1 /*
2  * Copyright © 2016 Red Hat.
3  * Copyright © 2016 Bas Nieuwenhuizen
4  *
5  * based in part on anv driver which is:
6  * Copyright © 2015 Intel Corporation
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the "Software"),
10  * to deal in the Software without restriction, including without limitation
11  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12  * and/or sell copies of the Software, and to permit persons to whom the
13  * Software is furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the next
16  * paragraph) shall be included in all copies or substantial portions of the
17  * Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
22  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25  * IN THE SOFTWARE.
26  */
27 
28 #include "radv_debug.h"
29 #include "radv_private.h"
30 #include "vk_format.h"
31 #include "vk_util.h"
32 #include "radv_radeon_winsys.h"
33 #include "sid.h"
34 #include "gfx9d.h"
35 #include "util/debug.h"
36 #include "util/u_atomic.h"
37 static unsigned
radv_choose_tiling(struct radv_device * device,const struct radv_image_create_info * create_info)38 radv_choose_tiling(struct radv_device *device,
39 		   const struct radv_image_create_info *create_info)
40 {
41 	const VkImageCreateInfo *pCreateInfo = create_info->vk_info;
42 
43 	if (pCreateInfo->tiling == VK_IMAGE_TILING_LINEAR) {
44 		assert(pCreateInfo->samples <= 1);
45 		return RADEON_SURF_MODE_LINEAR_ALIGNED;
46 	}
47 
48 	if (!vk_format_is_compressed(pCreateInfo->format) &&
49 	    !vk_format_is_depth_or_stencil(pCreateInfo->format)
50 	    && device->physical_device->rad_info.chip_class <= VI) {
51 		/* this causes hangs in some VK CTS tests on GFX9. */
52 		/* Textures with a very small height are recommended to be linear. */
53 		if (pCreateInfo->imageType == VK_IMAGE_TYPE_1D ||
54 		    /* Only very thin and long 2D textures should benefit from
55 		     * linear_aligned. */
56 		    (pCreateInfo->extent.width > 8 && pCreateInfo->extent.height <= 2))
57 			return RADEON_SURF_MODE_LINEAR_ALIGNED;
58 	}
59 
60 	/* MSAA resources must be 2D tiled. */
61 	if (pCreateInfo->samples > 1)
62 		return RADEON_SURF_MODE_2D;
63 
64 	return RADEON_SURF_MODE_2D;
65 }
66 static int
radv_init_surface(struct radv_device * device,struct radeon_surf * surface,const struct radv_image_create_info * create_info)67 radv_init_surface(struct radv_device *device,
68 		  struct radeon_surf *surface,
69 		  const struct radv_image_create_info *create_info)
70 {
71 	const VkImageCreateInfo *pCreateInfo = create_info->vk_info;
72 	unsigned array_mode = radv_choose_tiling(device, create_info);
73 	const struct vk_format_description *desc =
74 		vk_format_description(pCreateInfo->format);
75 	bool is_depth, is_stencil, blendable;
76 
77 	is_depth = vk_format_has_depth(desc);
78 	is_stencil = vk_format_has_stencil(desc);
79 
80 	surface->blk_w = vk_format_get_blockwidth(pCreateInfo->format);
81 	surface->blk_h = vk_format_get_blockheight(pCreateInfo->format);
82 
83 	surface->bpe = vk_format_get_blocksize(vk_format_depth_only(pCreateInfo->format));
84 	/* align byte per element on dword */
85 	if (surface->bpe == 3) {
86 		surface->bpe = 4;
87 	}
88 	surface->flags = RADEON_SURF_SET(array_mode, MODE);
89 
90 	switch (pCreateInfo->imageType){
91 	case VK_IMAGE_TYPE_1D:
92 		if (pCreateInfo->arrayLayers > 1)
93 			surface->flags |= RADEON_SURF_SET(RADEON_SURF_TYPE_1D_ARRAY, TYPE);
94 		else
95 			surface->flags |= RADEON_SURF_SET(RADEON_SURF_TYPE_1D, TYPE);
96 		break;
97 	case VK_IMAGE_TYPE_2D:
98 		if (pCreateInfo->arrayLayers > 1)
99 			surface->flags |= RADEON_SURF_SET(RADEON_SURF_TYPE_2D_ARRAY, TYPE);
100 		else
101 			surface->flags |= RADEON_SURF_SET(RADEON_SURF_TYPE_2D, TYPE);
102 		break;
103 	case VK_IMAGE_TYPE_3D:
104 		surface->flags |= RADEON_SURF_SET(RADEON_SURF_TYPE_3D, TYPE);
105 		break;
106 	default:
107 		unreachable("unhandled image type");
108 	}
109 
110 	if (is_depth) {
111 		surface->flags |= RADEON_SURF_ZBUFFER;
112 		if (!(pCreateInfo->usage & VK_IMAGE_USAGE_STORAGE_BIT) &&
113 		    !(pCreateInfo->flags & (VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT |
114 		                            VK_IMAGE_CREATE_EXTENDED_USAGE_BIT_KHR)) &&
115 		    pCreateInfo->tiling != VK_IMAGE_TILING_LINEAR &&
116 		    pCreateInfo->mipLevels <= 1 &&
117 		    device->physical_device->rad_info.chip_class >= VI &&
118 		    ((pCreateInfo->format == VK_FORMAT_D32_SFLOAT ||
119 		      /* for some reason TC compat with 2/4/8 samples breaks some cts tests - disable for now */
120 		      (pCreateInfo->samples < 2 && pCreateInfo->format == VK_FORMAT_D32_SFLOAT_S8_UINT)) ||
121 		     (device->physical_device->rad_info.chip_class >= GFX9 &&
122 		      pCreateInfo->format == VK_FORMAT_D16_UNORM)))
123 			surface->flags |= RADEON_SURF_TC_COMPATIBLE_HTILE;
124 	}
125 
126 	if (is_stencil)
127 		surface->flags |= RADEON_SURF_SBUFFER;
128 
129 	surface->flags |= RADEON_SURF_OPTIMIZE_FOR_SPACE;
130 
131 	bool dcc_compatible_formats = radv_is_colorbuffer_format_supported(pCreateInfo->format, &blendable);
132 	if (pCreateInfo->flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT) {
133 		const struct  VkImageFormatListCreateInfoKHR *format_list =
134 		          (const struct  VkImageFormatListCreateInfoKHR *)
135 		                vk_find_struct_const(pCreateInfo->pNext,
136 		                                     IMAGE_FORMAT_LIST_CREATE_INFO_KHR);
137 
138 		/* We have to ignore the existence of the list if viewFormatCount = 0 */
139 		if (format_list && format_list->viewFormatCount) {
140 			/* compatibility is transitive, so we only need to check
141 			 * one format with everything else. */
142 			for (unsigned i = 0; i < format_list->viewFormatCount; ++i) {
143 				if (!radv_dcc_formats_compatible(pCreateInfo->format,
144 				                                 format_list->pViewFormats[i]))
145 					dcc_compatible_formats = false;
146 			}
147 		} else {
148 			dcc_compatible_formats = false;
149 		}
150 	}
151 
152 	if ((pCreateInfo->usage & VK_IMAGE_USAGE_STORAGE_BIT) ||
153 	    (pCreateInfo->flags & VK_IMAGE_CREATE_EXTENDED_USAGE_BIT_KHR) ||
154 	    !dcc_compatible_formats ||
155             (pCreateInfo->tiling == VK_IMAGE_TILING_LINEAR) ||
156             pCreateInfo->mipLevels > 1 || pCreateInfo->arrayLayers > 1 ||
157             device->physical_device->rad_info.chip_class < VI ||
158             create_info->scanout || (device->instance->debug_flags & RADV_DEBUG_NO_DCC) ||
159 	    pCreateInfo->samples >= 2)
160 		surface->flags |= RADEON_SURF_DISABLE_DCC;
161 	if (create_info->scanout)
162 		surface->flags |= RADEON_SURF_SCANOUT;
163 	return 0;
164 }
165 
si_get_bo_metadata_word1(struct radv_device * device)166 static uint32_t si_get_bo_metadata_word1(struct radv_device *device)
167 {
168 	return (ATI_VENDOR_ID << 16) | device->physical_device->rad_info.pci_id;
169 }
170 
171 static inline unsigned
si_tile_mode_index(const struct radv_image * image,unsigned level,bool stencil)172 si_tile_mode_index(const struct radv_image *image, unsigned level, bool stencil)
173 {
174 	if (stencil)
175 		return image->surface.u.legacy.stencil_tiling_index[level];
176 	else
177 		return image->surface.u.legacy.tiling_index[level];
