1 //===------------ FixedLenDecoderEmitter.cpp - Decoder Generator ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // It contains the tablegen backend that emits the decoder functions for
11 // targets with fixed length instruction set.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CodeGenTarget.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/MC/MCFixedLenDisassembler.h"
22 #include "llvm/Support/DataTypes.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/FormattedStream.h"
25 #include "llvm/Support/LEB128.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/TableGen/Error.h"
28 #include "llvm/TableGen/Record.h"
29 #include <map>
30 #include <string>
31 #include <utility>
32 #include <vector>
33 
34 using namespace llvm;
35 
36 #define DEBUG_TYPE "decoder-emitter"
37 
38 namespace {
39 struct EncodingField {
40   unsigned Base, Width, Offset;
EncodingField__anonf641aa1c0111::EncodingField41   EncodingField(unsigned B, unsigned W, unsigned O)
42     : Base(B), Width(W), Offset(O) { }
43 };
44 
45 struct OperandInfo {
46   std::vector<EncodingField> Fields;
47   std::string Decoder;
48   bool HasCompleteDecoder;
49 
OperandInfo__anonf641aa1c0111::OperandInfo50   OperandInfo(std::string D, bool HCD)
51       : Decoder(std::move(D)), HasCompleteDecoder(HCD) {}
52 
addField__anonf641aa1c0111::OperandInfo53   void addField(unsigned Base, unsigned Width, unsigned Offset) {
54     Fields.push_back(EncodingField(Base, Width, Offset));
55   }
56 
numFields__anonf641aa1c0111::OperandInfo57   unsigned numFields() const { return Fields.size(); }
58 
59   typedef std::vector<EncodingField>::const_iterator const_iterator;
60 
begin__anonf641aa1c0111::OperandInfo61   const_iterator begin() const { return Fields.begin(); }
end__anonf641aa1c0111::OperandInfo62   const_iterator end() const   { return Fields.end();   }
63 };
64 
65 typedef std::vector<uint8_t> DecoderTable;
66 typedef uint32_t DecoderFixup;
67 typedef std::vector<DecoderFixup> FixupList;
68 typedef std::vector<FixupList> FixupScopeList;
69 typedef SmallSetVector<std::string, 16> PredicateSet;
70 typedef SmallSetVector<std::string, 16> DecoderSet;
71 struct DecoderTableInfo {
72   DecoderTable Table;
73   FixupScopeList FixupStack;
74   PredicateSet Predicates;
75   DecoderSet Decoders;
76 };
77 
78 } // End anonymous namespace
79 
80 namespace {
81 class FixedLenDecoderEmitter {
82   ArrayRef<const CodeGenInstruction *> NumberedInstructions;
83 public:
84 
85   // Defaults preserved here for documentation, even though they aren't
86   // strictly necessary given the way that this is currently being called.
FixedLenDecoderEmitter(RecordKeeper & R,std::string PredicateNamespace,std::string GPrefix="if (",std::string GPostfix=" == MCDisassembler::Fail)",std::string ROK="MCDisassembler::Success",std::string RFail="MCDisassembler::Fail",std::string L="")87   FixedLenDecoderEmitter(RecordKeeper &R, std::string PredicateNamespace,
88                          std::string GPrefix = "if (",
89                          std::string GPostfix = " == MCDisassembler::Fail)",
90                          std::string ROK = "MCDisassembler::Success",
91                          std::string RFail = "MCDisassembler::Fail",
92                          std::string L = "")
93       : Target(R), PredicateNamespace(std::move(PredicateNamespace)),
94         GuardPrefix(std::move(GPrefix)), GuardPostfix(std::move(GPostfix)),
95         ReturnOK(std::move(ROK)), ReturnFail(std::move(RFail)),
96         Locals(std::move(L)) {}
97 
98   // Emit the decoder state machine table.
99   void emitTable(formatted_raw_ostream &o, DecoderTable &Table,
100                  unsigned Indentation, unsigned BitWidth,
101                  StringRef Namespace) const;
102   void emitPredicateFunction(formatted_raw_ostream &OS,
103                              PredicateSet &Predicates,
104                              unsigned Indentation) const;
105   void emitDecoderFunction(formatted_raw_ostream &OS,
106                            DecoderSet &Decoders,
107                            unsigned Indentation) const;
108 
109   // run - Output the code emitter
110   void run(raw_ostream &o);
111 
112 private:
113   CodeGenTarget Target;
114 public:
115   std::string PredicateNamespace;
116   std::string GuardPrefix, GuardPostfix;
117   std::string ReturnOK, ReturnFail;
118   std::string Locals;
119 };
120 } // End anonymous namespace
121 
122 // The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
123 // for a bit value.
124 //
125 // BIT_UNFILTERED is used as the init value for a filter position.  It is used
126 // only for filter processings.
127 typedef enum {
128   BIT_TRUE,      // '1'
129   BIT_FALSE,     // '0'
130   BIT_UNSET,     // '?'
131   BIT_UNFILTERED // unfiltered
132 } bit_value_t;
133 
ValueSet(bit_value_t V)134 static bool ValueSet(bit_value_t V) {
135   return (V == BIT_TRUE || V == BIT_FALSE);
136 }
ValueNotSet(bit_value_t V)137 static bool ValueNotSet(bit_value_t V) {
138   return (V == BIT_UNSET);
139 }
Value(bit_value_t V)140 static int Value(bit_value_t V) {
141   return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
142 }
bitFromBits(const BitsInit & bits,unsigned index)143 static bit_value_t bitFromBits(const BitsInit &bits, unsigned index) {
144   if (BitInit *bit = dyn_cast<BitInit>(bits.getBit(index)))
145     return bit->getValue() ? BIT_TRUE : BIT_FALSE;
146 
147   // The bit is uninitialized.
148   return BIT_UNSET;
149 }
150 // Prints the bit value for each position.
dumpBits(raw_ostream & o,const BitsInit & bits)151 static void dumpBits(raw_ostream &o, const BitsInit &bits) {
152   for (unsigned index = bits.getNumBits(); index > 0; --index) {
153     switch (bitFromBits(bits, index - 1)) {
154     case BIT_TRUE:
155       o << "1";
156       break;
157     case BIT_FALSE:
158       o << "0";
159       break;
160     case BIT_UNSET:
161       o << "_";
162       break;
163     default:
164       llvm_unreachable("unexpected return value from bitFromBits");
165     }
166   }
167 }
168 
getBitsField(const Record & def,const char * str)169 static BitsInit &getBitsField(const Record &def, const char *str) {
170   BitsInit *bits = def.getValueAsBitsInit(str);
171   return *bits;
172 }
173 
174 // Forward declaration.
175 namespace {
176 class FilterChooser;
177 } // End anonymous namespace
178 
179 // Representation of the instruction to work on.
180 typedef std::vector<bit_value_t> insn_t;
181 
182 /// Filter - Filter works with FilterChooser to produce the decoding tree for
183 /// the ISA.
184 ///
185 /// It is useful to think of a Filter as governing the switch stmts of the
186 /// decoding tree in a certain level.  Each case stmt delegates to an inferior
187 /// FilterChooser to decide what further decoding logic to employ, or in another
188 /// words, what other remaining bits to look at.  The FilterChooser eventually
189 /// chooses a best Filter to do its job.
190 ///
191 /// This recursive scheme ends when the number of Opcodes assigned to the
192 /// FilterChooser becomes 1 or if there is a conflict.  A conflict happens when
193 /// the Filter/FilterChooser combo does not know how to distinguish among the
194 /// Opcodes assigned.
195 ///
196 /// An example of a conflict is
197 ///
198 /// Conflict:
199 ///                     111101000.00........00010000....
200 ///                     111101000.00........0001........
201 ///                     1111010...00........0001........
202 ///                     1111010...00....................
203 ///                     1111010.........................
204 ///                     1111............................
205 ///                     ................................
206 ///     VST4q8a         111101000_00________00010000____
207 ///     VST4q8b         111101000_00________00010000____
208 ///
209 /// The Debug output shows the path that the decoding tree follows to reach the
210 /// the conclusion that there is a conflict.  VST4q8a is a vst4 to double-spaced
211 /// even registers, while VST4q8b is a vst4 to double-spaced odd registers.
212 ///
213 /// The encoding info in the .td files does not specify this meta information,
214 /// which could have been used by the decoder to resolve the conflict.  The
215 /// decoder could try to decode the even/odd register numbering and assign to
216 /// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
217 /// version and return the Opcode since the two have the same Asm format string.
218 namespace {
219 class Filter {
220 protected:
221   const FilterChooser *Owner;// points to the FilterChooser who owns this filter
222   unsigned StartBit; // the starting bit position
223   unsigned NumBits; // number of bits to filter
224   bool Mixed; // a mixed region contains both set and unset bits
225 
226   // Map of well-known segment value to the set of uid's with that value.
227   std::map<uint64_t, std::vector<unsigned> > FilteredInstructions;
228 
229   // Set of uid's with non-constant segment values.
230   std::vector<unsigned> VariableInstructions;
231 
232   // Map of well-known segment value to its delegate.
233   std::map<unsigned, std::unique_ptr<const FilterChooser>> FilterChooserMap;
234 
235   // Number of instructions which fall under FilteredInstructions category.
236   unsigned NumFiltered;
237 
238   // Keeps track of the last opcode in the filtered bucket.
239   unsigned LastOpcFiltered;
240 
241 public:
getNumFiltered() const242   unsigned getNumFiltered() const { return NumFiltered; }
getSingletonOpc() const243   unsigned getSingletonOpc() const {
244     assert(NumFiltered == 1);
245     return LastOpcFiltered;
246   }
247   // Return the filter chooser for the group of instructions without constant
248   // segment values.
getVariableFC() const249   const FilterChooser &getVariableFC() const {
250     assert(NumFiltered == 1);
251     assert(FilterChooserMap.size() == 1);
252     return *(FilterChooserMap.find((unsigned)-1)->second);
253   }
254 
255   Filter(Filter &&f);
256   Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed);
257 
258   ~Filter();
259 
260   // Divides the decoding task into sub tasks and delegates them to the
261   // inferior FilterChooser's.
262   //
263   // A special case arises when there's only one entry in the filtered
264   // instructions.  In order to unambiguously decode the singleton, we need to
265   // match the remaining undecoded encoding bits against the singleton.
266   void recurse();
267 
268   // Emit table entries to decode instructions given a segment or segments of
269   // bits.
270   void emitTableEntry(DecoderTableInfo &TableInfo) const;
271 
272   // Returns the number of fanout produced by the filter.  More fanout implies
273   // the filter distinguishes more categories of instructions.
274   unsigned usefulness() const;
275 }; // End of class Filter
276 } // End anonymous namespace
277 
278 // These are states of our finite state machines used in FilterChooser's
279 // filterProcessor() which produces the filter candidates to use.
280 typedef enum {
281   ATTR_NONE,
282   ATTR_FILTERED,
283   ATTR_ALL_SET,
284   ATTR_ALL_UNSET,
285   ATTR_MIXED
286 } bitAttr_t;
287 
288 /// FilterChooser - FilterChooser chooses the best filter among a set of Filters
289 /// in order to perform the decoding of instructions at the current level.
290 ///
291 /// Decoding proceeds from the top down.  Based on the well-known encoding bits
292 /// of instructions available, FilterChooser builds up the possible Filters that
293 /// can further the task of decoding by distinguishing among the remaining
294 /// candidate instructions.
295 ///
296 /// Once a filter has been chosen, it is called upon to divide the decoding task
297 /// into sub-tasks and delegates them to its inferior FilterChoosers for further
298 /// processings.
299 ///
300 /// It is useful to think of a Filter as governing the switch stmts of the
301 /// decoding tree.  And each case is delegated to an inferior FilterChooser to
302 /// decide what further remaining bits to look at.
303 namespace {
304 class FilterChooser {
305 protected:
306   friend class Filter;
307 
308   // Vector of codegen instructions to choose our filter.
309   ArrayRef<const CodeGenInstruction *> AllInstructions;
310 
311   // Vector of uid's for this filter chooser to work on.
312   const std::vector<unsigned> &Opcodes;
313 
314   // Lookup table for the operand decoding of instructions.
315   const std::map<unsigned, std::vector<OperandInfo> > &Operands;
316 
317   // Vector of candidate filters.
318   std::vector<Filter> Filters;
319 
320   // Array of bit values passed down from our parent.
321   // Set to all BIT_UNFILTERED's for Parent == NULL.
322   std::vector<bit_value_t> FilterBitValues;
323 
324   // Links to the FilterChooser above us in the decoding tree.
