,
301                                   UnrollRuntimeEpilog, LI, SE, DT,
302                                   PreserveLCSSA)) {
303     if (Force)
304       RuntimeTripCount = false;
305     else
306       return false;
307   }
308 
309   // Notify ScalarEvolution that the loop will be substantially changed,
310   // if not outright eliminated.
311   if (SE)
312     SE->forgetLoop(L);
313 
314   // If we know the trip count, we know the multiple...
315   unsigned BreakoutTrip = 0;
316   if (TripCount != 0) {
317     BreakoutTrip = TripCount % Count;
318     TripMultiple = 0;
319   } else {
320     // Figure out what multiple to use.
321     BreakoutTrip = TripMultiple =
322       (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
323   }
324 
325   // Report the unrolling decision.
326   DebugLoc LoopLoc = L->getStartLoc();
327   Function *F = Header->getParent();
328   LLVMContext &Ctx = F->getContext();
329 
330   if (CompletelyUnroll) {
331     DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
332           << " with trip count " << TripCount << "!\n");
333     emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc,
334                            Twine("completely unrolled loop with ") +
335                                Twine(TripCount) + " iterations");
336   } else {
337     auto EmitDiag = [&](const Twine &T) {
338       emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc,
339                              "unrolled loop by a factor of " + Twine(Count) +
340                                  T);
341     };
342 
343     DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
344           << " by " << Count);
345     if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
346       DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
347       EmitDiag(" with a breakout at trip " + Twine(BreakoutTrip));
348     } else if (TripMultiple != 1) {
349       DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
350       EmitDiag(" with " + Twine(TripMultiple) + " trips per branch");
351     } else if (RuntimeTripCount) {
352       DEBUG(dbgs() << " with run-time trip count");
353       EmitDiag(" with run-time trip count");
354     }
355     DEBUG(dbgs() << "!\n");
356   }
357 
358   bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
359   BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
360 
361   // For the first iteration of the loop, we should use the precloned values for
362   // PHI nodes.  Insert associations now.
363   ValueToValueMapTy LastValueMap;
364   std::vector<PHINode*> OrigPHINode;
365   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
366     OrigPHINode.push_back(cast<PHINode>(I));
367   }
368 
369   std::vector<BasicBlock*> Headers;
370   std::vector<BasicBlock*> Latches;
371   Headers.push_back(Header);
372   Latches.push_back(LatchBlock);
373 
374   // The current on-the-fly SSA update requires blocks to be processed in
375   // reverse postorder so that LastValueMap contains the correct value at each
376   // exit.
377   LoopBlocksDFS DFS(L);
378   DFS.perform(LI);
379 
380   // Stash the DFS iterators before adding blocks to the loop.
381   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
382   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
383 
384   std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
385   for (unsigned It = 1; It != Count; ++It) {
386     std::vector<BasicBlock*> NewBlocks;
387     SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
388     NewLoops[L] = L;
389 
390     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
391       ValueToValueMapTy VMap;
392       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
393       Header->getParent()->getBasicBlockList().push_back(New);
394 
395       // Tell LI about New.
396       if (*BB == Header) {
397         assert(LI->getLoopFor(*BB) == L && "Header should not be in a sub-loop");
398         L->addBasicBlockToLoop(New, *LI);
399       } else {
400         // Figure out which loop New is in.
401         const Loop *OldLoop = LI->getLoopFor(*BB);
402         assert(OldLoop && "Should (at least) be in the loop being unrolled!");
403 
404         Loop *&NewLoop = NewLoops[OldLoop];
405         if (!NewLoop) {
406           // Found a new sub-loop.
407           assert(*BB == OldLoop->getHeader() &&
408                  "Header should be first in RPO");
409 
410           Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
411           assert(NewLoopParent &&
412                  "Expected parent loop before sub-loop in RPO");
413           NewLoop = new Loop;
414           NewLoopParent->addChildLoop(NewLoop);
415 
416           // Forget the old loop, since its inputs may have changed.
417           if (SE)
418             SE->forgetLoop(OldLoop);
419         }
420         NewLoop->addBasicBlockToLoop(New, *LI);
421       }
422 
423       if (*BB == Header)
424         // Loop over all of the PHI nodes in the block, changing them to use
425         // the incoming values from the previous block.
426         for (PHINode *OrigPHI : OrigPHINode) {
427           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
428           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
429           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
430             if (It > 1 && L->contains(InValI))
431               InVal = LastValueMap[InValI];
432           VMap[OrigPHI] = InVal;
433           New->getInstList().erase(NewPHI);
434         }
435 
436       // Update our running map of newest clones
437       LastValueMap[*BB] = New;
438       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
439            VI != VE; ++VI)
440         LastValueMap[VI->first] = VI->second;
441 
442       // Add phi entries for newly created values to all exit blocks.