178 }
179 
radv_map_swizzle(unsigned swizzle)180 static unsigned radv_map_swizzle(unsigned swizzle)
181 {
182 	switch (swizzle) {
183 	case VK_SWIZZLE_Y:
184 		return V_008F0C_SQ_SEL_Y;
185 	case VK_SWIZZLE_Z:
186 		return V_008F0C_SQ_SEL_Z;
187 	case VK_SWIZZLE_W:
188 		return V_008F0C_SQ_SEL_W;
189 	case VK_SWIZZLE_0:
190 		return V_008F0C_SQ_SEL_0;
191 	case VK_SWIZZLE_1:
192 		return V_008F0C_SQ_SEL_1;
193 	default: /* VK_SWIZZLE_X */
194 		return V_008F0C_SQ_SEL_X;
195 	}
196 }
197 
198 static void
radv_make_buffer_descriptor(struct radv_device * device,struct radv_buffer * buffer,VkFormat vk_format,unsigned offset,unsigned range,uint32_t * state)199 radv_make_buffer_descriptor(struct radv_device *device,
200 			    struct radv_buffer *buffer,
201 			    VkFormat vk_format,
202 			    unsigned offset,
203 			    unsigned range,
204 			    uint32_t *state)
205 {
206 	const struct vk_format_description *desc;
207 	unsigned stride;
208 	uint64_t gpu_address = radv_buffer_get_va(buffer->bo);
209 	uint64_t va = gpu_address + buffer->offset;
210 	unsigned num_format, data_format;
211 	int first_non_void;
212 	desc = vk_format_description(vk_format);
213 	first_non_void = vk_format_get_first_non_void_channel(vk_format);
214 	stride = desc->block.bits / 8;
215 
216 	num_format = radv_translate_buffer_numformat(desc, first_non_void);
217 	data_format = radv_translate_buffer_dataformat(desc, first_non_void);
218 
219 	va += offset;
220 	state[0] = va;
221 	state[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) |
222 		S_008F04_STRIDE(stride);
223 
224 	if (device->physical_device->rad_info.chip_class != VI && stride) {
225 		range /= stride;
226 	}
227 
228 	state[2] = range;
229 	state[3] = S_008F0C_DST_SEL_X(radv_map_swizzle(desc->swizzle[0])) |
230 		   S_008F0C_DST_SEL_Y(radv_map_swizzle(desc->swizzle[1])) |
231 		   S_008F0C_DST_SEL_Z(radv_map_swizzle(desc->swizzle[2])) |
232 		   S_008F0C_DST_SEL_W(radv_map_swizzle(desc->swizzle[3])) |
233 		   S_008F0C_NUM_FORMAT(num_format) |
234 		   S_008F0C_DATA_FORMAT(data_format);
235 }
236 
237 static void
si_set_mutable_tex_desc_fields(struct radv_device * device,struct radv_image * image,const struct legacy_surf_level * base_level_info,unsigned base_level,unsigned first_level,unsigned block_width,bool is_stencil,bool is_storage_image,uint32_t * state)238 si_set_mutable_tex_desc_fields(struct radv_device *device,
239 			       struct radv_image *image,
240 			       const struct legacy_surf_level *base_level_info,
241 			       unsigned base_level, unsigned first_level,
242 			       unsigned block_width, bool is_stencil,
243 			       bool is_storage_image, uint32_t *state)
244 {
245 	uint64_t gpu_address = image->bo ? radv_buffer_get_va(image->bo) + image->offset : 0;
246 	uint64_t va = gpu_address;
247 	enum chip_class chip_class = device->physical_device->rad_info.chip_class;
248 	uint64_t meta_va = 0;
249 	if (chip_class >= GFX9) {
250 		if (is_stencil)
251 			va += image->surface.u.gfx9.stencil_offset;
252 		else
253 			va += image->surface.u.gfx9.surf_offset;
254 	} else
255 		va += base_level_info->offset;
256 
257 	state[0] = va >> 8;
258 	if (chip_class >= GFX9 ||
259 	    base_level_info->mode == RADEON_SURF_MODE_2D)
260 		state[0] |= image->surface.tile_swizzle;
261 	state[1] &= C_008F14_BASE_ADDRESS_HI;
262 	state[1] |= S_008F14_BASE_ADDRESS_HI(va >> 40);
263 
264 	if (chip_class >= VI) {
265 		state[6] &= C_008F28_COMPRESSION_EN;
266 		state[7] = 0;
267 		if (!is_storage_image && radv_vi_dcc_enabled(image, first_level)) {
268 			meta_va = gpu_address + image->dcc_offset;
269 			if (chip_class <= VI)
270 				meta_va += base_level_info->dcc_offset;
271 		} else if(!is_storage_image && image->tc_compatible_htile &&
272 		          image->surface.htile_size) {
273 			meta_va = gpu_address + image->htile_offset;
274 		}
275 
276 		if (meta_va) {
277 			state[6] |= S_008F28_COMPRESSION_EN(1);
278 			state[7] = meta_va >> 8;
279 			state[7] |= image->surface.tile_swizzle;
280 		}
281 	}
282 
283 	if (chip_class >= GFX9) {
284 		state[3] &= C_008F1C_SW_MODE;
285 		state[4] &= C_008F20_PITCH_GFX9;
286 
287 		if (is_stencil) {
288 			state[3] |= S_008F1C_SW_MODE(image->surface.u.gfx9.stencil.swizzle_mode);
289 			state[4] |= S_008F20_PITCH_GFX9(image->surface.u.gfx9.stencil.epitch);
290 		} else {
291 			state[3] |= S_008F1C_SW_MODE(image->surface.u.gfx9.surf.swizzle_mode);
292 			state[4] |= S_008F20_PITCH_GFX9(image->surface.u.gfx9.surf.epitch);
293 		}
294 
295 		state[5] &= C_008F24_META_DATA_ADDRESS &
296 			    C_008F24_META_PIPE_ALIGNED &
297 			    C_008F24_META_RB_ALIGNED;
298 		if (meta_va) {
299 			struct gfx9_surf_meta_flags meta;
300 
301 			if (image->dcc_offset)
302 				meta = image->surface.u.gfx9.dcc;
303 			else
304 				meta = image->surface.u.gfx9.htile;
305 
306 			state[5] |= S_008F24_META_DATA_ADDRESS(meta_va >> 40) |
307 				    S_008F24_META_PIPE_ALIGNED(meta.pipe_aligned) |
308 				    S_008F24_META_RB_ALIGNED(meta.rb_aligned);
309 		}
310 	} else {
311 		/* SI-CI-VI */
312 		unsigned pitch = base_level_info->nblk_x * block_width;
313 		unsigned index = si_tile_mode_index(image, base_level, is_stencil);
314 
315 		state[3] &= C_008F1C_TILING_INDEX;
316 		state[3] |= S_008F1C_TILING_INDEX(index);
317 		state[4] &= C_008F20_PITCH_GFX6;
318 		state[4] |= S_008F20_PITCH_GFX6(pitch - 1);
319 	}
320 }
321 
radv_tex_dim(VkImageType image_type,VkImageViewType view_type,unsigned nr_layers,unsigned nr_samples,bool is_storage_image,bool gfx9)322 static unsigned radv_tex_dim(VkImageType image_type, VkImageViewType view_type,
323 			     unsigned nr_layers, unsigned nr_samples, bool is_storage_image, bool gfx9)
324 {
325 	if (view_type == VK_IMAGE_VIEW_TYPE_CUBE || view_type == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY)
326 		return is_storage_image ? V_008F1C_SQ_RSRC_IMG_2D_ARRAY : V_008F1C_SQ_RSRC_IMG_CUBE;
327 
328 	/* GFX9 allocates 1D textures as 2D. */
329 	if (gfx9 && image_type == VK_IMAGE_TYPE_1D)
330 		image_type = VK_IMAGE_TYPE_2D;
331 	switch (image_type) {
332 	case VK_IMAGE_TYPE_1D:
333 		return nr_layers > 1 ? V_008F1C_SQ_RSRC_IMG_1D_ARRAY : V_008F1C_SQ_RSRC_IMG_1D;
334 	case VK_IMAGE_TYPE_2D:
335 		if (nr_samples > 1)
336 			return nr_layers > 1 ? V_008F1C_SQ_RSRC_IMG_2D_MSAA_ARRAY : V_008F1C_SQ_RSRC_IMG_2D_MSAA;
337 		else
338 			return nr_layers > 1 ? V_008F1C_SQ_RSRC_IMG_2D_ARRAY : V_008F1C_SQ_RSRC_IMG_2D;
339 	case VK_IMAGE_TYPE_3D:
340 		if (view_type == VK_IMAGE_VIEW_TYPE_3D)
341 			return V_008F1C_SQ_RSRC_IMG_3D;
342 		else
343 			return V_008F1C_SQ_RSRC_IMG_2D_ARRAY;
344 	default:
345 		unreachable("illegale image type");
346 	}
347 }
348 
gfx9_border_color_swizzle(const enum vk_swizzle swizzle[4])349 static unsigned gfx9_border_color_swizzle(const enum vk_swizzle swizzle[4])
350 {
351 	unsigned bc_swizzle = V_008F20_BC_SWIZZLE_XYZW;
352 
353 	if (swizzle[3] == VK_SWIZZLE_X) {
354 		/* For the pre-defined border color values (white, opaque
355 		 * black, transparent black), the only thing that matters is
356 		 * that the alpha channel winds up in the correct place
357 		 * (because the RGB channels are all the same) so either of
358 		 * these enumerations will work.
