1 /* LzmaEnc.c -- LZMA Encoder
2 2018-12-29: Igor Pavlov : Public domain */
3 
4 #include "Precomp.h"
5 
6 #include <string.h>
7 
8 /* #define SHOW_STAT */
9 /* #define SHOW_STAT2 */
10 
11 #if defined(SHOW_STAT) || defined(SHOW_STAT2)
12 #include <stdio.h>
13 #endif
14 
15 #include "LzmaEnc.h"
16 
17 #include "LzFind.h"
18 #ifndef _7ZIP_ST
19 #include "LzFindMt.h"
20 #endif
21 
22 #ifdef SHOW_STAT
23 static unsigned g_STAT_OFFSET = 0;
24 #endif
25 
26 #define kLzmaMaxHistorySize ((UInt32)3 << 29)
27 /* #define kLzmaMaxHistorySize ((UInt32)7 << 29) */
28 
29 #define kNumTopBits 24
30 #define kTopValue ((UInt32)1 << kNumTopBits)
31 
32 #define kNumBitModelTotalBits 11
33 #define kBitModelTotal (1 << kNumBitModelTotalBits)
34 #define kNumMoveBits 5
35 #define kProbInitValue (kBitModelTotal >> 1)
36 
37 #define kNumMoveReducingBits 4
38 #define kNumBitPriceShiftBits 4
39 #define kBitPrice (1 << kNumBitPriceShiftBits)
40 
41 #define REP_LEN_COUNT 64
42 
LzmaEncProps_Init(CLzmaEncProps * p)43 void LzmaEncProps_Init(CLzmaEncProps *p)
44 {
45   p->level = 5;
46   p->dictSize = p->mc = 0;
47   p->reduceSize = (UInt64)(Int64)-1;
48   p->lc = p->lp = p->pb = p->algo = p->fb = p->btMode = p->numHashBytes = p->numThreads = -1;
49   p->writeEndMark = 0;
50 }
51 
LzmaEncProps_Normalize(CLzmaEncProps * p)52 void LzmaEncProps_Normalize(CLzmaEncProps *p)
53 {
54   int level = p->level;
55   if (level < 0) level = 5;
56   p->level = level;
57 
58   if (p->dictSize == 0) p->dictSize = (level <= 5 ? (1 << (level * 2 + 14)) : (level <= 7 ? (1 << 25) : (1 << 26)));
59   if (p->dictSize > p->reduceSize)
60   {
61     unsigned i;
62     UInt32 reduceSize = (UInt32)p->reduceSize;
63     for (i = 11; i <= 30; i++)
64     {
65       if (reduceSize <= ((UInt32)2 << i)) { p->dictSize = ((UInt32)2 << i); break; }
66       if (reduceSize <= ((UInt32)3 << i)) { p->dictSize = ((UInt32)3 << i); break; }
67     }
68   }
69 
70   if (p->lc < 0) p->lc = 3;
71   if (p->lp < 0) p->lp = 0;
72   if (p->pb < 0) p->pb = 2;
73 
74   if (p->algo < 0) p->algo = (level < 5 ? 0 : 1);
75   if (p->fb < 0) p->fb = (level < 7 ? 32 : 64);
76   if (p->btMode < 0) p->btMode = (p->algo == 0 ? 0 : 1);
77   if (p->numHashBytes < 0) p->numHashBytes = 4;
78   if (p->mc == 0) p->mc = (16 + (p->fb >> 1)) >> (p->btMode ? 0 : 1);
79 
80   if (p->numThreads < 0)
81     p->numThreads =
82       #ifndef _7ZIP_ST
83       ((p->btMode && p->algo) ? 2 : 1);
84       #else
85       1;
86       #endif
87 }
88 
LzmaEncProps_GetDictSize(const CLzmaEncProps * props2)89 UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2)
90 {
91   CLzmaEncProps props = *props2;
92   LzmaEncProps_Normalize(&props);
93   return props.dictSize;
94 }
95 
96 #if (_MSC_VER >= 1400)
97 /* BSR code is fast for some new CPUs */
98 /* #define LZMA_LOG_BSR */
99 #endif
100 
101 #ifdef LZMA_LOG_BSR
102 
103 #define kDicLogSizeMaxCompress 32
104 
105 #define BSR2_RET(pos, res) { unsigned long zz; _BitScanReverse(&zz, (pos)); res = (zz + zz) + ((pos >> (zz - 1)) & 1); }
106 
GetPosSlot1(UInt32 pos)107 static unsigned GetPosSlot1(UInt32 pos)
108 {
109   unsigned res;
110   BSR2_RET(pos, res);
111   return res;
112 }
113 #define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
114 #define GetPosSlot(pos, res) { if (pos < 2) res = pos; else BSR2_RET(pos, res); }
115 
116 #else
117 
118 #define kNumLogBits (9 + sizeof(size_t) / 2)
119 /* #define kNumLogBits (11 + sizeof(size_t) / 8 * 3) */
120 
121 #define kDicLogSizeMaxCompress ((kNumLogBits - 1) * 2 + 7)
122 
LzmaEnc_FastPosInit(Byte * g_FastPos)123 static void LzmaEnc_FastPosInit(Byte *g_FastPos)
124 {
125   unsigned slot;
126   g_FastPos[0] = 0;
127   g_FastPos[1] = 1;
128   g_FastPos += 2;
129 
130   for (slot = 2; slot < kNumLogBits * 2; slot++)
131   {
132     size_t k = ((size_t)1 << ((slot >> 1) - 1));
133     size_t j;
134     for (j = 0; j < k; j++)
135       g_FastPos[j] = (Byte)slot;
136     g_FastPos += k;
137   }
138 }
139 
140 /* we can use ((limit - pos) >> 31) only if (pos < ((UInt32)1 << 31)) */
141 /*
142 #define BSR2_RET(pos, res) { unsigned zz = 6 + ((kNumLogBits - 1) & \
143   (0 - (((((UInt32)1 << (kNumLogBits + 6)) - 1) - pos) >> 31))); \
144   res = p->g_FastPos[pos >> zz] + (zz * 2); }
145 */
146 
147 /*
148 #define BSR2_RET(pos, res) { unsigned zz = 6 + ((kNumLogBits - 1) & \
149   (0 - (((((UInt32)1 << (kNumLogBits)) - 1) - (pos >> 6)) >> 31))); \
150   res = p->g_FastPos[pos >> zz] + (zz * 2); }
151 */
152 
153 #define BSR2_RET(pos, res) { unsigned zz = (pos < (1 << (kNumLogBits + 6))) ? 6 : 6 + kNumLogBits - 1; \
154   res = p->g_FastPos[pos >> zz] + (zz * 2); }
155 
156 /*
157 #define BSR2_RET(pos, res) { res = (pos < (1 << (kNumLogBits + 6))) ? \
158   p->g_FastPos[pos >> 6] + 12 : \
159   p->g_FastPos[pos >> (6 + kNumLogBits - 1)] + (6 + (kNumLogBits - 1)) * 2; }
160 */
161 
162 #define GetPosSlot1(pos) p->g_FastPos[pos]
163 #define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
164 #define GetPosSlot(pos, res) { if (pos < kNumFullDistances) res = p->g_FastPos[pos & (kNumFullDistances - 1)]; else BSR2_RET(pos, res); }
165 
166 #endif
167 
168 
169 #define LZMA_NUM_REPS 4
170 
171 typedef UInt16 CState;
172 typedef UInt16 CExtra;
173 
174 typedef struct
175 {
176   UInt32 price;
177   CState state;
178   CExtra extra;
179       // 0   : normal
180       // 1   : LIT : MATCH
181       // > 1 : MATCH (extra-1) : LIT : REP0 (len)
182   UInt32 len;
183   UInt32 dist;
184   UInt32 reps[LZMA_NUM_REPS];
185 } COptimal;
186 
187 
188 // 18.06
189 #define kNumOpts (1 << 11)
190 #define kPackReserve (kNumOpts * 8)
191 // #define kNumOpts (1 << 12)
192 // #define kPackReserve (1 + kNumOpts * 2)
193 
194 #define kNumLenToPosStates 4
195 #define kNumPosSlotBits 6
196 #define kDicLogSizeMin 0
197 #define kDicLogSizeMax 32
198 #define kDistTableSizeMax (kDicLogSizeMax * 2)
199 
200 #define kNumAlignBits 4
201 #define kAlignTableSize (1 << kNumAlignBits)
202 #define kAlignMask (kAlignTableSize - 1)
203 
204 #define kStartPosModelIndex 4
205 #define kEndPosModelIndex 14
206 #define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
207 
208 typedef
209 #ifdef _LZMA_PROB32
210   UInt32
211 #else
212   UInt16
213 #endif
214   CLzmaProb;
215 
216 #define LZMA_PB_MAX 4
217 #define LZMA_LC_MAX 8
218 #define LZMA_LP_MAX 4
219 
220 #define LZMA_NUM_PB_STATES_MAX (1 << LZMA_PB_MAX)
221 
222 #define kLenNumLowBits 3
223 #define kLenNumLowSymbols (1 << kLenNumLowBits)
224 #define kLenNumHighBits 8
225 #define kLenNumHighSymbols (1 << kLenNumHighBits)
226 #define kLenNumSymbolsTotal (kLenNumLowSymbols * 2 + kLenNumHighSymbols)
227 
228 #define LZMA_MATCH_LEN_MIN 2
229 #define LZMA_MATCH_LEN_MAX (LZMA_MATCH_LEN_MIN + kLenNumSymbolsTotal - 1)
230 
231 #define kNumStates 12
232 
233 
234 typedef struct
235 {
236   CLzmaProb low[LZMA_NUM_PB_STATES_MAX << (kLenNumLowBits + 1)];
237   CLzmaProb high[kLenNumHighSymbols];
238 } CLenEnc;
239 
240 
241 typedef struct
242 {
243   unsigned tableSize;
244   UInt32 prices[LZMA_NUM_PB_STATES_MAX][kLenNumSymbolsTotal];
245   // UInt32 prices1[LZMA_NUM_PB_STATES_MAX][kLenNumLowSymbols * 2];
246   // UInt32 prices2[kLenNumSymbolsTotal];
247 } CLenPriceEnc;
248 
249 #define GET_PRICE_LEN(p, posState, len) \
250     ((p)->prices[posState][(size_t)(len) - LZMA_MATCH_LEN_MIN])
251 
252 /*
253 #define GET_PRICE_LEN(p, posState, len) \
254     ((p)->prices2[(size_t)(len) - 2] + ((p)->prices1[posState][((len) - 2) & (kLenNumLowSymbols * 2 - 1)] & (((len) - 2 - kLenNumLowSymbols * 2) >> 9)))
255 */
256 
257 typedef struct
258 {
259   UInt32 range;
260   unsigned cache;
261   UInt64 low;
262   UInt64 cacheSize;
263   Byte *buf;
264   Byte *bufLim;
265   Byte *bufBase;
266   ISeqOutStream *outStream;
267   UInt64 processed;
268   SRes res;
269 } CRangeEnc;
270 
271 
272 typedef struct
273 {
274   CLzmaProb *litProbs;
275 
276   unsigned state;
277   UInt32 reps[LZMA_NUM_REPS];
278 
279   CLzmaProb posAlignEncoder[1 << kNumAlignBits];
280   CLzmaProb isRep[kNumStates];
281   CLzmaProb isRepG0[kNumStates];
282   CLzmaProb isRepG1[kNumStates];
283   CLzmaProb isRepG2[kNumStates];
284   CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
285   CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
286 
287   CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
288   CLzmaProb posEncoders[kNumFullDistances];
289 
290   CLenEnc lenProbs;
291   CLenEnc repLenProbs;
292 
293 } CSaveState;
294 
295 
296 typedef UInt32 CProbPrice;
297 
298 
299 typedef struct
300 {
301   void *matchFinderObj;
302   IMatchFinder matchFinder;
303 
304   unsigned optCur;
305   unsigned optEnd;
306 
307   unsigned longestMatchLen;
308   unsigned numPairs;
309   UInt32 numAvail;
310 
311   unsigned state;
312   unsigned numFastBytes;
313   unsigned additionalOffset;
314   UInt32 reps[LZMA_NUM_REPS];
315   unsigned lpMask, pbMask;
316   CLzmaProb *litProbs;
317   CRangeEnc rc;
318 
319   UInt32 backRes;
320 
321   unsigned lc, lp, pb;
322   unsigned lclp;
323 
324   BoolInt fastMode;
325   BoolInt writeEndMark;
326   BoolInt finished;
327   BoolInt multiThread;
328   BoolInt needInit;
329   // BoolInt _maxMode;
330 
331   UInt64 nowPos64;
332 
333   unsigned matchPriceCount;
334   // unsigned alignPriceCount;
335   int repLenEncCounter;
336 
337   unsigned distTableSize;
338 
339   UInt32 dictSize;
340   SRes result;
341 
342   #ifndef _7ZIP_ST
343   BoolInt mtMode;
344   // begin of CMatchFinderMt is used in LZ thread
345   CMatchFinderMt matchFinderMt;
346   // end of CMatchFinderMt is used in BT and HASH threads
347   #endif
348 
349   CMatchFinder matchFinderBase;
350 
351   #ifndef _7ZIP_ST
352   Byte pad[128];
353   #endif
354 
355   // LZ thread
356   CProbPrice ProbPrices[kBitModelTotal >> kNumMoveReducingBits];
357 
358   UInt32 matches[LZMA_MATCH_LEN_MAX * 2 + 2 + 1];
359 
360   UInt32 alignPrices[kAlignTableSize];
361   UInt32 posSlotPrices[kNumLenToPosStates][kDistTableSizeMax];
362   UInt32 distancesPrices[kNumLenToPosStates][kNumFullDistances];
363 
364   CLzmaProb posAlignEncoder[1 << kNumAlignBits];
365   CLzmaProb isRep[kNumStates];
366   CLzmaProb isRepG0[kNumStates];
367   CLzmaProb isRepG1[kNumStates];
368   CLzmaProb isRepG2[kNumStates];
369   CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
370   CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
371   CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
372   CLzmaProb posEncoders[kNumFullDistances];
373 
374   CLenEnc lenProbs;
375   CLenEnc repLenProbs;
376 
377   #ifndef LZMA_LOG_BSR
378   Byte g_FastPos[1 << kNumLogBits];
379   #endif
380 
381   CLenPriceEnc lenEnc;
382   CLenPriceEnc repLenEnc;
383 
384   COptimal opt[kNumOpts];
385 
386   CSaveState saveState;
387 
388   #ifndef _7ZIP_ST
389   Byte pad2[128];
390   #endif
391 } CLzmaEnc;
392 
393 
394 
395 #define COPY_ARR(dest, src, arr) memcpy(dest->arr, src->arr, sizeof(src->arr));
396 
LzmaEnc_SaveState(CLzmaEncHandle pp)397 void LzmaEnc_SaveState(CLzmaEncHandle pp)
398 {
399   CLzmaEnc *p = (CLzmaEnc *)pp;
400   CSaveState *dest = &p->saveState;
401 
402   dest->state = p->state;
403 
404   dest->lenProbs = p->lenProbs;
405   dest->repLenProbs = p->repLenProbs;
406 
407   COPY_ARR(dest, p, reps);
408 
409   COPY_ARR(dest, p, posAlignEncoder);
410   COPY_ARR(dest, p, isRep);
411   COPY_ARR(dest, p, isRepG0);
412   COPY_ARR(dest, p, isRepG1);
413   COPY_ARR(dest, p, isRepG2);
414   COPY_ARR(dest, p, isMatch);
415   COPY_ARR(dest, p, isRep0Long);
416   COPY_ARR(dest, p, posSlotEncoder);
417   COPY_ARR(dest, p, posEncoders);
418 
419   memcpy(dest->litProbs, p->litProbs, ((UInt32)0x300 << p->lclp) * sizeof(CLzmaProb));
420 }
421 
422 
LzmaEnc_RestoreState(CLzmaEncHandle pp)423 void LzmaEnc_RestoreState(CLzmaEncHandle pp)
424 {
425   CLzmaEnc *dest = (CLzmaEnc *)pp;
426   const CSaveState *p = &dest->saveState;
427 
428   dest->state = p->state;
429 
430   dest->lenProbs = p->lenProbs;
431   dest->repLenProbs = p->repLenProbs;
432 
433   COPY_ARR(dest, p, reps);
434 
435   COPY_ARR(dest, p, posAlignEncoder);
