1; RUN: opt < %s -separate-const-offset-from-gep -reassociate-geps-verify-no-dead-code -S | FileCheck %s
2
3; Several unit tests for -separate-const-offset-from-gep. The transformation
4; heavily relies on TargetTransformInfo, so we put these tests under
5; target-specific folders.
6
7target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
8; target triple is necessary; otherwise TargetTransformInfo rejects any
9; addressing mode.
10target triple = "nvptx64-unknown-unknown"
11
12%struct.S = type { float, double }
13
14@struct_array = global [1024 x %struct.S] zeroinitializer, align 16
15@float_2d_array = global [32 x [32 x float]] zeroinitializer, align 4
16
17; We should not extract any struct field indices, because fields in a struct
18; may have different types.
19define double* @struct(i32 %i) {
20entry:
21  %add = add nsw i32 %i, 5
22  %idxprom = sext i32 %add to i64
23  %p = getelementptr inbounds [1024 x %struct.S], [1024 x %struct.S]* @struct_array, i64 0, i64 %idxprom, i32 1
24  ret double* %p
25}
26; CHECK-LABEL: @struct(
27; CHECK: getelementptr [1024 x %struct.S], [1024 x %struct.S]* @struct_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i32 1
28
29; We should be able to trace into sext(a + b) if a + b is non-negative
30; (e.g., used as an index of an inbounds GEP) and one of a and b is
31; non-negative.
32define float* @sext_add(i32 %i, i32 %j) {
33entry:
34  %0 = add i32 %i, 1
35  %1 = sext i32 %0 to i64  ; inbound sext(i + 1) = sext(i) + 1
36  %2 = add i32 %j, -2
37  ; However, inbound sext(j + -2) != sext(j) + -2, e.g., j = INT_MIN
38  %3 = sext i32 %2 to i64
39  %p = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %1, i64 %3
40  ret float* %p
41}
42; CHECK-LABEL: @sext_add(
43; CHECK-NOT: = add
44; CHECK: add i32 %j, -2
45; CHECK: sext
46; CHECK: getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}}
47; CHECK: getelementptr inbounds float, float* %{{[a-zA-Z0-9]+}}, i64 32
48
49; We should be able to trace into sext/zext if it can be distributed to both
50; operands, e.g., sext (add nsw a, b) == add nsw (sext a), (sext b)
51;
52; This test verifies we can transform
53;   gep base, a + sext(b +nsw 1), c + zext(d +nuw 1)
54; to
55;   gep base, a + sext(b), c + zext(d); gep ..., 1 * 32 + 1
56define float* @ext_add_no_overflow(i64 %a, i32 %b, i64 %c, i32 %d) {
57  %b1 = add nsw i32 %b, 1
58  %b2 = sext i32 %b1 to i64
59  %i = add i64 %a, %b2       ; i = a + sext(b +nsw 1)
60  %d1 = add nuw i32 %d, 1
61  %d2 = zext i32 %d1 to i64
62  %j = add i64 %c, %d2       ; j = c + zext(d +nuw 1)
63  %p = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i, i64 %j
64  ret float* %p
65}
66; CHECK-LABEL: @ext_add_no_overflow(
67; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}}
68; CHECK: getelementptr inbounds float, float* [[BASE_PTR]], i64 33
69
70; Verifies we handle nested sext/zext correctly.
71define void @sext_zext(i32 %a, i32 %b, float** %out1, float** %out2) {
72entry:
73  %0 = add nsw nuw i32 %a, 1
74  %1 = sext i32 %0 to i48
75  %2 = zext i48 %1 to i64    ; zext(sext(a +nsw nuw 1)) = zext(sext(a)) + 1
76  %3 = add nsw i32 %b, 2
77  %4 = sext i32 %3 to i48
78  %5 = zext i48 %4 to i64    ; zext(sext(b +nsw 2)) != zext(sext(b)) + 2
79  %p1 = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %2, i64 %5
80  store float* %p1, float** %out1
81  %6 = add nuw i32 %a, 3
82  %7 = zext i32 %6 to i48
83  %8 = sext i48 %7 to i64 ; sext(zext(a +nuw 3)) = zext(a +nuw 3) = zext(a) + 3
84  %9 = add nsw i32 %b, 4
85  %10 = zext i32 %9 to i48
86  %11 = sext i48 %10 to i64  ; sext(zext(b +nsw 4)) != zext(b) + 4
87  %p2 = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %8, i64 %11
88  store float* %p2, float** %out2
89  ret void
90}
91; CHECK-LABEL: @sext_zext(
92; CHECK: [[BASE_PTR_1:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}}
93; CHECK: getelementptr float, float* [[BASE_PTR_1]], i64 32
94; CHECK: [[BASE_PTR_2:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}}
95; CHECK: getelementptr float, float* [[BASE_PTR_2]], i64 96
96
97; Similar to @ext_add_no_overflow, we should be able to trace into s/zext if
98; its operand is an OR and the two operands of the OR have no common bits.