359 		 */
360 		if (swizzle[2] == VK_SWIZZLE_Y)
361 			bc_swizzle = V_008F20_BC_SWIZZLE_WZYX;
362 		else
363 			bc_swizzle = V_008F20_BC_SWIZZLE_WXYZ;
364 	} else if (swizzle[0] == VK_SWIZZLE_X) {
365 		if (swizzle[1] == VK_SWIZZLE_Y)
366 			bc_swizzle = V_008F20_BC_SWIZZLE_XYZW;
367 		else
368 			bc_swizzle = V_008F20_BC_SWIZZLE_XWYZ;
369 	} else if (swizzle[1] == VK_SWIZZLE_X) {
370 		bc_swizzle = V_008F20_BC_SWIZZLE_YXWZ;
371 	} else if (swizzle[2] == VK_SWIZZLE_X) {
372 		bc_swizzle = V_008F20_BC_SWIZZLE_ZYXW;
373 	}
374 
375 	return bc_swizzle;
376 }
377 
378 /**
379  * Build the sampler view descriptor for a texture.
380  */
381 static void
si_make_texture_descriptor(struct radv_device * device,struct radv_image * image,bool is_storage_image,VkImageViewType view_type,VkFormat vk_format,const VkComponentMapping * mapping,unsigned first_level,unsigned last_level,unsigned first_layer,unsigned last_layer,unsigned width,unsigned height,unsigned depth,uint32_t * state,uint32_t * fmask_state)382 si_make_texture_descriptor(struct radv_device *device,
383 			   struct radv_image *image,
384 			   bool is_storage_image,
385 			   VkImageViewType view_type,
386 			   VkFormat vk_format,
387 			   const VkComponentMapping *mapping,
388 			   unsigned first_level, unsigned last_level,
389 			   unsigned first_layer, unsigned last_layer,
390 			   unsigned width, unsigned height, unsigned depth,
391 			   uint32_t *state,
392 			   uint32_t *fmask_state)
393 {
394 	const struct vk_format_description *desc;
395 	enum vk_swizzle swizzle[4];
396 	int first_non_void;
397 	unsigned num_format, data_format, type;
398 
399 	desc = vk_format_description(vk_format);
400 
401 	if (desc->colorspace == VK_FORMAT_COLORSPACE_ZS) {
402 		const unsigned char swizzle_xxxx[4] = {0, 0, 0, 0};
403 		vk_format_compose_swizzles(mapping, swizzle_xxxx, swizzle);
404 	} else {
405 		vk_format_compose_swizzles(mapping, desc->swizzle, swizzle);
406 	}
407 
408 	first_non_void = vk_format_get_first_non_void_channel(vk_format);
409 
410 	num_format = radv_translate_tex_numformat(vk_format, desc, first_non_void);
411 	if (num_format == ~0) {
412 		num_format = 0;
413 	}
414 
415 	data_format = radv_translate_tex_dataformat(vk_format, desc, first_non_void);
416 	if (data_format == ~0) {
417 		data_format = 0;
418 	}
419 
420 	/* S8 with either Z16 or Z32 HTILE need a special format. */
421 	if (device->physical_device->rad_info.chip_class >= GFX9 &&
422 	    vk_format == VK_FORMAT_S8_UINT &&
423 	    image->tc_compatible_htile) {
424 		if (image->vk_format == VK_FORMAT_D32_SFLOAT_S8_UINT)
425 			data_format = V_008F14_IMG_DATA_FORMAT_S8_32;
426 		else if (image->vk_format == VK_FORMAT_D16_UNORM_S8_UINT)
427 			data_format = V_008F14_IMG_DATA_FORMAT_S8_16;
428 	}
429 	type = radv_tex_dim(image->type, view_type, image->info.array_size, image->info.samples,
430 			    is_storage_image, device->physical_device->rad_info.chip_class >= GFX9);
431 	if (type == V_008F1C_SQ_RSRC_IMG_1D_ARRAY) {
432 	        height = 1;
433 		depth = image->info.array_size;
434 	} else if (type == V_008F1C_SQ_RSRC_IMG_2D_ARRAY ||
435 		   type == V_008F1C_SQ_RSRC_IMG_2D_MSAA_ARRAY) {
436 		if (view_type != VK_IMAGE_VIEW_TYPE_3D)
437 			depth = image->info.array_size;
438 	} else if (type == V_008F1C_SQ_RSRC_IMG_CUBE)
439 		depth = image->info.array_size / 6;
440 
441 	state[0] = 0;
442 	state[1] = (S_008F14_DATA_FORMAT_GFX6(data_format) |
443 		    S_008F14_NUM_FORMAT_GFX6(num_format));
444 	state[2] = (S_008F18_WIDTH(width - 1) |
445 		    S_008F18_HEIGHT(height - 1) |
446 		    S_008F18_PERF_MOD(4));
447 	state[3] = (S_008F1C_DST_SEL_X(radv_map_swizzle(swizzle[0])) |
448 		    S_008F1C_DST_SEL_Y(radv_map_swizzle(swizzle[1])) |
449 		    S_008F1C_DST_SEL_Z(radv_map_swizzle(swizzle[2])) |
450 		    S_008F1C_DST_SEL_W(radv_map_swizzle(swizzle[3])) |
451 		    S_008F1C_BASE_LEVEL(image->info.samples > 1 ?
452 					0 : first_level) |
453 		    S_008F1C_LAST_LEVEL(image->info.samples > 1 ?
454 					util_logbase2(image->info.samples) :
455 					last_level) |
456 		    S_008F1C_TYPE(type));
457 	state[4] = 0;
458 	state[5] = S_008F24_BASE_ARRAY(first_layer);
459 	state[6] = 0;
460 	state[7] = 0;
461 
462 	if (device->physical_device->rad_info.chip_class >= GFX9) {
463 		unsigned bc_swizzle = gfx9_border_color_swizzle(swizzle);
464 
465 		/* Depth is the the last accessible layer on Gfx9.
466 		 * The hw doesn't need to know the total number of layers.
467 		 */
468 		if (type == V_008F1C_SQ_RSRC_IMG_3D)
469 			state[4] |= S_008F20_DEPTH(depth - 1);
470 		else
471 			state[4] |= S_008F20_DEPTH(last_layer);
472 
473 		state[4] |= S_008F20_BC_SWIZZLE(bc_swizzle);
474 		state[5] |= S_008F24_MAX_MIP(image->info.samples > 1 ?
475 					     util_logbase2(image->info.samples) :
476 					     image->info.levels - 1);
477 	} else {
478 		state[3] |= S_008F1C_POW2_PAD(image->info.levels > 1);
479 		state[4] |= S_008F20_DEPTH(depth - 1);
480 		state[5] |= S_008F24_LAST_ARRAY(last_layer);
481 	}
482 	if (image->dcc_offset) {
483 		unsigned swap = radv_translate_colorswap(vk_format, FALSE);
484 
485 		state[6] = S_008F28_ALPHA_IS_ON_MSB(swap <= 1);
486 	} else {
487 		/* The last dword is unused by hw. The shader uses it to clear
488 		 * bits in the first dword of sampler state.