436   COPY_ARR(dest, p, isRep);
437   COPY_ARR(dest, p, isRepG0);
438   COPY_ARR(dest, p, isRepG1);
439   COPY_ARR(dest, p, isRepG2);
440   COPY_ARR(dest, p, isMatch);
441   COPY_ARR(dest, p, isRep0Long);
442   COPY_ARR(dest, p, posSlotEncoder);
443   COPY_ARR(dest, p, posEncoders);
444 
445   memcpy(dest->litProbs, p->litProbs, ((UInt32)0x300 << dest->lclp) * sizeof(CLzmaProb));
446 }
447 
448 
449 
LzmaEnc_SetProps(CLzmaEncHandle pp,const CLzmaEncProps * props2)450 SRes LzmaEnc_SetProps(CLzmaEncHandle pp, const CLzmaEncProps *props2)
451 {
452   CLzmaEnc *p = (CLzmaEnc *)pp;
453   CLzmaEncProps props = *props2;
454   LzmaEncProps_Normalize(&props);
455 
456   if (props.lc > LZMA_LC_MAX
457       || props.lp > LZMA_LP_MAX
458       || props.pb > LZMA_PB_MAX
459       || props.dictSize > ((UInt64)1 << kDicLogSizeMaxCompress)
460       || props.dictSize > kLzmaMaxHistorySize)
461     return SZ_ERROR_PARAM;
462 
463   p->dictSize = props.dictSize;
464   {
465     unsigned fb = props.fb;
466     if (fb < 5)
467       fb = 5;
468     if (fb > LZMA_MATCH_LEN_MAX)
469       fb = LZMA_MATCH_LEN_MAX;
470     p->numFastBytes = fb;
471   }
472   p->lc = props.lc;
473   p->lp = props.lp;
474   p->pb = props.pb;
475   p->fastMode = (props.algo == 0);
476   // p->_maxMode = True;
477   p->matchFinderBase.btMode = (Byte)(props.btMode ? 1 : 0);
478   {
479     unsigned numHashBytes = 4;
480     if (props.btMode)
481     {
482       if (props.numHashBytes < 2)
483         numHashBytes = 2;
484       else if (props.numHashBytes < 4)
485         numHashBytes = props.numHashBytes;
486     }
487     p->matchFinderBase.numHashBytes = numHashBytes;
488   }
489 
490   p->matchFinderBase.cutValue = props.mc;
491 
492   p->writeEndMark = props.writeEndMark;
493 
494   #ifndef _7ZIP_ST
495   /*
496   if (newMultiThread != _multiThread)
497   {
498     ReleaseMatchFinder();
499     _multiThread = newMultiThread;
500   }
501   */
502   p->multiThread = (props.numThreads > 1);
503   #endif
504 
505   return SZ_OK;
506 }
507 
508 
LzmaEnc_SetDataSize(CLzmaEncHandle pp,UInt64 expectedDataSiize)509 void LzmaEnc_SetDataSize(CLzmaEncHandle pp, UInt64 expectedDataSiize)
510 {
511   CLzmaEnc *p = (CLzmaEnc *)pp;
512   p->matchFinderBase.expectedDataSize = expectedDataSiize;
513 }
514 
515 
516 #define kState_Start 0
517 #define kState_LitAfterMatch 4
518 #define kState_LitAfterRep   5
519 #define kState_MatchAfterLit 7
520 #define kState_RepAfterLit   8
521 
522 static const Byte kLiteralNextStates[kNumStates] = {0, 0, 0, 0, 1, 2, 3, 4,  5,  6,   4, 5};
523 static const Byte kMatchNextStates[kNumStates]   = {7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10};
524 static const Byte kRepNextStates[kNumStates]     = {8, 8, 8, 8, 8, 8, 8, 11, 11, 11, 11, 11};
525 static const Byte kShortRepNextStates[kNumStates]= {9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11};
526 
527 #define IsLitState(s) ((s) < 7)
528 #define GetLenToPosState2(len) (((len) < kNumLenToPosStates - 1) ? (len) : kNumLenToPosStates - 1)
529 #define GetLenToPosState(len) (((len) < kNumLenToPosStates + 1) ? (len) - 2 : kNumLenToPosStates - 1)
530 
531 #define kInfinityPrice (1 << 30)
532 
RangeEnc_Construct(CRangeEnc * p)533 static void RangeEnc_Construct(CRangeEnc *p)
534 {
535   p->outStream = NULL;
536   p->bufBase = NULL;
537 }
538 
539 #define RangeEnc_GetProcessed(p)       ((p)->processed + ((p)->buf - (p)->bufBase) + (p)->cacheSize)
540 #define RangeEnc_GetProcessed_sizet(p) ((size_t)(p)->processed + ((p)->buf - (p)->bufBase) + (size_t)(p)->cacheSize)
541 
542 #define RC_BUF_SIZE (1 << 16)
543 
RangeEnc_Alloc(CRangeEnc * p,ISzAllocPtr alloc)544 static int RangeEnc_Alloc(CRangeEnc *p, ISzAllocPtr alloc)
545 {
546   if (!p->bufBase)
547   {
548     p->bufBase = (Byte *)ISzAlloc_Alloc(alloc, RC_BUF_SIZE);
549     if (!p->bufBase)
550       return 0;
551     p->bufLim = p->bufBase + RC_BUF_SIZE;
552   }
553   return 1;
554 }
555 
RangeEnc_Free(CRangeEnc * p,ISzAllocPtr alloc)556 static void RangeEnc_Free(CRangeEnc *p, ISzAllocPtr alloc)
557 {
558   ISzAlloc_Free(alloc, p->bufBase);
559   p->bufBase = 0;
560 }
561 
RangeEnc_Init(CRangeEnc * p)562 static void RangeEnc_Init(CRangeEnc *p)
563 {
564   /* Stream.Init(); */
565   p->range = 0xFFFFFFFF;
566   p->cache = 0;
567   p->low = 0;
568   p->cacheSize = 0;
569 
570   p->buf = p->bufBase;
571 
572   p->processed = 0;
573   p->res = SZ_OK;
574 }
575 
RangeEnc_FlushStream(CRangeEnc * p)576 MY_NO_INLINE static void RangeEnc_FlushStream(CRangeEnc *p)
577 {
578   size_t num;
579   if (p->res != SZ_OK)
580     return;
581   num = p->buf - p->bufBase;
582   if (num != ISeqOutStream_Write(p->outStream, p->bufBase, num))
583     p->res = SZ_ERROR_WRITE;
584   p->processed += num;
585   p->buf = p->bufBase;
586 }
587 
RangeEnc_ShiftLow(CRangeEnc * p)588 MY_NO_INLINE static void MY_FAST_CALL RangeEnc_ShiftLow(CRangeEnc *p)
589 {
590   UInt32 low = (UInt32)p->low;
591   unsigned high = (unsigned)(p->low >> 32);
592   p->low = (UInt32)(low << 8);
593   if (low < (UInt32)0xFF000000 || high != 0)
594   {
595     {
596       Byte *buf = p->buf;
597       *buf++ = (Byte)(p->cache + high);
598       p->cache = (unsigned)(low >> 24);
599       p->buf = buf;
600       if (buf == p->bufLim)
601         RangeEnc_FlushStream(p);
602       if (p->cacheSize == 0)
603         return;
604     }
605     high += 0xFF;
606     for (;;)
607     {
608       Byte *buf = p->buf;
609       *buf++ = (Byte)(high);
610       p->buf = buf;
611       if (buf == p->bufLim)
612         RangeEnc_FlushStream(p);
613       if (--p->cacheSize == 0)
614         return;
615     }
616   }
617   p->cacheSize++;
618 }
619 
RangeEnc_FlushData(CRangeEnc * p)620 static void RangeEnc_FlushData(CRangeEnc *p)
621 {
622   int i;
623   for (i = 0; i < 5; i++)
624     RangeEnc_ShiftLow(p);
625 }
626 
627 #define RC_NORM(p) if (range < kTopValue) { range <<= 8; RangeEnc_ShiftLow(p); }
628 
629 #define RC_BIT_PRE(p, prob) \
630   ttt = *(prob); \
631   newBound = (range >> kNumBitModelTotalBits) * ttt;
632 
633 // #define _LZMA_ENC_USE_BRANCH
634 
635 #ifdef _LZMA_ENC_USE_BRANCH
636 
637 #define RC_BIT(p, prob, bit) { \
638   RC_BIT_PRE(p, prob) \
639   if (bit == 0) { range = newBound; ttt += (kBitModelTotal - ttt) >> kNumMoveBits; } \
640   else { (p)->low += newBound; range -= newBound; ttt -= ttt >> kNumMoveBits; } \
641   *(prob) = (CLzmaProb)ttt; \
642   RC_NORM(p) \
643   }
644 
645 #else
646 
647 #define RC_BIT(p, prob, bit) { \
648   UInt32 mask; \
649   RC_BIT_PRE(p, prob) \
650   mask = 0 - (UInt32)bit; \
651   range &= mask; \
652   mask &= newBound; \
653   range -= mask; \
654   (p)->low += mask; \
655   mask = (UInt32)bit - 1; \
656   range += newBound & mask; \
657   mask &= (kBitModelTotal - ((1 << kNumMoveBits) - 1)); \
658   mask += ((1 << kNumMoveBits) - 1); \
659   ttt += (Int32)(mask - ttt) >> kNumMoveBits; \
660   *(prob) = (CLzmaProb)ttt; \
661   RC_NORM(p) \
662   }
663 
664 #endif
665 
666 
667 
668 
669 #define RC_BIT_0_BASE(p, prob) \
670   range = newBound; *(prob) = (CLzmaProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
671 
672 #define RC_BIT_1_BASE(p, prob) \
673   range -= newBound; (p)->low += newBound; *(prob) = (CLzmaProb)(ttt - (ttt >> kNumMoveBits)); \
674 
675 #define RC_BIT_0(p, prob) \
676   RC_BIT_0_BASE(p, prob) \
677   RC_NORM(p)
678 
679 #define RC_BIT_1(p, prob) \
680   RC_BIT_1_BASE(p, prob) \
681   RC_NORM(p)
682 
RangeEnc_EncodeBit_0(CRangeEnc * p,CLzmaProb * prob)683 static void RangeEnc_EncodeBit_0(CRangeEnc *p, CLzmaProb *prob)
684 {
685   UInt32 range, ttt, newBound;
686   range = p->range;
687   RC_BIT_PRE(p, prob)
688   RC_BIT_0(p, prob)
689   p->range = range;
690 }
691 
LitEnc_Encode(CRangeEnc * p,CLzmaProb * probs,UInt32 sym)692 static void LitEnc_Encode(CRangeEnc *p, CLzmaProb *probs, UInt32 sym)
693 {
694   UInt32 range = p->range;
695   sym |= 0x100;
696   do
697   {
698     UInt32 ttt, newBound;
699     // RangeEnc_EncodeBit(p, probs + (sym >> 8), (sym >> 7) & 1);
700     CLzmaProb *prob = probs + (sym >> 8);
701     UInt32 bit = (sym >> 7) & 1;
702     sym <<= 1;
703     RC_BIT(p, prob, bit);
704   }
705   while (sym < 0x10000);
706   p->range = range;
707 }
708 
LitEnc_EncodeMatched(CRangeEnc * p,CLzmaProb * probs,UInt32 sym,UInt32 matchByte)709 static void LitEnc_EncodeMatched(CRangeEnc *p, CLzmaProb *probs, UInt32 sym, UInt32 matchByte)
710 {
711   UInt32 range = p->range;
712   UInt32 offs = 0x100;
713   sym |= 0x100;
714   do
715   {
716     UInt32 ttt, newBound;
717     CLzmaProb *prob;
718     UInt32 bit;
719     matchByte <<= 1;
720     // RangeEnc_EncodeBit(p, probs + (offs + (matchByte & offs) + (sym >> 8)), (sym >> 7) & 1);
721     prob = probs + (offs + (matchByte & offs) + (sym >> 8));
722     bit = (sym >> 7) & 1;
723     sym <<= 1;
724     offs &= ~(matchByte ^ sym);
725     RC_BIT(p, prob, bit);
726   }
727   while (sym < 0x10000);
728   p->range = range;
729 }
730 
731 
732 
LzmaEnc_InitPriceTables(CProbPrice * ProbPrices)733 static void LzmaEnc_InitPriceTables(CProbPrice *ProbPrices)
734 {
735   UInt32 i;
736   for (i = 0; i < (kBitModelTotal >> kNumMoveReducingBits); i++)
737   {
738     const unsigned kCyclesBits = kNumBitPriceShiftBits;
739     UInt32 w = (i << kNumMoveReducingBits) + (1 << (kNumMoveReducingBits - 1));
740     unsigned bitCount = 0;
741     unsigned j;
742     for (j = 0; j < kCyclesBits; j++)
743     {
744       w = w * w;
745       bitCount <<= 1;
746       while (w >= ((UInt32)1 << 16))
747       {
748         w >>= 1;
749         bitCount++;
750       }
751     }
752     ProbPrices[i] = (CProbPrice)((kNumBitModelTotalBits << kCyclesBits) - 15 - bitCount);
753     // printf("\n%3d: %5d", i, ProbPrices[i]);
754   }
755 }
756 
757 
758 #define GET_PRICE(prob, bit) \
759   p->ProbPrices[((prob) ^ (unsigned)(((-(int)(bit))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
760 
761 #define GET_PRICEa(prob, bit) \
762      ProbPrices[((prob) ^ (unsigned)((-((int)(bit))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
763 
764 #define GET_PRICE_0(prob) p->ProbPrices[(prob) >> kNumMoveReducingBits]
765 #define GET_PRICE_1(prob) p->ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
766 
767 #define GET_PRICEa_0(prob) ProbPrices[(prob) >> kNumMoveReducingBits]
768 #define GET_PRICEa_1(prob) ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
769 
770 
LitEnc_GetPrice(const CLzmaProb * probs,UInt32 sym,const CProbPrice * ProbPrices)771 static UInt32 LitEnc_GetPrice(const CLzmaProb *probs, UInt32 sym, const CProbPrice *ProbPrices)
772 {
773   UInt32 price = 0;
774   sym |= 0x100;
775   do
776   {
777     unsigned bit = sym & 1;
778     sym >>= 1;
779     price += GET_PRICEa(probs[sym], bit);
780   }
781   while (sym >= 2);
782   return price;
783 }
784 
785 
LitEnc_Matched_GetPrice(const CLzmaProb * probs,UInt32 sym,UInt32 matchByte,const CProbPrice * ProbPrices)786 static UInt32 LitEnc_Matched_GetPrice(const CLzmaProb *probs, UInt32 sym, UInt32 matchByte, const CProbPrice *ProbPrices)
787 {
788   UInt32 price = 0;
789   UInt32 offs = 0x100;
790   sym |= 0x100;
791   do
792   {
793     matchByte <<= 1;
794     price += GET_PRICEa(probs[offs + (matchByte & offs) + (sym >> 8)], (sym >> 7) & 1);
795     sym <<= 1;
796     offs &= ~(matchByte ^ sym);
797   }
798   while (sym < 0x10000);
799   return price;
800 }
801 
802 
RcTree_ReverseEncode(CRangeEnc * rc,CLzmaProb * probs,unsigned numBits,unsigned sym)803 static void RcTree_ReverseEncode(CRangeEnc *rc, CLzmaProb *probs, unsigned numBits, unsigned sym)
804 {
805   UInt32 range = rc->range;
806   unsigned m = 1;
807   do
808   {
809     UInt32 ttt, newBound;
810     unsigned bit = sym & 1;
811     // RangeEnc_EncodeBit(rc, probs + m, bit);
812     sym >>= 1;
813     RC_BIT(rc, probs + m, bit);
814     m = (m << 1) | bit;
815   }
816   while (--numBits);
817   rc->range = range;
818 }
819 
820 
821 
LenEnc_Init(CLenEnc * p)822 static void LenEnc_Init(CLenEnc *p)
823 {
824   unsigned i;
