1 //===- MCJITTestBase.h - Common base class for MCJIT Unit tests -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This class implements common functionality required by the MCJIT unit tests,
11 // as well as logic to skip tests on unsupported architectures and operating
12 // systems.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_UNITTESTS_EXECUTIONENGINE_MCJIT_MCJITTESTBASE_H
17 #define LLVM_UNITTESTS_EXECUTIONENGINE_MCJIT_MCJITTESTBASE_H
18 
19 #include "MCJITTestAPICommon.h"
20 #include "llvm/Config/config.h"
21 #include "llvm/ExecutionEngine/ExecutionEngine.h"
22 #include "llvm/ExecutionEngine/SectionMemoryManager.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/LLVMContext.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/IR/TypeBuilder.h"
28 #include "llvm/Support/CodeGen.h"
29 
30 namespace llvm {
31 
32 /// Helper class that can build very simple Modules
33 class TrivialModuleBuilder {
34 protected:
35   LLVMContext Context;
36   IRBuilder<> Builder;
37   std::string BuilderTriple;
38 
TrivialModuleBuilder(const std::string & Triple)39   TrivialModuleBuilder(const std::string &Triple)
40     : Builder(Context), BuilderTriple(Triple) {}
41 
42   Module *createEmptyModule(StringRef Name = StringRef()) {
43     Module * M = new Module(Name, Context);
44     M->setTargetTriple(Triple::normalize(BuilderTriple));
45     return M;
46   }
47 
48   template<typename FuncType>
startFunction(Module * M,StringRef Name)49   Function *startFunction(Module *M, StringRef Name) {
50     Function *Result = Function::Create(
51       TypeBuilder<FuncType, false>::get(Context),
52       GlobalValue::ExternalLinkage, Name, M);
53 
54     BasicBlock *BB = BasicBlock::Create(Context, Name, Result);
55     Builder.SetInsertPoint(BB);
56 
57     return Result;
58   }
59 
endFunctionWithRet(Function * Func,Value * RetValue)60   void endFunctionWithRet(Function *Func, Value *RetValue) {
61     Builder.CreateRet(RetValue);
62   }
63 
64   // Inserts a simple function that invokes Callee and takes the same arguments:
65   //    int Caller(...) { return Callee(...); }
66   template<typename Signature>
insertSimpleCallFunction(Module * M,Function * Callee)67   Function *insertSimpleCallFunction(Module *M, Function *Callee) {
68     Function *Result = startFunction<Signature>(M, "caller");
69 
70     SmallVector<Value*, 1> CallArgs;
71 
72     for (Argument &A : Result->args())
73       CallArgs.push_back(&A);
74 
75     Value *ReturnCode = Builder.CreateCall(Callee, CallArgs);
76     Builder.CreateRet(ReturnCode);
77     return Result;
78   }
79 
80   // Inserts a function named 'main' that returns a uint32_t:
81   //    int32_t main() { return X; }
82   // where X is given by returnCode
insertMainFunction(Module * M,uint32_t returnCode)83   Function *insertMainFunction(Module *M, uint32_t returnCode) {
84     Function *Result = startFunction<int32_t(void)>(M, "main");
85 
86     Value *ReturnVal = ConstantInt::get(Context, APInt(32, returnCode));
87     endFunctionWithRet(Result, ReturnVal);
88 
89     return Result;
90   }
91 
92   // Inserts a function
93   //    int32_t add(int32_t a, int32_t b) { return a + b; }
94   // in the current module and returns a pointer to it.