489 		 */
490 		if (device->physical_device->rad_info.chip_class <= CIK && image->info.samples <= 1) {
491 			if (first_level == last_level)
492 				state[7] = C_008F30_MAX_ANISO_RATIO;
493 			else
494 				state[7] = 0xffffffff;
495 		}
496 	}
497 
498 	/* Initialize the sampler view for FMASK. */
499 	if (image->fmask.size) {
500 		uint32_t fmask_format, num_format;
501 		uint64_t gpu_address = radv_buffer_get_va(image->bo);
502 		uint64_t va;
503 
504 		va = gpu_address + image->offset + image->fmask.offset;
505 
506 		if (device->physical_device->rad_info.chip_class >= GFX9) {
507 			fmask_format = V_008F14_IMG_DATA_FORMAT_FMASK;
508 			switch (image->info.samples) {
509 			case 2:
510 				num_format = V_008F14_IMG_FMASK_8_2_2;
511 				break;
512 			case 4:
513 				num_format = V_008F14_IMG_FMASK_8_4_4;
514 				break;
515 			case 8:
516 				num_format = V_008F14_IMG_FMASK_32_8_8;
517 				break;
518 			default:
519 				unreachable("invalid nr_samples");
520 			}
521 		} else {
522 			switch (image->info.samples) {
523 			case 2:
524 				fmask_format = V_008F14_IMG_DATA_FORMAT_FMASK8_S2_F2;
525 				break;
526 			case 4:
527 				fmask_format = V_008F14_IMG_DATA_FORMAT_FMASK8_S4_F4;
528 				break;
529 			case 8:
530 				fmask_format = V_008F14_IMG_DATA_FORMAT_FMASK32_S8_F8;
531 				break;
532 			default:
533 				assert(0);
534 				fmask_format = V_008F14_IMG_DATA_FORMAT_INVALID;
535 			}
536 			num_format = V_008F14_IMG_NUM_FORMAT_UINT;
537 		}
538 
539 		fmask_state[0] = va >> 8;
540 		fmask_state[0] |= image->fmask.tile_swizzle;
541 		fmask_state[1] = S_008F14_BASE_ADDRESS_HI(va >> 40) |
542 			S_008F14_DATA_FORMAT_GFX6(fmask_format) |
543 			S_008F14_NUM_FORMAT_GFX6(num_format);
544 		fmask_state[2] = S_008F18_WIDTH(width - 1) |
545 			S_008F18_HEIGHT(height - 1);
546 		fmask_state[3] = S_008F1C_DST_SEL_X(V_008F1C_SQ_SEL_X) |
547 			S_008F1C_DST_SEL_Y(V_008F1C_SQ_SEL_X) |
548 			S_008F1C_DST_SEL_Z(V_008F1C_SQ_SEL_X) |
549 			S_008F1C_DST_SEL_W(V_008F1C_SQ_SEL_X) |
550 			S_008F1C_TYPE(radv_tex_dim(image->type, view_type, 1, 0, false, false));
551 		fmask_state[4] = 0;
552 		fmask_state[5] = S_008F24_BASE_ARRAY(first_layer);
553 		fmask_state[6] = 0;
554 		fmask_state[7] = 0;
555 
556 		if (device->physical_device->rad_info.chip_class >= GFX9) {
557 			fmask_state[3] |= S_008F1C_SW_MODE(image->surface.u.gfx9.fmask.swizzle_mode);
558 			fmask_state[4] |= S_008F20_DEPTH(last_layer) |
559 					  S_008F20_PITCH_GFX9(image->surface.u.gfx9.fmask.epitch);
560 			fmask_state[5] |= S_008F24_META_PIPE_ALIGNED(image->surface.u.gfx9.cmask.pipe_aligned) |
561 					  S_008F24_META_RB_ALIGNED(image->surface.u.gfx9.cmask.rb_aligned);
562 		} else {
563 			fmask_state[3] |= S_008F1C_TILING_INDEX(image->fmask.tile_mode_index);
564 			fmask_state[4] |= S_008F20_DEPTH(depth - 1) |
565 				S_008F20_PITCH_GFX6(image->fmask.pitch_in_pixels - 1);
566 			fmask_state[5] |= S_008F24_LAST_ARRAY(last_layer);
567 		}
568 	} else if (fmask_state)
569 		memset(fmask_state, 0, 8 * 4);
570 }
571 
572 static void
radv_query_opaque_metadata(struct radv_device * device,struct radv_image * image,struct radeon_bo_metadata * md)573 radv_query_opaque_metadata(struct radv_device *device,
574 			   struct radv_image *image,
575 			   struct radeon_bo_metadata *md)
576 {
577 	static const VkComponentMapping fixedmapping;
578 	uint32_t desc[8], i;
579 
580 	/* Metadata image format format version 1:
581 	 * [0] = 1 (metadata format identifier)
582 	 * [1] = (VENDOR_ID << 16) | PCI_ID
583 	 * [2:9] = image descriptor for the whole resource
584 	 *         [2] is always 0, because the base address is cleared
585 	 *         [9] is the DCC offset bits [39:8] from the beginning of
586 	 *             the buffer
587 	 * [10:10+LAST_LEVEL] = mipmap level offset bits [39:8] for each level
588 	 */
589 	md->metadata[0] = 1; /* metadata image format version 1 */
590 
591 	/* TILE_MODE_INDEX is ambiguous without a PCI ID. */
592 	md->metadata[1] = si_get_bo_metadata_word1(device);
593 
594 
595 	si_make_texture_descriptor(device, image, false,
596 				   (VkImageViewType)image->type, image->vk_format,
597 				   &fixedmapping, 0, image->info.levels - 1, 0,
598 				   image->info.array_size,
599 				   image->info.width, image->info.height,
600 				   image->info.depth,
601 				   desc, NULL);
602 
603 	si_set_mutable_tex_desc_fields(device, image, &image->surface.u.legacy.level[0], 0, 0,
604 				       image->surface.blk_w, false, false, desc);
605 
606 	/* Clear the base address and set the relative DCC offset. */
607 	desc[0] = 0;
608 	desc[1] &= C_008F14_BASE_ADDRESS_HI;
609 	desc[7] = image->dcc_offset >> 8;
610 
611 	/* Dwords [2:9] contain the image descriptor. */
612 	memcpy(&md->metadata[2], desc, sizeof(desc));
613 
614 	/* Dwords [10:..] contain the mipmap level offsets. */
615 	if (device->physical_device->rad_info.chip_class <= VI) {
616 		for (i = 0; i <= image->info.levels - 1; i++)
617 			md->metadata[10+i] = image->surface.u.legacy.level[i].offset >> 8;
618 		md->size_metadata = (11 + image->info.levels - 1) * 4;
619 	}
620 }
621 
622 void
radv_init_metadata(struct radv_device * device,struct radv_image * image,struct radeon_bo_metadata * metadata)623 radv_init_metadata(struct radv_device *device,
624 		   struct radv_image *image,
625 		   struct radeon_bo_metadata *metadata)
626 {
627 	struct radeon_surf *surface = &image->surface;
628 
629 	memset(metadata, 0, sizeof(*metadata));
630 
631 	if (device->physical_device->rad_info.chip_class >= GFX9) {
632 		metadata->u.gfx9.swizzle_mode = surface->u.gfx9.surf.swizzle_mode;
633 	} else {
634 		metadata->u.legacy.microtile = surface->u.legacy.level[0].mode >= RADEON_SURF_MODE_1D ?
635 			RADEON_LAYOUT_TILED : RADEON_LAYOUT_LINEAR;
636 		metadata->u.legacy.macrotile = surface->u.legacy.level[0].mode >= RADEON_SURF_MODE_2D ?