825   for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << (kLenNumLowBits + 1)); i++)
826     p->low[i] = kProbInitValue;
827   for (i = 0; i < kLenNumHighSymbols; i++)
828     p->high[i] = kProbInitValue;
829 }
830 
LenEnc_Encode(CLenEnc * p,CRangeEnc * rc,unsigned sym,unsigned posState)831 static void LenEnc_Encode(CLenEnc *p, CRangeEnc *rc, unsigned sym, unsigned posState)
832 {
833   UInt32 range, ttt, newBound;
834   CLzmaProb *probs = p->low;
835   range = rc->range;
836   RC_BIT_PRE(rc, probs);
837   if (sym >= kLenNumLowSymbols)
838   {
839     RC_BIT_1(rc, probs);
840     probs += kLenNumLowSymbols;
841     RC_BIT_PRE(rc, probs);
842     if (sym >= kLenNumLowSymbols * 2)
843     {
844       RC_BIT_1(rc, probs);
845       rc->range = range;
846       // RcTree_Encode(rc, p->high, kLenNumHighBits, sym - kLenNumLowSymbols * 2);
847       LitEnc_Encode(rc, p->high, sym - kLenNumLowSymbols * 2);
848       return;
849     }
850     sym -= kLenNumLowSymbols;
851   }
852 
853   // RcTree_Encode(rc, probs + (posState << kLenNumLowBits), kLenNumLowBits, sym);
854   {
855     unsigned m;
856     unsigned bit;
857     RC_BIT_0(rc, probs);
858     probs += (posState << (1 + kLenNumLowBits));
859     bit = (sym >> 2)    ; RC_BIT(rc, probs + 1, bit); m = (1 << 1) + bit;
860     bit = (sym >> 1) & 1; RC_BIT(rc, probs + m, bit); m = (m << 1) + bit;
861     bit =  sym       & 1; RC_BIT(rc, probs + m, bit);
862     rc->range = range;
863   }
864 }
865 
SetPrices_3(const CLzmaProb * probs,UInt32 startPrice,UInt32 * prices,const CProbPrice * ProbPrices)866 static void SetPrices_3(const CLzmaProb *probs, UInt32 startPrice, UInt32 *prices, const CProbPrice *ProbPrices)
867 {
868   unsigned i;
869   for (i = 0; i < 8; i += 2)
870   {
871     UInt32 price = startPrice;
872     UInt32 prob;
873     price += GET_PRICEa(probs[1           ], (i >> 2));
874     price += GET_PRICEa(probs[2 + (i >> 2)], (i >> 1) & 1);
875     prob = probs[4 + (i >> 1)];
876     prices[i    ] = price + GET_PRICEa_0(prob);
877     prices[i + 1] = price + GET_PRICEa_1(prob);
878   }
879 }
880 
881 
LenPriceEnc_UpdateTables(CLenPriceEnc * p,unsigned numPosStates,const CLenEnc * enc,const CProbPrice * ProbPrices)882 MY_NO_INLINE static void MY_FAST_CALL LenPriceEnc_UpdateTables(
883     CLenPriceEnc *p,
884     unsigned numPosStates,
885     const CLenEnc *enc,
886     const CProbPrice *ProbPrices)
887 {
888   UInt32 b;
889 
890   {
891     unsigned prob = enc->low[0];
892     UInt32 a, c;
893     unsigned posState;
894     b = GET_PRICEa_1(prob);
895     a = GET_PRICEa_0(prob);
896     c = b + GET_PRICEa_0(enc->low[kLenNumLowSymbols]);
897     for (posState = 0; posState < numPosStates; posState++)
898     {
899       UInt32 *prices = p->prices[posState];
900       const CLzmaProb *probs = enc->low + (posState << (1 + kLenNumLowBits));
901       SetPrices_3(probs, a, prices, ProbPrices);
902       SetPrices_3(probs + kLenNumLowSymbols, c, prices + kLenNumLowSymbols, ProbPrices);
903     }
904   }
905 
906   /*
907   {
908     unsigned i;
909     UInt32 b;
910     a = GET_PRICEa_0(enc->low[0]);
911     for (i = 0; i < kLenNumLowSymbols; i++)
912       p->prices2[i] = a;
913     a = GET_PRICEa_1(enc->low[0]);
914     b = a + GET_PRICEa_0(enc->low[kLenNumLowSymbols]);
915     for (i = kLenNumLowSymbols; i < kLenNumLowSymbols * 2; i++)
916       p->prices2[i] = b;
917     a += GET_PRICEa_1(enc->low[kLenNumLowSymbols]);
918   }
919   */
920 
921   // p->counter = numSymbols;
922   // p->counter = 64;
923 
924   {
925     unsigned i = p->tableSize;
926 
927     if (i > kLenNumLowSymbols * 2)
928     {
929       const CLzmaProb *probs = enc->high;
930       UInt32 *prices = p->prices[0] + kLenNumLowSymbols * 2;
931       i -= kLenNumLowSymbols * 2 - 1;
932       i >>= 1;
933       b += GET_PRICEa_1(enc->low[kLenNumLowSymbols]);
934       do
935       {
936         /*
937         p->prices2[i] = a +
938         // RcTree_GetPrice(enc->high, kLenNumHighBits, i - kLenNumLowSymbols * 2, ProbPrices);
939         LitEnc_GetPrice(probs, i - kLenNumLowSymbols * 2, ProbPrices);
940         */
941         // UInt32 price = a + RcTree_GetPrice(probs, kLenNumHighBits - 1, sym, ProbPrices);
942         unsigned sym = --i + (1 << (kLenNumHighBits - 1));
943         UInt32 price = b;
944         do
945         {
946           unsigned bit = sym & 1;
947           sym >>= 1;
948           price += GET_PRICEa(probs[sym], bit);
949         }
950         while (sym >= 2);
951 
952         {
953           unsigned prob = probs[(size_t)i + (1 << (kLenNumHighBits - 1))];
954           prices[(size_t)i * 2    ] = price + GET_PRICEa_0(prob);
955           prices[(size_t)i * 2 + 1] = price + GET_PRICEa_1(prob);
956         }
957       }
958       while (i);
959 
960       {
961         unsigned posState;
962         size_t num = (p->tableSize - kLenNumLowSymbols * 2) * sizeof(p->prices[0][0]);
963         for (posState = 1; posState < numPosStates; posState++)
964           memcpy(p->prices[posState] + kLenNumLowSymbols * 2, p->prices[0] + kLenNumLowSymbols * 2, num);
965       }
966     }
967   }
968 }
969 
970 /*
971   #ifdef SHOW_STAT
972   g_STAT_OFFSET += num;
973   printf("\n MovePos %u", num);
974   #endif
975 */
976 
977 #define MOVE_POS(p, num) { \
978     p->additionalOffset += (num); \
979     p->matchFinder.Skip(p->matchFinderObj, (UInt32)(num)); }
980 
981 
ReadMatchDistances(CLzmaEnc * p,unsigned * numPairsRes)982 static unsigned ReadMatchDistances(CLzmaEnc *p, unsigned *numPairsRes)
983 {
984   unsigned numPairs;
985 
986   p->additionalOffset++;
987   p->numAvail = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
988   numPairs = p->matchFinder.GetMatches(p->matchFinderObj, p->matches);
989   *numPairsRes = numPairs;
990 
991   #ifdef SHOW_STAT
992   printf("\n i = %u numPairs = %u    ", g_STAT_OFFSET, numPairs / 2);
993   g_STAT_OFFSET++;
994   {
995     unsigned i;
996     for (i = 0; i < numPairs; i += 2)
997       printf("%2u %6u   | ", p->matches[i], p->matches[i + 1]);
998   }
999   #endif
1000 
1001   if (numPairs == 0)
1002     return 0;
1003   {
1004     unsigned len = p->matches[(size_t)numPairs - 2];
1005     if (len != p->numFastBytes)
1006       return len;
1007     {
1008       UInt32 numAvail = p->numAvail;
1009       if (numAvail > LZMA_MATCH_LEN_MAX)
1010         numAvail = LZMA_MATCH_LEN_MAX;
1011       {
1012         const Byte *p1 = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1013         const Byte *p2 = p1 + len;
1014         ptrdiff_t dif = (ptrdiff_t)-1 - p->matches[(size_t)numPairs - 1];
1015         const Byte *lim = p1 + numAvail;
1016         for (; p2 != lim && *p2 == p2[dif]; p2++)
1017         {}
1018         return (unsigned)(p2 - p1);
1019       }
1020     }
1021   }
1022 }
1023 
1024 #define MARK_LIT ((UInt32)(Int32)-1)
1025 
1026 #define MakeAs_Lit(p)       { (p)->dist = MARK_LIT; (p)->extra = 0; }
1027 #define MakeAs_ShortRep(p)  { (p)->dist = 0; (p)->extra = 0; }
1028 #define IsShortRep(p)       ((p)->dist == 0)
1029 
1030 
1031 #define GetPrice_ShortRep(p, state, posState) \
1032   ( GET_PRICE_0(p->isRepG0[state]) + GET_PRICE_0(p->isRep0Long[state][posState]))
1033 
1034 #define GetPrice_Rep_0(p, state, posState) ( \
1035     GET_PRICE_1(p->isMatch[state][posState]) \
1036   + GET_PRICE_1(p->isRep0Long[state][posState])) \
1037   + GET_PRICE_1(p->isRep[state]) \
1038   + GET_PRICE_0(p->isRepG0[state])
1039 
1040 MY_FORCE_INLINE
GetPrice_PureRep(const CLzmaEnc * p,unsigned repIndex,size_t state,size_t posState)1041 static UInt32 GetPrice_PureRep(const CLzmaEnc *p, unsigned repIndex, size_t state, size_t posState)
1042 {
1043   UInt32 price;
1044   UInt32 prob = p->isRepG0[state];
1045   if (repIndex == 0)
1046   {
1047     price = GET_PRICE_0(prob);
1048     price += GET_PRICE_1(p->isRep0Long[state][posState]);
1049   }
1050   else
1051   {
1052     price = GET_PRICE_1(prob);
1053     prob = p->isRepG1[state];
1054     if (repIndex == 1)
1055       price += GET_PRICE_0(prob);
1056     else
1057     {
1058       price += GET_PRICE_1(prob);
1059       price += GET_PRICE(p->isRepG2[state], repIndex - 2);
1060     }
1061   }
1062   return price;
1063 }
1064 
1065 
Backward(CLzmaEnc * p,unsigned cur)1066 static unsigned Backward(CLzmaEnc *p, unsigned cur)
1067 {
1068   unsigned wr = cur + 1;
1069   p->optEnd = wr;
1070 
1071   for (;;)
1072   {
1073     UInt32 dist = p->opt[cur].dist;
1074     unsigned len = (unsigned)p->opt[cur].len;
1075     unsigned extra = (unsigned)p->opt[cur].extra;
1076     cur -= len;
1077 
1078     if (extra)
1079     {
1080       wr--;
1081       p->opt[wr].len = (UInt32)len;
1082       cur -= extra;
1083       len = extra;
1084       if (extra == 1)
1085       {
1086         p->opt[wr].dist = dist;
1087         dist = MARK_LIT;
1088       }
1089       else
1090       {
1091         p->opt[wr].dist = 0;
1092         len--;
1093         wr--;
1094         p->opt[wr].dist = MARK_LIT;
1095         p->opt[wr].len = 1;
1096       }
1097     }
1098 
1099     if (cur == 0)
1100     {
1101       p->backRes = dist;
1102       p->optCur = wr;
1103       return len;
1104     }
1105 
1106     wr--;
1107     p->opt[wr].dist = dist;
1108     p->opt[wr].len = (UInt32)len;
1109   }
1110 }
1111 
1112 
1113 
1114 #define LIT_PROBS(pos, prevByte) \
1115   (p->litProbs + (UInt32)3 * (((((pos) << 8) + (prevByte)) & p->lpMask) << p->lc))
1116 
1117 
GetOptimum(CLzmaEnc * p,UInt32 position)1118 static unsigned GetOptimum(CLzmaEnc *p, UInt32 position)
1119 {
1120   unsigned last, cur;
1121   UInt32 reps[LZMA_NUM_REPS];
1122   unsigned repLens[LZMA_NUM_REPS];
1123   UInt32 *matches;
1124 
1125   {
1126     UInt32 numAvail;
1127     unsigned numPairs, mainLen, repMaxIndex, i, posState;
1128     UInt32 matchPrice, repMatchPrice;
1129     const Byte *data;
1130     Byte curByte, matchByte;
1131 
1132     p->optCur = p->optEnd = 0;
1133 
1134     if (p->additionalOffset == 0)
1135       mainLen = ReadMatchDistances(p, &numPairs);
1136     else
1137     {
1138       mainLen = p->longestMatchLen;
1139       numPairs = p->numPairs;
1140     }
1141 
1142     numAvail = p->numAvail;
1143     if (numAvail < 2)
1144     {
1145       p->backRes = MARK_LIT;
1146       return 1;
1147     }
1148     if (numAvail > LZMA_MATCH_LEN_MAX)
1149       numAvail = LZMA_MATCH_LEN_MAX;
1150 
1151     data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1152     repMaxIndex = 0;
1153 
1154     for (i = 0; i < LZMA_NUM_REPS; i++)
1155     {
1156       unsigned len;
1157       const Byte *data2;
1158       reps[i] = p->reps[i];
1159       data2 = data - reps[i];
1160       if (data[0] != data2[0] || data[1] != data2[1])
1161       {
1162         repLens[i] = 0;
1163         continue;
1164       }
1165       for (len = 2; len < numAvail && data[len] == data2[len]; len++)
1166       {}
1167       repLens[i] = len;
1168       if (len > repLens[repMaxIndex])
1169         repMaxIndex = i;
1170     }
1171 
1172     if (repLens[repMaxIndex] >= p->numFastBytes)
1173     {
1174       unsigned len;
1175       p->backRes = (UInt32)repMaxIndex;
1176       len = repLens[repMaxIndex];
1177       MOVE_POS(p, len - 1)
1178       return len;
1179     }
1180 
1181     matches = p->matches;
1182 
1183     if (mainLen >= p->numFastBytes)
1184     {
1185       p->backRes = matches[(size_t)numPairs - 1] + LZMA_NUM_REPS;
1186       MOVE_POS(p, mainLen - 1)
1187       return mainLen;
1188     }
1189 
1190     curByte = *data;
1191     matchByte = *(data - reps[0]);
1192 
1193     last = repLens[repMaxIndex];
1194     if (last <= mainLen)
1195       last = mainLen;
1196 
1197     if (last < 2 && curByte != matchByte)
1198     {
1199       p->backRes = MARK_LIT;
1200       return 1;
1201     }
1202 
1203     p->opt[0].state = (CState)p->state;
1204 
1205     posState = (position & p->pbMask);
1206 
1207     {
1208       const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
1209       p->opt[1].price = GET_PRICE_0(p->isMatch[p->state][posState]) +
1210         (!IsLitState(p->state) ?