95   Function *insertAddFunction(Module *M, StringRef Name = "add") {
96     Function *Result = startFunction<int32_t(int32_t, int32_t)>(M, Name);
97 
98     Function::arg_iterator args = Result->arg_begin();
99     Value *Arg1 = &*args;
100     Value *Arg2 = &*++args;
101     Value *AddResult = Builder.CreateAdd(Arg1, Arg2);
102 
103     endFunctionWithRet(Result, AddResult);
104 
105     return Result;
106   }
107 
108   // Inserts a declaration to a function defined elsewhere
109   template <typename FuncType>
insertExternalReferenceToFunction(Module * M,StringRef Name)110   Function *insertExternalReferenceToFunction(Module *M, StringRef Name) {
111     Function *Result = Function::Create(
112                          TypeBuilder<FuncType, false>::get(Context),
113                          GlobalValue::ExternalLinkage, Name, M);
114     return Result;
115   }
116 
117   // Inserts an declaration to a function defined elsewhere
insertExternalReferenceToFunction(Module * M,StringRef Name,FunctionType * FuncTy)118   Function *insertExternalReferenceToFunction(Module *M, StringRef Name,
119                                               FunctionType *FuncTy) {
120     Function *Result = Function::Create(FuncTy,
121                                         GlobalValue::ExternalLinkage,
122                                         Name, M);
123     return Result;
124   }
125 
126   // Inserts an declaration to a function defined elsewhere
insertExternalReferenceToFunction(Module * M,Function * Func)127   Function *insertExternalReferenceToFunction(Module *M, Function *Func) {
128     Function *Result = Function::Create(Func->getFunctionType(),
129                                         GlobalValue::ExternalLinkage,
130                                         Func->getName(), M);
131     return Result;
132   }
133 
134   // Inserts a global variable of type int32
135   // FIXME: make this a template function to support any type
insertGlobalInt32(Module * M,StringRef name,int32_t InitialValue)136   GlobalVariable *insertGlobalInt32(Module *M,
137                                     StringRef name,
138                                     int32_t InitialValue) {
139     Type *GlobalTy = TypeBuilder<types::i<32>, true>::get(Context);
140     Constant *IV = ConstantInt::get(Context, APInt(32, InitialValue));
141     GlobalVariable *Global = new GlobalVariable(*M,
142                                                 GlobalTy,
143                                                 false,
144                                                 GlobalValue::ExternalLinkage,
145                                                 IV,
146                                                 name);
147     return Global;
148   }
149 
150   // Inserts a function
151   //   int32_t recursive_add(int32_t num) {
152   //     if (num == 0) {
153   //       return num;
154   //     } else {
155   //       int32_t recursive_param = num - 1;
156   //       return num + Helper(recursive_param);
157   //     }
158   //   }
159   // NOTE: if Helper is left as the default parameter, Helper == recursive_add.
160   Function *insertAccumulateFunction(Module *M,
161                                      Function *Helper = nullptr,
162                                      StringRef Name = "accumulate") {
163     Function *Result = startFunction<int32_t(int32_t)>(M, Name);
164     if (!Helper)
165       Helper = Result;
166 
167     BasicBlock *BaseCase = BasicBlock::Create(Context, "", Result);
168     BasicBlock *RecursiveCase = BasicBlock::Create(Context, "", Result);
169 
170     // if (num == 0)
171     Value *Param = &*Result->arg_begin();
172     Value *Zero = ConstantInt::get(Context, APInt(32, 0));
173     Builder.CreateCondBr(Builder.CreateICmpEQ(Param, Zero),
174                          BaseCase, RecursiveCase);
175 
176     //   return num;
177     Builder.SetInsertPoint(BaseCase);
178     Builder.CreateRet(Param);
179 
180     //   int32_t recursive_param = num - 1;
181     //   return Helper(recursive_param);
182     Builder.SetInsertPoint(RecursiveCase);
183     Value *One = ConstantInt::get(Context, APInt(32, 1));
184     Value *RecursiveParam = Builder.CreateSub(Param, One);
185     Value *RecursiveReturn = Builder.CreateCall(Helper, RecursiveParam);
186     Value *Accumulator = Builder.CreateAdd(Param, RecursiveReturn);
187     Builder.CreateRet(Accumulator);
188 
189     return Result;
190   }
191 
192   // Populates Modules A and B:
193   // Module A { Extern FB1, Function FA which calls FB1 },
194   // Module B { Extern FA, Function FB1, Function FB2 which calls FA },
createCrossModuleRecursiveCase(std::unique_ptr<Module> & A,Function * & FA,std::unique_ptr<Module> & B,Function * & FB1,Function * & FB2)195   void createCrossModuleRecursiveCase(std::unique_ptr<Module> &A, Function *&FA,
196                                       std::unique_ptr<Module> &B,
197                                       Function *&FB1, Function *&FB2) {
198     // Define FB1 in B.