637 			RADEON_LAYOUT_TILED : RADEON_LAYOUT_LINEAR;
638 		metadata->u.legacy.pipe_config = surface->u.legacy.pipe_config;
639 		metadata->u.legacy.bankw = surface->u.legacy.bankw;
640 		metadata->u.legacy.bankh = surface->u.legacy.bankh;
641 		metadata->u.legacy.tile_split = surface->u.legacy.tile_split;
642 		metadata->u.legacy.mtilea = surface->u.legacy.mtilea;
643 		metadata->u.legacy.num_banks = surface->u.legacy.num_banks;
644 		metadata->u.legacy.stride = surface->u.legacy.level[0].nblk_x * surface->bpe;
645 		metadata->u.legacy.scanout = (surface->flags & RADEON_SURF_SCANOUT) != 0;
646 	}
647 	radv_query_opaque_metadata(device, image, metadata);
648 }
649 
650 /* The number of samples can be specified independently of the texture. */
651 static void
radv_image_get_fmask_info(struct radv_device * device,struct radv_image * image,unsigned nr_samples,struct radv_fmask_info * out)652 radv_image_get_fmask_info(struct radv_device *device,
653 			  struct radv_image *image,
654 			  unsigned nr_samples,
655 			  struct radv_fmask_info *out)
656 {
657 	/* FMASK is allocated like an ordinary texture. */
658 	struct radeon_surf fmask = {};
659 	struct ac_surf_info info = image->info;
660 	memset(out, 0, sizeof(*out));
661 
662 	if (device->physical_device->rad_info.chip_class >= GFX9) {
663 		out->alignment = image->surface.u.gfx9.fmask_alignment;
664 		out->size = image->surface.u.gfx9.fmask_size;
665 		return;
666 	}
667 
668 	fmask.blk_w = image->surface.blk_w;
669 	fmask.blk_h = image->surface.blk_h;
670 	info.samples = 1;
671 	fmask.flags = image->surface.flags | RADEON_SURF_FMASK;
672 
673 	if (!image->shareable)
674 		info.surf_index = &device->fmask_mrt_offset_counter;
675 
676 	/* Force 2D tiling if it wasn't set. This may occur when creating
677 	 * FMASK for MSAA resolve on R6xx. On R6xx, the single-sample
678 	 * destination buffer must have an FMASK too. */
679 	fmask.flags = RADEON_SURF_CLR(fmask.flags, MODE);
680 	fmask.flags |= RADEON_SURF_SET(RADEON_SURF_MODE_2D, MODE);
681 
682 	switch (nr_samples) {
683 	case 2:
684 	case 4:
685 		fmask.bpe = 1;
686 		break;
687 	case 8:
688 		fmask.bpe = 4;
689 		break;
690 	default:
691 		return;
692 	}
693 
694 	device->ws->surface_init(device->ws, &info, &fmask);
695 	assert(fmask.u.legacy.level[0].mode == RADEON_SURF_MODE_2D);
696 
697 	out->slice_tile_max = (fmask.u.legacy.level[0].nblk_x * fmask.u.legacy.level[0].nblk_y) / 64;
698 	if (out->slice_tile_max)
699 		out->slice_tile_max -= 1;
700 
701 	out->tile_mode_index = fmask.u.legacy.tiling_index[0];
702 	out->pitch_in_pixels = fmask.u.legacy.level[0].nblk_x;
703 	out->bank_height = fmask.u.legacy.bankh;
704 	out->tile_swizzle = fmask.tile_swizzle;
705 	out->alignment = MAX2(256, fmask.surf_alignment);
706 	out->size = fmask.surf_size;
707 
708 	assert(!out->tile_swizzle || !image->shareable);
709 }
710 
711 static void
radv_image_alloc_fmask(struct radv_device * device,struct radv_image * image)712 radv_image_alloc_fmask(struct radv_device *device,
713 		       struct radv_image *image)
714 {
715 	radv_image_get_fmask_info(device, image, image->info.samples, &image->fmask);
716 
717 	image->fmask.offset = align64(image->size, image->fmask.alignment);
718 	image->size = image->fmask.offset + image->fmask.size;
719 	image->alignment = MAX2(image->alignment, image->fmask.alignment);
720 }
721 
722 static void
radv_image_get_cmask_info(struct radv_device * device,struct radv_image * image,struct radv_cmask_info * out)723 radv_image_get_cmask_info(struct radv_device *device,
724 			  struct radv_image *image,
725 			  struct radv_cmask_info *out)
726 {
727 	unsigned pipe_interleave_bytes = device->physical_device->rad_info.pipe_interleave_bytes;
728 	unsigned num_pipes = device->physical_device->rad_info.num_tile_pipes;
729 	unsigned cl_width, cl_height;
730 
731 	if (device->physical_device->rad_info.chip_class >= GFX9) {
732 		out->alignment = image->surface.u.gfx9.cmask_alignment;
733 		out->size = image->surface.u.gfx9.cmask_size;
734 		return;
735 	}
736 
737 	switch (num_pipes) {
738 	case 2:
739 		cl_width = 32;
740 		cl_height = 16;
741 		break;
742 	case 4:
743 		cl_width = 32;
744 		cl_height = 32;
745 		break;
746 	case 8:
747 		cl_width = 64;
748 		cl_height = 32;
749 		break;
750 	case 16: /* Hawaii */
751 		cl_width = 64;
752 		cl_height = 64;
753 		break;
754 	default:
755 		assert(0);
756 		return;
757 	}
758 
759 	unsigned base_align = num_pipes * pipe_interleave_bytes;
760 
761 	unsigned width = align(image->info.width, cl_width*8);
762 	unsigned height = align(image->info.height, cl_height*8);
763 	unsigned slice_elements = (width * height) / (8*8);
764 
765 	/* Each element of CMASK is a nibble. */
766 	unsigned slice_bytes = slice_elements / 2;
767 
768 	out->slice_tile_max = (width * height) / (128*128);
769 	if (out->slice_tile_max)
770 		out->slice_tile_max -= 1;
771 
772 	out->alignment = MAX2(256, base_align);
773 	out->size = (image->type == VK_IMAGE_TYPE_3D ? image->info.depth : image->info.array_size) *
774 		    align(slice_bytes, base_align);
775 }
776 
777 static void
radv_image_alloc_cmask(struct radv_device * device,struct radv_image * image)778 radv_image_alloc_cmask(struct radv_device *device,
779 		       struct radv_image *image)
780 {
781 	uint32_t clear_value_size = 0;
782 	radv_image_get_cmask_info(device, image, &image->cmask);
783 
784 	image->cmask.offset = align64(image->size, image->cmask.alignment);
785 	/* + 8 for storing the clear values */
786 	if (!image->clear_value_offset) {
787 		image->clear_value_offset = image->cmask.offset + image->cmask.size;
788 		clear_value_size = 8;
789 	}
790 	image->size = image->cmask.offset + image->cmask.size + clear_value_size;
791 	image->alignment = MAX2(image->alignment, image->cmask.alignment);
792 }
793 
794 static void
radv_image_alloc_dcc(struct radv_image * image)795 radv_image_alloc_dcc(struct radv_image *image)
796 {
797 	image->dcc_offset = align64(image->size, image->surface.dcc_alignment);
798 	/* + 16 for storing the clear values + dcc pred */
799 	image->clear_value_offset = image->dcc_offset + image->surface.dcc_size;
800 	image->dcc_pred_offset = image->clear_value_offset + 8;
801 	image->size = image->dcc_offset + image->surface.dcc_size + 16;
802 	image->alignment = MAX2(image->alignment, image->surface.dcc_alignment);
803 }
804 
805 static void
radv_image_alloc_htile(struct radv_image * image)806 radv_image_alloc_htile(struct radv_image *image)
807 {
808 	image->htile_offset = align64(image->size, image->surface.htile_alignment);
809 
810 	/* + 8 for storing the clear values */
811 	image->clear_value_offset = image->htile_offset + image->surface.htile_size;
812 	image->size = image->clear_value_offset + 8;
813 	image->alignment = align64(image->alignment, image->surface.htile_alignment);
814 }
815 
816 static inline bool
radv_image_can_enable_dcc_or_cmask(struct radv_image * image)817 radv_image_can_enable_dcc_or_cmask(struct radv_image *image)
818 {
819 	if (image->info.samples <= 1 &&
820 	    image->info.width * image->info.height <= 512 * 512) {
821 		/* Do not enable CMASK or DCC for small surfaces where the cost
822 		 * of the eliminate pass can be higher than the benefit of fast
823 		 * clear. RadeonSI does this, but the image threshold is
824 		 * different.
825 		 */
826 		return false;
827 	}
828 
829 	return image->usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT &&
830 	       (image->exclusive || image->queue_family_mask == 1);
831 }
832 
833 static inline bool
radv_image_can_enable_dcc(struct radv_image * image)834 radv_image_can_enable_dcc(struct radv_image *image)
835 {
836 	return radv_image_can_enable_dcc_or_cmask(image) &&
837 	       image->surface.dcc_size;
838 }
839 
840 static inline bool
radv_image_can_enable_cmask(struct radv_image * image)841 radv_image_can_enable_cmask(struct radv_image *image)
842 {
843 	if (image->surface.bpe > 8 && image->info.samples == 1) {
844 		/* Do not enable CMASK for non-MSAA images (fast color clear)
845 		 * because 128 bit formats are not supported, but FMASK might
846 		 * still be used.