325   const FilterChooser *Parent;
326 
327   // Index of the best filter from Filters.
328   int BestIndex;
329 
330   // Width of instructions
331   unsigned BitWidth;
332 
333   // Parent emitter
334   const FixedLenDecoderEmitter *Emitter;
335 
336   FilterChooser(const FilterChooser &) = delete;
337   void operator=(const FilterChooser &) = delete;
338 public:
339 
FilterChooser(ArrayRef<const CodeGenInstruction * > Insts,const std::vector<unsigned> & IDs,const std::map<unsigned,std::vector<OperandInfo>> & Ops,unsigned BW,const FixedLenDecoderEmitter * E)340   FilterChooser(ArrayRef<const CodeGenInstruction *> Insts,
341                 const std::vector<unsigned> &IDs,
342                 const std::map<unsigned, std::vector<OperandInfo> > &Ops,
343                 unsigned BW,
344                 const FixedLenDecoderEmitter *E)
345     : AllInstructions(Insts), Opcodes(IDs), Operands(Ops), Filters(),
346       FilterBitValues(BW, BIT_UNFILTERED), Parent(nullptr), BestIndex(-1),
347       BitWidth(BW), Emitter(E) {
348     doFilter();
349   }
350 
FilterChooser(ArrayRef<const CodeGenInstruction * > Insts,const std::vector<unsigned> & IDs,const std::map<unsigned,std::vector<OperandInfo>> & Ops,const std::vector<bit_value_t> & ParentFilterBitValues,const FilterChooser & parent)351   FilterChooser(ArrayRef<const CodeGenInstruction *> Insts,
352                 const std::vector<unsigned> &IDs,
353                 const std::map<unsigned, std::vector<OperandInfo> > &Ops,
354                 const std::vector<bit_value_t> &ParentFilterBitValues,
355                 const FilterChooser &parent)
356     : AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
357       Filters(), FilterBitValues(ParentFilterBitValues),
358       Parent(&parent), BestIndex(-1), BitWidth(parent.BitWidth),
359       Emitter(parent.Emitter) {
360     doFilter();
361   }
362 
getBitWidth() const363   unsigned getBitWidth() const { return BitWidth; }
364 
365 protected:
366   // Populates the insn given the uid.
insnWithID(insn_t & Insn,unsigned Opcode) const367   void insnWithID(insn_t &Insn, unsigned Opcode) const {
368     BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst");
369 
370     // We may have a SoftFail bitmask, which specifies a mask where an encoding
371     // may differ from the value in "Inst" and yet still be valid, but the
372     // disassembler should return SoftFail instead of Success.
373     //
374     // This is used for marking UNPREDICTABLE instructions in the ARM world.
375     BitsInit *SFBits =
376       AllInstructions[Opcode]->TheDef->getValueAsBitsInit("SoftFail");
377 
378     for (unsigned i = 0; i < BitWidth; ++i) {
379       if (SFBits && bitFromBits(*SFBits, i) == BIT_TRUE)
380         Insn.push_back(BIT_UNSET);
381       else
382         Insn.push_back(bitFromBits(Bits, i));
383     }
384   }
385 
386   // Returns the record name.
nameWithID(unsigned Opcode) const387   const std::string &nameWithID(unsigned Opcode) const {
388     return AllInstructions[Opcode]->TheDef->getName();
389   }
390 
391   // Populates the field of the insn given the start position and the number of
392   // consecutive bits to scan for.
393   //
394   // Returns false if there exists any uninitialized bit value in the range.
395   // Returns true, otherwise.
396   bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
397                      unsigned NumBits) const;
398 
399   /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
400   /// filter array as a series of chars.
401   void dumpFilterArray(raw_ostream &o,
402                        const std::vector<bit_value_t> & filter) const;
403 
404   /// dumpStack - dumpStack traverses the filter chooser chain and calls
405   /// dumpFilterArray on each filter chooser up to the top level one.
406   void dumpStack(raw_ostream &o, const char *prefix) const;
407 
bestFilter()408   Filter &bestFilter() {
409     assert(BestIndex != -1 && "BestIndex not set");
410     return Filters[BestIndex];
411   }
412 
PositionFiltered(unsigned i) const413   bool PositionFiltered(unsigned i) const {
414     return ValueSet(FilterBitValues[i]);
415   }
416 
417   // Calculates the island(s) needed to decode the instruction.
418   // This returns a lit of undecoded bits of an instructions, for example,
419   // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
420   // decoded bits in order to verify that the instruction matches the Opcode.
421   unsigned getIslands(std::vector<unsigned> &StartBits,
422                       std::vector<unsigned> &EndBits,
423                       std::vector<uint64_t> &FieldVals,
424                       const insn_t &Insn) const;
425 
426   // Emits code to check the Predicates member of an instruction are true.
427   // Returns true if predicate matches were emitted, false otherwise.
428   bool emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
429                           unsigned Opc) const;
430 
431   bool doesOpcodeNeedPredicate(unsigned Opc) const;
432   unsigned getPredicateIndex(DecoderTableInfo &TableInfo, StringRef P) const;
433   void emitPredicateTableEntry(DecoderTableInfo &TableInfo,
434                                unsigned Opc) const;
435 
436   void emitSoftFailTableEntry(DecoderTableInfo &TableInfo,
437                               unsigned Opc) const;
438 
439   // Emits table entries to decode the singleton.
440   void emitSingletonTableEntry(DecoderTableInfo &TableInfo,
441                                unsigned Opc) const;
442 
443   // Emits code to decode the singleton, and then to decode the rest.
444   void emitSingletonTableEntry(DecoderTableInfo &TableInfo,
445                                const Filter &Best) const;
446 
447   void emitBinaryParser(raw_ostream &o, unsigned &Indentation,
448                         const OperandInfo &OpInfo,
449                         bool &OpHasCompleteDecoder) const;
450 
451   void emitDecoder(raw_ostream &OS, unsigned Indentation, unsigned Opc,
452                    bool &HasCompleteDecoder) const;
453   unsigned getDecoderIndex(DecoderSet &Decoders, unsigned Opc,
454                            bool &HasCompleteDecoder) const;
455 
456   // Assign a single filter and run with it.
457   void runSingleFilter(unsigned startBit, unsigned numBit, bool mixed);
458 
459   // reportRegion is a helper function for filterProcessor to mark a region as
460   // eligible for use as a filter region.
461   void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex,
462                     bool AllowMixed);
463 
464   // FilterProcessor scans the well-known encoding bits of the instructions and
465   // builds up a list of candidate filters.  It chooses the best filter and
466   // recursively descends down the decoding tree.
467   bool filterProcessor(bool AllowMixed, bool Greedy = true);
468 
469   // Decides on the best configuration of filter(s) to use in order to decode
470   // the instructions.  A conflict of instructions may occur, in which case we
471   // dump the conflict set to the standard error.
472   void doFilter();
473 
474 public:
475   // emitTableEntries - Emit state machine entries to decode our share of
476   // instructions.
477   void emitTableEntries(DecoderTableInfo &TableInfo) const;
478 };
479 } // End anonymous namespace
480 
481 ///////////////////////////
482 //                       //
483 // Filter Implementation //
484 //                       //
485 ///////////////////////////
486 
Filter(Filter && f)487 Filter::Filter(Filter &&f)
488   : Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed),
489     FilteredInstructions(std::move(f.FilteredInstructions)),
490     VariableInstructions(std::move(f.VariableInstructions)),
491     FilterChooserMap(std::move(f.FilterChooserMap)), NumFiltered(f.NumFiltered),
492     LastOpcFiltered(f.LastOpcFiltered) {
493 }
494 
Filter(FilterChooser & owner,unsigned startBit,unsigned numBits,bool mixed)495 Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits,
496                bool mixed)
497   : Owner(&owner), StartBit(startBit), NumBits(numBits), Mixed(mixed) {
498   assert(StartBit + NumBits - 1 < Owner->BitWidth);
499 
500   NumFiltered = 0;
501   LastOpcFiltered = 0;
502 
503   for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
504     insn_t Insn;
505 
506     // Populates the insn given the uid.
507     Owner->insnWithID(Insn, Owner->Opcodes[i]);
508 
509     uint64_t Field;
510     // Scans the segment for possibly well-specified encoding bits.
511     bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);
512 
513     if (ok) {
514       // The encoding bits are well-known.  Lets add the uid of the
515       // instruction into the bucket keyed off the constant field value.
516       LastOpcFiltered = Owner->Opcodes[i];
517       FilteredInstructions[Field].push_back(LastOpcFiltered);
518       ++NumFiltered;
519     } else {
520       // Some of the encoding bit(s) are unspecified.  This contributes to
521       // one additional member of "Variable" instructions.
522       VariableInstructions.push_back(Owner->Opcodes[i]);
523     }
524   }
525 
526   assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
527          && "Filter returns no instruction categories");
528 }
529 
~Filter()530 Filter::~Filter() {
531 }
532 
533 // Divides the decoding task into sub tasks and delegates them to the
534 // inferior FilterChooser's.
535 //
536 // A special case arises when there's only one entry in the filtered
537 // instructions.  In order to unambiguously decode the singleton, we need to
538 // match the remaining undecoded encoding bits against the singleton.
recurse()539 void Filter::recurse() {
540   // Starts by inheriting our parent filter chooser's filter bit values.
541   std::vector<bit_value_t> BitValueArray(Owner->FilterBitValues);
542 
543   if (!VariableInstructions.empty()) {
544     // Conservatively marks each segment position as BIT_UNSET.
545     for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex)
546       BitValueArray[StartBit + bitIndex] = BIT_UNSET;
547 
548     // Delegates to an inferior filter chooser for further processing on this
549     // group of instructions whose segment values are variable.
550     FilterChooserMap.insert(
551         std::make_pair(-1U, llvm::make_unique<FilterChooser>(
552                                 Owner->AllInstructions, VariableInstructions,
553                                 Owner->Operands, BitValueArray, *Owner)));
554   }
555 
556   // No need to recurse for a singleton filtered instruction.
557   // See also Filter::emit*().
558   if (getNumFiltered() == 1) {
559     assert(FilterChooserMap.size() == 1);
560     return;
561   }
562 
563   // Otherwise, create sub choosers.
564   for (const auto &Inst : FilteredInstructions) {
565 
566     // Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
567     for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex) {
568       if (Inst.first & (1ULL << bitIndex))
569         BitValueArray[StartBit + bitIndex] = BIT_TRUE;
570       else
571         BitValueArray[StartBit + bitIndex] = BIT_FALSE;
572     }
573 
574     // Delegates to an inferior filter chooser for further processing on this
575     // category of instructions.
576     FilterChooserMap.insert(std::make_pair(
577         Inst.first, llvm::make_unique<FilterChooser>(
578                                 Owner->AllInstructions, Inst.second,
579                                 Owner->Operands, BitValueArray, *Owner)));
580   }
581 }
582 
resolveTableFixups(DecoderTable & Table,const FixupList & Fixups,uint32_t DestIdx)583 static void resolveTableFixups(DecoderTable &Table, const FixupList &Fixups,
584                                uint32_t DestIdx) {
585   // Any NumToSkip fixups in the current scope can resolve to the
586   // current location.
587   for (FixupList::const_reverse_iterator I = Fixups.rbegin(),
588                                          E = Fixups.rend();
589        I != E; ++I) {
590     // Calculate the distance from the byte following the fixup entry byte
591     // to the destination. The Target is calculated from after the 16-bit
592     // NumToSkip entry itself, so subtract two  from the displacement here
593     // to account for that.
594     uint32_t FixupIdx = *I;
595     uint32_t Delta = DestIdx - FixupIdx - 2;
596     // Our NumToSkip entries are 16-bits. Make sure our table isn't too
597     // big.
598     assert(Delta < 65536U && "disassembler decoding table too large!");
599     Table[FixupIdx] = (uint8_t)Delta;
600     Table[FixupIdx + 1] = (uint8_t)(Delta >> 8);
601   }
602 }
603 
604 // Emit table entries to decode instructions given a segment or segments
605 // of bits.
emitTableEntry(DecoderTableInfo & TableInfo) const606 void Filter::emitTableEntry(DecoderTableInfo &TableInfo) const {
607   TableInfo.Table.push_back(MCD::OPC_ExtractField);
608   TableInfo.Table.push_back(StartBit);
609   TableInfo.Table.push_back(NumBits);
610 
611   // A new filter entry begins a new scope for fixup resolution.
