1 /*
2 *  xxHash - Fast Hash algorithm
3 *  Copyright (C) 2012-2016, Yann Collet
4 *
5 *  BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
6 *
7 *  Redistribution and use in source and binary forms, with or without
8 *  modification, are permitted provided that the following conditions are
9 *  met:
10 *
11 *  * Redistributions of source code must retain the above copyright
12 *  notice, this list of conditions and the following disclaimer.
13 *  * Redistributions in binary form must reproduce the above
14 *  copyright notice, this list of conditions and the following disclaimer
15 *  in the documentation and/or other materials provided with the
16 *  distribution.
17 *
18 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 *  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 *  OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 *  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 *  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 *  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 *  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 *  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 *
30 *  You can contact the author at :
31 *  - xxHash homepage: http://www.xxhash.com
32 *  - xxHash source repository : https://github.com/Cyan4973/xxHash
33 */
34 
35 
36 /* *************************************
37 *  Tuning parameters
38 ***************************************/
39 /*!XXH_FORCE_MEMORY_ACCESS :
40  * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
41  * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
42  * The below switch allow to select different access method for improved performance.
43  * Method 0 (default) : use `memcpy()`. Safe and portable.
44  * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
45  *            This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
46  * Method 2 : direct access. This method doesn't depend on compiler but violate C standard.
47  *            It can generate buggy code on targets which do not support unaligned memory accesses.
48  *            But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
49  * See http://stackoverflow.com/a/32095106/646947 for details.
50  * Prefer these methods in priority order (0 > 1 > 2)
51  */
52 #ifndef XXH_FORCE_MEMORY_ACCESS   /* can be defined externally, on command line for example */
53 #  if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
54 #    define XXH_FORCE_MEMORY_ACCESS 2
55 #  elif (defined(__INTEL_COMPILER) && !defined(_WIN32)) || \
56   (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) ))
57 #    define XXH_FORCE_MEMORY_ACCESS 1
58 #  endif
59 #endif
60 
61 /*!XXH_ACCEPT_NULL_INPUT_POINTER :
62  * If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer.
63  * When this option is enabled, xxHash output for null input pointers will be the same as a null-length input.
64  * By default, this option is disabled. To enable it, uncomment below define :
65  */
66 /* #define XXH_ACCEPT_NULL_INPUT_POINTER 1 */
67 
68 /*!XXH_FORCE_NATIVE_FORMAT :
69  * By default, xxHash library provides endian-independent Hash values, based on little-endian convention.
70  * Results are therefore identical for little-endian and big-endian CPU.
71  * This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
72  * Should endian-independence be of no importance for your application, you may set the #define below to 1,
73  * to improve speed for Big-endian CPU.
74  * This option has no impact on Little_Endian CPU.
75  */
76 #ifndef XXH_FORCE_NATIVE_FORMAT   /* can be defined externally */
77 #  define XXH_FORCE_NATIVE_FORMAT 0
78 #endif
79 
80 /*!XXH_FORCE_ALIGN_CHECK :
81  * This is a minor performance trick, only useful with lots of very small keys.
82  * It means : check for aligned/unaligned input.
83  * The check costs one initial branch per hash; set to 0 when the input data
84  * is guaranteed to be aligned.