199     B.reset(createEmptyModule("B"));
200     FB1 = insertAccumulateFunction(B.get(), nullptr, "FB1");
201 
202     // Declare FB1 in A (as an external).
203     A.reset(createEmptyModule("A"));
204     Function *FB1Extern = insertExternalReferenceToFunction(A.get(), FB1);
205 
206     // Define FA in A (with a call to FB1).
207     FA = insertAccumulateFunction(A.get(), FB1Extern, "FA");
208 
209     // Declare FA in B (as an external)
210     Function *FAExtern = insertExternalReferenceToFunction(B.get(), FA);
211 
212     // Define FB2 in B (with a call to FA)
213     FB2 = insertAccumulateFunction(B.get(), FAExtern, "FB2");
214   }
215 
216   // Module A { Function FA },
217   // Module B { Extern FA, Function FB which calls FA },
218   // Module C { Extern FB, Function FC which calls FB },
219   void
createThreeModuleChainedCallsCase(std::unique_ptr<Module> & A,Function * & FA,std::unique_ptr<Module> & B,Function * & FB,std::unique_ptr<Module> & C,Function * & FC)220   createThreeModuleChainedCallsCase(std::unique_ptr<Module> &A, Function *&FA,
221                                     std::unique_ptr<Module> &B, Function *&FB,
222                                     std::unique_ptr<Module> &C, Function *&FC) {
223     A.reset(createEmptyModule("A"));
224     FA = insertAddFunction(A.get());
225 
226     B.reset(createEmptyModule("B"));
227     Function *FAExtern_in_B = insertExternalReferenceToFunction(B.get(), FA);
228     FB = insertSimpleCallFunction<int32_t(int32_t, int32_t)>(B.get(), FAExtern_in_B);
229 
230     C.reset(createEmptyModule("C"));
231     Function *FBExtern_in_C = insertExternalReferenceToFunction(C.get(), FB);
232     FC = insertSimpleCallFunction<int32_t(int32_t, int32_t)>(C.get(), FBExtern_in_C);
233   }
234 
235   // Module A { Function FA },
236   // Populates Modules A and B:
237   // Module B { Function FB }
createTwoModuleCase(std::unique_ptr<Module> & A,Function * & FA,std::unique_ptr<Module> & B,Function * & FB)238   void createTwoModuleCase(std::unique_ptr<Module> &A, Function *&FA,
239                            std::unique_ptr<Module> &B, Function *&FB) {
240     A.reset(createEmptyModule("A"));
241     FA = insertAddFunction(A.get());
242 
243     B.reset(createEmptyModule("B"));
244     FB = insertAddFunction(B.get());
245   }
246 
247   // Module A { Function FA },
248   // Module B { Extern FA, Function FB which calls FA }
createTwoModuleExternCase(std::unique_ptr<Module> & A,Function * & FA,std::unique_ptr<Module> & B,Function * & FB)249   void createTwoModuleExternCase(std::unique_ptr<Module> &A, Function *&FA,
250                                  std::unique_ptr<Module> &B, Function *&FB) {
251     A.reset(createEmptyModule("A"));
252     FA = insertAddFunction(A.get());
253 
254     B.reset(createEmptyModule("B"));
255     Function *FAExtern_in_B = insertExternalReferenceToFunction(B.get(), FA);
256     FB = insertSimpleCallFunction<int32_t(int32_t, int32_t)>(B.get(),
257                                                              FAExtern_in_B);
258   }
259 
260   // Module A { Function FA },
261   // Module B { Extern FA, Function FB which calls FA },
262   // Module C { Extern FB, Function FC which calls FA },
createThreeModuleCase(std::unique_ptr<Module> & A,Function * & FA,std::unique_ptr<Module> & B,Function * & FB,std::unique_ptr<Module> & C,Function * & FC)263   void createThreeModuleCase(std::unique_ptr<Module> &A, Function *&FA,