612   TableInfo.FixupStack.emplace_back();
613 
614   DecoderTable &Table = TableInfo.Table;
615 
616   size_t PrevFilter = 0;
617   bool HasFallthrough = false;
618   for (auto &Filter : FilterChooserMap) {
619     // Field value -1 implies a non-empty set of variable instructions.
620     // See also recurse().
621     if (Filter.first == (unsigned)-1) {
622       HasFallthrough = true;
623 
624       // Each scope should always have at least one filter value to check
625       // for.
626       assert(PrevFilter != 0 && "empty filter set!");
627       FixupList &CurScope = TableInfo.FixupStack.back();
628       // Resolve any NumToSkip fixups in the current scope.
629       resolveTableFixups(Table, CurScope, Table.size());
630       CurScope.clear();
631       PrevFilter = 0;  // Don't re-process the filter's fallthrough.
632     } else {
633       Table.push_back(MCD::OPC_FilterValue);
634       // Encode and emit the value to filter against.
635       uint8_t Buffer[8];
636       unsigned Len = encodeULEB128(Filter.first, Buffer);
637       Table.insert(Table.end(), Buffer, Buffer + Len);
638       // Reserve space for the NumToSkip entry. We'll backpatch the value
639       // later.
640       PrevFilter = Table.size();
641       Table.push_back(0);
642       Table.push_back(0);
643     }
644 
645     // We arrive at a category of instructions with the same segment value.
646     // Now delegate to the sub filter chooser for further decodings.
647     // The case may fallthrough, which happens if the remaining well-known
648     // encoding bits do not match exactly.
649     Filter.second->emitTableEntries(TableInfo);
650 
651     // Now that we've emitted the body of the handler, update the NumToSkip
652     // of the filter itself to be able to skip forward when false. Subtract
653     // two as to account for the width of the NumToSkip field itself.
654     if (PrevFilter) {
655       uint32_t NumToSkip = Table.size() - PrevFilter - 2;
656       assert(NumToSkip < 65536U && "disassembler decoding table too large!");
657       Table[PrevFilter] = (uint8_t)NumToSkip;
658       Table[PrevFilter + 1] = (uint8_t)(NumToSkip >> 8);
659     }
660   }
661 
662   // Any remaining unresolved fixups bubble up to the parent fixup scope.
663   assert(TableInfo.FixupStack.size() > 1 && "fixup stack underflow!");
664   FixupScopeList::iterator Source = TableInfo.FixupStack.end() - 1;
665   FixupScopeList::iterator Dest = Source - 1;
666   Dest->insert(Dest->end(), Source->begin(), Source->end());
667   TableInfo.FixupStack.pop_back();
668 
669   // If there is no fallthrough, then the final filter should get fixed
670   // up according to the enclosing scope rather than the current position.
671   if (!HasFallthrough)
672     TableInfo.FixupStack.back().push_back(PrevFilter);
673 }
674 
675 // Returns the number of fanout produced by the filter.  More fanout implies
676 // the filter distinguishes more categories of instructions.
usefulness() const677 unsigned Filter::usefulness() const {
678   if (!VariableInstructions.empty())
679     return FilteredInstructions.size();
680   else
681     return FilteredInstructions.size() + 1;
682 }
683 
684 //////////////////////////////////
685 //                              //
686 // Filterchooser Implementation //
687 //                              //
688 //////////////////////////////////
689 
690 // Emit the decoder state machine table.
emitTable(formatted_raw_ostream & OS,DecoderTable & Table,unsigned Indentation,unsigned BitWidth,StringRef Namespace) const691 void FixedLenDecoderEmitter::emitTable(formatted_raw_ostream &OS,
692                                        DecoderTable &Table,
693                                        unsigned Indentation,
694                                        unsigned BitWidth,
695                                        StringRef Namespace) const {
696   OS.indent(Indentation) << "static const uint8_t DecoderTable" << Namespace
697     << BitWidth << "[] = {\n";
698 
699   Indentation += 2;
700 
701   // FIXME: We may be able to use the NumToSkip values to recover
702   // appropriate indentation levels.
703   DecoderTable::const_iterator I = Table.begin();
704   DecoderTable::const_iterator E = Table.end();
705   while (I != E) {
706     assert (I < E && "incomplete decode table entry!");
707 
708     uint64_t Pos = I - Table.begin();
709     OS << "/* " << Pos << " */";
710     OS.PadToColumn(12);
711 
712     switch (*I) {
713     default:
714       PrintFatalError("invalid decode table opcode");
715     case MCD::OPC_ExtractField: {
716       ++I;
717       unsigned Start = *I++;
718       unsigned Len = *I++;
719       OS.indent(Indentation) << "MCD::OPC_ExtractField, " << Start << ", "
720         << Len << ",  // Inst{";
721       if (Len > 1)
722         OS << (Start + Len - 1) << "-";
723       OS << Start << "} ...\n";
724       break;
725     }
726     case MCD::OPC_FilterValue: {
727       ++I;
728       OS.indent(Indentation) << "MCD::OPC_FilterValue, ";
729       // The filter value is ULEB128 encoded.
730       while (*I >= 128)
731         OS << (unsigned)*I++ << ", ";
732       OS << (unsigned)*I++ << ", ";
733 
734       // 16-bit numtoskip value.
735       uint8_t Byte = *I++;
736       uint32_t NumToSkip = Byte;
737       OS << (unsigned)Byte << ", ";
738       Byte = *I++;
739       OS << (unsigned)Byte << ", ";
740       NumToSkip |= Byte << 8;
741       OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
742       break;
743     }
744     case MCD::OPC_CheckField: {
745       ++I;
746       unsigned Start = *I++;
747       unsigned Len = *I++;
748       OS.indent(Indentation) << "MCD::OPC_CheckField, " << Start << ", "
749         << Len << ", ";// << Val << ", " << NumToSkip << ",\n";
750       // ULEB128 encoded field value.
751       for (; *I >= 128; ++I)
752         OS << (unsigned)*I << ", ";
753       OS << (unsigned)*I++ << ", ";
754       // 16-bit numtoskip value.
755       uint8_t Byte = *I++;
756       uint32_t NumToSkip = Byte;
757       OS << (unsigned)Byte << ", ";
758       Byte = *I++;
759       OS << (unsigned)Byte << ", ";
760       NumToSkip |= Byte << 8;
761       OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
762       break;
763     }
764     case MCD::OPC_CheckPredicate: {
765       ++I;
766       OS.indent(Indentation) << "MCD::OPC_CheckPredicate, ";
767       for (; *I >= 128; ++I)
768         OS << (unsigned)*I << ", ";
769       OS << (unsigned)*I++ << ", ";
770 
771       // 16-bit numtoskip value.
772       uint8_t Byte = *I++;
773       uint32_t NumToSkip = Byte;
774       OS << (unsigned)Byte << ", ";
775       Byte = *I++;
776       OS << (unsigned)Byte << ", ";
777       NumToSkip |= Byte << 8;
778       OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
779       break;
780     }
781     case MCD::OPC_Decode:
782     case MCD::OPC_TryDecode: {
783       bool IsTry = *I == MCD::OPC_TryDecode;
784       ++I;
785       // Extract the ULEB128 encoded Opcode to a buffer.
786       uint8_t Buffer[8], *p = Buffer;
787       while ((*p++ = *I++) >= 128)
788         assert((p - Buffer) <= (ptrdiff_t)sizeof(Buffer)
789                && "ULEB128 value too large!");
790       // Decode the Opcode value.
791       unsigned Opc = decodeULEB128(Buffer);
792       OS.indent(Indentation) << "MCD::OPC_" << (IsTry ? "Try" : "")
793         << "Decode, ";
794       for (p = Buffer; *p >= 128; ++p)
795         OS << (unsigned)*p << ", ";
796       OS << (unsigned)*p << ", ";
797 
798       // Decoder index.
799       for (; *I >= 128; ++I)
800         OS << (unsigned)*I << ", ";
801       OS << (unsigned)*I++ << ", ";
802 
803       if (!IsTry) {
804         OS << "// Opcode: "
805            << NumberedInstructions[Opc]->TheDef->getName() << "\n";
806         break;
807       }
808 
809       // Fallthrough for OPC_TryDecode.
810 
811       // 16-bit numtoskip value.
812       uint8_t Byte = *I++;
813       uint32_t NumToSkip = Byte;
814       OS << (unsigned)Byte << ", ";
815       Byte = *I++;
816       OS << (unsigned)Byte << ", ";
817       NumToSkip |= Byte << 8;
818 
819       OS << "// Opcode: "
820          << NumberedInstructions[Opc]->TheDef->getName()
821          << ", skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
822       break;
823     }
824     case MCD::OPC_SoftFail: {
825       ++I;
826       OS.indent(Indentation) << "MCD::OPC_SoftFail";
827       // Positive mask
828       uint64_t Value = 0;
829       unsigned Shift = 0;
830       do {
831         OS << ", " << (unsigned)*I;
832         Value += (*I & 0x7f) << Shift;
833         Shift += 7;
834       } while (*I++ >= 128);
835       if (Value > 127) {
836         OS << " /* 0x";
837         OS.write_hex(Value);
838         OS << " */";
839       }
840       // Negative mask
841       Value = 0;
842       Shift = 0;
843       do {
844         OS << ", " << (unsigned)*I;
845         Value += (*I & 0x7f) << Shift;
846         Shift += 7;
847       } while (*I++ >= 128);
848       if (Value > 127) {
849         OS << " /* 0x";
850         OS.write_hex(Value);
851         OS << " */";
852       }
853       OS << ",\n";
854       break;
855     }
856     case MCD::OPC_Fail: {
857       ++I;
858       OS.indent(Indentation) << "MCD::OPC_Fail,\n";
859       break;
860     }
861     }
862   }
863   OS.indent(Indentation) << "0\n";
864 
865   Indentation -= 2;
866 
867   OS.indent(Indentation) << "};\n\n";
868 }
869 
870 void FixedLenDecoderEmitter::
emitPredicateFunction(formatted_raw_ostream & OS,PredicateSet & Predicates,unsigned Indentation) const871 emitPredicateFunction(formatted_raw_ostream &OS, PredicateSet &Predicates,
872                       unsigned Indentation) const {
873   // The predicate function is just a big switch statement based on the
874   // input predicate index.
875   OS.indent(Indentation) << "static bool checkDecoderPredicate(unsigned Idx, "
876     << "const FeatureBitset& Bits) {\n";
877   Indentation += 2;
878   if (!Predicates.empty()) {
879     OS.indent(Indentation) << "switch (Idx) {\n";
880     OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n";
881     unsigned Index = 0;
882     for (const auto &Predicate : Predicates) {
883       OS.indent(Indentation) << "case " << Index++ << ":\n";
884       OS.indent(Indentation+2) << "return (" << Predicate << ");\n";
885     }
886     OS.indent(Indentation) << "}\n";
887   } else {
888     // No case statement to emit
889     OS.indent(Indentation) << "llvm_unreachable(\"Invalid index!\");\n";
890   }
891   Indentation -= 2;
892   OS.indent(Indentation) << "}\n\n";
893 }
894 
895 void FixedLenDecoderEmitter::
emitDecoderFunction(formatted_raw_ostream & OS,DecoderSet & Decoders,unsigned Indentation) const896 emitDecoderFunction(formatted_raw_ostream &OS, DecoderSet &Decoders,
897                     unsigned Indentation) const {
898   // The decoder function is just a big switch statement based on the
899   // input decoder index.
900   OS.indent(Indentation) << "template<typename InsnType>\n";
901   OS.indent(Indentation) << "static DecodeStatus decodeToMCInst(DecodeStatus S,"
902     << " unsigned Idx, InsnType insn, MCInst &MI,\n";
903   OS.indent(Indentation) << "                                   uint64_t "
904     << "Address, const void *Decoder, bool &DecodeComplete) {\n";
905   Indentation += 2;
906   OS.indent(Indentation) << "DecodeComplete = true;\n";
907   OS.indent(Indentation) << "InsnType tmp;\n";
908   OS.indent(Indentation) << "switch (Idx) {\n";
909   OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n";
910   unsigned Index = 0;
911   for (const auto &Decoder : Decoders) {
912     OS.indent(Indentation) << "case " << Index++ << ":\n";
913     OS << Decoder;
914     OS.indent(Indentation+2) << "return S;\n";
915   }
916   OS.indent(Indentation) << "}\n";
917   Indentation -= 2;
918   OS.indent(Indentation) << "}\n\n";
919 }
920 
921 // Populates the field of the insn given the start position and the number of
922 // consecutive bits to scan for.