99define float* @sext_or(i64 %a, i32 %b) {
100entry:
101  %b1 = shl i32 %b, 2
102  %b2 = or i32 %b1, 1 ; (b << 2) and 1 have no common bits
103  %b3 = or i32 %b1, 4 ; (b << 2) and 4 may have common bits
104  %b2.ext = zext i32 %b2 to i64
105  %b3.ext = sext i32 %b3 to i64
106  %i = add i64 %a, %b2.ext
107  %j = add i64 %a, %b3.ext
108  %p = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i, i64 %j
109  ret float* %p
110}
111; CHECK-LABEL: @sext_or(
112; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}}
113; CHECK: getelementptr inbounds float, float* [[BASE_PTR]], i64 32
114
115; The subexpression (b + 5) is used in both "i = a + (b + 5)" and "*out = b +
116; 5". When extracting the constant offset 5, make sure "*out = b + 5" isn't
117; affected.
118define float* @expr(i64 %a, i64 %b, i64* %out) {
119entry:
120  %b5 = add i64 %b, 5
121  %i = add i64 %b5, %a
122  %p = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i, i64 0
123  store i64 %b5, i64* %out
124  ret float* %p
125}
126; CHECK-LABEL: @expr(
127; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 0
128; CHECK: getelementptr inbounds float, float* [[BASE_PTR]], i64 160
129; CHECK: store i64 %b5, i64* %out
130
131; d + sext(a +nsw (b +nsw (c +nsw 8))) => (d + sext(a) + sext(b) + sext(c)) + 8
132define float* @sext_expr(i32 %a, i32 %b, i32 %c, i64 %d) {
133entry:
134  %0 = add nsw i32 %c, 8
135  %1 = add nsw i32 %b, %0
136  %2 = add nsw i32 %a, %1
137  %3 = sext i32 %2 to i64
138  %i = add i64 %d, %3
139  %p = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %i
140  ret float* %p
141}
142; CHECK-LABEL: @sext_expr(
143; CHECK: sext i32
144; CHECK: sext i32
145; CHECK: sext i32
146; CHECK: getelementptr inbounds float, float* %{{[a-zA-Z0-9]+}}, i64 8
147
148; Verifies we handle "sub" correctly.
149define float* @sub(i64 %i, i64 %j) {
150  %i2 = sub i64 %i, 5 ; i - 5
151  %j2 = sub i64 5, %j ; 5 - i
152  %p = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i2, i64 %j2
153  ret float* %p
154}
155; CHECK-LABEL: @sub(
156; CHECK: %[[j2:[a-zA-Z0-9]+]] = sub i64 0, %j
157; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i, i64 %[[j2]]
158; CHECK: getelementptr inbounds float, float* [[BASE_PTR]], i64 -155
159
160%struct.Packed = type <{ [3 x i32], [8 x i64] }> ; <> means packed
161
162; Verifies we can emit correct uglygep if the address is not natually aligned.
163define i64* @packed_struct(i32 %i, i32 %j) {
164entry:
165  %s = alloca [1024 x %struct.Packed], align 16
166  %add = add nsw i32 %j, 3
167  %idxprom = sext i32 %add to i64
168  %add1 = add nsw i32 %i, 1
169  %idxprom2 = sext i32 %add1 to i64
170  %arrayidx3 = getelementptr inbounds [1024 x %struct.Packed], [1024 x %struct.Packed]* %s, i64 0, i64 %idxprom2, i32 1, i64 %idxprom
171  ret i64* %arrayidx3
172}
173; CHECK-LABEL: @packed_struct(
174; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [1024 x %struct.Packed], [1024 x %struct.Packed]* %s, i64 0, i64 %{{[a-zA-Z0-9]+}}, i32 1, i64 %{{[a-zA-Z0-9]+}}
175; CHECK: [[CASTED_PTR:%[a-zA-Z0-9]+]] = bitcast i64* [[BASE_PTR]] to i8*
176; CHECK: %uglygep = getelementptr inbounds i8, i8* [[CASTED_PTR]], i64 100
177; CHECK: bitcast i8* %uglygep to i64*
178
179; We shouldn't be able to extract the 8 from "zext(a +nuw (b + 8))",
180; because "zext(b + 8) != zext(b) + 8"
181define float* @zext_expr(i32 %a, i32 %b) {
182entry:
183  %0 = add i32 %b, 8
184  %1 = add nuw i32 %a, %0
185  %i = zext i32 %1 to i64
186  %p = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %i
187  ret float* %p
188}
189; CHECK-LABEL: zext_expr(
190; CHECK: getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %i
191
192; Per http://llvm.org/docs/LangRef.html#id181, the indices of a off-bound gep
193; should be considered sign-extended to the pointer size. Therefore,
194;   gep base, (add i32 a, b) != gep (gep base, i32 a), i32 b
195; because
196;   sext(a + b) != sext(a) + sext(b)
197;
198; This test verifies we do not illegitimately extract the 8 from
199;   gep base, (i32 a + 8)
200define float* @i32_add(i32 %a) {
201entry:
202  %i = add i32 %a, 8
203  %p = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i32 %i
204  ret float* %p
205}
206; CHECK-LABEL: @i32_add(
207; CHECK: getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %{{[a-zA-Z0-9]+}}
208; CHECK-NOT: getelementptr
209
210; Verifies that we compute the correct constant offset when the index is
211; sign-extended and then zero-extended. The old version of our code failed to
212; handle this case because it simply computed the constant offset as the
213; sign-extended value of the constant part of the GEP index.