85  */
86 #ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
87 #  if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
88 #    define XXH_FORCE_ALIGN_CHECK 0
89 #  else
90 #    define XXH_FORCE_ALIGN_CHECK 1
91 #  endif
92 #endif
93 
94 
95 /* *************************************
96 *  Includes & Memory related functions
97 ***************************************/
98 /*! Modify the local functions below should you wish to use some other memory routines
99 *   for malloc(), free() */
100 #include <stdlib.h>
XXH_malloc(size_t s)101 static void* XXH_malloc(size_t s) { return malloc(s); }
XXH_free(void * p)102 static void  XXH_free  (void* p)  { free(p); }
103 /*! and for memcpy() */
104 #include <string.h>
XXH_memcpy(void * dest,const void * src,size_t size)105 static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); }
106 
107 #define XXH_STATIC_LINKING_ONLY
108 #include "xxhash.h"
109 
110 
111 /* *************************************
112 *  Compiler Specific Options
113 ***************************************/
114 #ifdef _MSC_VER    /* Visual Studio */
115 #  pragma warning(disable : 4127)      /* disable: C4127: conditional expression is constant */
116 #endif
117 
118 #ifndef XXH_FORCE_INLINE
119 #  ifdef _MSC_VER    /* Visual Studio */
120 #    define XXH_FORCE_INLINE static __forceinline
121 #  else
122 #    if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* C99 */
123 #      ifdef __GNUC__
124 #        define XXH_FORCE_INLINE static inline __attribute__((always_inline))
125 #      else
126 #        define XXH_FORCE_INLINE static inline
127 #      endif
128 #    else
129 #      define XXH_FORCE_INLINE static
130 #    endif /* __STDC_VERSION__ */
131 #  endif  /* _MSC_VER */
132 #endif /* XXH_FORCE_INLINE */
133 
134 
135 /* *************************************
136 *  Basic Types
137 ***************************************/
138 #ifndef MEM_MODULE
139 # if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
140 #   include <stdint.h>
141     typedef uint8_t  BYTE;
142     typedef uint16_t U16;
143     typedef uint32_t U32;
144     typedef  int32_t S32;
145 # else
146     typedef unsigned char      BYTE;
147     typedef unsigned short     U16;
148     typedef unsigned int       U32;
149     typedef   signed int       S32;
150 # endif
151 #endif
152 
153 #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
154 
155 /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
XXH_read32(const void * memPtr)156 static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; }
157 
158 #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
159 
160 /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
161 /* currently only defined for gcc and icc */
162 typedef union { U32 u32; } __attribute__((packed)) unalign;
XXH_read32(const void * ptr)163 static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
164 
165 #else
166 
167 /* portable and safe solution. Generally efficient.
168  * see : http://stackoverflow.com/a/32095106/646947
169  */
XXH_read32(const void * memPtr)170 static U32 XXH_read32(const void* memPtr)
171 {
172     U32 val;
173     memcpy(&val, memPtr, sizeof(val));
174     return val;
175 }
176 
177 #endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
178 
179 
180 /* ****************************************
181 *  Compiler-specific Functions and Macros
182 ******************************************/
183 #define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
184 
185 /* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */
186 #if defined(_MSC_VER)
187 #  define XXH_rotl32(x,r) _rotl(x,r)
188 #  define XXH_rotl64(x,r) _rotl64(x,r)
189 #else
190 #  define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
191 #  define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
192 #endif
193 
194 #if defined(_MSC_VER)     /* Visual Studio */
195 #  define XXH_swap32 _byteswap_ulong
196 #elif XXH_GCC_VERSION >= 403
197 #  define XXH_swap32 __builtin_bswap32
198 #else
XXH_swap32(U32 x)199 static U32 XXH_swap32 (U32 x)
200 {
201     return  ((x << 24) & 0xff000000 ) |
202             ((x <<  8) & 0x00ff0000 ) |
203             ((x >>  8) & 0x0000ff00 ) |
204             ((x >> 24) & 0x000000ff );
205 }
206 #endif
207 
208 
209 /* *************************************
210 *  Architecture Macros
211 ***************************************/
212 typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
213 
214 /* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */
215 #ifndef XXH_CPU_LITTLE_ENDIAN
216     static const int g_one = 1;
217 #   define XXH_CPU_LITTLE_ENDIAN   (*(const char*)(&g_one))
218 #endif
219 
220 
221 /* ***************************
222 *  Memory reads
223 *****************************/
224 typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
225 
XXH_readLE32_align(const void * ptr,XXH_endianess endian,XXH_alignment align)226 XXH_FORCE_INLINE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
227 {
228     if (align==XXH_unaligned)
229         return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