923 //
924 // Returns false if and on the first uninitialized bit value encountered.
925 // Returns true, otherwise.
fieldFromInsn(uint64_t & Field,insn_t & Insn,unsigned StartBit,unsigned NumBits) const926 bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
927                                   unsigned StartBit, unsigned NumBits) const {
928   Field = 0;
929 
930   for (unsigned i = 0; i < NumBits; ++i) {
931     if (Insn[StartBit + i] == BIT_UNSET)
932       return false;
933 
934     if (Insn[StartBit + i] == BIT_TRUE)
935       Field = Field | (1ULL << i);
936   }
937 
938   return true;
939 }
940 
941 /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
942 /// filter array as a series of chars.
dumpFilterArray(raw_ostream & o,const std::vector<bit_value_t> & filter) const943 void FilterChooser::dumpFilterArray(raw_ostream &o,
944                                  const std::vector<bit_value_t> &filter) const {
945   for (unsigned bitIndex = BitWidth; bitIndex > 0; bitIndex--) {
946     switch (filter[bitIndex - 1]) {
947     case BIT_UNFILTERED:
948       o << ".";
949       break;
950     case BIT_UNSET:
951       o << "_";
952       break;
953     case BIT_TRUE:
954       o << "1";
955       break;
956     case BIT_FALSE:
957       o << "0";
958       break;
959     }
960   }
961 }
962 
963 /// dumpStack - dumpStack traverses the filter chooser chain and calls
964 /// dumpFilterArray on each filter chooser up to the top level one.
dumpStack(raw_ostream & o,const char * prefix) const965 void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) const {
966   const FilterChooser *current = this;
967 
968   while (current) {
969     o << prefix;
970     dumpFilterArray(o, current->FilterBitValues);
971     o << '\n';
972     current = current->Parent;
973   }
974 }
975 
976 // Calculates the island(s) needed to decode the instruction.
977 // This returns a list of undecoded bits of an instructions, for example,
978 // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
979 // decoded bits in order to verify that the instruction matches the Opcode.
getIslands(std::vector<unsigned> & StartBits,std::vector<unsigned> & EndBits,std::vector<uint64_t> & FieldVals,const insn_t & Insn) const980 unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits,
981                                    std::vector<unsigned> &EndBits,
982                                    std::vector<uint64_t> &FieldVals,
983                                    const insn_t &Insn) const {
984   unsigned Num, BitNo;
985   Num = BitNo = 0;
986 
987   uint64_t FieldVal = 0;
988 
989   // 0: Init
990   // 1: Water (the bit value does not affect decoding)
991   // 2: Island (well-known bit value needed for decoding)
992   int State = 0;
993   int Val = -1;
994 
995   for (unsigned i = 0; i < BitWidth; ++i) {
996     Val = Value(Insn[i]);
997     bool Filtered = PositionFiltered(i);
998     switch (State) {
999     default: llvm_unreachable("Unreachable code!");
1000     case 0:
1001     case 1:
1002       if (Filtered || Val == -1)
1003         State = 1; // Still in Water
1004       else {
1005         State = 2; // Into the Island
1006         BitNo = 0;
1007         StartBits.push_back(i);
1008         FieldVal = Val;
1009       }
1010       break;
1011     case 2:
1012       if (Filtered || Val == -1) {
1013         State = 1; // Into the Water
1014         EndBits.push_back(i - 1);
1015         FieldVals.push_back(FieldVal);
1016         ++Num;
1017       } else {
1018         State = 2; // Still in Island
1019         ++BitNo;
1020         FieldVal = FieldVal | Val << BitNo;
1021       }
1022       break;
1023     }
1024   }
1025   // If we are still in Island after the loop, do some housekeeping.
1026   if (State == 2) {
1027     EndBits.push_back(BitWidth - 1);
1028     FieldVals.push_back(FieldVal);
1029     ++Num;
1030   }
1031 
1032   assert(StartBits.size() == Num && EndBits.size() == Num &&
1033          FieldVals.size() == Num);
1034   return Num;
1035 }
1036 
emitBinaryParser(raw_ostream & o,unsigned & Indentation,const OperandInfo & OpInfo,bool & OpHasCompleteDecoder) const1037 void FilterChooser::emitBinaryParser(raw_ostream &o, unsigned &Indentation,
1038                                      const OperandInfo &OpInfo,
1039                                      bool &OpHasCompleteDecoder) const {
1040   const std::string &Decoder = OpInfo.Decoder;
1041 
1042   if (OpInfo.numFields() != 1)
1043     o.indent(Indentation) << "tmp = 0;\n";
1044 
1045   for (const EncodingField &EF : OpInfo) {
1046     o.indent(Indentation) << "tmp ";
1047     if (OpInfo.numFields() != 1) o << '|';
1048     o << "= fieldFromInstruction"
1049       << "(insn, " << EF.Base << ", " << EF.Width << ')';
1050     if (OpInfo.numFields() != 1 || EF.Offset != 0)
1051       o << " << " << EF.Offset;
1052     o << ";\n";
1053   }
1054 
1055   if (Decoder != "") {
1056     OpHasCompleteDecoder = OpInfo.HasCompleteDecoder;
1057     o.indent(Indentation) << Emitter->GuardPrefix << Decoder
1058       << "(MI, tmp, Address, Decoder)"
1059       << Emitter->GuardPostfix
1060       << " { " << (OpHasCompleteDecoder ? "" : "DecodeComplete = false; ")
1061       << "return MCDisassembler::Fail; }\n";
1062   } else {
1063     OpHasCompleteDecoder = true;
1064     o.indent(Indentation) << "MI.addOperand(MCOperand::createImm(tmp));\n";
1065   }
1066 }
1067 
emitDecoder(raw_ostream & OS,unsigned Indentation,unsigned Opc,bool & HasCompleteDecoder) const1068 void FilterChooser::emitDecoder(raw_ostream &OS, unsigned Indentation,
1069                                 unsigned Opc, bool &HasCompleteDecoder) const {
1070   HasCompleteDecoder = true;
1071 
1072   for (const auto &Op : Operands.find(Opc)->second) {
1073     // If a custom instruction decoder was specified, use that.
1074     if (Op.numFields() == 0 && Op.Decoder.size()) {
1075       HasCompleteDecoder = Op.HasCompleteDecoder;
1076       OS.indent(Indentation) << Emitter->GuardPrefix << Op.Decoder
1077         << "(MI, insn, Address, Decoder)"
1078         << Emitter->GuardPostfix
1079         << " { " << (HasCompleteDecoder ? "" : "DecodeComplete = false; ")
1080         << "return MCDisassembler::Fail; }\n";
1081       break;
1082     }
1083 
1084     bool OpHasCompleteDecoder;
1085     emitBinaryParser(OS, Indentation, Op, OpHasCompleteDecoder);
1086     if (!OpHasCompleteDecoder)
1087       HasCompleteDecoder = false;
1088   }
1089 }
1090 
getDecoderIndex(DecoderSet & Decoders,unsigned Opc,bool & HasCompleteDecoder) const1091 unsigned FilterChooser::getDecoderIndex(DecoderSet &Decoders,
1092                                         unsigned Opc,
1093                                         bool &HasCompleteDecoder) const {
1094   // Build up the predicate string.
1095   SmallString<256> Decoder;
1096   // FIXME: emitDecoder() function can take a buffer directly rather than
1097   // a stream.
1098   raw_svector_ostream S(Decoder);
1099   unsigned I = 4;
1100   emitDecoder(S, I, Opc, HasCompleteDecoder);
1101 
1102   // Using the full decoder string as the key value here is a bit
1103   // heavyweight, but is effective. If the string comparisons become a
1104   // performance concern, we can implement a mangling of the predicate
1105   // data easily enough with a map back to the actual string. That's
1106   // overkill for now, though.
1107 
1108   // Make sure the predicate is in the table.
1109   Decoders.insert(StringRef(Decoder));
1110   // Now figure out the index for when we write out the table.
1111   DecoderSet::const_iterator P = std::find(Decoders.begin(),
1112                                            Decoders.end(),
1113                                            Decoder.str());
1114   return (unsigned)(P - Decoders.begin());
1115 }
1116 
emitSinglePredicateMatch(raw_ostream & o,StringRef str,const std::string & PredicateNamespace)1117 static void emitSinglePredicateMatch(raw_ostream &o, StringRef str,
1118                                      const std::string &PredicateNamespace) {
1119   if (str[0] == '!')
1120     o << "!Bits[" << PredicateNamespace << "::"
1121       << str.slice(1,str.size()) << "]";
1122   else
1123     o << "Bits[" << PredicateNamespace << "::" << str << "]";
1124 }
1125 
emitPredicateMatch(raw_ostream & o,unsigned & Indentation,unsigned Opc) const1126 bool FilterChooser::emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
1127                                        unsigned Opc) const {
1128   ListInit *Predicates =
1129     AllInstructions[Opc]->TheDef->getValueAsListInit("Predicates");
1130   bool IsFirstEmission = true;
1131   for (unsigned i = 0; i < Predicates->size(); ++i) {
1132     Record *Pred = Predicates->getElementAsRecord(i);
1133     if (!Pred->getValue("AssemblerMatcherPredicate"))
1134       continue;
1135 
1136     std::string P = Pred->getValueAsString("AssemblerCondString");
1137 
1138     if (!P.length())
1139       continue;
1140 
1141     if (!IsFirstEmission)
1142       o << " && ";
1143 
1144     StringRef SR(P);
1145     std::pair<StringRef, StringRef> pairs = SR.split(',');
1146     while (pairs.second.size()) {
1147       emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace);
1148       o << " && ";
1149       pairs = pairs.second.split(',');
1150     }
1151     emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace);
1152     IsFirstEmission = false;
1153   }
1154   return !Predicates->empty();
1155 }
1156 
doesOpcodeNeedPredicate(unsigned Opc) const1157 bool FilterChooser::doesOpcodeNeedPredicate(unsigned Opc) const {
1158   ListInit *Predicates =
1159     AllInstructions[Opc]->TheDef->getValueAsListInit("Predicates");
1160   for (unsigned i = 0; i < Predicates->size(); ++i) {
1161     Record *Pred = Predicates->getElementAsRecord(i);
1162     if (!Pred->getValue("AssemblerMatcherPredicate"))
1163       continue;
1164 
1165     std::string P = Pred->getValueAsString("AssemblerCondString");
1166 
1167     if (!P.length())
1168       continue;
1169 
1170     return true;
1171   }
1172   return false;
1173 }
1174 
getPredicateIndex(DecoderTableInfo & TableInfo,StringRef Predicate) const1175 unsigned FilterChooser::getPredicateIndex(DecoderTableInfo &TableInfo,
1176                                           StringRef Predicate) const {
1177   // Using the full predicate string as the key value here is a bit
1178   // heavyweight, but is effective. If the string comparisons become a
1179   // performance concern, we can implement a mangling of the predicate
1180   // data easily enough with a map back to the actual string. That's
1181   // overkill for now, though.
1182 
1183   // Make sure the predicate is in the table.
1184   TableInfo.Predicates.insert(Predicate.str());
1185   // Now figure out the index for when we write out the table.
1186   PredicateSet::const_iterator P = std::find(TableInfo.Predicates.begin(),
1187                                              TableInfo.Predicates.end(),
1188                                              Predicate.str());
1189   return (unsigned)(P - TableInfo.Predicates.begin());
1190 }
1191 
emitPredicateTableEntry(DecoderTableInfo & TableInfo,unsigned Opc) const1192 void FilterChooser::emitPredicateTableEntry(DecoderTableInfo &TableInfo,
1193                                             unsigned Opc) const {
1194   if (!doesOpcodeNeedPredicate(Opc))
1195     return;
1196 
1197   // Build up the predicate string.
1198   SmallString<256> Predicate;
1199   // FIXME: emitPredicateMatch() functions can take a buffer directly rather
1200   // than a stream.
1201   raw_svector_ostream PS(Predicate);
1202   unsigned I = 0;
1203   emitPredicateMatch(PS, I, Opc);
1204 
1205   // Figure out the index into the predicate table for the predicate just
1206   // computed.
1207   unsigned PIdx = getPredicateIndex(TableInfo, PS.str());
1208   SmallString<16> PBytes;
1209   raw_svector_ostream S(PBytes);
1210   encodeULEB128(PIdx, S);
1211 
1212   TableInfo.Table.push_back(MCD::OPC_CheckPredicate);
1213   // Predicate index
1214   for (unsigned i = 0, e = PBytes.size(); i != e; ++i)
1215     TableInfo.Table.push_back(PBytes[i]);
1216   // Push location for NumToSkip backpatching.