214define float* @apint(i1 %a) {
215entry:
216  %0 = add nsw nuw i1 %a, 1
217  %1 = sext i1 %0 to i4
218  %2 = zext i4 %1 to i64         ; zext (sext i1 1 to i4) to i64 = 15
219  %p = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %2
220  ret float* %p
221}
222; CHECK-LABEL: @apint(
223; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %{{[a-zA-Z0-9]+}}
224; CHECK: getelementptr float, float* [[BASE_PTR]], i64 15
225
226; Do not trace into binary operators other than ADD, SUB, and OR.
227define float* @and(i64 %a) {
228entry:
229  %0 = shl i64 %a, 2
230  %1 = and i64 %0, 1
231  %p = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %1
232  ret float* %p
233}
234; CHECK-LABEL: @and(
235; CHECK: getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array
236; CHECK-NOT: getelementptr
237
238; The code that rebuilds an OR expression used to be buggy, and failed on this
239; test.
240define float* @shl_add_or(i64 %a, float* %ptr) {
241; CHECK-LABEL: @shl_add_or(
242entry:
243  %shl = shl i64 %a, 2
244  %add = add i64 %shl, 12
245  %or = or i64 %add, 1
246; CHECK: [[OR:%or[0-9]*]] = add i64 %shl, 1
247  ; ((a << 2) + 12) and 1 have no common bits. Therefore,
248  ; SeparateConstOffsetFromGEP is able to extract the 12.
249  ; TODO(jingyue): We could reassociate the expression to combine 12 and 1.
250  %p = getelementptr float, float* %ptr, i64 %or
251; CHECK: [[PTR:%[a-zA-Z0-9]+]] = getelementptr float, float* %ptr, i64 [[OR]]
252; CHECK: getelementptr float, float* [[PTR]], i64 12
253  ret float* %p
254; CHECK-NEXT: ret
255}
256
257; The source code used to be buggy in checking
258; (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0)
259; where AccumulativeByteOffset is signed but ElementTypeSizeOfGEP is unsigned.
260; The compiler would promote AccumulativeByteOffset to unsigned, causing
261; unexpected results. For example, while -64 % (int64_t)24 != 0,
262; -64 % (uint64_t)24 == 0.
263%struct3 = type { i64, i32 }
264%struct2 = type { %struct3, i32 }
265%struct1 = type { i64, %struct2 }
266%struct0 = type { i32, i32, i64*, [100 x %struct1] }
267define %struct2* @sign_mod_unsign(%struct0* %ptr, i64 %idx) {
268; CHECK-LABEL: @sign_mod_unsign(
269entry:
270  %arrayidx = add nsw i64 %idx, -2
271; CHECK-NOT: add
272  %ptr2 = getelementptr inbounds %struct0, %struct0* %ptr, i64 0, i32 3, i64 %arrayidx, i32 1
273; CHECK: [[PTR:%[a-zA-Z0-9]+]] = getelementptr %struct0, %struct0* %ptr, i64 0, i32 3, i64 %idx, i32 1
274; CHECK: [[PTR1:%[a-zA-Z0-9]+]] = bitcast %struct2* [[PTR]] to i8*
275; CHECK: getelementptr inbounds i8, i8* [[PTR1]], i64 -64
276; CHECK: bitcast
277  ret %struct2* %ptr2
278; CHECK-NEXT: ret
279}
280