1211           LitEnc_Matched_GetPrice(probs, curByte, matchByte, p->ProbPrices) :
1212           LitEnc_GetPrice(probs, curByte, p->ProbPrices));
1213     }
1214 
1215     MakeAs_Lit(&p->opt[1]);
1216 
1217     matchPrice = GET_PRICE_1(p->isMatch[p->state][posState]);
1218     repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[p->state]);
1219 
1220     // 18.06
1221     if (matchByte == curByte && repLens[0] == 0)
1222     {
1223       UInt32 shortRepPrice = repMatchPrice + GetPrice_ShortRep(p, p->state, posState);
1224       if (shortRepPrice < p->opt[1].price)
1225       {
1226         p->opt[1].price = shortRepPrice;
1227         MakeAs_ShortRep(&p->opt[1]);
1228       }
1229       if (last < 2)
1230       {
1231         p->backRes = p->opt[1].dist;
1232         return 1;
1233       }
1234     }
1235 
1236     p->opt[1].len = 1;
1237 
1238     p->opt[0].reps[0] = reps[0];
1239     p->opt[0].reps[1] = reps[1];
1240     p->opt[0].reps[2] = reps[2];
1241     p->opt[0].reps[3] = reps[3];
1242 
1243     // ---------- REP ----------
1244 
1245     for (i = 0; i < LZMA_NUM_REPS; i++)
1246     {
1247       unsigned repLen = repLens[i];
1248       UInt32 price;
1249       if (repLen < 2)
1250         continue;
1251       price = repMatchPrice + GetPrice_PureRep(p, i, p->state, posState);
1252       do
1253       {
1254         UInt32 price2 = price + GET_PRICE_LEN(&p->repLenEnc, posState, repLen);
1255         COptimal *opt = &p->opt[repLen];
1256         if (price2 < opt->price)
1257         {
1258           opt->price = price2;
1259           opt->len = (UInt32)repLen;
1260           opt->dist = (UInt32)i;
1261           opt->extra = 0;
1262         }
1263       }
1264       while (--repLen >= 2);
1265     }
1266 
1267 
1268     // ---------- MATCH ----------
1269     {
1270       unsigned len = repLens[0] + 1;
1271       if (len <= mainLen)
1272       {
1273         unsigned offs = 0;
1274         UInt32 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[p->state]);
1275 
1276         if (len < 2)
1277           len = 2;
1278         else
1279           while (len > matches[offs])
1280             offs += 2;
1281 
1282         for (; ; len++)
1283         {
1284           COptimal *opt;
1285           UInt32 dist = matches[(size_t)offs + 1];
1286           UInt32 price = normalMatchPrice + GET_PRICE_LEN(&p->lenEnc, posState, len);
1287           unsigned lenToPosState = GetLenToPosState(len);
1288 
1289           if (dist < kNumFullDistances)
1290             price += p->distancesPrices[lenToPosState][dist & (kNumFullDistances - 1)];
1291           else
1292           {
1293             unsigned slot;
1294             GetPosSlot2(dist, slot);
1295             price += p->alignPrices[dist & kAlignMask];
1296             price += p->posSlotPrices[lenToPosState][slot];
1297           }
1298 
1299           opt = &p->opt[len];
1300 
1301           if (price < opt->price)
1302           {
1303             opt->price = price;
1304             opt->len = (UInt32)len;
1305             opt->dist = dist + LZMA_NUM_REPS;
1306             opt->extra = 0;
1307           }
1308 
1309           if (len == matches[offs])
1310           {
1311             offs += 2;
1312             if (offs == numPairs)
1313               break;
1314           }
1315         }
1316       }
1317     }
1318 
1319 
1320     cur = 0;
1321 
1322     #ifdef SHOW_STAT2
1323     /* if (position >= 0) */
1324     {
1325       unsigned i;
1326       printf("\n pos = %4X", position);
1327       for (i = cur; i <= last; i++)
1328       printf("\nprice[%4X] = %u", position - cur + i, p->opt[i].price);
1329     }
1330     #endif
1331   }
1332 
1333 
1334 
1335   // ---------- Optimal Parsing ----------
1336 
1337   for (;;)
1338   {
1339     unsigned numAvail;
1340     UInt32 numAvailFull;
1341     unsigned newLen, numPairs, prev, state, posState, startLen;
1342     UInt32 litPrice, matchPrice, repMatchPrice;
1343     BoolInt nextIsLit;
1344     Byte curByte, matchByte;
1345     const Byte *data;
1346     COptimal *curOpt, *nextOpt;
1347 
1348     if (++cur == last)
1349       break;
1350 
1351     // 18.06
1352     if (cur >= kNumOpts - 64)
1353     {
1354       unsigned j, best;
1355       UInt32 price = p->opt[cur].price;
1356       best = cur;
1357       for (j = cur + 1; j <= last; j++)
1358       {
1359         UInt32 price2 = p->opt[j].price;
1360         if (price >= price2)
1361         {
1362           price = price2;
1363           best = j;
1364         }
1365       }
1366       {
1367         unsigned delta = best - cur;
1368         if (delta != 0)
1369         {
1370           MOVE_POS(p, delta);
1371         }
1372       }
1373       cur = best;
1374       break;
1375     }
1376 
1377     newLen = ReadMatchDistances(p, &numPairs);
1378 
1379     if (newLen >= p->numFastBytes)
1380     {
1381       p->numPairs = numPairs;
1382       p->longestMatchLen = newLen;
1383       break;
1384     }
1385 
1386     curOpt = &p->opt[cur];
1387 
1388     position++;
1389 
1390     // we need that check here, if skip_items in p->opt are possible
1391     /*
1392     if (curOpt->price >= kInfinityPrice)
1393       continue;
1394     */
1395 
1396     prev = cur - curOpt->len;
1397 
1398     if (curOpt->len == 1)
1399     {
1400       state = (unsigned)p->opt[prev].state;
1401       if (IsShortRep(curOpt))
1402         state = kShortRepNextStates[state];
1403       else
1404         state = kLiteralNextStates[state];
1405     }
1406     else
1407     {
1408       const COptimal *prevOpt;
1409       UInt32 b0;
1410       UInt32 dist = curOpt->dist;
1411 
1412       if (curOpt->extra)
1413       {
1414         prev -= (unsigned)curOpt->extra;
1415         state = kState_RepAfterLit;
1416         if (curOpt->extra == 1)
1417           state = (dist < LZMA_NUM_REPS ? kState_RepAfterLit : kState_MatchAfterLit);
1418       }
1419       else
1420       {
1421         state = (unsigned)p->opt[prev].state;
1422         if (dist < LZMA_NUM_REPS)
1423           state = kRepNextStates[state];
1424         else
1425           state = kMatchNextStates[state];
1426       }
1427 
1428       prevOpt = &p->opt[prev];
1429       b0 = prevOpt->reps[0];
1430 
1431       if (dist < LZMA_NUM_REPS)
1432       {
1433         if (dist == 0)
1434         {
1435           reps[0] = b0;
1436           reps[1] = prevOpt->reps[1];
1437           reps[2] = prevOpt->reps[2];
1438           reps[3] = prevOpt->reps[3];
1439         }
1440         else
1441         {
1442           reps[1] = b0;
1443           b0 = prevOpt->reps[1];
1444           if (dist == 1)
1445           {
1446             reps[0] = b0;
1447             reps[2] = prevOpt->reps[2];
1448             reps[3] = prevOpt->reps[3];
1449           }
1450           else
1451           {
1452             reps[2] = b0;
1453             reps[0] = prevOpt->reps[dist];
1454             reps[3] = prevOpt->reps[dist ^ 1];
1455           }
1456         }
1457       }
1458       else
1459       {
1460         reps[0] = (dist - LZMA_NUM_REPS + 1);
1461         reps[1] = b0;
1462         reps[2] = prevOpt->reps[1];
1463         reps[3] = prevOpt->reps[2];
1464       }
1465     }
1466 
1467     curOpt->state = (CState)state;
1468     curOpt->reps[0] = reps[0];
1469     curOpt->reps[1] = reps[1];
1470     curOpt->reps[2] = reps[2];
1471     curOpt->reps[3] = reps[3];
1472 
1473     data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1474     curByte = *data;
1475     matchByte = *(data - reps[0]);
1476 
1477     posState = (position & p->pbMask);
1478 
1479     /*
1480     The order of Price checks:
1481        <  LIT
1482        <= SHORT_REP
1483        <  LIT : REP_0
1484        <  REP    [ : LIT : REP_0 ]
1485        <  MATCH  [ : LIT : REP_0 ]
1486     */
1487 
1488     {
1489       UInt32 curPrice = curOpt->price;
1490       unsigned prob = p->isMatch[state][posState];
1491       matchPrice = curPrice + GET_PRICE_1(prob);
1492       litPrice = curPrice + GET_PRICE_0(prob);
1493     }
1494 
1495     nextOpt = &p->opt[(size_t)cur + 1];
1496     nextIsLit = False;
1497 
1498     // here we can allow skip_items in p->opt, if we don't check (nextOpt->price < kInfinityPrice)
1499     // 18.new.06
1500     if (nextOpt->price < kInfinityPrice
1501         // && !IsLitState(state)
1502         && matchByte == curByte
1503         || litPrice > nextOpt->price
1504         )
1505       litPrice = 0;
1506     else
1507     {
1508       const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
1509       litPrice += (!IsLitState(state) ?