230     else
231         return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr);
232 }
233 
XXH_readLE32(const void * ptr,XXH_endianess endian)234 XXH_FORCE_INLINE U32 XXH_readLE32(const void* ptr, XXH_endianess endian)
235 {
236     return XXH_readLE32_align(ptr, endian, XXH_unaligned);
237 }
238 
XXH_readBE32(const void * ptr)239 static U32 XXH_readBE32(const void* ptr)
240 {
241     return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
242 }
243 
244 
245 /* *************************************
246 *  Macros
247 ***************************************/
248 #define XXH_STATIC_ASSERT(c)   { enum { XXH_static_assert = 1/(int)(!!(c)) }; }    /* use only *after* variable declarations */
XXH_versionNumber(void)249 XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
250 
251 
252 /* *******************************************************************
253 *  32-bits hash functions
254 *********************************************************************/
255 static const U32 PRIME32_1 = 2654435761U;
256 static const U32 PRIME32_2 = 2246822519U;
257 static const U32 PRIME32_3 = 3266489917U;
258 static const U32 PRIME32_4 =  668265263U;
259 static const U32 PRIME32_5 =  374761393U;
260 
XXH32_round(U32 seed,U32 input)261 static U32 XXH32_round(U32 seed, U32 input)
262 {
263     seed += input * PRIME32_2;
264     seed  = XXH_rotl32(seed, 13);
265     seed *= PRIME32_1;
266     return seed;
267 }
268 
XXH32_endian_align(const void * input,size_t len,U32 seed,XXH_endianess endian,XXH_alignment align)269 XXH_FORCE_INLINE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align)
270 {
271     const BYTE* p = (const BYTE*)input;
272     const BYTE* bEnd = p + len;
273     U32 h32;
274 #define XXH_get32bits(p) XXH_readLE32_align(p, endian, align)
275 
276 #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
277     if (p==NULL) {
278         len=0;
279         bEnd=p=(const BYTE*)(size_t)16;
280     }
281 #endif
282 
283     if (len>=16) {
284         const BYTE* const limit = bEnd - 16;
285         U32 v1 = seed + PRIME32_1 + PRIME32_2;
286         U32 v2 = seed + PRIME32_2;
287         U32 v3 = seed + 0;
288         U32 v4 = seed - PRIME32_1;
289 
290         do {
291             v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4;
292             v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4;
293             v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4;
294             v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4;
295         } while (p<=limit);
296 
297         h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
298     } else {
299         h32  = seed + PRIME32_5;
300     }
301 
302     h32 += (U32) len;
303 
304     while (p+4<=bEnd) {
305         h32 += XXH_get32bits(p) * PRIME32_3;
306         h32  = XXH_rotl32(h32, 17) * PRIME32_4 ;
307         p+=4;
308     }
309 
310     while (p<bEnd) {
311         h32 += (*p) * PRIME32_5;
312         h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
313         p++;
314     }
315 
316     h32 ^= h32 >> 15;
317     h32 *= PRIME32_2;
318     h32 ^= h32 >> 13;
319     h32 *= PRIME32_3;
320     h32 ^= h32 >> 16;
321 
322     return h32;
323 }
324 
325 
XXH32(const void * input,size_t len,unsigned int seed)326 XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed)
327 {
328 #if 0
329     /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
330     XXH32_state_t state;
331     XXH32_reset(&state, seed);
332     XXH32_update(&state, input, len);
333     return XXH32_digest(&state);
334 #else
335     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
336 
337     if (XXH_FORCE_ALIGN_CHECK) {
338         if ((((size_t)input) & 3) == 0) {   /* Input is 4-bytes aligned, leverage the speed benefit */
339             if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
340                 return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
341             else
342                 return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
343     }   }
344 
345     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
346         return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
347     else
348         return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
349 #endif
350 }
351 
352 
353 
354 /*======   Hash streaming   ======*/
355 
XXH32_createState(void)356 XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
357 {
358     return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
359 }
XXH32_freeState(XXH32_state_t * statePtr)360 XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
361 {
362     XXH_free(statePtr);
363     return XXH_OK;
364 }
365 
XXH32_copyState(XXH32_state_t * dstState,const XXH32_state_t * srcState)366 XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState)
367 {
368     memcpy(dstState, srcState, sizeof(*dstState));
369 }
370 
XXH32_reset(XXH32_state_t * statePtr,unsigned int seed)371 XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed)
372 {
