1 /*
2  * Copyright © 2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include "util/mesa-sha1.h"
25 #include "util/debug.h"
26 #include "util/disk_cache.h"
27 #include "util/u_atomic.h"
28 #include "radv_debug.h"
29 #include "radv_private.h"
30 #include "radv_shader.h"
31 
32 #include "ac_nir_to_llvm.h"
33 
34 struct cache_entry_variant_info {
35 	struct ac_shader_variant_info variant_info;
36 	struct ac_shader_config config;
37 	uint32_t rsrc1, rsrc2;
38 };
39 
40 struct cache_entry {
41 	union {
42 		unsigned char sha1[20];
43 		uint32_t sha1_dw[5];
44 	};
45 	uint32_t code_sizes[MESA_SHADER_STAGES];
46 	struct radv_shader_variant *variants[MESA_SHADER_STAGES];
47 	char code[0];
48 };
49 
50 void
radv_pipeline_cache_init(struct radv_pipeline_cache * cache,struct radv_device * device)51 radv_pipeline_cache_init(struct radv_pipeline_cache *cache,
52 			 struct radv_device *device)
53 {
54 	cache->device = device;
55 	pthread_mutex_init(&cache->mutex, NULL);
56 
57 	cache->modified = false;
58 	cache->kernel_count = 0;
59 	cache->total_size = 0;
60 	cache->table_size = 1024;
61 	const size_t byte_size = cache->table_size * sizeof(cache->hash_table[0]);
62 	cache->hash_table = malloc(byte_size);
63 
64 	/* We don't consider allocation failure fatal, we just start with a 0-sized
65 	 * cache. Disable caching when we want to keep shader debug info, since
66 	 * we don't get the debug info on cached shaders. */
67 	if (cache->hash_table == NULL ||
68 	    (device->instance->debug_flags & RADV_DEBUG_NO_CACHE) ||
69 	    device->keep_shader_info)
70 		cache->table_size = 0;
71 	else
72 		memset(cache->hash_table, 0, byte_size);
73 }
74 
75 void
radv_pipeline_cache_finish(struct radv_pipeline_cache * cache)76 radv_pipeline_cache_finish(struct radv_pipeline_cache *cache)
77 {
78 	for (unsigned i = 0; i < cache->table_size; ++i)
79 		if (cache->hash_table[i]) {
80 			for(int j = 0; j < MESA_SHADER_STAGES; ++j)  {
81 				if (cache->hash_table[i]->variants[j])
82 					radv_shader_variant_destroy(cache->device,
83 								    cache->hash_table[i]->variants[j]);
84 			}
85 			vk_free(&cache->alloc, cache->hash_table[i]);
86 		}
87 	pthread_mutex_destroy(&cache->mutex);
88 	free(cache->hash_table);
89 }
90 
91 static uint32_t
entry_size(struct cache_entry * entry)92 entry_size(struct cache_entry *entry)
93 {
94 	size_t ret = sizeof(*entry);
95 	for (int i = 0; i < MESA_SHADER_STAGES; ++i)
96 		if (entry->code_sizes[i])
97 			ret += sizeof(struct cache_entry_variant_info) + entry->code_sizes[i];
98 	return ret;
99 }
100 
101 void
radv_hash_shaders(unsigned char * hash,const VkPipelineShaderStageCreateInfo ** stages,const struct radv_pipeline_layout * layout,const struct radv_pipeline_key * key,uint32_t flags)102 radv_hash_shaders(unsigned char *hash,
103 		  const VkPipelineShaderStageCreateInfo **stages,
104 		  const struct radv_pipeline_layout *layout,
105 		  const struct radv_pipeline_key *key,
106 		  uint32_t flags)
107 {
108 	struct mesa_sha1 ctx;
109 
110 	_mesa_sha1_init(&ctx);
111 	if (key)
112 		_mesa_sha1_update(&ctx, key, sizeof(*key));
113 	if (layout)
114 		_mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
115 
116 	for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
117 		if (stages[i]) {
118 			RADV_FROM_HANDLE(radv_shader_module, module, stages[i]->module);
119 			const VkSpecializationInfo *spec_info = stages[i]->pSpecializationInfo;
120 
121 			_mesa_sha1_update(&ctx, module->sha1, sizeof(module->sha1));
122 			_mesa_sha1_update(&ctx, stages[i]->pName, strlen(stages[i]->pName));
123 			if (spec_info) {
124 				_mesa_sha1_update(&ctx, spec_info->pMapEntries,
125 				                  spec_info->mapEntryCount * sizeof spec_info->pMapEntries[0]);