1217   TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
1218   TableInfo.Table.push_back(0);
1219   TableInfo.Table.push_back(0);
1220 }
1221 
emitSoftFailTableEntry(DecoderTableInfo & TableInfo,unsigned Opc) const1222 void FilterChooser::emitSoftFailTableEntry(DecoderTableInfo &TableInfo,
1223                                            unsigned Opc) const {
1224   BitsInit *SFBits =
1225     AllInstructions[Opc]->TheDef->getValueAsBitsInit("SoftFail");
1226   if (!SFBits) return;
1227   BitsInit *InstBits = AllInstructions[Opc]->TheDef->getValueAsBitsInit("Inst");
1228 
1229   APInt PositiveMask(BitWidth, 0ULL);
1230   APInt NegativeMask(BitWidth, 0ULL);
1231   for (unsigned i = 0; i < BitWidth; ++i) {
1232     bit_value_t B = bitFromBits(*SFBits, i);
1233     bit_value_t IB = bitFromBits(*InstBits, i);
1234 
1235     if (B != BIT_TRUE) continue;
1236 
1237     switch (IB) {
1238     case BIT_FALSE:
1239       // The bit is meant to be false, so emit a check to see if it is true.
1240       PositiveMask.setBit(i);
1241       break;
1242     case BIT_TRUE:
1243       // The bit is meant to be true, so emit a check to see if it is false.
1244       NegativeMask.setBit(i);
1245       break;
1246     default:
1247       // The bit is not set; this must be an error!
1248       StringRef Name = AllInstructions[Opc]->TheDef->getName();
1249       errs() << "SoftFail Conflict: bit SoftFail{" << i << "} in " << Name
1250              << " is set but Inst{" << i << "} is unset!\n"
1251              << "  - You can only mark a bit as SoftFail if it is fully defined"
1252              << " (1/0 - not '?') in Inst\n";
1253       return;
1254     }
1255   }
1256 
1257   bool NeedPositiveMask = PositiveMask.getBoolValue();
1258   bool NeedNegativeMask = NegativeMask.getBoolValue();
1259 
1260   if (!NeedPositiveMask && !NeedNegativeMask)
1261     return;
1262 
1263   TableInfo.Table.push_back(MCD::OPC_SoftFail);
1264 
1265   SmallString<16> MaskBytes;
1266   raw_svector_ostream S(MaskBytes);
1267   if (NeedPositiveMask) {
1268     encodeULEB128(PositiveMask.getZExtValue(), S);
1269     for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i)
1270       TableInfo.Table.push_back(MaskBytes[i]);
1271   } else
1272     TableInfo.Table.push_back(0);
1273   if (NeedNegativeMask) {
1274     MaskBytes.clear();
1275     encodeULEB128(NegativeMask.getZExtValue(), S);
1276     for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i)
1277       TableInfo.Table.push_back(MaskBytes[i]);
1278   } else
1279     TableInfo.Table.push_back(0);
1280 }
1281 
1282 // Emits table entries to decode the singleton.
emitSingletonTableEntry(DecoderTableInfo & TableInfo,unsigned Opc) const1283 void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo,
1284                                             unsigned Opc) const {
1285   std::vector<unsigned> StartBits;
1286   std::vector<unsigned> EndBits;
1287   std::vector<uint64_t> FieldVals;
1288   insn_t Insn;
1289   insnWithID(Insn, Opc);
1290 
1291   // Look for islands of undecoded bits of the singleton.
1292   getIslands(StartBits, EndBits, FieldVals, Insn);
1293 
1294   unsigned Size = StartBits.size();
1295 
1296   // Emit the predicate table entry if one is needed.
1297   emitPredicateTableEntry(TableInfo, Opc);
1298 
1299   // Check any additional encoding fields needed.
1300   for (unsigned I = Size; I != 0; --I) {
1301     unsigned NumBits = EndBits[I-1] - StartBits[I-1] + 1;
1302     TableInfo.Table.push_back(MCD::OPC_CheckField);
1303     TableInfo.Table.push_back(StartBits[I-1]);
1304     TableInfo.Table.push_back(NumBits);
1305     uint8_t Buffer[8], *p;
1306     encodeULEB128(FieldVals[I-1], Buffer);
1307     for (p = Buffer; *p >= 128 ; ++p)
1308       TableInfo.Table.push_back(*p);
1309     TableInfo.Table.push_back(*p);
1310     // Push location for NumToSkip backpatching.
1311     TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
1312     // The fixup is always 16-bits, so go ahead and allocate the space
1313     // in the table so all our relative position calculations work OK even
1314     // before we fully resolve the real value here.
1315     TableInfo.Table.push_back(0);
1316     TableInfo.Table.push_back(0);
1317   }
1318 
1319   // Check for soft failure of the match.
1320   emitSoftFailTableEntry(TableInfo, Opc);
1321 
1322   bool HasCompleteDecoder;
1323   unsigned DIdx = getDecoderIndex(TableInfo.Decoders, Opc, HasCompleteDecoder);
1324 
1325   // Produce OPC_Decode or OPC_TryDecode opcode based on the information
1326   // whether the instruction decoder is complete or not. If it is complete
1327   // then it handles all possible values of remaining variable/unfiltered bits
1328   // and for any value can determine if the bitpattern is a valid instruction
1329   // or not. This means OPC_Decode will be the final step in the decoding
1330   // process. If it is not complete, then the Fail return code from the
1331   // decoder method indicates that additional processing should be done to see
1332   // if there is any other instruction that also matches the bitpattern and
1333   // can decode it.
1334   TableInfo.Table.push_back(HasCompleteDecoder ? MCD::OPC_Decode :
1335       MCD::OPC_TryDecode);
1336   uint8_t Buffer[8], *p;
1337   encodeULEB128(Opc, Buffer);
1338   for (p = Buffer; *p >= 128 ; ++p)
1339     TableInfo.Table.push_back(*p);
1340   TableInfo.Table.push_back(*p);
1341 
1342   SmallString<16> Bytes;
1343   raw_svector_ostream S(Bytes);
1344   encodeULEB128(DIdx, S);
1345 
1346   // Decoder index
1347   for (unsigned i = 0, e = Bytes.size(); i != e; ++i)
1348     TableInfo.Table.push_back(Bytes[i]);
1349 
1350   if (!HasCompleteDecoder) {
1351     // Push location for NumToSkip backpatching.
1352     TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
1353     // Allocate the space for the fixup.
1354     TableInfo.Table.push_back(0);
1355     TableInfo.Table.push_back(0);
1356   }
1357 }
1358 
1359 // Emits table entries to decode the singleton, and then to decode the rest.
emitSingletonTableEntry(DecoderTableInfo & TableInfo,const Filter & Best) const1360 void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo,
1361                                             const Filter &Best) const {
1362   unsigned Opc = Best.getSingletonOpc();
1363 
1364   // complex singletons need predicate checks from the first singleton
1365   // to refer forward to the variable filterchooser that follows.
1366   TableInfo.FixupStack.emplace_back();
1367 
1368   emitSingletonTableEntry(TableInfo, Opc);
1369 
1370   resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(),
1371                      TableInfo.Table.size());
1372   TableInfo.FixupStack.pop_back();
1373 
1374   Best.getVariableFC().emitTableEntries(TableInfo);
1375 }
1376 
1377 
1378 // Assign a single filter and run with it.  Top level API client can initialize
1379 // with a single filter to start the filtering process.
runSingleFilter(unsigned startBit,unsigned numBit,bool mixed)1380 void FilterChooser::runSingleFilter(unsigned startBit, unsigned numBit,
1381                                     bool mixed) {
1382   Filters.clear();
1383   Filters.emplace_back(*this, startBit, numBit, true);
1384   BestIndex = 0; // Sole Filter instance to choose from.
1385   bestFilter().recurse();
1386 }
1387 
1388 // reportRegion is a helper function for filterProcessor to mark a region as
1389 // eligible for use as a filter region.
reportRegion(bitAttr_t RA,unsigned StartBit,unsigned BitIndex,bool AllowMixed)1390 void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit,
1391                                  unsigned BitIndex, bool AllowMixed) {
1392   if (RA == ATTR_MIXED && AllowMixed)
1393     Filters.emplace_back(*this, StartBit, BitIndex - StartBit, true);
1394   else if (RA == ATTR_ALL_SET && !AllowMixed)
1395     Filters.emplace_back(*this, StartBit, BitIndex - StartBit, false);
1396 }
1397 
1398 // FilterProcessor scans the well-known encoding bits of the instructions and
1399 // builds up a list of candidate filters.  It chooses the best filter and
1400 // recursively descends down the decoding tree.
filterProcessor(bool AllowMixed,bool Greedy)1401 bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
1402   Filters.clear();
1403   BestIndex = -1;
1404   unsigned numInstructions = Opcodes.size();
1405 
1406   assert(numInstructions && "Filter created with no instructions");
1407 
1408   // No further filtering is necessary.
1409   if (numInstructions == 1)
1410     return true;
1411 
1412   // Heuristics.  See also doFilter()'s "Heuristics" comment when num of
1413   // instructions is 3.
1414   if (AllowMixed && !Greedy) {
1415     assert(numInstructions == 3);
1416 
1417     for (unsigned i = 0; i < Opcodes.size(); ++i) {
1418       std::vector<unsigned> StartBits;
1419       std::vector<unsigned> EndBits;
1420       std::vector<uint64_t> FieldVals;
1421       insn_t Insn;
1422 
1423       insnWithID(Insn, Opcodes[i]);
1424 
1425       // Look for islands of undecoded bits of any instruction.
1426       if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
1427         // Found an instruction with island(s).  Now just assign a filter.
1428         runSingleFilter(StartBits[0], EndBits[0] - StartBits[0] + 1, true);
1429         return true;
1430       }
1431     }
1432   }
1433 
1434   unsigned BitIndex;
1435 
1436   // We maintain BIT_WIDTH copies of the bitAttrs automaton.
1437   // The automaton consumes the corresponding bit from each
1438   // instruction.
1439   //
1440   //   Input symbols: 0, 1, and _ (unset).
1441   //   States:        NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
1442   //   Initial state: NONE.
1443   //
1444   // (NONE) ------- [01] -> (ALL_SET)
1445   // (NONE) ------- _ ----> (ALL_UNSET)
1446   // (ALL_SET) ---- [01] -> (ALL_SET)
1447   // (ALL_SET) ---- _ ----> (MIXED)
1448   // (ALL_UNSET) -- [01] -> (MIXED)
1449   // (ALL_UNSET) -- _ ----> (ALL_UNSET)
1450   // (MIXED) ------ . ----> (MIXED)
1451   // (FILTERED)---- . ----> (FILTERED)
1452 
1453   std::vector<bitAttr_t> bitAttrs;
1454 
1455   // FILTERED bit positions provide no entropy and are not worthy of pursuing.
1456   // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
1457   for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex)
1458     if (FilterBitValues[BitIndex] == BIT_TRUE ||
1459         FilterBitValues[BitIndex] == BIT_FALSE)
1460       bitAttrs.push_back(ATTR_FILTERED);
1461     else
1462       bitAttrs.push_back(ATTR_NONE);
1463 
1464   for (unsigned InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) {
1465     insn_t insn;
1466 
1467     insnWithID(insn, Opcodes[InsnIndex]);
1468 
1469     for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
1470       switch (bitAttrs[BitIndex]) {
1471       case ATTR_NONE:
1472         if (insn[BitIndex] == BIT_UNSET)
1473           bitAttrs[BitIndex] = ATTR_ALL_UNSET;
1474         else
1475           bitAttrs[BitIndex] = ATTR_ALL_SET;
1476         break;
1477       case ATTR_ALL_SET:
1478         if (insn[BitIndex] == BIT_UNSET)
1479           bitAttrs[BitIndex] = ATTR_MIXED;
1480         break;
1481       case ATTR_ALL_UNSET:
1482         if (insn[BitIndex] != BIT_UNSET)
1483           bitAttrs[BitIndex] = ATTR_MIXED;
1484         break;
1485       case ATTR_MIXED:
1486       case ATTR_FILTERED:
1487         break;
1488       }
1489     }
1490   }
1491 
1492   // The regionAttr automaton consumes the bitAttrs automatons' state,
1493   // lowest-to-highest.