373     XXH32_state_t state;   /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
374     memset(&state, 0, sizeof(state)-4);   /* do not write into reserved, for future removal */
375     state.v1 = seed + PRIME32_1 + PRIME32_2;
376     state.v2 = seed + PRIME32_2;
377     state.v3 = seed + 0;
378     state.v4 = seed - PRIME32_1;
379     memcpy(statePtr, &state, sizeof(state));
380     return XXH_OK;
381 }
382 
383 
XXH32_update_endian(XXH32_state_t * state,const void * input,size_t len,XXH_endianess endian)384 XXH_FORCE_INLINE XXH_errorcode XXH32_update_endian (XXH32_state_t* state, const void* input, size_t len, XXH_endianess endian)
385 {
386     const BYTE* p = (const BYTE*)input;
387     const BYTE* const bEnd = p + len;
388 
389 #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
390     if (input==NULL) return XXH_ERROR;
391 #endif
392 
393     state->total_len_32 += (unsigned)len;
394     state->large_len |= (len>=16) | (state->total_len_32>=16);
395 
396     if (state->memsize + len < 16)  {   /* fill in tmp buffer */
397         XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len);
398         state->memsize += (unsigned)len;
399         return XXH_OK;
400     }
401 
402     if (state->memsize) {   /* some data left from previous update */
403         XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize);
404         {   const U32* p32 = state->mem32;
405             state->v1 = XXH32_round(state->v1, XXH_readLE32(p32, endian)); p32++;
406             state->v2 = XXH32_round(state->v2, XXH_readLE32(p32, endian)); p32++;
407             state->v3 = XXH32_round(state->v3, XXH_readLE32(p32, endian)); p32++;
408             state->v4 = XXH32_round(state->v4, XXH_readLE32(p32, endian)); p32++;
409         }
410         p += 16-state->memsize;
411         state->memsize = 0;
412     }
413 
414     if (p <= bEnd-16) {
415         const BYTE* const limit = bEnd - 16;
416         U32 v1 = state->v1;
417         U32 v2 = state->v2;
418         U32 v3 = state->v3;
419         U32 v4 = state->v4;
420 
421         do {
422             v1 = XXH32_round(v1, XXH_readLE32(p, endian)); p+=4;
423             v2 = XXH32_round(v2, XXH_readLE32(p, endian)); p+=4;
424             v3 = XXH32_round(v3, XXH_readLE32(p, endian)); p+=4;
425             v4 = XXH32_round(v4, XXH_readLE32(p, endian)); p+=4;
426         } while (p<=limit);
427 
428         state->v1 = v1;
429         state->v2 = v2;
430         state->v3 = v3;
431         state->v4 = v4;
432     }
433 
434     if (p < bEnd) {
435         XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
436         state->memsize = (unsigned)(bEnd-p);
437     }
438 
439     return XXH_OK;
440 }
441 
XXH32_update(XXH32_state_t * state_in,const void * input,size_t len)442 XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len)
443 {
444     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
445 
446     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
447         return XXH32_update_endian(state_in, input, len, XXH_littleEndian);
448     else
449         return XXH32_update_endian(state_in, input, len, XXH_bigEndian);
450 }
451 
452 
453 
XXH32_digest_endian(const XXH32_state_t * state,XXH_endianess endian)454 XXH_FORCE_INLINE U32 XXH32_digest_endian (const XXH32_state_t* state, XXH_endianess endian)
455 {
456     const BYTE * p = (const BYTE*)state->mem32;
457     const BYTE* const bEnd = (const BYTE*)(state->mem32) + state->memsize;
458     U32 h32;
459 
460     if (state->large_len) {
461         h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);
462     } else {
463         h32 = state->v3 /* == seed */ + PRIME32_5;
464     }
465 
466     h32 += state->total_len_32;
467 
468     while (p+4<=bEnd) {
469         h32 += XXH_readLE32(p, endian) * PRIME32_3;
470         h32  = XXH_rotl32(h32, 17) * PRIME32_4;
471         p+=4;
472     }
473 
474     while (p<bEnd) {
475         h32 += (*p) * PRIME32_5;
476         h32  = XXH_rotl32(h32, 11) * PRIME32_1;
477         p++;
478     }
479 
480     h32 ^= h32 >> 15;
481     h32 *= PRIME32_2;
482     h32 ^= h32 >> 13;
483     h32 *= PRIME32_3;
484     h32 ^= h32 >> 16;
485 
486     return h32;
487 }
488 
489 
XXH32_digest(const XXH32_state_t * state_in)490 XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state_in)
491 {
492     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
493 
494     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
495         return XXH32_digest_endian(state_in, XXH_littleEndian);
496     else
497         return XXH32_digest_endian(state_in, XXH_bigEndian);
498 }
499 
500 
501 /*======   Canonical representation   ======*/
502 
503 /*! Default XXH result types are basic unsigned 32 and 64 bits.
504 *   The canonical representation follows human-readable write convention, aka big-endian (large digits first).
505 *   These functions allow transformation of hash result into and from its canonical format.
506 *   This way, hash values can be written into a file or buffer, and remain comparable across different systems and programs.