1510           LitEnc_Matched_GetPrice(probs, curByte, matchByte, p->ProbPrices) :
1511           LitEnc_GetPrice(probs, curByte, p->ProbPrices));
1512 
1513       if (litPrice < nextOpt->price)
1514       {
1515         nextOpt->price = litPrice;
1516         nextOpt->len = 1;
1517         MakeAs_Lit(nextOpt);
1518         nextIsLit = True;
1519       }
1520     }
1521 
1522     repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[state]);
1523 
1524     numAvailFull = p->numAvail;
1525     {
1526       unsigned temp = kNumOpts - 1 - cur;
1527       if (numAvailFull > temp)
1528         numAvailFull = (UInt32)temp;
1529     }
1530 
1531     // 18.06
1532     // ---------- SHORT_REP ----------
1533     if (IsLitState(state)) // 18.new
1534     if (matchByte == curByte)
1535     if (repMatchPrice < nextOpt->price) // 18.new
1536     // if (numAvailFull < 2 || data[1] != *(data - reps[0] + 1))
1537     if (
1538         // nextOpt->price >= kInfinityPrice ||
1539         nextOpt->len < 2   // we can check nextOpt->len, if skip items are not allowed in p->opt
1540         || (nextOpt->dist != 0
1541             // && nextOpt->extra <= 1 // 17.old
1542             )
1543         )
1544     {
1545       UInt32 shortRepPrice = repMatchPrice + GetPrice_ShortRep(p, state, posState);
1546       // if (shortRepPrice <= nextOpt->price) // 17.old
1547       if (shortRepPrice < nextOpt->price)  // 18.new
1548       {
1549         nextOpt->price = shortRepPrice;
1550         nextOpt->len = 1;
1551         MakeAs_ShortRep(nextOpt);
1552         nextIsLit = False;
1553       }
1554     }
1555 
1556     if (numAvailFull < 2)
1557       continue;
1558     numAvail = (numAvailFull <= p->numFastBytes ? numAvailFull : p->numFastBytes);
1559 
1560     // numAvail <= p->numFastBytes
1561 
1562     // ---------- LIT : REP_0 ----------
1563 
1564     if (!nextIsLit
1565         && litPrice != 0 // 18.new
1566         && matchByte != curByte
1567         && numAvailFull > 2)
1568     {
1569       const Byte *data2 = data - reps[0];
1570       if (data[1] == data2[1] && data[2] == data2[2])
1571       {
1572         unsigned len;
1573         unsigned limit = p->numFastBytes + 1;
1574         if (limit > numAvailFull)
1575           limit = numAvailFull;
1576         for (len = 3; len < limit && data[len] == data2[len]; len++)
1577         {}
1578 
1579         {
1580           unsigned state2 = kLiteralNextStates[state];
1581           unsigned posState2 = (position + 1) & p->pbMask;
1582           UInt32 price = litPrice + GetPrice_Rep_0(p, state2, posState2);
1583           {
1584             unsigned offset = cur + len;
1585 
1586             if (last < offset)
1587               last = offset;
1588 
1589             // do
1590             {
1591               UInt32 price2;
1592               COptimal *opt;
1593               len--;
1594               // price2 = price + GetPrice_Len_Rep_0(p, len, state2, posState2);
1595               price2 = price + GET_PRICE_LEN(&p->repLenEnc, posState2, len);
1596 
1597               opt = &p->opt[offset];
1598               // offset--;
1599               if (price2 < opt->price)
1600               {
1601                 opt->price = price2;
1602                 opt->len = (UInt32)len;
1603                 opt->dist = 0;
1604                 opt->extra = 1;
1605               }
1606             }
1607             // while (len >= 3);
1608           }
1609         }
1610       }
1611     }
1612 
1613     startLen = 2; /* speed optimization */
1614 
1615     {
1616       // ---------- REP ----------
1617       unsigned repIndex = 0; // 17.old
1618       // unsigned repIndex = IsLitState(state) ? 0 : 1; // 18.notused
1619       for (; repIndex < LZMA_NUM_REPS; repIndex++)
1620       {
1621         unsigned len;
1622         UInt32 price;
1623         const Byte *data2 = data - reps[repIndex];
1624         if (data[0] != data2[0] || data[1] != data2[1])
1625           continue;
1626 
1627         for (len = 2; len < numAvail && data[len] == data2[len]; len++)
1628         {}
1629 
1630         // if (len < startLen) continue; // 18.new: speed optimization
1631 
1632         {
1633           unsigned offset = cur + len;
1634           if (last < offset)
1635             last = offset;
1636         }
1637         {
1638           unsigned len2 = len;
1639           price = repMatchPrice + GetPrice_PureRep(p, repIndex, state, posState);
1640           do
1641           {
1642             UInt32 price2 = price + GET_PRICE_LEN(&p->repLenEnc, posState, len2);
1643             COptimal *opt = &p->opt[cur + len2];
1644             if (price2 < opt->price)
1645             {
1646               opt->price = price2;
1647               opt->len = (UInt32)len2;
1648               opt->dist = (UInt32)repIndex;
1649               opt->extra = 0;
1650             }
1651           }
1652           while (--len2 >= 2);
1653         }
1654 
1655         if (repIndex == 0) startLen = len + 1;  // 17.old
1656         // startLen = len + 1; // 18.new
1657 
1658         /* if (_maxMode) */
1659         {
1660           // ---------- REP : LIT : REP_0 ----------
1661           // numFastBytes + 1 + numFastBytes
1662 
1663           unsigned len2 = len + 1;
1664           unsigned limit = len2 + p->numFastBytes;
1665           if (limit > numAvailFull)
1666             limit = numAvailFull;
1667 
1668           len2 += 2;
1669           if (len2 <= limit)
1670           if (data[len2 - 2] == data2[len2 - 2])
1671           if (data[len2 - 1] == data2[len2 - 1])
1672           {
1673             unsigned state2 = kRepNextStates[state];
1674             unsigned posState2 = (position + len) & p->pbMask;
1675             price += GET_PRICE_LEN(&p->repLenEnc, posState, len)
1676                 + GET_PRICE_0(p->isMatch[state2][posState2])
1677                 + LitEnc_Matched_GetPrice(LIT_PROBS(position + len, data[(size_t)len - 1]),
1678                     data[len], data2[len], p->ProbPrices);
1679 
1680             // state2 = kLiteralNextStates[state2];
1681             state2 = kState_LitAfterRep;
1682             posState2 = (posState2 + 1) & p->pbMask;
1683 
1684 
1685             price += GetPrice_Rep_0(p, state2, posState2);
1686 
1687           for (; len2 < limit && data[len2] == data2[len2]; len2++)
1688           {}
1689 
1690           len2 -= len;
1691           // if (len2 >= 3)
1692           {
1693             {
1694               unsigned offset = cur + len + len2;
1695 
1696               if (last < offset)
1697                 last = offset;
1698               // do
1699               {
1700                 UInt32 price2;
1701                 COptimal *opt;
1702                 len2--;
1703                 // price2 = price + GetPrice_Len_Rep_0(p, len2, state2, posState2);
1704                 price2 = price + GET_PRICE_LEN(&p->repLenEnc, posState2, len2);
1705 
1706                 opt = &p->opt[offset];
1707                 // offset--;
1708                 if (price2 < opt->price)
1709                 {
1710                   opt->price = price2;
1711                   opt->len = (UInt32)len2;
1712                   opt->extra = (CExtra)(len + 1);
1713                   opt->dist = (UInt32)repIndex;
1714                 }
1715               }
1716               // while (len2 >= 3);
1717             }
1718           }
1719           }
1720         }
1721       }
1722     }
1723 
1724 
1725     // ---------- MATCH ----------
1726     /* for (unsigned len = 2; len <= newLen; len++) */
1727     if (newLen > numAvail)
1728     {
1729       newLen = numAvail;
1730       for (numPairs = 0; newLen > matches[numPairs]; numPairs += 2);
1731       matches[numPairs] = (UInt32)newLen;
1732       numPairs += 2;
1733     }
1734 
1735     // startLen = 2; /* speed optimization */
1736 
1737     if (newLen >= startLen)
1738     {
1739       UInt32 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[state]);
1740       UInt32 dist;
1741       unsigned offs, posSlot, len;
1742 
1743       {
1744         unsigned offset = cur + newLen;
1745         if (last < offset)
1746           last = offset;
1747       }
1748 
1749       offs = 0;
1750       while (startLen > matches[offs])
1751         offs += 2;
1752       dist = matches[(size_t)offs + 1];
1753 
1754       // if (dist >= kNumFullDistances)
1755       GetPosSlot2(dist, posSlot);
1756 
1757       for (len = /*2*/ startLen; ; len++)
1758       {
1759         UInt32 price = normalMatchPrice + GET_PRICE_LEN(&p->lenEnc, posState, len);
1760         {
1761           COptimal *opt;
1762           unsigned lenNorm = len - 2;
1763           lenNorm = GetLenToPosState2(lenNorm);
1764           if (dist < kNumFullDistances)
1765             price += p->distancesPrices[lenNorm][dist & (kNumFullDistances - 1)];
1766           else
1767             price += p->posSlotPrices[lenNorm][posSlot] + p->alignPrices[dist & kAlignMask];
1768 
1769           opt = &p->opt[cur + len];
1770           if (price < opt->price)
1771           {
1772             opt->price = price;
1773             opt->len = (UInt32)len;
1774             opt->dist = dist + LZMA_NUM_REPS;
1775             opt->extra = 0;
1776           }
1777         }
1778 
1779         if (len == matches[offs])
1780         {
1781           // if (p->_maxMode) {
1782           // MATCH : LIT : REP_0
1783 
1784           const Byte *data2 = data - dist - 1;
1785           unsigned len2 = len + 1;
1786           unsigned limit = len2 + p->numFastBytes;
1787           if (limit > numAvailFull)
1788             limit = numAvailFull;
1789 
1790           len2 += 2;
1791           if (len2 <= limit)
1792           if (data[len2 - 2] == data2[len2 - 2])
1793           if (data[len2 - 1] == data2[len2 - 1])
1794           {
1795           for (; len2 < limit && data[len2] == data2[len2]; len2++)
1796           {}
1797 
1798           len2 -= len;
1799 
1800           // if (len2 >= 3)
1801           {
1802             unsigned state2 = kMatchNextStates[state];
1803             unsigned posState2 = (position + len) & p->pbMask;
1804             unsigned offset;
1805             price += GET_PRICE_0(p->isMatch[state2][posState2]);
1806             price += LitEnc_Matched_GetPrice(LIT_PROBS(position + len, data[(size_t)len - 1]),
1807                     data[len], data2[len], p->ProbPrices);
1808 
1809             // state2 = kLiteralNextStates[state2];
1810             state2 = kState_LitAfterMatch;
1811 
1812             posState2 = (posState2 + 1) & p->pbMask;
1813             price += GetPrice_Rep_0(p, state2, posState2);
1814 
1815             offset = cur + len + len2;
1816 
1817             if (last < offset)
1818               last = offset;
1819             // do
1820             {
1821               UInt32 price2;
1822               COptimal *opt;
1823               len2--;
1824               // price2 = price + GetPrice_Len_Rep_0(p, len2, state2, posState2);
1825               price2 = price + GET_PRICE_LEN(&p->repLenEnc, posState2, len2);
1826               opt = &p->opt[offset];
1827               // offset--;
1828               if (price2 < opt->price)
1829               {
1830                 opt->price = price2;
1831                 opt->len = (UInt32)len2;
1832                 opt->extra = (CExtra)(len + 1);
1833                 opt->dist = dist + LZMA_NUM_REPS;
1834               }
1835             }
1836             // while (len2 >= 3);
1837           }
1838 
1839           }
1840 
1841           offs += 2;
1842           if (offs == numPairs)
1843             break;
1844           dist = matches[(size_t)offs + 1];
1845           // if (dist >= kNumFullDistances)
1846             GetPosSlot2(dist, posSlot);
1847         }
1848       }
1849     }
1850   }
1851 
1852   do
1853     p->opt[last].price = kInfinityPrice;
1854   while (--last);
1855 
1856   return Backward(p, cur);
1857 }
1858 
1859 
1860 
1861 #define ChangePair(smallDist, bigDist) (((bigDist) >> 7) > (smallDist))
1862 
1863 
1864 
GetOptimumFast(CLzmaEnc * p)1865 static unsigned GetOptimumFast(CLzmaEnc *p)
1866 {
1867   UInt32 numAvail, mainDist;