443       for (BasicBlock *Succ : successors(*BB)) {
444         if (L->contains(Succ))
445           continue;
446         for (BasicBlock::iterator BBI = Succ->begin();
447              PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) {
448           Value *Incoming = phi->getIncomingValueForBlock(*BB);
449           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
450           if (It != LastValueMap.end())
451             Incoming = It->second;
452           phi->addIncoming(Incoming, New);
453         }
454       }
455       // Keep track of new headers and latches as we create them, so that
456       // we can insert the proper branches later.
457       if (*BB == Header)
458         Headers.push_back(New);
459       if (*BB == LatchBlock)
460         Latches.push_back(New);
461 
462       NewBlocks.push_back(New);
463       UnrolledLoopBlocks.push_back(New);
464 
465       // Update DomTree: since we just copy the loop body, and each copy has a
466       // dedicated entry block (copy of the header block), this header's copy
467       // dominates all copied blocks. That means, dominance relations in the
468       // copied body are the same as in the original body.
469       if (DT) {
470         if (*BB == Header)
471           DT->addNewBlock(New, Latches[It - 1]);
472         else {
473           auto BBDomNode = DT->getNode(*BB);
474           auto BBIDom = BBDomNode->getIDom();
475           BasicBlock *OriginalBBIDom = BBIDom->getBlock();
476           DT->addNewBlock(
477               New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
478         }
479       }
480     }
481 
482     // Remap all instructions in the most recent iteration
483     for (BasicBlock *NewBlock : NewBlocks)
484       for (Instruction &I : *NewBlock)
485         ::remapInstruction(&I, LastValueMap);
486   }
487 
488   // Loop over the PHI nodes in the original block, setting incoming values.
489   for (PHINode *PN : OrigPHINode) {
490     if (CompletelyUnroll) {
491       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
492       Header->getInstList().erase(PN);
493     }
494     else if (Count > 1) {
495       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
496       // If this value was defined in the loop, take the value defined by the
497       // last iteration of the loop.
498       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
499         if (L->contains(InValI))
500           InVal = LastValueMap[InVal];
501       }
502       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
503       PN->addIncoming(InVal, Latches.back());
504     }
505   }
506 
507   // Now that all the basic blocks for the unrolled iterations are in place,
508   // set up the branches to connect them.
509   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
510     // The original branch was replicated in each unrolled iteration.
511     BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
512 
513     // The branch destination.
514     unsigned j = (i + 1) % e;
515     BasicBlock *Dest = Headers[j];
516     bool NeedConditional = true;
517 
518     if (RuntimeTripCount && j != 0) {
519       NeedConditional = false;
520     }
521 
522     // For a complete unroll, make the last iteration end with a branch
523     // to the exit block.
524     if (CompletelyUnroll) {
525       if (j == 0)
526         Dest = LoopExit;
527       NeedConditional = false;
528     }
529 
530     // If we know the trip count or a multiple of it, we can safely use an
531     // unconditional branch for some iterations.
532     if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
533       NeedConditional = false;
534     }
535 
536     if (NeedConditional) {
537       // Update the conditional branch's successor for the following
538       // iteration.
539       Term->setSuccessor(!ContinueOnTrue, Dest);
540     } else {
541       // Remove phi operands at this loop exit
542       if (Dest != LoopExit) {
543         BasicBlock *BB = Latches[i];
544         for (BasicBlock *Succ: successors(BB)) {
545           if (Succ == Headers[i])
546             continue;
547           for (BasicBlock::iterator BBI = Succ->begin();
548                PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) {
549             Phi->removeIncomingValue(BB, false);
550           }
551         }
552       }
553       // Replace the conditional branch with an unconditional one.
554       BranchInst::Create(Dest, Term);
555       Term->eraseFromParent();
556     }
557   }
558   // Update dominators of blocks we might reach through exits.
559   // Immediate dominator of such block might change, because we add more
560   // routes which can lead to the exit: we can now reach it from the copied
561   // iterations too. Thus, the new idom of the block will be the nearest
562   // common dominator of the previous idom and common dominator of all copies of
563   // the previous idom. This is equivalent to the nearest common dominator of
564   // the previous idom and the first latch, which dominates all copies of the
565   // previous idom.
566   if (DT && Count > 1) {
567     for (auto *BB : OriginalLoopBlocks) {
568       auto *BBDomNode = DT->getNode(BB);
569       SmallVector<BasicBlock *, 16> ChildrenToUpdate;
570       for (auto *ChildDomNode : BBDomNode->getChildren()) {
571         auto *ChildBB = ChildDomNode->getBlock();
572         if (!L->contains(ChildBB))
573           ChildrenToUpdate.push_back(ChildBB);
574       }
575       BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, Latches[0]);
576       for (auto *ChildBB : ChildrenToUpdate)
577         DT->changeImmediateDominator(ChildBB, NewIDom);
578     }
579   }
580 
581   // Merge adjacent basic blocks, if possible.