507 */
508 
XXH32_canonicalFromHash(XXH32_canonical_t * dst,XXH32_hash_t hash)509 XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
510 {
511     XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
512     if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
513     memcpy(dst, &hash, sizeof(*dst));
514 }
515 
XXH32_hashFromCanonical(const XXH32_canonical_t * src)516 XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
517 {
518     return XXH_readBE32(src);
519 }
520 
521 
522 #ifndef XXH_NO_LONG_LONG
523 
524 /* *******************************************************************
525 *  64-bits hash functions
526 *********************************************************************/
527 
528 /*======   Memory access   ======*/
529 
530 #ifndef MEM_MODULE
531 # define MEM_MODULE
532 # if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
533 #   include <stdint.h>
534     typedef uint64_t U64;
535 # else
536     typedef unsigned long long U64;   /* if your compiler doesn't support unsigned long long, replace by another 64-bit type here. Note that xxhash.h will also need to be updated. */
537 # endif
538 #endif
539 
540 
541 #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
542 
543 /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
XXH_read64(const void * memPtr)544 static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; }
545 
546 #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
547 
548 /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
549 /* currently only defined for gcc and icc */
550 typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign64;
XXH_read64(const void * ptr)551 static U64 XXH_read64(const void* ptr) { return ((const unalign64*)ptr)->u64; }
552 
553 #else
554 
555 /* portable and safe solution. Generally efficient.
556  * see : http://stackoverflow.com/a/32095106/646947
557  */
558 
XXH_read64(const void * memPtr)559 static U64 XXH_read64(const void* memPtr)
560 {
561     U64 val;
562     memcpy(&val, memPtr, sizeof(val));
563     return val;
564 }
565 
566 #endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
567 
568 #if defined(_MSC_VER)     /* Visual Studio */
569 #  define XXH_swap64 _byteswap_uint64
570 #elif XXH_GCC_VERSION >= 403
571 #  define XXH_swap64 __builtin_bswap64
572 #else
XXH_swap64(U64 x)573 static U64 XXH_swap64 (U64 x)
574 {
575     return  ((x << 56) & 0xff00000000000000ULL) |
576             ((x << 40) & 0x00ff000000000000ULL) |
577             ((x << 24) & 0x0000ff0000000000ULL) |
578             ((x << 8)  & 0x000000ff00000000ULL) |
579             ((x >> 8)  & 0x00000000ff000000ULL) |
580             ((x >> 24) & 0x0000000000ff0000ULL) |
581             ((x >> 40) & 0x000000000000ff00ULL) |
582             ((x >> 56) & 0x00000000000000ffULL);
583 }
584 #endif
585 
XXH_readLE64_align(const void * ptr,XXH_endianess endian,XXH_alignment align)586 XXH_FORCE_INLINE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
587 {
588     if (align==XXH_unaligned)
589         return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
590     else
591         return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr);
592 }
593 
XXH_readLE64(const void * ptr,XXH_endianess endian)594 XXH_FORCE_INLINE U64 XXH_readLE64(const void* ptr, XXH_endianess endian)
595 {
596     return XXH_readLE64_align(ptr, endian, XXH_unaligned);
597 }
598 
XXH_readBE64(const void * ptr)599 static U64 XXH_readBE64(const void* ptr)
600 {
601     return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
602 }
603 
604 
605 /*======   xxh64   ======*/
606 
607 static const U64 PRIME64_1 = 11400714785074694791ULL;
608 static const U64 PRIME64_2 = 14029467366897019727ULL;
609 static const U64 PRIME64_3 =  1609587929392839161ULL;
610 static const U64 PRIME64_4 =  9650029242287828579ULL;
611 static const U64 PRIME64_5 =  2870177450012600261ULL;
612 
XXH64_round(U64 acc,U64 input)613 static U64 XXH64_round(U64 acc, U64 input)
614 {
615     acc += input * PRIME64_2;
616     acc  = XXH_rotl64(acc, 31);
617     acc *= PRIME64_1;
618     return acc;
619 }
620 
XXH64_mergeRound(U64 acc,U64 val)621 static U64 XXH64_mergeRound(U64 acc, U64 val)
622 {
623     val  = XXH64_round(0, val);
624     acc ^= val;
625     acc  = acc * PRIME64_1 + PRIME64_4;
626     return acc;
627 }
628 
XXH64_endian_align(const void * input,size_t len,U64 seed,XXH_endianess endian,XXH_alignment align)629 XXH_FORCE_INLINE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align)
630 {
631     const BYTE* p = (const BYTE*)input;
632     const BYTE* const bEnd = p + len;
633     U64 h64;
634 #define XXH_get64bits(p) XXH_readLE64_align(p, endian, align)