1868   unsigned mainLen, numPairs, repIndex, repLen, i;
1869   const Byte *data;
1870 
1871   if (p->additionalOffset == 0)
1872     mainLen = ReadMatchDistances(p, &numPairs);
1873   else
1874   {
1875     mainLen = p->longestMatchLen;
1876     numPairs = p->numPairs;
1877   }
1878 
1879   numAvail = p->numAvail;
1880   p->backRes = MARK_LIT;
1881   if (numAvail < 2)
1882     return 1;
1883   // if (mainLen < 2 && p->state == 0) return 1; // 18.06.notused
1884   if (numAvail > LZMA_MATCH_LEN_MAX)
1885     numAvail = LZMA_MATCH_LEN_MAX;
1886   data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1887   repLen = repIndex = 0;
1888 
1889   for (i = 0; i < LZMA_NUM_REPS; i++)
1890   {
1891     unsigned len;
1892     const Byte *data2 = data - p->reps[i];
1893     if (data[0] != data2[0] || data[1] != data2[1])
1894       continue;
1895     for (len = 2; len < numAvail && data[len] == data2[len]; len++)
1896     {}
1897     if (len >= p->numFastBytes)
1898     {
1899       p->backRes = (UInt32)i;
1900       MOVE_POS(p, len - 1)
1901       return len;
1902     }
1903     if (len > repLen)
1904     {
1905       repIndex = i;
1906       repLen = len;
1907     }
1908   }
1909 
1910   if (mainLen >= p->numFastBytes)
1911   {
1912     p->backRes = p->matches[(size_t)numPairs - 1] + LZMA_NUM_REPS;
1913     MOVE_POS(p, mainLen - 1)
1914     return mainLen;
1915   }
1916 
1917   mainDist = 0; /* for GCC */
1918 
1919   if (mainLen >= 2)
1920   {
1921     mainDist = p->matches[(size_t)numPairs - 1];
1922     while (numPairs > 2)
1923     {
1924       UInt32 dist2;
1925       if (mainLen != p->matches[(size_t)numPairs - 4] + 1)
1926         break;
1927       dist2 = p->matches[(size_t)numPairs - 3];
1928       if (!ChangePair(dist2, mainDist))
1929         break;
1930       numPairs -= 2;
1931       mainLen--;
1932       mainDist = dist2;
1933     }
1934     if (mainLen == 2 && mainDist >= 0x80)
1935       mainLen = 1;
1936   }
1937 
1938   if (repLen >= 2)
1939     if (    repLen + 1 >= mainLen
1940         || (repLen + 2 >= mainLen && mainDist >= (1 << 9))
1941         || (repLen + 3 >= mainLen && mainDist >= (1 << 15)))
1942   {
1943     p->backRes = (UInt32)repIndex;
1944     MOVE_POS(p, repLen - 1)
1945     return repLen;
1946   }
1947 
1948   if (mainLen < 2 || numAvail <= 2)
1949     return 1;
1950 
1951   {
1952     unsigned len1 = ReadMatchDistances(p, &p->numPairs);
1953     p->longestMatchLen = len1;
1954 
1955     if (len1 >= 2)
1956     {
1957       UInt32 newDist = p->matches[(size_t)p->numPairs - 1];
1958       if (   (len1 >= mainLen && newDist < mainDist)
1959           || (len1 == mainLen + 1 && !ChangePair(mainDist, newDist))
1960           || (len1 >  mainLen + 1)
1961           || (len1 + 1 >= mainLen && mainLen >= 3 && ChangePair(newDist, mainDist)))
1962         return 1;
1963     }
1964   }
1965 
1966   data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1967 
1968   for (i = 0; i < LZMA_NUM_REPS; i++)
1969   {
1970     unsigned len, limit;
1971     const Byte *data2 = data - p->reps[i];
1972     if (data[0] != data2[0] || data[1] != data2[1])
1973       continue;
1974     limit = mainLen - 1;
1975     for (len = 2;; len++)
1976     {
1977       if (len >= limit)
1978         return 1;
1979       if (data[len] != data2[len])
1980         break;
1981     }
1982   }
1983 
1984   p->backRes = mainDist + LZMA_NUM_REPS;
1985   if (mainLen != 2)
1986   {
1987     MOVE_POS(p, mainLen - 2)
1988   }
1989   return mainLen;
1990 }
1991 
1992 
1993 
1994 
WriteEndMarker(CLzmaEnc * p,unsigned posState)1995 static void WriteEndMarker(CLzmaEnc *p, unsigned posState)
1996 {
1997   UInt32 range;
1998   range = p->rc.range;
1999   {
2000     UInt32 ttt, newBound;
2001     CLzmaProb *prob = &p->isMatch[p->state][posState];
2002     RC_BIT_PRE(&p->rc, prob)
2003     RC_BIT_1(&p->rc, prob)
2004     prob = &p->isRep[p->state];
2005     RC_BIT_PRE(&p->rc, prob)
2006     RC_BIT_0(&p->rc, prob)
2007   }
2008   p->state = kMatchNextStates[p->state];
2009 
2010   p->rc.range = range;
2011   LenEnc_Encode(&p->lenProbs, &p->rc, 0, posState);
2012   range = p->rc.range;
2013 
2014   {
2015     // RcTree_Encode_PosSlot(&p->rc, p->posSlotEncoder[0], (1 << kNumPosSlotBits) - 1);
2016     CLzmaProb *probs = p->posSlotEncoder[0];
2017     unsigned m = 1;
2018     do
2019     {
2020       UInt32 ttt, newBound;
2021       RC_BIT_PRE(p, probs + m)
2022       RC_BIT_1(&p->rc, probs + m);
2023       m = (m << 1) + 1;
2024     }
2025     while (m < (1 << kNumPosSlotBits));
2026   }
2027   {
2028     // RangeEnc_EncodeDirectBits(&p->rc, ((UInt32)1 << (30 - kNumAlignBits)) - 1, 30 - kNumAlignBits);    UInt32 range = p->range;
2029     unsigned numBits = 30 - kNumAlignBits;
2030     do
2031     {
2032       range >>= 1;
2033       p->rc.low += range;
2034       RC_NORM(&p->rc)
2035     }
2036     while (--numBits);
2037   }
2038 
2039   {
2040     // RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, kAlignMask);
2041     CLzmaProb *probs = p->posAlignEncoder;
2042     unsigned m = 1;
2043     do
2044     {
2045       UInt32 ttt, newBound;
2046       RC_BIT_PRE(p, probs + m)
2047       RC_BIT_1(&p->rc, probs + m);
2048       m = (m << 1) + 1;
2049     }
2050     while (m < kAlignTableSize);
2051   }
2052   p->rc.range = range;
2053 }
2054 
2055 
CheckErrors(CLzmaEnc * p)2056 static SRes CheckErrors(CLzmaEnc *p)
2057 {
2058   if (p->result != SZ_OK)
2059     return p->result;
2060   if (p->rc.res != SZ_OK)
2061     p->result = SZ_ERROR_WRITE;
2062   if (p->matchFinderBase.result != SZ_OK)
2063     p->result = SZ_ERROR_READ;
2064   if (p->result != SZ_OK)
2065     p->finished = True;
2066   return p->result;
2067 }
2068 
2069 
Flush(CLzmaEnc * p,UInt32 nowPos)2070 MY_NO_INLINE static SRes Flush(CLzmaEnc *p, UInt32 nowPos)
2071 {
2072   /* ReleaseMFStream(); */
2073   p->finished = True;
2074   if (p->writeEndMark)
2075     WriteEndMarker(p, nowPos & p->pbMask);
2076   RangeEnc_FlushData(&p->rc);
2077   RangeEnc_FlushStream(&p->rc);
2078   return CheckErrors(p);
2079 }
2080 
2081 
FillAlignPrices(CLzmaEnc * p)2082 MY_NO_INLINE static void FillAlignPrices(CLzmaEnc *p)
2083 {
2084   unsigned i;
2085   const CProbPrice *ProbPrices = p->ProbPrices;
2086   const CLzmaProb *probs = p->posAlignEncoder;
2087   // p->alignPriceCount = 0;
2088   for (i = 0; i < kAlignTableSize / 2; i++)
2089   {
2090     UInt32 price = 0;
2091     unsigned sym = i;
2092     unsigned m = 1;
2093     unsigned bit;
2094     UInt32 prob;
2095     bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[m], bit); m = (m << 1) + bit;
2096     bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[m], bit); m = (m << 1) + bit;
2097     bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[m], bit); m = (m << 1) + bit;
2098     prob = probs[m];
2099     p->alignPrices[i    ] = price + GET_PRICEa_0(prob);
2100     p->alignPrices[i + 8] = price + GET_PRICEa_1(prob);
2101     // p->alignPrices[i] = RcTree_ReverseGetPrice(p->posAlignEncoder, kNumAlignBits, i, p->ProbPrices);
2102   }
2103 }
2104 
2105 
FillDistancesPrices(CLzmaEnc * p)2106 MY_NO_INLINE static void FillDistancesPrices(CLzmaEnc *p)
2107 {
2108   // int y; for (y = 0; y < 100; y++) {
2109 
2110   UInt32 tempPrices[kNumFullDistances];
2111   unsigned i, lps;
2112 
2113   const CProbPrice *ProbPrices = p->ProbPrices;
2114   p->matchPriceCount = 0;
2115 
2116   for (i = kStartPosModelIndex / 2; i < kNumFullDistances / 2; i++)
2117   {
2118     unsigned posSlot = GetPosSlot1(i);
2119     unsigned footerBits = (posSlot >> 1) - 1;
2120     unsigned base = ((2 | (posSlot & 1)) << footerBits);
2121     const CLzmaProb *probs = p->posEncoders + (size_t)base * 2;
2122     // tempPrices[i] = RcTree_ReverseGetPrice(p->posEncoders + base, footerBits, i - base, p->ProbPrices);
2123     UInt32 price = 0;
2124     unsigned m = 1;
2125     unsigned sym = i;
2126     unsigned offset = (unsigned)1 << footerBits;
2127     base += i;
2128 
2129     if (footerBits)
2130     do
2131     {
2132       unsigned bit = sym & 1;
2133       sym >>= 1;
2134       price += GET_PRICEa(probs[m], bit);
2135       m = (m << 1) + bit;
2136     }
2137     while (--footerBits);
2138 
2139     {
2140       unsigned prob = probs[m];
2141       tempPrices[base         ] = price + GET_PRICEa_0(prob);
2142       tempPrices[base + offset] = price + GET_PRICEa_1(prob);
2143     }
2144   }
2145 
2146   for (lps = 0; lps < kNumLenToPosStates; lps++)
2147   {
2148     unsigned slot;
2149     unsigned distTableSize2 = (p->distTableSize + 1) >> 1;
2150     UInt32 *posSlotPrices = p->posSlotPrices[lps];
2151     const CLzmaProb *probs = p->posSlotEncoder[lps];
2152 
2153     for (slot = 0; slot < distTableSize2; slot++)
2154     {
2155       // posSlotPrices[slot] = RcTree_GetPrice(encoder, kNumPosSlotBits, slot, p->ProbPrices);
2156       UInt32 price;
2157       unsigned bit;
2158       unsigned sym = slot + (1 << (kNumPosSlotBits - 1));
2159       unsigned prob;
2160       bit = sym & 1; sym >>= 1; price  = GET_PRICEa(probs[sym], bit);
2161       bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[sym], bit);
2162       bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[sym], bit);
2163       bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[sym], bit);
2164       bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[sym], bit);
2165       prob = probs[(size_t)slot + (1 << (kNumPosSlotBits - 1))];
2166       posSlotPrices[(size_t)slot * 2    ] = price + GET_PRICEa_0(prob);
2167       posSlotPrices[(size_t)slot * 2 + 1] = price + GET_PRICEa_1(prob);
2168     }
2169 
2170     {
2171       UInt32 delta = ((UInt32)((kEndPosModelIndex / 2 - 1) - kNumAlignBits) << kNumBitPriceShiftBits);
2172       for (slot = kEndPosModelIndex / 2; slot < distTableSize2; slot++)
2173       {
2174         posSlotPrices[(size_t)slot * 2    ] += delta;
2175         posSlotPrices[(size_t)slot * 2 + 1] += delta;
2176         delta += ((UInt32)1 << kNumBitPriceShiftBits);
2177       }
2178     }
2179 
2180     {
2181       UInt32 *dp = p->distancesPrices[lps];
2182 
2183       dp[0] = posSlotPrices[0];
2184       dp[1] = posSlotPrices[1];
2185       dp[2] = posSlotPrices[2];
2186       dp[3] = posSlotPrices[3];
2187 
2188       for (i = 4; i < kNumFullDistances; i += 2)
2189       {
2190         UInt32 slotPrice = posSlotPrices[GetPosSlot1(i)];
2191         dp[i    ] = slotPrice + tempPrices[i];
2192         dp[i + 1] = slotPrice + tempPrices[i + 1];
2193       }
2194     }
2195   }
2196   // }
2197 }
2198 
2199 
2200 
LzmaEnc_Construct(CLzmaEnc * p)2201 void LzmaEnc_Construct(CLzmaEnc *p)
2202 {
2203   RangeEnc_Construct(&p->rc);
2204   MatchFinder_Construct(&p->matchFinderBase);
2205 
2206   #ifndef _7ZIP_ST
2207   MatchFinderMt_Construct(&p->matchFinderMt);
2208   p->matchFinderMt.MatchFinder = &p->matchFinderBase;
2209   #endif
2210 
2211   {
2212     CLzmaEncProps props;
2213     LzmaEncProps_Init(&props);
2214     LzmaEnc_SetProps(p, &props);
2215   }
2216 
2217   #ifndef LZMA_LOG_BSR
2218   LzmaEnc_FastPosInit(p->g_FastPos);
2219   #endif
2220 
2221   LzmaEnc_InitPriceTables(p->ProbPrices);
2222   p->litProbs = NULL;
2223   p->saveState.litProbs = NULL;
2224 
2225 }
2226 
LzmaEnc_Create(ISzAllocPtr alloc)2227 CLzmaEncHandle LzmaEnc_Create(ISzAllocPtr alloc)
2228 {
2229   void *p;
2230   p = ISzAlloc_Alloc(alloc, sizeof(CLzmaEnc));
2231   if (p)
2232     LzmaEnc_Construct((CLzmaEnc *)p);
2233   return p;
2234 }
2235 
LzmaEnc_FreeLits(CLzmaEnc * p,ISzAllocPtr alloc)2236 void LzmaEnc_FreeLits(CLzmaEnc *p, ISzAllocPtr alloc)
2237 {
2238   ISzAlloc_Free(alloc, p->litProbs);
2239   ISzAlloc_Free(alloc, p->saveState.litProbs);
2240   p->litProbs = NULL;
2241   p->saveState.litProbs = NULL;
2242 }
2243 
LzmaEnc_Destruct(CLzmaEnc * p,ISzAllocPtr alloc,ISzAllocPtr allocBig)2244 void LzmaEnc_Destruct(CLzmaEnc *p, ISzAllocPtr alloc, ISzAllocPtr allocBig)
2245 {
2246   #ifndef _7ZIP_ST
2247   MatchFinderMt_Destruct(&p->matchFinderMt, allocBig);
2248   #endif
2249 
2250   MatchFinder_Free(&p->matchFinderBase, allocBig);
2251   LzmaEnc_FreeLits(p, alloc);