847 		 */
848 		return false;
849 	}
850 
851 	return radv_image_can_enable_dcc_or_cmask(image) &&
852 	       image->info.levels == 1 &&
853 	       image->info.depth == 1 &&
854 	       !image->surface.is_linear;
855 }
856 
857 static inline bool
radv_image_can_enable_fmask(struct radv_image * image)858 radv_image_can_enable_fmask(struct radv_image *image)
859 {
860 	return image->info.samples > 1 && vk_format_is_color(image->vk_format);
861 }
862 
863 static inline bool
radv_image_can_enable_htile(struct radv_image * image)864 radv_image_can_enable_htile(struct radv_image *image)
865 {
866 	return image->info.levels == 1 && vk_format_is_depth(image->vk_format);
867 }
868 
869 VkResult
radv_image_create(VkDevice _device,const struct radv_image_create_info * create_info,const VkAllocationCallbacks * alloc,VkImage * pImage)870 radv_image_create(VkDevice _device,
871 		  const struct radv_image_create_info *create_info,
872 		  const VkAllocationCallbacks* alloc,
873 		  VkImage *pImage)
874 {
875 	RADV_FROM_HANDLE(radv_device, device, _device);
876 	const VkImageCreateInfo *pCreateInfo = create_info->vk_info;
877 	struct radv_image *image = NULL;
878 	assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO);
879 
880 	radv_assert(pCreateInfo->mipLevels > 0);
881 	radv_assert(pCreateInfo->arrayLayers > 0);
882 	radv_assert(pCreateInfo->samples > 0);
883 	radv_assert(pCreateInfo->extent.width > 0);
884 	radv_assert(pCreateInfo->extent.height > 0);
885 	radv_assert(pCreateInfo->extent.depth > 0);
886 
887 	image = vk_zalloc2(&device->alloc, alloc, sizeof(*image), 8,
888 			   VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
889 	if (!image)
890 		return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
891 
892 	image->type = pCreateInfo->imageType;
893 	image->info.width = pCreateInfo->extent.width;
894 	image->info.height = pCreateInfo->extent.height;
895 	image->info.depth = pCreateInfo->extent.depth;
896 	image->info.samples = pCreateInfo->samples;
897 	image->info.array_size = pCreateInfo->arrayLayers;
898 	image->info.levels = pCreateInfo->mipLevels;
899 
900 	image->vk_format = pCreateInfo->format;
901 	image->tiling = pCreateInfo->tiling;
902 	image->usage = pCreateInfo->usage;
903 	image->flags = pCreateInfo->flags;
904 
905 	image->exclusive = pCreateInfo->sharingMode == VK_SHARING_MODE_EXCLUSIVE;
906 	if (pCreateInfo->sharingMode == VK_SHARING_MODE_CONCURRENT) {
907 		for (uint32_t i = 0; i < pCreateInfo->queueFamilyIndexCount; ++i)
908 			if (pCreateInfo->pQueueFamilyIndices[i] == VK_QUEUE_FAMILY_EXTERNAL_KHR)
909 				image->queue_family_mask |= (1u << RADV_MAX_QUEUE_FAMILIES) - 1u;
910 			else
911 				image->queue_family_mask |= 1u << pCreateInfo->pQueueFamilyIndices[i];
912 	}
913 
914 	image->shareable = vk_find_struct_const(pCreateInfo->pNext,
915 	                                        EXTERNAL_MEMORY_IMAGE_CREATE_INFO_KHR) != NULL;
916 	if (!vk_format_is_depth(pCreateInfo->format) && !create_info->scanout && !image->shareable) {
917 		image->info.surf_index = &device->image_mrt_offset_counter;
918 	}
919 
920 	radv_init_surface(device, &image->surface, create_info);
921 
922 	device->ws->surface_init(device->ws, &image->info, &image->surface);
923 
924 	image->size = image->surface.surf_size;
925 	image->alignment = image->surface.surf_alignment;
926 
927 	if (!create_info->no_metadata_planes) {
928 		/* Try to enable DCC first. */
929 		if (radv_image_can_enable_dcc(image)) {
930 			radv_image_alloc_dcc(image);
931 		} else {
932 			/* When DCC cannot be enabled, try CMASK. */
933 			image->surface.dcc_size = 0;
934 			if (radv_image_can_enable_cmask(image)) {
935 				radv_image_alloc_cmask(device, image);
936 			}
937 		}
938 
939 		/* Try to enable FMASK for multisampled images. */
940 		if (radv_image_can_enable_fmask(image)) {
941 			radv_image_alloc_fmask(device, image);
942 		} else {
943 			/* Otherwise, try to enable HTILE for depth surfaces. */
944 			if (radv_image_can_enable_htile(image) &&
945 			    !(device->instance->debug_flags & RADV_DEBUG_NO_HIZ)) {
946 				radv_image_alloc_htile(image);
947 				image->tc_compatible_htile = image->surface.flags & RADEON_SURF_TC_COMPATIBLE_HTILE;
948 			} else {
949 				image->surface.htile_size = 0;
950 			}
951 		}
952 	} else {
953 		image->surface.dcc_size = 0;
954 		image->surface.htile_size = 0;
955 	}
956 
957 	if (pCreateInfo->flags & VK_IMAGE_CREATE_SPARSE_BINDING_BIT) {
958 		image->alignment = MAX2(image->alignment, 4096);
959 		image->size = align64(image->size, image->alignment);
960 		image->offset = 0;
961 
962 		image->bo = device->ws->buffer_create(device->ws, image->size, image->alignment,
963 		                                      0, RADEON_FLAG_VIRTUAL);
964 		if (!image->bo) {
965 			vk_free2(&device->alloc, alloc, image);
966 			return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
967 		}
968 	}
969 
970 	*pImage = radv_image_to_handle(image);
971 
972 	return VK_SUCCESS;
973 }
974 
975 static void
radv_image_view_make_descriptor(struct radv_image_view * iview,struct radv_device * device,const VkComponentMapping * components,bool is_storage_image)976 radv_image_view_make_descriptor(struct radv_image_view *iview,
977 				struct radv_device *device,
978 				const VkComponentMapping *components,
979 				bool is_storage_image)
980 {
981 	struct radv_image *image = iview->image;
982 	bool is_stencil = iview->aspect_mask == VK_IMAGE_ASPECT_STENCIL_BIT;
983 	uint32_t blk_w;
984 	uint32_t *descriptor;
985 	uint32_t hw_level = 0;
986 
987 	if (is_storage_image) {
988 		descriptor = iview->storage_descriptor;
989 	} else {
990 		descriptor = iview->descriptor;
991 	}
992 
993 	assert(image->surface.blk_w % vk_format_get_blockwidth(image->vk_format) == 0);
994 	blk_w = image->surface.blk_w / vk_format_get_blockwidth(image->vk_format) * vk_format_get_blockwidth(iview->vk_format);
995 
996 	if (device->physical_device->rad_info.chip_class >= GFX9)
997 		hw_level = iview->base_mip;
998 	si_make_texture_descriptor(device, image, is_storage_image,
999 				   iview->type,
1000 				   iview->vk_format,
1001 				   components,
1002 				   hw_level, hw_level + iview->level_count - 1,
1003 				   iview->base_layer,
1004 				   iview->base_layer + iview->layer_count - 1,
1005 				   iview->extent.width,
1006 				   iview->extent.height,
1007 				   iview->extent.depth,
1008 				   descriptor,
1009 				   descriptor + 8);
1010 
1011 	const struct legacy_surf_level *base_level_info = NULL;
1012 	if (device->physical_device->rad_info.chip_class <= GFX9) {
1013 		if (is_stencil)
1014 			base_level_info = &image->surface.u.legacy.stencil_level[iview->base_mip];
1015 		else
1016 			base_level_info = &image->surface.u.legacy.level[iview->base_mip];
1017 	}
1018 	si_set_mutable_tex_desc_fields(device, image,
1019 				       base_level_info,
1020 				       iview->base_mip,
1021 				       iview->base_mip,
1022 				       blk_w, is_stencil, is_storage_image, descriptor);
1023 }
1024 
1025 void
radv_image_view_init(struct radv_image_view * iview,struct radv_device * device,const VkImageViewCreateInfo * pCreateInfo)1026 radv_image_view_init(struct radv_image_view *iview,