635 
636 #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
637     if (p==NULL) {
638         len=0;
639         bEnd=p=(const BYTE*)(size_t)32;
640     }
641 #endif
642 
643     if (len>=32) {
644         const BYTE* const limit = bEnd - 32;
645         U64 v1 = seed + PRIME64_1 + PRIME64_2;
646         U64 v2 = seed + PRIME64_2;
647         U64 v3 = seed + 0;
648         U64 v4 = seed - PRIME64_1;
649 
650         do {
651             v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8;
652             v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8;
653             v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8;
654             v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8;
655         } while (p<=limit);
656 
657         h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
658         h64 = XXH64_mergeRound(h64, v1);
659         h64 = XXH64_mergeRound(h64, v2);
660         h64 = XXH64_mergeRound(h64, v3);
661         h64 = XXH64_mergeRound(h64, v4);
662 
663     } else {
664         h64  = seed + PRIME64_5;
665     }
666 
667     h64 += (U64) len;
668 
669     while (p+8<=bEnd) {
670         U64 const k1 = XXH64_round(0, XXH_get64bits(p));
671         h64 ^= k1;
672         h64  = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
673         p+=8;
674     }
675 
676     if (p+4<=bEnd) {
677         h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1;
678         h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
679         p+=4;
680     }
681 
682     while (p<bEnd) {
683         h64 ^= (*p) * PRIME64_5;
684         h64 = XXH_rotl64(h64, 11) * PRIME64_1;
685         p++;
686     }
687 
688     h64 ^= h64 >> 33;
689     h64 *= PRIME64_2;
690     h64 ^= h64 >> 29;
691     h64 *= PRIME64_3;
692     h64 ^= h64 >> 32;
693 
694     return h64;
695 }
696 
697 
XXH64(const void * input,size_t len,unsigned long long seed)698 XXH_PUBLIC_API unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed)
699 {
700 #if 0
701     /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
702     XXH64_state_t state;
703     XXH64_reset(&state, seed);
704     XXH64_update(&state, input, len);
705     return XXH64_digest(&state);
706 #else
707     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
708 
709     if (XXH_FORCE_ALIGN_CHECK) {
710         if ((((size_t)input) & 7)==0) {  /* Input is aligned, let's leverage the speed advantage */
711             if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
712                 return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
713             else
714                 return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
715     }   }
716 
717     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
718         return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
719     else
720         return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
721 #endif
722 }
723 
724 /*======   Hash Streaming   ======*/
725 
XXH64_createState(void)726 XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
727 {
728     return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
729 }
XXH64_freeState(XXH64_state_t * statePtr)730 XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
731 {
732     XXH_free(statePtr);
733     return XXH_OK;
734 }
735 
XXH64_copyState(XXH64_state_t * dstState,const XXH64_state_t * srcState)736 XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dstState, const XXH64_state_t* srcState)
737 {
738     memcpy(dstState, srcState, sizeof(*dstState));
739 }
740 
XXH64_reset(XXH64_state_t * statePtr,unsigned long long seed)741 XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed)
742 {
743     XXH64_state_t state;   /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
744     memset(&state, 0, sizeof(state)-8);   /* do not write into reserved, for future removal */
745     state.v1 = seed + PRIME64_1 + PRIME64_2;
746     state.v2 = seed + PRIME64_2;
747     state.v3 = seed + 0;
748     state.v4 = seed - PRIME64_1;
749     memcpy(statePtr, &state, sizeof(state));
750     return XXH_OK;
751 }
752 
XXH64_update_endian(XXH64_state_t * state,const void * input,size_t len,XXH_endianess endian)753 XXH_FORCE_INLINE XXH_errorcode XXH64_update_endian (XXH64_state_t* state, const void* input, size_t len, XXH_endianess endian)
754 {
755     const BYTE* p = (const BYTE*)input;
756     const BYTE* const bEnd = p + len;
757 
758 #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
759     if (input==NULL) return XXH_ERROR;
760 #endif
761 
762     state->total_len += len;
763 
764     if (state->memsize + len < 32) {  /* fill in tmp buffer */