2252   RangeEnc_Free(&p->rc, alloc);
2253 }
2254 
LzmaEnc_Destroy(CLzmaEncHandle p,ISzAllocPtr alloc,ISzAllocPtr allocBig)2255 void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAllocPtr alloc, ISzAllocPtr allocBig)
2256 {
2257   LzmaEnc_Destruct((CLzmaEnc *)p, alloc, allocBig);
2258   ISzAlloc_Free(alloc, p);
2259 }
2260 
2261 
LzmaEnc_CodeOneBlock(CLzmaEnc * p,UInt32 maxPackSize,UInt32 maxUnpackSize)2262 static SRes LzmaEnc_CodeOneBlock(CLzmaEnc *p, UInt32 maxPackSize, UInt32 maxUnpackSize)
2263 {
2264   UInt32 nowPos32, startPos32;
2265   if (p->needInit)
2266   {
2267     p->matchFinder.Init(p->matchFinderObj);
2268     p->needInit = 0;
2269   }
2270 
2271   if (p->finished)
2272     return p->result;
2273   RINOK(CheckErrors(p));
2274 
2275   nowPos32 = (UInt32)p->nowPos64;
2276   startPos32 = nowPos32;
2277 
2278   if (p->nowPos64 == 0)
2279   {
2280     unsigned numPairs;
2281     Byte curByte;
2282     if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
2283       return Flush(p, nowPos32);
2284     ReadMatchDistances(p, &numPairs);
2285     RangeEnc_EncodeBit_0(&p->rc, &p->isMatch[kState_Start][0]);
2286     // p->state = kLiteralNextStates[p->state];
2287     curByte = *(p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset);
2288     LitEnc_Encode(&p->rc, p->litProbs, curByte);
2289     p->additionalOffset--;
2290     nowPos32++;
2291   }
2292 
2293   if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) != 0)
2294 
2295   for (;;)
2296   {
2297     UInt32 dist;
2298     unsigned len, posState;
2299     UInt32 range, ttt, newBound;
2300     CLzmaProb *probs;
2301 
2302     if (p->fastMode)
2303       len = GetOptimumFast(p);
2304     else
2305     {
2306       unsigned oci = p->optCur;
2307       if (p->optEnd == oci)
2308         len = GetOptimum(p, nowPos32);
2309       else
2310       {
2311         const COptimal *opt = &p->opt[oci];
2312         len = opt->len;
2313         p->backRes = opt->dist;
2314         p->optCur = oci + 1;
2315       }
2316     }
2317 
2318     posState = (unsigned)nowPos32 & p->pbMask;
2319     range = p->rc.range;
2320     probs = &p->isMatch[p->state][posState];
2321 
2322     RC_BIT_PRE(&p->rc, probs)
2323 
2324     dist = p->backRes;
2325 
2326     #ifdef SHOW_STAT2
2327     printf("\n pos = %6X, len = %3u  pos = %6u", nowPos32, len, dist);
2328     #endif
2329 
2330     if (dist == MARK_LIT)
2331     {
2332       Byte curByte;
2333       const Byte *data;
2334       unsigned state;
2335 
2336       RC_BIT_0(&p->rc, probs);
2337       p->rc.range = range;
2338       data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
2339       probs = LIT_PROBS(nowPos32, *(data - 1));
2340       curByte = *data;
2341       state = p->state;
2342       p->state = kLiteralNextStates[state];
2343       if (IsLitState(state))
2344         LitEnc_Encode(&p->rc, probs, curByte);
2345       else
2346         LitEnc_EncodeMatched(&p->rc, probs, curByte, *(data - p->reps[0]));
2347     }
2348     else
2349     {
2350       RC_BIT_1(&p->rc, probs);
2351       probs = &p->isRep[p->state];
2352       RC_BIT_PRE(&p->rc, probs)
2353 
2354       if (dist < LZMA_NUM_REPS)
2355       {
2356         RC_BIT_1(&p->rc, probs);
2357         probs = &p->isRepG0[p->state];
2358         RC_BIT_PRE(&p->rc, probs)
2359         if (dist == 0)
2360         {
2361           RC_BIT_0(&p->rc, probs);
2362           probs = &p->isRep0Long[p->state][posState];
2363           RC_BIT_PRE(&p->rc, probs)
2364           if (len != 1)
2365           {
2366             RC_BIT_1_BASE(&p->rc, probs);
2367           }
2368           else
2369           {
2370             RC_BIT_0_BASE(&p->rc, probs);
2371             p->state = kShortRepNextStates[p->state];
2372           }
2373         }
2374         else
2375         {
2376           RC_BIT_1(&p->rc, probs);
2377           probs = &p->isRepG1[p->state];
2378           RC_BIT_PRE(&p->rc, probs)
2379           if (dist == 1)
2380           {
2381             RC_BIT_0_BASE(&p->rc, probs);
2382             dist = p->reps[1];
2383           }
2384           else
2385           {
2386             RC_BIT_1(&p->rc, probs);
2387             probs = &p->isRepG2[p->state];
2388             RC_BIT_PRE(&p->rc, probs)
2389             if (dist == 2)
2390             {
2391               RC_BIT_0_BASE(&p->rc, probs);
2392               dist = p->reps[2];
2393             }
2394             else
2395             {
2396               RC_BIT_1_BASE(&p->rc, probs);
2397               dist = p->reps[3];
2398               p->reps[3] = p->reps[2];
2399             }
2400             p->reps[2] = p->reps[1];
2401           }
2402           p->reps[1] = p->reps[0];
2403           p->reps[0] = dist;
2404         }
2405 
2406         RC_NORM(&p->rc)
2407 
2408         p->rc.range = range;
2409 
2410         if (len != 1)
2411         {
2412           LenEnc_Encode(&p->repLenProbs, &p->rc, len - LZMA_MATCH_LEN_MIN, posState);
2413           --p->repLenEncCounter;
2414           p->state = kRepNextStates[p->state];
2415         }
2416       }
2417       else
2418       {
2419         unsigned posSlot;
2420         RC_BIT_0(&p->rc, probs);
2421         p->rc.range = range;
2422         p->state = kMatchNextStates[p->state];
2423 
2424         LenEnc_Encode(&p->lenProbs, &p->rc, len - LZMA_MATCH_LEN_MIN, posState);
2425         // --p->lenEnc.counter;
2426 
2427         dist -= LZMA_NUM_REPS;
2428         p->reps[3] = p->reps[2];
2429         p->reps[2] = p->reps[1];
2430         p->reps[1] = p->reps[0];
2431         p->reps[0] = dist + 1;
2432 
2433         p->matchPriceCount++;
2434         GetPosSlot(dist, posSlot);
2435         // RcTree_Encode_PosSlot(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], posSlot);
2436         {
2437           UInt32 sym = (UInt32)posSlot + (1 << kNumPosSlotBits);
2438           range = p->rc.range;
2439           probs = p->posSlotEncoder[GetLenToPosState(len)];
2440           do
2441           {
2442             CLzmaProb *prob = probs + (sym >> kNumPosSlotBits);
2443             UInt32 bit = (sym >> (kNumPosSlotBits - 1)) & 1;
2444             sym <<= 1;
2445             RC_BIT(&p->rc, prob, bit);
2446           }
2447           while (sym < (1 << kNumPosSlotBits * 2));
2448           p->rc.range = range;
2449         }
2450 
2451         if (dist >= kStartPosModelIndex)
2452         {
2453           unsigned footerBits = ((posSlot >> 1) - 1);
2454 
2455           if (dist < kNumFullDistances)
2456           {
2457             unsigned base = ((2 | (posSlot & 1)) << footerBits);
2458             RcTree_ReverseEncode(&p->rc, p->posEncoders + base, footerBits, (unsigned)(dist /* - base */));
2459           }
2460           else
2461           {
2462             UInt32 pos2 = (dist | 0xF) << (32 - footerBits);
2463             range = p->rc.range;
2464             // RangeEnc_EncodeDirectBits(&p->rc, posReduced >> kNumAlignBits, footerBits - kNumAlignBits);
2465             /*
2466             do
2467             {
2468               range >>= 1;
2469               p->rc.low += range & (0 - ((dist >> --footerBits) & 1));
2470               RC_NORM(&p->rc)
2471             }
2472             while (footerBits > kNumAlignBits);
2473             */
2474             do
2475             {
2476               range >>= 1;
2477               p->rc.low += range & (0 - (pos2 >> 31));
2478               pos2 += pos2;
2479               RC_NORM(&p->rc)
2480             }
2481             while (pos2 != 0xF0000000);
2482 
2483 
2484             // RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, posReduced & kAlignMask);
2485 
2486             {
2487               unsigned m = 1;
2488               unsigned bit;
2489               bit = dist & 1; dist >>= 1; RC_BIT(&p->rc, p->posAlignEncoder + m, bit); m = (m << 1) + bit;
2490               bit = dist & 1; dist >>= 1; RC_BIT(&p->rc, p->posAlignEncoder + m, bit); m = (m << 1) + bit;
2491               bit = dist & 1; dist >>= 1; RC_BIT(&p->rc, p->posAlignEncoder + m, bit); m = (m << 1) + bit;
2492               bit = dist & 1;             RC_BIT(&p->rc, p->posAlignEncoder + m, bit);
2493               p->rc.range = range;
2494               // p->alignPriceCount++;
2495             }
2496           }
2497         }
2498       }
2499     }
2500 
2501     nowPos32 += (UInt32)len;
2502     p->additionalOffset -= len;
2503 
2504     if (p->additionalOffset == 0)
2505     {
2506       UInt32 processed;
2507 
2508       if (!p->fastMode)
2509       {
2510         /*
2511         if (p->alignPriceCount >= 16) // kAlignTableSize
2512           FillAlignPrices(p);
2513         if (p->matchPriceCount >= 128)
2514           FillDistancesPrices(p);
2515         if (p->lenEnc.counter <= 0)
2516           LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, &p->lenProbs, p->ProbPrices);
2517         */
2518         if (p->matchPriceCount >= 64)
2519         {
2520           FillAlignPrices(p);
2521           // { int y; for (y = 0; y < 100; y++) {
2522           FillDistancesPrices(p);
2523           // }}
2524           LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, &p->lenProbs, p->ProbPrices);
2525         }
2526         if (p->repLenEncCounter <= 0)
2527         {
2528           p->repLenEncCounter = REP_LEN_COUNT;
2529           LenPriceEnc_UpdateTables(&p->repLenEnc, 1 << p->pb, &p->repLenProbs, p->ProbPrices);
2530         }
2531       }
2532 
2533       if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
2534         break;
2535       processed = nowPos32 - startPos32;
2536 
2537       if (maxPackSize)
2538       {
2539         if (processed + kNumOpts + 300 >= maxUnpackSize
2540             || RangeEnc_GetProcessed_sizet(&p->rc) + kPackReserve >= maxPackSize)
2541           break;
2542       }
2543       else if (processed >= (1 << 17))
2544       {
2545         p->nowPos64 += nowPos32 - startPos32;
2546         return CheckErrors(p);
2547       }
2548     }
2549   }
2550 
2551   p->nowPos64 += nowPos32 - startPos32;
2552   return Flush(p, nowPos32);
2553 }
2554 
2555 
2556 
2557 #define kBigHashDicLimit ((UInt32)1 << 24)
2558 
LzmaEnc_Alloc(CLzmaEnc * p,UInt32 keepWindowSize,ISzAllocPtr alloc,ISzAllocPtr allocBig)2559 static SRes LzmaEnc_Alloc(CLzmaEnc *p, UInt32 keepWindowSize, ISzAllocPtr alloc, ISzAllocPtr allocBig)
2560 {
2561   UInt32 beforeSize = kNumOpts;
2562   if (!RangeEnc_Alloc(&p->rc, alloc))
2563     return SZ_ERROR_MEM;
2564 
2565   #ifndef _7ZIP_ST
2566   p->mtMode = (p->multiThread && !p->fastMode && (p->matchFinderBase.btMode != 0));
2567   #endif
2568 
2569   {
2570     unsigned lclp = p->lc + p->lp;
2571     if (!p->litProbs || !p->saveState.litProbs || p->lclp != lclp)
2572     {
2573       LzmaEnc_FreeLits(p, alloc);
2574       p->litProbs = (CLzmaProb *)ISzAlloc_Alloc(alloc, ((UInt32)0x300 << lclp) * sizeof(CLzmaProb));
2575       p->saveState.litProbs = (CLzmaProb *)ISzAlloc_Alloc(alloc, ((UInt32)0x300 << lclp) * sizeof(CLzmaProb));
2576       if (!p->litProbs || !p->saveState.litProbs)
2577       {
2578         LzmaEnc_FreeLits(p, alloc);
2579         return SZ_ERROR_MEM;
2580       }
2581       p->lclp = lclp;
2582     }
2583   }
2584 
2585   p->matchFinderBase.bigHash = (Byte)(p->dictSize > kBigHashDicLimit ? 1 : 0);
2586 
2587   if (beforeSize + p->dictSize < keepWindowSize)
2588     beforeSize = keepWindowSize - p->dictSize;
2589 
2590   #ifndef _7ZIP_ST
2591   if (p->mtMode)
2592   {
2593     RINOK(MatchFinderMt_Create(&p->matchFinderMt, p->dictSize, beforeSize, p->numFastBytes,
2594         LZMA_MATCH_LEN_MAX
2595         + 1  /* 18.04 */
2596         , allocBig));
2597     p->matchFinderObj = &p->matchFinderMt;
2598     p->matchFinderBase.bigHash = (Byte)(
2599         (p->dictSize > kBigHashDicLimit && p->matchFinderBase.hashMask >= 0xFFFFFF) ? 1 : 0);
2600     MatchFinderMt_CreateVTable(&p->matchFinderMt, &p->matchFinder);
2601   }
2602   else
2603   #endif
2604   {
2605     if (!MatchFinder_Create(&p->matchFinderBase, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig))
2606       return SZ_ERROR_MEM;
2607     p->matchFinderObj = &p->matchFinderBase;