1027 		     struct radv_device *device,
1028 		     const VkImageViewCreateInfo* pCreateInfo)
1029 {
1030 	RADV_FROM_HANDLE(radv_image, image, pCreateInfo->image);
1031 	const VkImageSubresourceRange *range = &pCreateInfo->subresourceRange;
1032 
1033 	switch (image->type) {
1034 	case VK_IMAGE_TYPE_1D:
1035 	case VK_IMAGE_TYPE_2D:
1036 		assert(range->baseArrayLayer + radv_get_layerCount(image, range) - 1 <= image->info.array_size);
1037 		break;
1038 	case VK_IMAGE_TYPE_3D:
1039 		assert(range->baseArrayLayer + radv_get_layerCount(image, range) - 1
1040 		       <= radv_minify(image->info.depth, range->baseMipLevel));
1041 		break;
1042 	default:
1043 		unreachable("bad VkImageType");
1044 	}
1045 	iview->image = image;
1046 	iview->bo = image->bo;
1047 	iview->type = pCreateInfo->viewType;
1048 	iview->vk_format = pCreateInfo->format;
1049 	iview->aspect_mask = pCreateInfo->subresourceRange.aspectMask;
1050 
1051 	if (iview->aspect_mask == VK_IMAGE_ASPECT_STENCIL_BIT) {
1052 		iview->vk_format = vk_format_stencil_only(iview->vk_format);
1053 	} else if (iview->aspect_mask == VK_IMAGE_ASPECT_DEPTH_BIT) {
1054 		iview->vk_format = vk_format_depth_only(iview->vk_format);
1055 	}
1056 
1057 	if (device->physical_device->rad_info.chip_class >= GFX9) {
1058 		iview->extent = (VkExtent3D) {
1059 			.width = image->info.width,
1060 			.height = image->info.height,
1061 			.depth = image->info.depth,
1062 		};
1063 	} else {
1064 		iview->extent = (VkExtent3D) {
1065 			.width  = radv_minify(image->info.width , range->baseMipLevel),
1066 			.height = radv_minify(image->info.height, range->baseMipLevel),
1067 			.depth  = radv_minify(image->info.depth , range->baseMipLevel),
1068 		};
1069 	}
1070 
1071 	if (iview->vk_format != image->vk_format) {
1072 		unsigned view_bw = vk_format_get_blockwidth(iview->vk_format);
1073 		unsigned view_bh = vk_format_get_blockheight(iview->vk_format);
1074 		unsigned img_bw = vk_format_get_blockwidth(image->vk_format);
1075 		unsigned img_bh = vk_format_get_blockheight(image->vk_format);
1076 
1077 		iview->extent.width = round_up_u32(iview->extent.width * view_bw, img_bw);
1078 		iview->extent.height = round_up_u32(iview->extent.height * view_bh, img_bh);
1079 
1080 		/* Comment ported from amdvlk -
1081 		 * If we have the following image:
1082 		 *              Uncompressed pixels   Compressed block sizes (4x4)
1083 		 *      mip0:       22 x 22                   6 x 6
1084 		 *      mip1:       11 x 11                   3 x 3
1085 		 *      mip2:        5 x  5                   2 x 2
1086 		 *      mip3:        2 x  2                   1 x 1
1087 		 *      mip4:        1 x  1                   1 x 1
1088 		 *
1089 		 * On GFX9 the descriptor is always programmed with the WIDTH and HEIGHT of the base level and the HW is
1090 		 * calculating the degradation of the block sizes down the mip-chain as follows (straight-up
1091 		 * divide-by-two integer math):
1092 		 *      mip0:  6x6
1093 		 *      mip1:  3x3
1094 		 *      mip2:  1x1
1095 		 *      mip3:  1x1
1096 		 *
1097 		 * This means that mip2 will be missing texels.
1098 		 *
1099 		 * Fix this by calculating the base mip's width and height, then convert that, and round it
1100 		 * back up to get the level 0 size.
1101 		 * Clamp the converted size between the original values, and next power of two, which
1102 		 * means we don't oversize the image.
1103 		 */
1104 		 if (device->physical_device->rad_info.chip_class >= GFX9 &&
1105 		     vk_format_is_compressed(image->vk_format) &&
1106 		     !vk_format_is_compressed(iview->vk_format)) {
1107 			 unsigned rounded_img_w = util_next_power_of_two(iview->extent.width);
1108 			 unsigned rounded_img_h = util_next_power_of_two(iview->extent.height);
1109 			 unsigned lvl_width  = radv_minify(image->info.width , range->baseMipLevel);
1110 			 unsigned lvl_height = radv_minify(image->info.height, range->baseMipLevel);
1111 
1112 			 lvl_width = round_up_u32(lvl_width * view_bw, img_bw);
1113 			 lvl_height = round_up_u32(lvl_height * view_bh, img_bh);
1114 
1115 			 lvl_width <<= range->baseMipLevel;
1116 			 lvl_height <<= range->baseMipLevel;
1117 
1118 			 iview->extent.width = CLAMP(lvl_width, iview->extent.width, rounded_img_w);
1119 			 iview->extent.height = CLAMP(lvl_height, iview->extent.height, rounded_img_h);
1120 		 }
1121 	}
1122 
1123 	iview->base_layer = range->baseArrayLayer;
1124 	iview->layer_count = radv_get_layerCount(image, range);
1125 	iview->base_mip = range->baseMipLevel;
1126 	iview->level_count = radv_get_levelCount(image, range);
1127 
1128 	radv_image_view_make_descriptor(iview, device, &pCreateInfo->components, false);
1129 	radv_image_view_make_descriptor(iview, device, &pCreateInfo->components, true);
1130 }
1131 
radv_layout_has_htile(const struct radv_image * image,VkImageLayout layout,unsigned queue_mask)1132 bool radv_layout_has_htile(const struct radv_image *image,
1133                            VkImageLayout layout,
1134                            unsigned queue_mask)
1135 {
1136 	if (image->surface.htile_size && image->tc_compatible_htile)
1137 		return layout != VK_IMAGE_LAYOUT_GENERAL;
1138 
1139 	return image->surface.htile_size &&
1140 	       (layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL ||
1141 	        layout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) &&
1142 	       queue_mask == (1u << RADV_QUEUE_GENERAL);
1143 }
1144 
radv_layout_is_htile_compressed(const struct radv_image * image,VkImageLayout layout,unsigned queue_mask)1145 bool radv_layout_is_htile_compressed(const struct radv_image *image,
1146                                      VkImageLayout layout,
1147                                      unsigned queue_mask)
1148 {
1149 	if (image->surface.htile_size && image->tc_compatible_htile)
1150 		return layout != VK_IMAGE_LAYOUT_GENERAL;
1151 
1152 	return image->surface.htile_size &&
1153 	       (layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL ||
1154 	        layout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) &&
1155 	       queue_mask == (1u << RADV_QUEUE_GENERAL);
1156 }
1157 
radv_layout_can_fast_clear(const struct radv_image * image,VkImageLayout layout,unsigned queue_mask)1158 bool radv_layout_can_fast_clear(const struct radv_image *image,
1159 			        VkImageLayout layout,
1160 			        unsigned queue_mask)
1161 {
1162 	return layout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL &&
1163 		queue_mask == (1u << RADV_QUEUE_GENERAL);
1164 }
1165 
radv_layout_dcc_compressed(const struct radv_image * image,VkImageLayout layout,unsigned queue_mask)1166 bool radv_layout_dcc_compressed(const struct radv_image *image,
1167 			        VkImageLayout layout,
1168 			        unsigned queue_mask)
1169 {
1170 	/* Don't compress compute transfer dst, as image stores are not supported. */
1171 	if (layout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL &&
1172 	    (queue_mask & (1u << RADV_QUEUE_COMPUTE)))
1173 		return false;
1174 
1175 	return image->surface.dcc_size && layout != VK_IMAGE_LAYOUT_GENERAL;
1176 }
1177 
1178 