126 				_mesa_sha1_update(&ctx, spec_info->pData, spec_info->dataSize);
127 			}
128 		}
129 	}
130 	_mesa_sha1_update(&ctx, &flags, 4);
131 	_mesa_sha1_final(&ctx, hash);
132 }
133 
134 
135 static struct cache_entry *
radv_pipeline_cache_search_unlocked(struct radv_pipeline_cache * cache,const unsigned char * sha1)136 radv_pipeline_cache_search_unlocked(struct radv_pipeline_cache *cache,
137 				    const unsigned char *sha1)
138 {
139 	const uint32_t mask = cache->table_size - 1;
140 	const uint32_t start = (*(uint32_t *) sha1);
141 
142 	if (cache->table_size == 0)
143 		return NULL;
144 
145 	for (uint32_t i = 0; i < cache->table_size; i++) {
146 		const uint32_t index = (start + i) & mask;
147 		struct cache_entry *entry = cache->hash_table[index];
148 
149 		if (!entry)
150 			return NULL;
151 
152 		if (memcmp(entry->sha1, sha1, sizeof(entry->sha1)) == 0) {
153 			return entry;
154 		}
155 	}
156 
157 	unreachable("hash table should never be full");
158 }
159 
160 static struct cache_entry *
radv_pipeline_cache_search(struct radv_pipeline_cache * cache,const unsigned char * sha1)161 radv_pipeline_cache_search(struct radv_pipeline_cache *cache,
162 			   const unsigned char *sha1)
163 {
164 	struct cache_entry *entry;
165 
166 	pthread_mutex_lock(&cache->mutex);
167 
168 	entry = radv_pipeline_cache_search_unlocked(cache, sha1);
169 
170 	pthread_mutex_unlock(&cache->mutex);
171 
172 	return entry;
173 }
174 
175 static void
radv_pipeline_cache_set_entry(struct radv_pipeline_cache * cache,struct cache_entry * entry)176 radv_pipeline_cache_set_entry(struct radv_pipeline_cache *cache,
177 			      struct cache_entry *entry)
178 {
179 	const uint32_t mask = cache->table_size - 1;
180 	const uint32_t start = entry->sha1_dw[0];
181 
182 	/* We'll always be able to insert when we get here. */
183 	assert(cache->kernel_count < cache->table_size / 2);
184 
185 	for (uint32_t i = 0; i < cache->table_size; i++) {
186 		const uint32_t index = (start + i) & mask;
187 		if (!cache->hash_table[index]) {
188 			cache->hash_table[index] = entry;
189 			break;
190 		}
191 	}
192 
193 	cache->total_size += entry_size(entry);
194 	cache->kernel_count++;
195 }
196 
197 
198 static VkResult
radv_pipeline_cache_grow(struct radv_pipeline_cache * cache)199 radv_pipeline_cache_grow(struct radv_pipeline_cache *cache)
200 {
201 	const uint32_t table_size = cache->table_size * 2;
202 	const uint32_t old_table_size = cache->table_size;
203 	const size_t byte_size = table_size * sizeof(cache->hash_table[0]);
204 	struct cache_entry **table;
205 	struct cache_entry **old_table = cache->hash_table;
206 
207 	table = malloc(byte_size);
208 	if (table == NULL)
209 		return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
210 
211 	cache->hash_table = table;
212 	cache->table_size = table_size;
213 	cache->kernel_count = 0;
214 	cache->total_size = 0;
215 
216 	memset(cache->hash_table, 0, byte_size);
217 	for (uint32_t i = 0; i < old_table_size; i++) {
218 		struct cache_entry *entry = old_table[i];
219 		if (!entry)
220 			continue;
221 
222 		radv_pipeline_cache_set_entry(cache, entry);
223 	}
224 
225 	free(old_table);
226 
227 	return VK_SUCCESS;
228 }
229 
230 static void
radv_pipeline_cache_add_entry(struct radv_pipeline_cache * cache,struct cache_entry * entry)231 radv_pipeline_cache_add_entry(struct radv_pipeline_cache *cache,
232 			      struct cache_entry *entry)
233 {
234 	if (cache->kernel_count == cache->table_size / 2)
235 		radv_pipeline_cache_grow(cache);
236 
237 	/* Failing to grow that hash table isn't fatal, but may mean we don't
238 	 * have enough space to add this new kernel. Only add it if there's room.