1494   //
1495   //   Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
1496   //   States:        NONE, ALL_SET, MIXED
1497   //   Initial state: NONE
1498   //
1499   // (NONE) ----- F --> (NONE)
1500   // (NONE) ----- S --> (ALL_SET)     ; and set region start
1501   // (NONE) ----- U --> (NONE)
1502   // (NONE) ----- M --> (MIXED)       ; and set region start
1503   // (ALL_SET) -- F --> (NONE)        ; and report an ALL_SET region
1504   // (ALL_SET) -- S --> (ALL_SET)
1505   // (ALL_SET) -- U --> (NONE)        ; and report an ALL_SET region
1506   // (ALL_SET) -- M --> (MIXED)       ; and report an ALL_SET region
1507   // (MIXED) ---- F --> (NONE)        ; and report a MIXED region
1508   // (MIXED) ---- S --> (ALL_SET)     ; and report a MIXED region
1509   // (MIXED) ---- U --> (NONE)        ; and report a MIXED region
1510   // (MIXED) ---- M --> (MIXED)
1511 
1512   bitAttr_t RA = ATTR_NONE;
1513   unsigned StartBit = 0;
1514 
1515   for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
1516     bitAttr_t bitAttr = bitAttrs[BitIndex];
1517 
1518     assert(bitAttr != ATTR_NONE && "Bit without attributes");
1519 
1520     switch (RA) {
1521     case ATTR_NONE:
1522       switch (bitAttr) {
1523       case ATTR_FILTERED:
1524         break;
1525       case ATTR_ALL_SET:
1526         StartBit = BitIndex;
1527         RA = ATTR_ALL_SET;
1528         break;
1529       case ATTR_ALL_UNSET:
1530         break;
1531       case ATTR_MIXED:
1532         StartBit = BitIndex;
1533         RA = ATTR_MIXED;
1534         break;
1535       default:
1536         llvm_unreachable("Unexpected bitAttr!");
1537       }
1538       break;
1539     case ATTR_ALL_SET:
1540       switch (bitAttr) {
1541       case ATTR_FILTERED:
1542         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1543         RA = ATTR_NONE;
1544         break;
1545       case ATTR_ALL_SET:
1546         break;
1547       case ATTR_ALL_UNSET:
1548         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1549         RA = ATTR_NONE;
1550         break;
1551       case ATTR_MIXED:
1552         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1553         StartBit = BitIndex;
1554         RA = ATTR_MIXED;
1555         break;
1556       default:
1557         llvm_unreachable("Unexpected bitAttr!");
1558       }
1559       break;
1560     case ATTR_MIXED:
1561       switch (bitAttr) {
1562       case ATTR_FILTERED:
1563         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1564         StartBit = BitIndex;
1565         RA = ATTR_NONE;
1566         break;
1567       case ATTR_ALL_SET:
1568         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1569         StartBit = BitIndex;
1570         RA = ATTR_ALL_SET;
1571         break;
1572       case ATTR_ALL_UNSET:
1573         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1574         RA = ATTR_NONE;
1575         break;
1576       case ATTR_MIXED:
1577         break;
1578       default:
1579         llvm_unreachable("Unexpected bitAttr!");
1580       }
1581       break;
1582     case ATTR_ALL_UNSET:
1583       llvm_unreachable("regionAttr state machine has no ATTR_UNSET state");
1584     case ATTR_FILTERED:
1585       llvm_unreachable("regionAttr state machine has no ATTR_FILTERED state");
1586     }
1587   }
1588 
1589   // At the end, if we're still in ALL_SET or MIXED states, report a region
1590   switch (RA) {
1591   case ATTR_NONE:
1592     break;
1593   case ATTR_FILTERED:
1594     break;
1595   case ATTR_ALL_SET:
1596     reportRegion(RA, StartBit, BitIndex, AllowMixed);
1597     break;
1598   case ATTR_ALL_UNSET:
1599     break;
1600   case ATTR_MIXED:
1601     reportRegion(RA, StartBit, BitIndex, AllowMixed);
1602     break;
1603   }
1604 
1605   // We have finished with the filter processings.  Now it's time to choose
1606   // the best performing filter.
1607   BestIndex = 0;
1608   bool AllUseless = true;
1609   unsigned BestScore = 0;
1610 
1611   for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
1612     unsigned Usefulness = Filters[i].usefulness();
1613 
1614     if (Usefulness)
1615       AllUseless = false;
1616 
1617     if (Usefulness > BestScore) {
1618       BestIndex = i;
1619       BestScore = Usefulness;
1620     }
1621   }
1622 
1623   if (!AllUseless)
1624     bestFilter().recurse();
1625 
1626   return !AllUseless;
1627 } // end of FilterChooser::filterProcessor(bool)
1628 
1629 // Decides on the best configuration of filter(s) to use in order to decode
1630 // the instructions.  A conflict of instructions may occur, in which case we
1631 // dump the conflict set to the standard error.
doFilter()1632 void FilterChooser::doFilter() {
1633   unsigned Num = Opcodes.size();
1634   assert(Num && "FilterChooser created with no instructions");
1635 
1636   // Try regions of consecutive known bit values first.
1637   if (filterProcessor(false))
1638     return;
1639 
1640   // Then regions of mixed bits (both known and unitialized bit values allowed).
1641   if (filterProcessor(true))
1642     return;
1643 
1644   // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
1645   // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
1646   // well-known encoding pattern.  In such case, we backtrack and scan for the
1647   // the very first consecutive ATTR_ALL_SET region and assign a filter to it.
1648   if (Num == 3 && filterProcessor(true, false))
1649     return;
1650 
1651   // If we come to here, the instruction decoding has failed.
1652   // Set the BestIndex to -1 to indicate so.
1653   BestIndex = -1;
1654 }
1655 
1656 // emitTableEntries - Emit state machine entries to decode our share of
1657 // instructions.
emitTableEntries(DecoderTableInfo & TableInfo) const1658 void FilterChooser::emitTableEntries(DecoderTableInfo &TableInfo) const {
1659   if (Opcodes.size() == 1) {
1660     // There is only one instruction in the set, which is great!
1661     // Call emitSingletonDecoder() to see whether there are any remaining
1662     // encodings bits.
1663     emitSingletonTableEntry(TableInfo, Opcodes[0]);
1664     return;
1665   }
1666 
1667   // Choose the best filter to do the decodings!
1668   if (BestIndex != -1) {
1669     const Filter &Best = Filters[BestIndex];
1670     if (Best.getNumFiltered() == 1)
1671       emitSingletonTableEntry(TableInfo, Best);
1672     else
1673       Best.emitTableEntry(TableInfo);
1674     return;
1675   }
1676 
1677   // We don't know how to decode these instructions!  Dump the
1678   // conflict set and bail.
1679 
1680   // Print out useful conflict information for postmortem analysis.
1681   errs() << "Decoding Conflict:\n";
1682 
1683   dumpStack(errs(), "\t\t");
1684 
1685   for (unsigned i = 0; i < Opcodes.size(); ++i) {
1686     const std::string &Name = nameWithID(Opcodes[i]);
1687 
1688     errs() << '\t' << Name << " ";
1689     dumpBits(errs(),
1690              getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
1691     errs() << '\n';
1692   }
1693 }
1694 
populateInstruction(CodeGenTarget & Target,const CodeGenInstruction & CGI,unsigned Opc,std::map<unsigned,std::vector<OperandInfo>> & Operands)1695 static bool populateInstruction(CodeGenTarget &Target,
1696                        const CodeGenInstruction &CGI, unsigned Opc,
1697                        std::map<unsigned, std::vector<OperandInfo> > &Operands){
1698   const Record &Def = *CGI.TheDef;
1699   // If all the bit positions are not specified; do not decode this instruction.
1700   // We are bound to fail!  For proper disassembly, the well-known encoding bits
1701   // of the instruction must be fully specified.
1702 
1703   BitsInit &Bits = getBitsField(Def, "Inst");
1704   if (Bits.allInComplete()) return false;
1705 
1706   std::vector<OperandInfo> InsnOperands;
1707 
1708   // If the instruction has specified a custom decoding hook, use that instead
1709   // of trying to auto-generate the decoder.
1710   std::string InstDecoder = Def.getValueAsString("DecoderMethod");
1711   if (InstDecoder != "") {
1712     bool HasCompleteInstDecoder = Def.getValueAsBit("hasCompleteDecoder");
1713     InsnOperands.push_back(OperandInfo(InstDecoder, HasCompleteInstDecoder));
1714     Operands[Opc] = InsnOperands;
1715     return true;
1716   }
1717 
1718   // Generate a description of the operand of the instruction that we know
1719   // how to decode automatically.
1720   // FIXME: We'll need to have a way to manually override this as needed.
1721 
1722   // Gather the outputs/inputs of the instruction, so we can find their
1723   // positions in the encoding.  This assumes for now that they appear in the
1724   // MCInst in the order that they're listed.
1725   std::vector<std::pair<Init*, std::string> > InOutOperands;
1726   DagInit *Out  = Def.getValueAsDag("OutOperandList");
1727   DagInit *In  = Def.getValueAsDag("InOperandList");
1728   for (unsigned i = 0; i < Out->getNumArgs(); ++i)
1729     InOutOperands.push_back(std::make_pair(Out->getArg(i), Out->getArgName(i)));
1730   for (unsigned i = 0; i < In->getNumArgs(); ++i)
1731     InOutOperands.push_back(std::make_pair(In->getArg(i), In->getArgName(i)));
1732 
1733   // Search for tied operands, so that we can correctly instantiate
1734   // operands that are not explicitly represented in the encoding.
1735   std::map<std::string, std::string> TiedNames;
1736   for (unsigned i = 0; i < CGI.Operands.size(); ++i) {
1737     int tiedTo = CGI.Operands[i].getTiedRegister();
1738     if (tiedTo != -1) {
1739       std::pair<unsigned, unsigned> SO =
1740         CGI.Operands.getSubOperandNumber(tiedTo);
1741       TiedNames[InOutOperands[i].second] = InOutOperands[SO.first].second;
1742       TiedNames[InOutOperands[SO.first].second] = InOutOperands[i].second;
1743     }
1744   }
1745 
1746   std::map<std::string, std::vector<OperandInfo> > NumberedInsnOperands;
1747   std::set<std::string> NumberedInsnOperandsNoTie;
1748   if (Target.getInstructionSet()->
1749         getValueAsBit("decodePositionallyEncodedOperands")) {
1750     const std::vector<RecordVal> &Vals = Def.getValues();
1751     unsigned NumberedOp = 0;
1752 
1753     std::set<unsigned> NamedOpIndices;
1754     if (Target.getInstructionSet()->
1755          getValueAsBit("noNamedPositionallyEncodedOperands"))
1756       // Collect the set of operand indices that might correspond to named
1757       // operand, and skip these when assigning operands based on position.
1758       for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1759         unsigned OpIdx;
1760         if (!CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx))
1761           continue;
1762 
1763         NamedOpIndices.insert(OpIdx);
1764       }
1765 
1766     for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1767       // Ignore fixed fields in the record, we're looking for values like:
1768       //    bits<5> RST = { ?, ?, ?, ?, ? };
1769       if (Vals[i].getPrefix() || Vals[i].getValue()->isComplete())
1770         continue;
1771 
1772       // Determine if Vals[i] actually contributes to the Inst encoding.
1773       unsigned bi = 0;
1774       for (; bi < Bits.getNumBits(); ++bi) {
1775         VarInit *Var = nullptr;
1776         VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
1777         if (BI)
1778           Var = dyn_cast<VarInit>(BI->getBitVar());
1779         else
1780           Var = dyn_cast<VarInit>(Bits.getBit(bi));
1781 
1782         if (Var && Var->getName() == Vals[i].getName())
1783           break;
1784       }
1785 
1786       if (bi == Bits.getNumBits())
1787         continue;
1788 
1789       // Skip variables that correspond to explicitly-named operands.
1790       unsigned OpIdx;
1791       if (CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx))
1792         continue;
1793 
1794       // Get the bit range for this operand:
1795       unsigned bitStart = bi++, bitWidth = 1;
1796       for (; bi < Bits.getNumBits(); ++bi) {
1797         VarInit *Var = nullptr;
1798         VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
1799         if (BI)
1800           Var = dyn_cast<VarInit>(BI->getBitVar());
1801         else
1802           Var = dyn_cast<VarInit>(Bits.getBit(bi));
1803 
1804         if (!Var)
1805           break;
1806 
1807         if (Var->getName() != Vals[i].getName())
1808           break;
1809 
1810         ++bitWidth;
1811       }
1812 
1813       unsigned NumberOps = CGI.Operands.size();
1814       while (NumberedOp < NumberOps &&
1815              (CGI.Operands.isFlatOperandNotEmitted(NumberedOp) ||
1816               (!NamedOpIndices.empty() && NamedOpIndices.count(
1817                 CGI.Operands.getSubOperandNumber(NumberedOp).first))))
1818         ++NumberedOp;
1819 
1820       OpIdx = NumberedOp++;
1821 
1822       // OpIdx now holds the ordered operand number of Vals[i].