radv_image_queue_family_mask(const struct radv_image * image,uint32_t family,uint32_t queue_family)1179 unsigned radv_image_queue_family_mask(const struct radv_image *image, uint32_t family, uint32_t queue_family)
1180 {
1181 	if (!image->exclusive)
1182 		return image->queue_family_mask;
1183 	if (family == VK_QUEUE_FAMILY_EXTERNAL_KHR)
1184 		return (1u << RADV_MAX_QUEUE_FAMILIES) - 1u;
1185 	if (family == VK_QUEUE_FAMILY_IGNORED)
1186 		return 1u << queue_family;
1187 	return 1u << family;
1188 }
1189 
1190 VkResult
radv_CreateImage(VkDevice device,const VkImageCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkImage * pImage)1191 radv_CreateImage(VkDevice device,
1192 		 const VkImageCreateInfo *pCreateInfo,
1193 		 const VkAllocationCallbacks *pAllocator,
1194 		 VkImage *pImage)
1195 {
1196 #ifdef ANDROID
1197 	const VkNativeBufferANDROID *gralloc_info =
1198 		vk_find_struct_const(pCreateInfo->pNext, NATIVE_BUFFER_ANDROID);
1199 
1200 	if (gralloc_info)
1201 		return radv_image_from_gralloc(device, pCreateInfo, gralloc_info,
1202 		                              pAllocator, pImage);
1203 #endif
1204 
1205 	const struct wsi_image_create_info *wsi_info =
1206 		vk_find_struct_const(pCreateInfo->pNext, WSI_IMAGE_CREATE_INFO_MESA);
1207 	bool scanout = wsi_info && wsi_info->scanout;
1208 
1209 	return radv_image_create(device,
1210 				 &(struct radv_image_create_info) {
1211 					 .vk_info = pCreateInfo,
1212 					 .scanout = scanout,
1213 				 },
1214 				 pAllocator,
1215 				 pImage);
1216 }
1217 
1218 void
radv_DestroyImage(VkDevice _device,VkImage _image,const VkAllocationCallbacks * pAllocator)1219 radv_DestroyImage(VkDevice _device, VkImage _image,
1220 		  const VkAllocationCallbacks *pAllocator)
1221 {
1222 	RADV_FROM_HANDLE(radv_device, device, _device);
1223 	RADV_FROM_HANDLE(radv_image, image, _image);
1224 
1225 	if (!image)
1226 		return;
1227 
1228 	if (image->flags & VK_IMAGE_CREATE_SPARSE_BINDING_BIT)
1229 		device->ws->buffer_destroy(image->bo);
1230 
1231 	if (image->owned_memory != VK_NULL_HANDLE)
1232 		radv_FreeMemory(_device, image->owned_memory, pAllocator);
1233 
1234 	vk_free2(&device->alloc, pAllocator, image);
1235 }
1236 
radv_GetImageSubresourceLayout(VkDevice _device,VkImage _image,const VkImageSubresource * pSubresource,VkSubresourceLayout * pLayout)1237 void radv_GetImageSubresourceLayout(
1238 	VkDevice                                    _device,
1239 	VkImage                                     _image,
1240 	const VkImageSubresource*                   pSubresource,
1241 	VkSubresourceLayout*                        pLayout)
1242 {
1243 	RADV_FROM_HANDLE(radv_image, image, _image);
1244 	RADV_FROM_HANDLE(radv_device, device, _device);
1245 	int level = pSubresource->mipLevel;
1246 	int layer = pSubresource->arrayLayer;
1247 	struct radeon_surf *surface = &image->surface;
1248 
1249 	if (device->physical_device->rad_info.chip_class >= GFX9) {
1250 		pLayout->offset = surface->u.gfx9.offset[level] + surface->u.gfx9.surf_slice_size * layer;
1251 		pLayout->rowPitch = surface->u.gfx9.surf_pitch * surface->bpe;
1252 		pLayout->arrayPitch = surface->u.gfx9.surf_slice_size;
1253 		pLayout->depthPitch = surface->u.gfx9.surf_slice_size;
1254 		pLayout->size = surface->u.gfx9.surf_slice_size;
1255 		if (image->type == VK_IMAGE_TYPE_3D)
1256 			pLayout->size *= u_minify(image->info.depth, level);
1257 	} else {
1258 		pLayout->offset = surface->u.legacy.level[level].offset + (uint64_t)surface->u.legacy.level[level].slice_size_dw * 4 * layer;
1259 		pLayout->rowPitch = surface->u.legacy.level[level].nblk_x * surface->bpe;
1260 		pLayout->arrayPitch = (uint64_t)surface->u.legacy.level[level].slice_size_dw * 4;
1261 		pLayout->depthPitch = (uint64_t)surface->u.legacy.level[level].slice_size_dw * 4;
1262 		pLayout->size = (uint64_t)surface->u.legacy.level[level].slice_size_dw * 4;
1263 		if (image->type == VK_IMAGE_TYPE_3D)
1264 			pLayout->size *= u_minify(image->info.depth, level);
1265 	}
1266 }
1267 
1268 
1269 VkResult
radv_CreateImageView(VkDevice _device,const VkImageViewCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkImageView * pView)1270 radv_CreateImageView(VkDevice _device,
1271 		     const VkImageViewCreateInfo *pCreateInfo,
1272 		     const VkAllocationCallbacks *pAllocator,
1273 		     VkImageView *pView)
1274 {
1275 	RADV_FROM_HANDLE(radv_device, device, _device);
1276 	struct radv_image_view *view;
1277 
1278 	view = vk_alloc2(&device->alloc, pAllocator, sizeof(*view), 8,
1279 			   VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1280 	if (view == NULL)
1281 		return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1282 
1283 	radv_image_view_init(view, device, pCreateInfo);
1284 
1285 	*pView = radv_image_view_to_handle(view);
1286 
1287 	return VK_SUCCESS;
1288 }
1289 
1290 void
radv_DestroyImageView(VkDevice _device,VkImageView _iview,const VkAllocationCallbacks * pAllocator)1291 radv_DestroyImageView(VkDevice _device, VkImageView _iview,
1292 		      const VkAllocationCallbacks *pAllocator)
1293 {
1294 	RADV_FROM_HANDLE(radv_device, device, _device);
1295 	RADV_FROM_HANDLE(radv_image_view, iview, _iview);
1296 
1297 	if (!iview)
1298 		return;
1299 	vk_free2(&device->alloc, pAllocator, iview);
1300 }
1301 
radv_buffer_view_init(struct radv_buffer_view * view,struct radv_device * device,const VkBufferViewCreateInfo * pCreateInfo)1302 void radv_buffer_view_init(struct radv_buffer_view *view,
1303 			   struct radv_device *device,
1304 			   const VkBufferViewCreateInfo* pCreateInfo)
1305 {
1306 	RADV_FROM_HANDLE(radv_buffer, buffer, pCreateInfo->buffer);
1307 
1308 	view->bo = buffer->bo;
1309 	view->range = pCreateInfo->range == VK_WHOLE_SIZE ?
1310 		buffer->size - pCreateInfo->offset : pCreateInfo->range;
1311 	view->vk_format = pCreateInfo->format;
1312 
1313 	radv_make_buffer_descriptor(device, buffer, view->vk_format,
1314 				    pCreateInfo->offset, view->range, view->state);
1315 }
1316 
1317 VkResult
radv_CreateBufferView(VkDevice _device,const VkBufferViewCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkBufferView * pView)1318 radv_CreateBufferView(VkDevice _device,
1319 		      const VkBufferViewCreateInfo *pCreateInfo,
1320 		      const VkAllocationCallbacks *pAllocator,
1321 		      VkBufferView *pView)
1322 {
1323 	RADV_FROM_HANDLE(radv_device, device, _device);
1324 	struct radv_buffer_view *view;
1325 
1326 	view = vk_alloc2(&device->alloc, pAllocator, sizeof(*view), 8,
1327 			   VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1328 	if (!view)
1329 		return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1330 
1331 	radv_buffer_view_init(view, device, pCreateInfo);
1332 
1333 	*pView = radv_buffer_view_to_handle(view);
1334 
1335 	return VK_SUCCESS;
1336 }
1337 
1338 void
radv_DestroyBufferView(VkDevice _device,VkBufferView bufferView,const VkAllocationCallbacks * pAllocator)1339 radv_DestroyBufferView(VkDevice _device, VkBufferView bufferView,
1340 		       const VkAllocationCallbacks *pAllocator)
1341 {
1342 	RADV_FROM_HANDLE(radv_device, device, _device);
1343 	RADV_FROM_HANDLE(radv_buffer_view, view, bufferView);
1344 
1345 	if (!view)
1346 		return;
1347 
1348 	vk_free2(&device->alloc, pAllocator, view);
1349 }
1350