765         XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len);
766         state->memsize += (U32)len;
767         return XXH_OK;
768     }
769 
770     if (state->memsize) {   /* tmp buffer is full */
771         XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize);
772         state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0, endian));
773         state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1, endian));
774         state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2, endian));
775         state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3, endian));
776         p += 32-state->memsize;
777         state->memsize = 0;
778     }
779 
780     if (p+32 <= bEnd) {
781         const BYTE* const limit = bEnd - 32;
782         U64 v1 = state->v1;
783         U64 v2 = state->v2;
784         U64 v3 = state->v3;
785         U64 v4 = state->v4;
786 
787         do {
788             v1 = XXH64_round(v1, XXH_readLE64(p, endian)); p+=8;
789             v2 = XXH64_round(v2, XXH_readLE64(p, endian)); p+=8;
790             v3 = XXH64_round(v3, XXH_readLE64(p, endian)); p+=8;
791             v4 = XXH64_round(v4, XXH_readLE64(p, endian)); p+=8;
792         } while (p<=limit);
793 
794         state->v1 = v1;
795         state->v2 = v2;
796         state->v3 = v3;
797         state->v4 = v4;
798     }
799 
800     if (p < bEnd) {
801         XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
802         state->memsize = (unsigned)(bEnd-p);
803     }
804 
805     return XXH_OK;
806 }
807 
XXH64_update(XXH64_state_t * state_in,const void * input,size_t len)808 XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len)
809 {
810     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
811 
812     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
813         return XXH64_update_endian(state_in, input, len, XXH_littleEndian);
814     else
815         return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
816 }
817 
XXH64_digest_endian(const XXH64_state_t * state,XXH_endianess endian)818 XXH_FORCE_INLINE U64 XXH64_digest_endian (const XXH64_state_t* state, XXH_endianess endian)
819 {
820     const BYTE * p = (const BYTE*)state->mem64;
821     const BYTE* const bEnd = (const BYTE*)state->mem64 + state->memsize;
822     U64 h64;
823 
824     if (state->total_len >= 32) {
825         U64 const v1 = state->v1;
826         U64 const v2 = state->v2;
827         U64 const v3 = state->v3;
828         U64 const v4 = state->v4;
829 
830         h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
831         h64 = XXH64_mergeRound(h64, v1);
832         h64 = XXH64_mergeRound(h64, v2);
833         h64 = XXH64_mergeRound(h64, v3);
834         h64 = XXH64_mergeRound(h64, v4);
835     } else {
836         h64  = state->v3 + PRIME64_5;
837     }
838 
839     h64 += (U64) state->total_len;
840 
841     while (p+8<=bEnd) {
842         U64 const k1 = XXH64_round(0, XXH_readLE64(p, endian));
843         h64 ^= k1;
844         h64  = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
845         p+=8;
846     }
847 
848     if (p+4<=bEnd) {
849         h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1;
850         h64  = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
851         p+=4;
852     }
853 
854     while (p<bEnd) {
855         h64 ^= (*p) * PRIME64_5;
856         h64  = XXH_rotl64(h64, 11) * PRIME64_1;
857         p++;
858     }
859 
860     h64 ^= h64 >> 33;
861     h64 *= PRIME64_2;
862     h64 ^= h64 >> 29;
863     h64 *= PRIME64_3;
864     h64 ^= h64 >> 32;
865 
866     return h64;
867 }
868 
XXH64_digest(const XXH64_state_t * state_in)869 XXH_PUBLIC_API unsigned long long XXH64_digest (const XXH64_state_t* state_in)
870 {
871     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
872 
873     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
874         return XXH64_digest_endian(state_in, XXH_littleEndian);
875     else
876         return XXH64_digest_endian(state_in, XXH_bigEndian);
877 }
878 
879 
880 /*====== Canonical representation   ======*/
881 
XXH64_canonicalFromHash(XXH64_canonical_t * dst,XXH64_hash_t hash)882 XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
883 {
884     XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
885     if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
886     memcpy(dst, &hash, sizeof(*dst));
887 }
888 
XXH64_hashFromCanonical(const XXH64_canonical_t * src)889 XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
890 {
891     return XXH_readBE64(src);
892 }
893 
894 #endif  /* XXH_NO_LONG_LONG */
895