1823       std::pair<unsigned, unsigned> SO =
1824         CGI.Operands.getSubOperandNumber(OpIdx);
1825       const std::string &Name = CGI.Operands[SO.first].Name;
1826 
1827       DEBUG(dbgs() << "Numbered operand mapping for " << Def.getName() << ": " <<
1828                       Name << "(" << SO.first << ", " << SO.second << ") => " <<
1829                       Vals[i].getName() << "\n");
1830 
1831       std::string Decoder = "";
1832       Record *TypeRecord = CGI.Operands[SO.first].Rec;
1833 
1834       RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod");
1835       StringInit *String = DecoderString ?
1836         dyn_cast<StringInit>(DecoderString->getValue()) : nullptr;
1837       if (String && String->getValue() != "")
1838         Decoder = String->getValue();
1839 
1840       if (Decoder == "" &&
1841           CGI.Operands[SO.first].MIOperandInfo &&
1842           CGI.Operands[SO.first].MIOperandInfo->getNumArgs()) {
1843         Init *Arg = CGI.Operands[SO.first].MIOperandInfo->
1844                       getArg(SO.second);
1845         if (TypedInit *TI = cast<TypedInit>(Arg)) {
1846           RecordRecTy *Type = cast<RecordRecTy>(TI->getType());
1847           TypeRecord = Type->getRecord();
1848         }
1849       }
1850 
1851       bool isReg = false;
1852       if (TypeRecord->isSubClassOf("RegisterOperand"))
1853         TypeRecord = TypeRecord->getValueAsDef("RegClass");
1854       if (TypeRecord->isSubClassOf("RegisterClass")) {
1855         Decoder = "Decode" + TypeRecord->getName() + "RegisterClass";
1856         isReg = true;
1857       } else if (TypeRecord->isSubClassOf("PointerLikeRegClass")) {
1858         Decoder = "DecodePointerLikeRegClass" +
1859                   utostr(TypeRecord->getValueAsInt("RegClassKind"));
1860         isReg = true;
1861       }
1862 
1863       DecoderString = TypeRecord->getValue("DecoderMethod");
1864       String = DecoderString ?
1865         dyn_cast<StringInit>(DecoderString->getValue()) : nullptr;
1866       if (!isReg && String && String->getValue() != "")
1867         Decoder = String->getValue();
1868 
1869       RecordVal *HasCompleteDecoderVal =
1870         TypeRecord->getValue("hasCompleteDecoder");
1871       BitInit *HasCompleteDecoderBit = HasCompleteDecoderVal ?
1872         dyn_cast<BitInit>(HasCompleteDecoderVal->getValue()) : nullptr;
1873       bool HasCompleteDecoder = HasCompleteDecoderBit ?
1874         HasCompleteDecoderBit->getValue() : true;
1875 
1876       OperandInfo OpInfo(Decoder, HasCompleteDecoder);
1877       OpInfo.addField(bitStart, bitWidth, 0);
1878 
1879       NumberedInsnOperands[Name].push_back(OpInfo);
1880 
1881       // FIXME: For complex operands with custom decoders we can't handle tied
1882       // sub-operands automatically. Skip those here and assume that this is
1883       // fixed up elsewhere.
1884       if (CGI.Operands[SO.first].MIOperandInfo &&
1885           CGI.Operands[SO.first].MIOperandInfo->getNumArgs() > 1 &&
1886           String && String->getValue() != "")
1887         NumberedInsnOperandsNoTie.insert(Name);
1888     }
1889   }
1890 
1891   // For each operand, see if we can figure out where it is encoded.
1892   for (const auto &Op : InOutOperands) {
1893     if (!NumberedInsnOperands[Op.second].empty()) {
1894       InsnOperands.insert(InsnOperands.end(),
1895                           NumberedInsnOperands[Op.second].begin(),
1896                           NumberedInsnOperands[Op.second].end());
1897       continue;
1898     }
1899     if (!NumberedInsnOperands[TiedNames[Op.second]].empty()) {
1900       if (!NumberedInsnOperandsNoTie.count(TiedNames[Op.second])) {
1901         // Figure out to which (sub)operand we're tied.
1902         unsigned i = CGI.Operands.getOperandNamed(TiedNames[Op.second]);
1903         int tiedTo = CGI.Operands[i].getTiedRegister();
1904         if (tiedTo == -1) {
1905           i = CGI.Operands.getOperandNamed(Op.second);
1906           tiedTo = CGI.Operands[i].getTiedRegister();
1907         }
1908 
1909         if (tiedTo != -1) {
1910           std::pair<unsigned, unsigned> SO =
1911             CGI.Operands.getSubOperandNumber(tiedTo);
1912 
1913           InsnOperands.push_back(NumberedInsnOperands[TiedNames[Op.second]]
1914                                    [SO.second]);
1915         }
1916       }
1917       continue;
1918     }
1919 
1920     std::string Decoder = "";
1921 
1922     // At this point, we can locate the field, but we need to know how to
1923     // interpret it.  As a first step, require the target to provide callbacks
1924     // for decoding register classes.
1925     // FIXME: This need to be extended to handle instructions with custom
1926     // decoder methods, and operands with (simple) MIOperandInfo's.
1927     TypedInit *TI = cast<TypedInit>(Op.first);
1928     RecordRecTy *Type = cast<RecordRecTy>(TI->getType());
1929     Record *TypeRecord = Type->getRecord();
1930     bool isReg = false;
1931     if (TypeRecord->isSubClassOf("RegisterOperand"))
1932       TypeRecord = TypeRecord->getValueAsDef("RegClass");
1933     if (TypeRecord->isSubClassOf("RegisterClass")) {
1934       Decoder = "Decode" + TypeRecord->getName() + "RegisterClass";
1935       isReg = true;
1936     } else if (TypeRecord->isSubClassOf("PointerLikeRegClass")) {
1937       Decoder = "DecodePointerLikeRegClass" +
1938                 utostr(TypeRecord->getValueAsInt("RegClassKind"));
1939       isReg = true;
1940     }
1941 
1942     RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod");
1943     StringInit *String = DecoderString ?
1944       dyn_cast<StringInit>(DecoderString->getValue()) : nullptr;
1945     if (!isReg && String && String->getValue() != "")
1946       Decoder = String->getValue();
1947 
1948     RecordVal *HasCompleteDecoderVal =
1949       TypeRecord->getValue("hasCompleteDecoder");
1950     BitInit *HasCompleteDecoderBit = HasCompleteDecoderVal ?
1951       dyn_cast<BitInit>(HasCompleteDecoderVal->getValue()) : nullptr;
1952     bool HasCompleteDecoder = HasCompleteDecoderBit ?
1953       HasCompleteDecoderBit->getValue() : true;
1954 
1955     OperandInfo OpInfo(Decoder, HasCompleteDecoder);
1956     unsigned Base = ~0U;
1957     unsigned Width = 0;
1958     unsigned Offset = 0;
1959 
1960     for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) {
1961       VarInit *Var = nullptr;
1962       VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
1963       if (BI)
1964         Var = dyn_cast<VarInit>(BI->getBitVar());
1965       else
1966         Var = dyn_cast<VarInit>(Bits.getBit(bi));
1967 
1968       if (!Var) {
1969         if (Base != ~0U) {
1970           OpInfo.addField(Base, Width, Offset);
1971           Base = ~0U;
1972           Width = 0;
1973           Offset = 0;
1974         }
1975         continue;
1976       }
1977 
1978       if (Var->getName() != Op.second &&
1979           Var->getName() != TiedNames[Op.second]) {
1980         if (Base != ~0U) {
1981           OpInfo.addField(Base, Width, Offset);
1982           Base = ~0U;
1983           Width = 0;
1984           Offset = 0;
1985         }
1986         continue;
1987       }
1988 
1989       if (Base == ~0U) {
1990         Base = bi;
1991         Width = 1;
1992         Offset = BI ? BI->getBitNum() : 0;
1993       } else if (BI && BI->getBitNum() != Offset + Width) {
1994         OpInfo.addField(Base, Width, Offset);
1995         Base = bi;
1996         Width = 1;
1997         Offset = BI->getBitNum();
1998       } else {
1999         ++Width;
2000       }
2001     }
2002 
2003     if (Base != ~0U)
2004       OpInfo.addField(Base, Width, Offset);
2005 
2006     if (OpInfo.numFields() > 0)
2007       InsnOperands.push_back(OpInfo);
2008   }
2009 
2010   Operands[Opc] = InsnOperands;
2011 
2012 
2013 #if 0
2014   DEBUG({
2015       // Dumps the instruction encoding bits.
2016       dumpBits(errs(), Bits);
2017 
2018       errs() << '\n';
2019 
2020       // Dumps the list of operand info.
2021       for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
2022         const CGIOperandList::OperandInfo &Info = CGI.Operands[i];
2023         const std::string &OperandName = Info.Name;
2024         const Record &OperandDef = *Info.Rec;
2025 
2026         errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
2027       }
2028     });
2029 #endif
2030 
2031   return true;
2032 }
2033 
2034 // emitFieldFromInstruction - Emit the templated helper function
2035 // fieldFromInstruction().
emitFieldFromInstruction(formatted_raw_ostream & OS)2036 static void emitFieldFromInstruction(formatted_raw_ostream &OS) {
2037   OS << "// Helper function for extracting fields from encoded instructions.\n"
2038      << "template<typename InsnType>\n"
2039    << "static InsnType fieldFromInstruction(InsnType insn, unsigned startBit,\n"
2040      << "                                     unsigned numBits) {\n"
2041      << "    assert(startBit + numBits <= (sizeof(InsnType)*8) &&\n"
2042      << "           \"Instruction field out of bounds!\");\n"
2043      << "    InsnType fieldMask;\n"
2044      << "    if (numBits == sizeof(InsnType)*8)\n"
2045      << "      fieldMask = (InsnType)(-1LL);\n"
2046      << "    else\n"
2047      << "      fieldMask = (((InsnType)1 << numBits) - 1) << startBit;\n"
2048      << "    return (insn & fieldMask) >> startBit;\n"
2049      << "}\n\n";
2050 }
2051 
2052 // emitDecodeInstruction - Emit the templated helper function
2053 // decodeInstruction().