582   SmallPtrSet<Loop *, 4> ForgottenLoops;
583   for (BasicBlock *Latch : Latches) {
584     BranchInst *Term = cast<BranchInst>(Latch->getTerminator());
585     if (Term->isUnconditional()) {
586       BasicBlock *Dest = Term->getSuccessor(0);
587       if (BasicBlock *Fold =
588               foldBlockIntoPredecessor(Dest, LI, SE, ForgottenLoops, DT)) {
589         // Dest has been folded into Fold. Update our worklists accordingly.
590         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
591         UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(),
592                                              UnrolledLoopBlocks.end(), Dest),
593                                  UnrolledLoopBlocks.end());
594       }
595     }
596   }
597 
598   // FIXME: We could register any cloned assumptions instead of clearing the
599   // whole function's cache.
600   AC->clear();
601 
602   // FIXME: We only preserve DT info for complete unrolling now. Incrementally
603   // updating domtree after partial loop unrolling should also be easy.
604   if (DT && !CompletelyUnroll)
605     DT->recalculate(*L->getHeader()->getParent());
606   else if (DT)
607     DEBUG(DT->verifyDomTree());
608 
609   // Simplify any new induction variables in the partially unrolled loop.
610   if (SE && !CompletelyUnroll) {
611     SmallVector<WeakVH, 16> DeadInsts;
612     simplifyLoopIVs(L, SE, DT, LI, DeadInsts);
613 
614     // Aggressively clean up dead instructions that simplifyLoopIVs already
615     // identified. Any remaining should be cleaned up below.
616     while (!DeadInsts.empty())
617       if (Instruction *Inst =
618               dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
619         RecursivelyDeleteTriviallyDeadInstructions(Inst);
620   }
621 
622   // At this point, the code is well formed.  We now do a quick sweep over the
623   // inserted code, doing constant propagation and dead code elimination as we
624   // go.
625   const DataLayout &DL = Header->getModule()->getDataLayout();
626   const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
627   for (BasicBlock *BB : NewLoopBlocks) {
628     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
629       Instruction *Inst = &*I++;
630 
631       if (Value *V = SimplifyInstruction(Inst, DL))
632         if (LI->replacementPreservesLCSSAForm(Inst, V))
633           Inst->replaceAllUsesWith(V);
634       if (isInstructionTriviallyDead(Inst))
635         BB->getInstList().erase(Inst);
636     }
637   }
638 
639   NumCompletelyUnrolled += CompletelyUnroll;
640   ++NumUnrolled;
641 
642   Loop *OuterL = L->getParentLoop();
643   // Update LoopInfo if the loop is completely removed.
644   if (CompletelyUnroll)
645     LI->markAsRemoved(L);
646 
647   // After complete unrolling most of the blocks should be contained in OuterL.
648   // However, some of them might happen to be out of OuterL (e.g. if they
649   // precede a loop exit). In this case we might need to insert PHI nodes in
650   // order to preserve LCSSA form.
651   // We don't need to check this if we already know that we need to fix LCSSA
652   // form.
653   // TODO: For now we just recompute LCSSA for the outer loop in this case, but
654   // it should be possible to fix it in-place.
655   if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
656     NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
657 
658   // If we have a pass and a DominatorTree we should re-simplify impacted loops
659   // to ensure subsequent analyses can rely on this form. We want to simplify
660   // at least one layer outside of the loop that was unrolled so that any
661   // changes to the parent loop exposed by the unrolling are considered.
662   if (DT) {
663     if (!OuterL && !CompletelyUnroll)
664       OuterL = L;
665     if (OuterL) {
666       simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA);
667 
668       // LCSSA must be performed on the outermost affected loop. The unrolled
669       // loop's last loop latch is guaranteed to be in the outermost loop after
670       // LoopInfo's been updated by markAsRemoved.
671       Loop *LatchLoop = LI->getLoopFor(Latches.back());
672       if (!OuterL->contains(LatchLoop))
673         while (OuterL->getParentLoop() != LatchLoop)
674           OuterL = OuterL->getParentLoop();
675 
676       if (NeedToFixLCSSA)
677         formLCSSARecursively(*OuterL, *DT, LI, SE);
678       else
679         assert(OuterL->isLCSSAForm(*DT) &&
680                "Loops should be in LCSSA form after loop-unroll.");
681     }
682   }
683 
684   return true;
685 }
686 
687 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
688 /// node with the given name (for example, "llvm.loop.unroll.count"). If no
689 /// such metadata node exists, then nullptr is returned.
GetUnrollMetadata(MDNode * LoopID,StringRef Name)690 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
691   // First operand should refer to the loop id itself.
692   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
693   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
694 
695   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
696     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
697     if (!MD)
698       continue;
699 
700     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
701     if (!S)
702       continue;
703 
704     if (Name.equals(S->getString()))
705       return MD;
706   }
707   return nullptr;
708 }
709