264                              std::unique_ptr<Module> &B, Function *&FB,
265                              std::unique_ptr<Module> &C, Function *&FC) {
266     A.reset(createEmptyModule("A"));
267     FA = insertAddFunction(A.get());
268 
269     B.reset(createEmptyModule("B"));
270     Function *FAExtern_in_B = insertExternalReferenceToFunction(B.get(), FA);
271     FB = insertSimpleCallFunction<int32_t(int32_t, int32_t)>(B.get(), FAExtern_in_B);
272 
273     C.reset(createEmptyModule("C"));
274     Function *FAExtern_in_C = insertExternalReferenceToFunction(C.get(), FA);
275     FC = insertSimpleCallFunction<int32_t(int32_t, int32_t)>(C.get(), FAExtern_in_C);
276   }
277 };
278 
279 class MCJITTestBase : public MCJITTestAPICommon, public TrivialModuleBuilder {
280 protected:
281 
MCJITTestBase()282   MCJITTestBase()
283     : TrivialModuleBuilder(HostTriple)
284     , OptLevel(CodeGenOpt::None)
285     , CodeModel(CodeModel::Default)
286     , MArch("")
287     , MM(new SectionMemoryManager)
288   {
289     // The architectures below are known to be compatible with MCJIT as they
290     // are copied from test/ExecutionEngine/MCJIT/lit.local.cfg and should be
291     // kept in sync.
292     SupportedArchs.push_back(Triple::aarch64);
293     SupportedArchs.push_back(Triple::arm);
294     SupportedArchs.push_back(Triple::mips);
295     SupportedArchs.push_back(Triple::mipsel);
296     SupportedArchs.push_back(Triple::mips64);
297     SupportedArchs.push_back(Triple::mips64el);
298     SupportedArchs.push_back(Triple::x86);
299     SupportedArchs.push_back(Triple::x86_64);
300 
301     // Some architectures have sub-architectures in which tests will fail, like
302     // ARM. These two vectors will define if they do have sub-archs (to avoid
303     // extra work for those who don't), and if so, if they are listed to work
304     HasSubArchs.push_back(Triple::arm);
305     SupportedSubArchs.push_back("armv6");
306     SupportedSubArchs.push_back("armv7");
307 
308     UnsupportedEnvironments.push_back(Triple::Cygnus);
309   }
310 
createJIT(std::unique_ptr<Module> M)311   void createJIT(std::unique_ptr<Module> M) {
312 
313     // Due to the EngineBuilder constructor, it is required to have a Module
314     // in order to construct an ExecutionEngine (i.e. MCJIT)
315     assert(M != 0 && "a non-null Module must be provided to create MCJIT");
316 
317     EngineBuilder EB(std::move(M));
318     std::string Error;
319     TheJIT.reset(EB.setEngineKind(EngineKind::JIT)
320                  .setMCJITMemoryManager(std::move(MM))
321                  .setErrorStr(&Error)
322                  .setOptLevel(CodeGenOpt::None)
323                  .setCodeModel(CodeModel::JITDefault)
324                  .setMArch(MArch)
325                  .setMCPU(sys::getHostCPUName())
326                  //.setMAttrs(MAttrs)
327                  .create());
328     // At this point, we cannot modify the module any more.
329     assert(TheJIT.get() != NULL && "error creating MCJIT with EngineBuilder");
330   }
331 
332   CodeGenOpt::Level OptLevel;
333   CodeModel::Model CodeModel;
334   StringRef MArch;
335   SmallVector<std::string, 1> MAttrs;
336   std::unique_ptr<ExecutionEngine> TheJIT;
337   std::unique_ptr<RTDyldMemoryManager> MM;
338 
339   std::unique_ptr<Module> M;
340 };
341 
342 } // namespace llvm
343 
344 #endif // LLVM_UNITTESTS_EXECUTIONENGINE_MCJIT_MCJITTESTBASE_H
345