2608     MatchFinder_CreateVTable(&p->matchFinderBase, &p->matchFinder);
2609   }
2610 
2611   return SZ_OK;
2612 }
2613 
LzmaEnc_Init(CLzmaEnc * p)2614 void LzmaEnc_Init(CLzmaEnc *p)
2615 {
2616   unsigned i;
2617   p->state = 0;
2618   p->reps[0] =
2619   p->reps[1] =
2620   p->reps[2] =
2621   p->reps[3] = 1;
2622 
2623   RangeEnc_Init(&p->rc);
2624 
2625   for (i = 0; i < (1 << kNumAlignBits); i++)
2626     p->posAlignEncoder[i] = kProbInitValue;
2627 
2628   for (i = 0; i < kNumStates; i++)
2629   {
2630     unsigned j;
2631     for (j = 0; j < LZMA_NUM_PB_STATES_MAX; j++)
2632     {
2633       p->isMatch[i][j] = kProbInitValue;
2634       p->isRep0Long[i][j] = kProbInitValue;
2635     }
2636     p->isRep[i] = kProbInitValue;
2637     p->isRepG0[i] = kProbInitValue;
2638     p->isRepG1[i] = kProbInitValue;
2639     p->isRepG2[i] = kProbInitValue;
2640   }
2641 
2642   {
2643     for (i = 0; i < kNumLenToPosStates; i++)
2644     {
2645       CLzmaProb *probs = p->posSlotEncoder[i];
2646       unsigned j;
2647       for (j = 0; j < (1 << kNumPosSlotBits); j++)
2648         probs[j] = kProbInitValue;
2649     }
2650   }
2651   {
2652     for (i = 0; i < kNumFullDistances; i++)
2653       p->posEncoders[i] = kProbInitValue;
2654   }
2655 
2656   {
2657     UInt32 num = (UInt32)0x300 << (p->lp + p->lc);
2658     UInt32 k;
2659     CLzmaProb *probs = p->litProbs;
2660     for (k = 0; k < num; k++)
2661       probs[k] = kProbInitValue;
2662   }
2663 
2664 
2665   LenEnc_Init(&p->lenProbs);
2666   LenEnc_Init(&p->repLenProbs);
2667 
2668   p->optEnd = 0;
2669   p->optCur = 0;
2670 
2671   {
2672     for (i = 0; i < kNumOpts; i++)
2673       p->opt[i].price = kInfinityPrice;
2674   }
2675 
2676   p->additionalOffset = 0;
2677 
2678   p->pbMask = (1 << p->pb) - 1;
2679   p->lpMask = ((UInt32)0x100 << p->lp) - ((unsigned)0x100 >> p->lc);
2680 }
2681 
2682 
LzmaEnc_InitPrices(CLzmaEnc * p)2683 void LzmaEnc_InitPrices(CLzmaEnc *p)
2684 {
2685   if (!p->fastMode)
2686   {
2687     FillDistancesPrices(p);
2688     FillAlignPrices(p);
2689   }
2690 
2691   p->lenEnc.tableSize =
2692   p->repLenEnc.tableSize =
2693       p->numFastBytes + 1 - LZMA_MATCH_LEN_MIN;
2694 
2695   p->repLenEncCounter = REP_LEN_COUNT;
2696 
2697   LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, &p->lenProbs, p->ProbPrices);
2698   LenPriceEnc_UpdateTables(&p->repLenEnc, 1 << p->pb, &p->repLenProbs, p->ProbPrices);
2699 }
2700 
LzmaEnc_AllocAndInit(CLzmaEnc * p,UInt32 keepWindowSize,ISzAllocPtr alloc,ISzAllocPtr allocBig)2701 static SRes LzmaEnc_AllocAndInit(CLzmaEnc *p, UInt32 keepWindowSize, ISzAllocPtr alloc, ISzAllocPtr allocBig)
2702 {
2703   unsigned i;
2704   for (i = kEndPosModelIndex / 2; i < kDicLogSizeMax; i++)
2705     if (p->dictSize <= ((UInt32)1 << i))
2706       break;
2707   p->distTableSize = i * 2;
2708 
2709   p->finished = False;
2710   p->result = SZ_OK;
2711   RINOK(LzmaEnc_Alloc(p, keepWindowSize, alloc, allocBig));
2712   LzmaEnc_Init(p);
2713   LzmaEnc_InitPrices(p);
2714   p->nowPos64 = 0;
2715   return SZ_OK;
2716 }
2717 
LzmaEnc_Prepare(CLzmaEncHandle pp,ISeqOutStream * outStream,ISeqInStream * inStream,ISzAllocPtr alloc,ISzAllocPtr allocBig)2718 static SRes LzmaEnc_Prepare(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream,
2719     ISzAllocPtr alloc, ISzAllocPtr allocBig)
2720 {
2721   CLzmaEnc *p = (CLzmaEnc *)pp;
2722   p->matchFinderBase.stream = inStream;
2723   p->needInit = 1;
2724   p->rc.outStream = outStream;
2725   return LzmaEnc_AllocAndInit(p, 0, alloc, allocBig);
2726 }
2727 
LzmaEnc_PrepareForLzma2(CLzmaEncHandle pp,ISeqInStream * inStream,UInt32 keepWindowSize,ISzAllocPtr alloc,ISzAllocPtr allocBig)2728 SRes LzmaEnc_PrepareForLzma2(CLzmaEncHandle pp,
2729     ISeqInStream *inStream, UInt32 keepWindowSize,
2730     ISzAllocPtr alloc, ISzAllocPtr allocBig)
2731 {
2732   CLzmaEnc *p = (CLzmaEnc *)pp;
2733   p->matchFinderBase.stream = inStream;
2734   p->needInit = 1;
2735   return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
2736 }
2737 
LzmaEnc_SetInputBuf(CLzmaEnc * p,const Byte * src,SizeT srcLen)2738 static void LzmaEnc_SetInputBuf(CLzmaEnc *p, const Byte *src, SizeT srcLen)
2739 {
2740   p->matchFinderBase.directInput = 1;
2741   p->matchFinderBase.bufferBase = (Byte *)src;
2742   p->matchFinderBase.directInputRem = srcLen;
2743 }
2744 
LzmaEnc_MemPrepare(CLzmaEncHandle pp,const Byte * src,SizeT srcLen,UInt32 keepWindowSize,ISzAllocPtr alloc,ISzAllocPtr allocBig)2745 SRes LzmaEnc_MemPrepare(CLzmaEncHandle pp, const Byte *src, SizeT srcLen,
2746     UInt32 keepWindowSize, ISzAllocPtr alloc, ISzAllocPtr allocBig)
2747 {
2748   CLzmaEnc *p = (CLzmaEnc *)pp;
2749   LzmaEnc_SetInputBuf(p, src, srcLen);
2750   p->needInit = 1;
2751 
2752   LzmaEnc_SetDataSize(pp, srcLen);
2753   return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
2754 }
2755 
LzmaEnc_Finish(CLzmaEncHandle pp)2756 void LzmaEnc_Finish(CLzmaEncHandle pp)
2757 {
2758   #ifndef _7ZIP_ST
2759   CLzmaEnc *p = (CLzmaEnc *)pp;
2760   if (p->mtMode)
2761     MatchFinderMt_ReleaseStream(&p->matchFinderMt);
2762   #else
2763   UNUSED_VAR(pp);
2764   #endif
2765 }
2766 
2767 
2768 typedef struct
2769 {
2770   ISeqOutStream vt;
2771   Byte *data;
2772   SizeT rem;
2773   BoolInt overflow;
2774 } CLzmaEnc_SeqOutStreamBuf;
2775 
SeqOutStreamBuf_Write(const ISeqOutStream * pp,const void * data,size_t size)2776 static size_t SeqOutStreamBuf_Write(const ISeqOutStream *pp, const void *data, size_t size)
2777 {
2778   CLzmaEnc_SeqOutStreamBuf *p = CONTAINER_FROM_VTBL(pp, CLzmaEnc_SeqOutStreamBuf, vt);
2779   if (p->rem < size)
2780   {
2781     size = p->rem;
2782     p->overflow = True;
2783   }
2784   memcpy(p->data, data, size);
2785   p->rem -= size;
2786   p->data += size;
2787   return size;
2788 }
2789 
2790 
LzmaEnc_GetNumAvailableBytes(CLzmaEncHandle pp)2791 UInt32 LzmaEnc_GetNumAvailableBytes(CLzmaEncHandle pp)
2792 {
2793   const CLzmaEnc *p = (CLzmaEnc *)pp;
2794   return p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
2795 }
2796 
2797 
LzmaEnc_GetCurBuf(CLzmaEncHandle pp)2798 const Byte *LzmaEnc_GetCurBuf(CLzmaEncHandle pp)
2799 {
2800   const CLzmaEnc *p = (CLzmaEnc *)pp;
2801   return p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
2802 }
2803 
2804 
LzmaEnc_CodeOneMemBlock(CLzmaEncHandle pp,BoolInt reInit,Byte * dest,size_t * destLen,UInt32 desiredPackSize,UInt32 * unpackSize)2805 SRes LzmaEnc_CodeOneMemBlock(CLzmaEncHandle pp, BoolInt reInit,
2806     Byte *dest, size_t *destLen, UInt32 desiredPackSize, UInt32 *unpackSize)
2807 {
2808   CLzmaEnc *p = (CLzmaEnc *)pp;
2809   UInt64 nowPos64;
2810   SRes res;
2811   CLzmaEnc_SeqOutStreamBuf outStream;
2812 
2813   outStream.vt.Write = SeqOutStreamBuf_Write;
2814   outStream.data = dest;
2815   outStream.rem = *destLen;
2816   outStream.overflow = False;
2817 
2818   p->writeEndMark = False;
2819   p->finished = False;
2820   p->result = SZ_OK;
2821 
2822   if (reInit)
2823     LzmaEnc_Init(p);
2824   LzmaEnc_InitPrices(p);
2825 
2826   nowPos64 = p->nowPos64;
2827   RangeEnc_Init(&p->rc);
2828   p->rc.outStream = &outStream.vt;
2829 
2830   if (desiredPackSize == 0)
2831     return SZ_ERROR_OUTPUT_EOF;
2832 
2833   res = LzmaEnc_CodeOneBlock(p, desiredPackSize, *unpackSize);
2834 
2835   *unpackSize = (UInt32)(p->nowPos64 - nowPos64);
2836   *destLen -= outStream.rem;
2837   if (outStream.overflow)
2838     return SZ_ERROR_OUTPUT_EOF;
2839 
2840   return res;
2841 }
2842 
2843 
LzmaEnc_Encode2(CLzmaEnc * p,ICompressProgress * progress)2844 static SRes LzmaEnc_Encode2(CLzmaEnc *p, ICompressProgress *progress)
2845 {
2846   SRes res = SZ_OK;
2847 
2848   #ifndef _7ZIP_ST
2849   Byte allocaDummy[0x300];
2850   allocaDummy[0] = 0;
2851   allocaDummy[1] = allocaDummy[0];
2852   #endif
2853 
2854   for (;;)
2855   {
2856     res = LzmaEnc_CodeOneBlock(p, 0, 0);
2857     if (res != SZ_OK || p->finished)
2858       break;
2859     if (progress)
2860     {
2861       res = ICompressProgress_Progress(progress, p->nowPos64, RangeEnc_GetProcessed(&p->rc));
2862       if (res != SZ_OK)
2863       {
2864         res = SZ_ERROR_PROGRESS;
2865         break;
2866       }
2867     }
2868   }
2869 
2870   LzmaEnc_Finish(p);
2871 
2872   /*
2873   if (res == SZ_OK && !Inline_MatchFinder_IsFinishedOK(&p->matchFinderBase))
2874     res = SZ_ERROR_FAIL;
2875   }
2876   */
2877 
2878   return res;
2879 }
2880 
2881 
LzmaEnc_Encode(CLzmaEncHandle pp,ISeqOutStream * outStream,ISeqInStream * inStream,ICompressProgress * progress,ISzAllocPtr alloc,ISzAllocPtr allocBig)2882 SRes LzmaEnc_Encode(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream, ICompressProgress *progress,
2883     ISzAllocPtr alloc, ISzAllocPtr allocBig)
2884 {
2885   RINOK(LzmaEnc_Prepare(pp, outStream, inStream, alloc, allocBig));
2886   return LzmaEnc_Encode2((CLzmaEnc *)pp, progress);
2887 }
2888 
2889 
LzmaEnc_WriteProperties(CLzmaEncHandle pp,Byte * props,SizeT * size)2890 SRes LzmaEnc_WriteProperties(CLzmaEncHandle pp, Byte *props, SizeT *size)
2891 {
2892   CLzmaEnc *p = (CLzmaEnc *)pp;
2893   unsigned i;
2894   UInt32 dictSize = p->dictSize;
2895   if (*size < LZMA_PROPS_SIZE)
2896     return SZ_ERROR_PARAM;
2897   *size = LZMA_PROPS_SIZE;
2898   props[0] = (Byte)((p->pb * 5 + p->lp) * 9 + p->lc);
2899 
2900   if (dictSize >= ((UInt32)1 << 22))
2901   {
2902     UInt32 kDictMask = ((UInt32)1 << 20) - 1;
2903     if (dictSize < (UInt32)0xFFFFFFFF - kDictMask)
2904       dictSize = (dictSize + kDictMask) & ~kDictMask;
2905   }
2906   else for (i = 11; i <= 30; i++)
2907   {
2908     if (dictSize <= ((UInt32)2 << i)) { dictSize = (2 << i); break; }
2909     if (dictSize <= ((UInt32)3 << i)) { dictSize = (3 << i); break; }
2910   }
2911 
2912   for (i = 0; i < 4; i++)
2913     props[1 + i] = (Byte)(dictSize >> (8 * i));
2914   return SZ_OK;
2915 }
2916 
2917 
LzmaEnc_IsWriteEndMark(CLzmaEncHandle pp)2918 unsigned LzmaEnc_IsWriteEndMark(CLzmaEncHandle pp)
2919 {
2920   return ((CLzmaEnc *)pp)->writeEndMark;
2921 }
2922 
2923 
LzmaEnc_MemEncode(CLzmaEncHandle pp,Byte * dest,SizeT * destLen,const Byte * src,SizeT srcLen,int writeEndMark,ICompressProgress * progress,ISzAllocPtr alloc,ISzAllocPtr allocBig)2924 SRes LzmaEnc_MemEncode(CLzmaEncHandle pp, Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
2925     int writeEndMark, ICompressProgress *progress, ISzAllocPtr alloc, ISzAllocPtr allocBig)
2926 {
2927   SRes res;
2928   CLzmaEnc *p = (CLzmaEnc *)pp;
2929 
2930   CLzmaEnc_SeqOutStreamBuf outStream;
2931 
2932   outStream.vt.Write = SeqOutStreamBuf_Write;
2933   outStream.data = dest;
2934   outStream.rem = *destLen;
2935   outStream.overflow = False;
2936 
2937   p->writeEndMark = writeEndMark;
2938   p->rc.outStream = &outStream.vt;
2939 
2940   res = LzmaEnc_MemPrepare(pp, src, srcLen, 0, alloc, allocBig);
2941 
2942   if (res == SZ_OK)
2943   {
2944     res = LzmaEnc_Encode2(p, progress);
2945     if (res == SZ_OK && p->nowPos64 != srcLen)
2946       res = SZ_ERROR_FAIL;
2947   }
2948 
2949   *destLen -= outStream.rem;
2950   if (outStream.overflow)
2951     return SZ_ERROR_OUTPUT_EOF;
2952   return res;
2953 }
2954 
2955 
LzmaEncode(Byte * dest,SizeT * destLen,const Byte * src,SizeT srcLen,const CLzmaEncProps * props,Byte * propsEncoded,SizeT * propsSize,int writeEndMark,ICompressProgress * progress,ISzAllocPtr alloc,ISzAllocPtr allocBig)2956 SRes LzmaEncode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
2957     const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark,
2958     ICompressProgress *progress, ISzAllocPtr alloc, ISzAllocPtr allocBig)
2959 {
2960   CLzmaEnc *p = (CLzmaEnc *)LzmaEnc_Create(alloc);
2961   SRes res;
2962   if (!p)
2963     return SZ_ERROR_MEM;
2964 
2965   res = LzmaEnc_SetProps(p, props);
2966   if (res == SZ_OK)
2967   {
2968     res = LzmaEnc_WriteProperties(p, propsEncoded, propsSize);
2969     if (res == SZ_OK)
2970       res = LzmaEnc_MemEncode(p, dest, destLen, src, srcLen,
2971           writeEndMark, progress, alloc, allocBig);
2972   }
2973 
2974   LzmaEnc_Destroy(p, alloc, allocBig);
2975   return res;
2976 }
2977