emitDecodeInstruction(formatted_raw_ostream & OS)2054 static void emitDecodeInstruction(formatted_raw_ostream &OS) {
2055   OS << "template<typename InsnType>\n"
2056      << "static DecodeStatus decodeInstruction(const uint8_t DecodeTable[], MCInst &MI,\n"
2057      << "                                      InsnType insn, uint64_t Address,\n"
2058      << "                                      const void *DisAsm,\n"
2059      << "                                      const MCSubtargetInfo &STI) {\n"
2060      << "  const FeatureBitset& Bits = STI.getFeatureBits();\n"
2061      << "\n"
2062      << "  const uint8_t *Ptr = DecodeTable;\n"
2063      << "  uint32_t CurFieldValue = 0;\n"
2064      << "  DecodeStatus S = MCDisassembler::Success;\n"
2065      << "  for (;;) {\n"
2066      << "    ptrdiff_t Loc = Ptr - DecodeTable;\n"
2067      << "    switch (*Ptr) {\n"
2068      << "    default:\n"
2069      << "      errs() << Loc << \": Unexpected decode table opcode!\\n\";\n"
2070      << "      return MCDisassembler::Fail;\n"
2071      << "    case MCD::OPC_ExtractField: {\n"
2072      << "      unsigned Start = *++Ptr;\n"
2073      << "      unsigned Len = *++Ptr;\n"
2074      << "      ++Ptr;\n"
2075      << "      CurFieldValue = fieldFromInstruction(insn, Start, Len);\n"
2076      << "      DEBUG(dbgs() << Loc << \": OPC_ExtractField(\" << Start << \", \"\n"
2077      << "                   << Len << \"): \" << CurFieldValue << \"\\n\");\n"
2078      << "      break;\n"
2079      << "    }\n"
2080      << "    case MCD::OPC_FilterValue: {\n"
2081      << "      // Decode the field value.\n"
2082      << "      unsigned Len;\n"
2083      << "      InsnType Val = decodeULEB128(++Ptr, &Len);\n"
2084      << "      Ptr += Len;\n"
2085      << "      // NumToSkip is a plain 16-bit integer.\n"
2086      << "      unsigned NumToSkip = *Ptr++;\n"
2087      << "      NumToSkip |= (*Ptr++) << 8;\n"
2088      << "\n"
2089      << "      // Perform the filter operation.\n"
2090      << "      if (Val != CurFieldValue)\n"
2091      << "        Ptr += NumToSkip;\n"
2092      << "      DEBUG(dbgs() << Loc << \": OPC_FilterValue(\" << Val << \", \" << NumToSkip\n"
2093      << "                   << \"): \" << ((Val != CurFieldValue) ? \"FAIL:\" : \"PASS:\")\n"
2094      << "                   << \" continuing at \" << (Ptr - DecodeTable) << \"\\n\");\n"
2095      << "\n"
2096      << "      break;\n"
2097      << "    }\n"
2098      << "    case MCD::OPC_CheckField: {\n"
2099      << "      unsigned Start = *++Ptr;\n"
2100      << "      unsigned Len = *++Ptr;\n"
2101      << "      InsnType FieldValue = fieldFromInstruction(insn, Start, Len);\n"
2102      << "      // Decode the field value.\n"
2103      << "      uint32_t ExpectedValue = decodeULEB128(++Ptr, &Len);\n"
2104      << "      Ptr += Len;\n"
2105      << "      // NumToSkip is a plain 16-bit integer.\n"
2106      << "      unsigned NumToSkip = *Ptr++;\n"
2107      << "      NumToSkip |= (*Ptr++) << 8;\n"
2108      << "\n"
2109      << "      // If the actual and expected values don't match, skip.\n"
2110      << "      if (ExpectedValue != FieldValue)\n"
2111      << "        Ptr += NumToSkip;\n"
2112      << "      DEBUG(dbgs() << Loc << \": OPC_CheckField(\" << Start << \", \"\n"
2113      << "                   << Len << \", \" << ExpectedValue << \", \" << NumToSkip\n"
2114      << "                   << \"): FieldValue = \" << FieldValue << \", ExpectedValue = \"\n"
2115      << "                   << ExpectedValue << \": \"\n"
2116      << "                   << ((ExpectedValue == FieldValue) ? \"PASS\\n\" : \"FAIL\\n\"));\n"
2117      << "      break;\n"
2118      << "    }\n"
2119      << "    case MCD::OPC_CheckPredicate: {\n"
2120      << "      unsigned Len;\n"
2121      << "      // Decode the Predicate Index value.\n"
2122      << "      unsigned PIdx = decodeULEB128(++Ptr, &Len);\n"
2123      << "      Ptr += Len;\n"
2124      << "      // NumToSkip is a plain 16-bit integer.\n"
2125      << "      unsigned NumToSkip = *Ptr++;\n"
2126      << "      NumToSkip |= (*Ptr++) << 8;\n"
2127      << "      // Check the predicate.\n"
2128      << "      bool Pred;\n"
2129      << "      if (!(Pred = checkDecoderPredicate(PIdx, Bits)))\n"
2130      << "        Ptr += NumToSkip;\n"
2131      << "      (void)Pred;\n"
2132      << "      DEBUG(dbgs() << Loc << \": OPC_CheckPredicate(\" << PIdx << \"): \"\n"
2133      << "            << (Pred ? \"PASS\\n\" : \"FAIL\\n\"));\n"
2134      << "\n"
2135      << "      break;\n"
2136      << "    }\n"
2137      << "    case MCD::OPC_Decode: {\n"
2138      << "      unsigned Len;\n"
2139      << "      // Decode the Opcode value.\n"
2140      << "      unsigned Opc = decodeULEB128(++Ptr, &Len);\n"
2141      << "      Ptr += Len;\n"
2142      << "      unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n"
2143      << "      Ptr += Len;\n"
2144      << "\n"
2145      << "      MI.clear();\n"
2146      << "      MI.setOpcode(Opc);\n"
2147      << "      bool DecodeComplete;\n"
2148      << "      S = decodeToMCInst(S, DecodeIdx, insn, MI, Address, DisAsm, DecodeComplete);\n"
2149      << "      assert(DecodeComplete);\n"
2150      << "\n"
2151      << "      DEBUG(dbgs() << Loc << \": OPC_Decode: opcode \" << Opc\n"
2152      << "                   << \", using decoder \" << DecodeIdx << \": \"\n"
2153      << "                   << (S != MCDisassembler::Fail ? \"PASS\" : \"FAIL\") << \"\\n\");\n"
2154      << "      return S;\n"
2155      << "    }\n"
2156      << "    case MCD::OPC_TryDecode: {\n"
2157      << "      unsigned Len;\n"
2158      << "      // Decode the Opcode value.\n"
2159      << "      unsigned Opc = decodeULEB128(++Ptr, &Len);\n"
2160      << "      Ptr += Len;\n"
2161      << "      unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n"
2162      << "      Ptr += Len;\n"
2163      << "      // NumToSkip is a plain 16-bit integer.\n"
2164      << "      unsigned NumToSkip = *Ptr++;\n"
2165      << "      NumToSkip |= (*Ptr++) << 8;\n"
2166      << "\n"
2167      << "      // Perform the decode operation.\n"
2168      << "      MCInst TmpMI;\n"
2169      << "      TmpMI.setOpcode(Opc);\n"
2170      << "      bool DecodeComplete;\n"
2171      << "      S = decodeToMCInst(S, DecodeIdx, insn, TmpMI, Address, DisAsm, DecodeComplete);\n"
2172      << "      DEBUG(dbgs() << Loc << \": OPC_TryDecode: opcode \" << Opc\n"
2173      << "                   << \", using decoder \" << DecodeIdx << \": \");\n"
2174      << "\n"
2175      << "      if (DecodeComplete) {\n"
2176      << "        // Decoding complete.\n"
2177      << "        DEBUG(dbgs() << (S != MCDisassembler::Fail ? \"PASS\" : \"FAIL\") << \"\\n\");\n"
2178      << "        MI = TmpMI;\n"
2179      << "        return S;\n"
2180      << "      } else {\n"
2181      << "        assert(S == MCDisassembler::Fail);\n"
2182      << "        // If the decoding was incomplete, skip.\n"
2183      << "        Ptr += NumToSkip;\n"
2184      << "        DEBUG(dbgs() << \"FAIL: continuing at \" << (Ptr - DecodeTable) << \"\\n\");\n"
2185      << "        // Reset decode status. This also drops a SoftFail status that could be\n"
2186      << "        // set before the decode attempt.\n"
2187      << "        S = MCDisassembler::Success;\n"
2188      << "      }\n"
2189      << "      break;\n"
2190      << "    }\n"
2191      << "    case MCD::OPC_SoftFail: {\n"
2192      << "      // Decode the mask values.\n"
2193      << "      unsigned Len;\n"
2194      << "      InsnType PositiveMask = decodeULEB128(++Ptr, &Len);\n"
2195      << "      Ptr += Len;\n"
2196      << "      InsnType NegativeMask = decodeULEB128(Ptr, &Len);\n"
2197      << "      Ptr += Len;\n"
2198      << "      bool Fail = (insn & PositiveMask) || (~insn & NegativeMask);\n"
2199      << "      if (Fail)\n"
2200      << "        S = MCDisassembler::SoftFail;\n"
2201      << "      DEBUG(dbgs() << Loc << \": OPC_SoftFail: \" << (Fail ? \"FAIL\\n\":\"PASS\\n\"));\n"
2202      << "      break;\n"
2203      << "    }\n"
2204      << "    case MCD::OPC_Fail: {\n"
2205      << "      DEBUG(dbgs() << Loc << \": OPC_Fail\\n\");\n"
2206      << "      return MCDisassembler::Fail;\n"
2207      << "    }\n"
2208      << "    }\n"
2209      << "  }\n"
2210      << "  llvm_unreachable(\"bogosity detected in disassembler state machine!\");\n"
2211      << "}\n\n";
2212 }
2213 
2214 // Emits disassembler code for instruction decoding.
run(raw_ostream & o)2215 void FixedLenDecoderEmitter::run(raw_ostream &o) {
2216   formatted_raw_ostream OS(o);
2217   OS << "#include \"llvm/MC/MCInst.h\"\n";
2218   OS << "#include \"llvm/Support/Debug.h\"\n";
2219   OS << "#include \"llvm/Support/DataTypes.h\"\n";
2220   OS << "#include \"llvm/Support/LEB128.h\"\n";
2221   OS << "#include \"llvm/Support/raw_ostream.h\"\n";
2222   OS << "#include <assert.h>\n";
2223   OS << '\n';
2224   OS << "namespace llvm {\n\n";
2225 
2226   emitFieldFromInstruction(OS);
2227 
2228   Target.reverseBitsForLittleEndianEncoding();
2229 
2230   // Parameterize the decoders based on namespace and instruction width.
2231   NumberedInstructions = Target.getInstructionsByEnumValue();
2232   std::map<std::pair<std::string, unsigned>,
2233            std::vector<unsigned> > OpcMap;
2234   std::map<unsigned, std::vector<OperandInfo> > Operands;
2235 
2236   for (unsigned i = 0; i < NumberedInstructions.size(); ++i) {
2237     const CodeGenInstruction *Inst = NumberedInstructions[i];
2238     const Record *Def = Inst->TheDef;
2239     unsigned Size = Def->getValueAsInt("Size");
2240     if (Def->getValueAsString("Namespace") == "TargetOpcode" ||
2241         Def->getValueAsBit("isPseudo") ||
2242         Def->getValueAsBit("isAsmParserOnly") ||
2243         Def->getValueAsBit("isCodeGenOnly"))
2244       continue;
2245 
2246     std::string DecoderNamespace = Def->getValueAsString("DecoderNamespace");
2247 
2248     if (Size) {
2249       if (populateInstruction(Target, *Inst, i, Operands)) {
2250         OpcMap[std::make_pair(DecoderNamespace, Size)].push_back(i);
2251       }
2252     }
2253   }
2254 
2255   DecoderTableInfo TableInfo;
2256   for (const auto &Opc : OpcMap) {
2257     // Emit the decoder for this namespace+width combination.
2258     FilterChooser FC(NumberedInstructions, Opc.second, Operands,
2259                      8*Opc.first.second, this);
2260 
2261     // The decode table is cleared for each top level decoder function. The
2262     // predicates and decoders themselves, however, are shared across all
2263     // decoders to give more opportunities for uniqueing.
2264     TableInfo.Table.clear();
2265     TableInfo.FixupStack.clear();
2266     TableInfo.Table.reserve(16384);
2267     TableInfo.FixupStack.emplace_back();
2268     FC.emitTableEntries(TableInfo);
2269     // Any NumToSkip fixups in the top level scope can resolve to the
2270     // OPC_Fail at the end of the table.
2271     assert(TableInfo.FixupStack.size() == 1 && "fixup stack phasing error!");
2272     // Resolve any NumToSkip fixups in the current scope.
2273     resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(),
2274                        TableInfo.Table.size());
2275     TableInfo.FixupStack.clear();
2276 
2277     TableInfo.Table.push_back(MCD::OPC_Fail);
2278 
2279     // Print the table to the output stream.
2280     emitTable(OS, TableInfo.Table, 0, FC.getBitWidth(), Opc.first.first);
2281     OS.flush();
2282   }
2283 
2284   // Emit the predicate function.
2285   emitPredicateFunction(OS, TableInfo.Predicates, 0);
2286 
2287   // Emit the decoder function.
2288   emitDecoderFunction(OS, TableInfo.Decoders, 0);
2289 
2290   // Emit the main entry point for the decoder, decodeInstruction().
2291   emitDecodeInstruction(OS);
2292 
2293   OS << "\n} // End llvm namespace\n";
2294 }
2295 
2296 namespace llvm {
2297 
EmitFixedLenDecoder(RecordKeeper & RK,raw_ostream & OS,const std::string & PredicateNamespace,const std::string & GPrefix,const std::string & GPostfix,const std::string & ROK,const std::string & RFail,const std::string & L)2298 void EmitFixedLenDecoder(RecordKeeper &RK, raw_ostream &OS,
2299                          const std::string &PredicateNamespace,
2300                          const std::string &GPrefix,
2301                          const std::string &GPostfix, const std::string &ROK,
2302                          const std::string &RFail, const std::string &L) {
2303   FixedLenDecoderEmitter(RK, PredicateNamespace, GPrefix, GPostfix,
2304                          ROK, RFail, L).run(OS);
2305 }
2306 
2307 } // End llvm namespace
2308