239 	 */
240 	if (cache->kernel_count < cache->table_size / 2)
241 		radv_pipeline_cache_set_entry(cache, entry);
242 }
243 
244 bool
radv_create_shader_variants_from_pipeline_cache(struct radv_device * device,struct radv_pipeline_cache * cache,const unsigned char * sha1,struct radv_shader_variant ** variants)245 radv_create_shader_variants_from_pipeline_cache(struct radv_device *device,
246 					        struct radv_pipeline_cache *cache,
247 					        const unsigned char *sha1,
248 					        struct radv_shader_variant **variants)
249 {
250 	struct cache_entry *entry;
251 
252 	if (!cache)
253 		cache = device->mem_cache;
254 
255 	pthread_mutex_lock(&cache->mutex);
256 
257 	entry = radv_pipeline_cache_search_unlocked(cache, sha1);
258 
259 	if (!entry) {
260 		/* Again, don't cache when we want debug info, since this isn't
261 		 * present in the cache. */
262 		if (!device->physical_device->disk_cache ||
263 		    (device->instance->debug_flags & RADV_DEBUG_NO_CACHE) ||
264 		    device->keep_shader_info) {
265 			pthread_mutex_unlock(&cache->mutex);
266 			return false;
267 		}
268 
269 		uint8_t disk_sha1[20];
270 		disk_cache_compute_key(device->physical_device->disk_cache,
271 				       sha1, 20, disk_sha1);
272 		entry = (struct cache_entry *)
273 			disk_cache_get(device->physical_device->disk_cache,
274 				       disk_sha1, NULL);
275 		if (!entry) {
276 			pthread_mutex_unlock(&cache->mutex);
277 			return false;
278 		} else {
279 			size_t size = entry_size(entry);
280 			struct cache_entry *new_entry = vk_alloc(&cache->alloc, size, 8,
281 								 VK_SYSTEM_ALLOCATION_SCOPE_CACHE);
282 			if (!new_entry) {
283 				free(entry);
284 				pthread_mutex_unlock(&cache->mutex);
285 				return false;
286 			}
287 
288 			memcpy(new_entry, entry, entry_size(entry));
289 			free(entry);
290 			entry = new_entry;
291 
292 			radv_pipeline_cache_add_entry(cache, new_entry);
293 		}
294 	}
295 
296 	char *p = entry->code;
297 	for(int i = 0; i < MESA_SHADER_STAGES; ++i) {
298 		if (!entry->variants[i] && entry->code_sizes[i]) {
299 			struct radv_shader_variant *variant;
300 			struct cache_entry_variant_info info;
301 
302 			variant = calloc(1, sizeof(struct radv_shader_variant));
303 			if (!variant) {
304 				pthread_mutex_unlock(&cache->mutex);
305 				return false;
306 			}
307 
308 			memcpy(&info, p, sizeof(struct cache_entry_variant_info));
309 			p += sizeof(struct cache_entry_variant_info);
310 
311 			variant->config = info.config;
312 			variant->info = info.variant_info;
313 			variant->rsrc1 = info.rsrc1;
314 			variant->rsrc2 = info.rsrc2;
315 			variant->code_size = entry->code_sizes[i];
316 			variant->ref_count = 1;
317 
318 			void *ptr = radv_alloc_shader_memory(device, variant);
319 			memcpy(ptr, p, entry->code_sizes[i]);
320 			p += entry->code_sizes[i];
321 
322 			entry->variants[i] = variant;
323 		} else if (entry->code_sizes[i]) {
324 			p += sizeof(struct cache_entry_variant_info) + entry->code_sizes[i];
325 		}
326 
327 	}
328 
329 	for (int i = 0; i < MESA_SHADER_STAGES; ++i)
330 		if (entry->variants[i])
331 			p_atomic_inc(&entry->variants[i]->ref_count);
332 
333 	memcpy(variants, entry->variants, sizeof(entry->variants));
334 	pthread_mutex_unlock(&cache->mutex);
335 	return true;
336 }
337 
338 void
radv_pipeline_cache_insert_shaders(struct radv_device * device,struct radv_pipeline_cache * cache,const unsigned char * sha1,struct radv_shader_variant ** variants,const void * const * codes,const unsigned * code_sizes)339 radv_pipeline_cache_insert_shaders(struct radv_device *device,
340 				   struct radv_pipeline_cache *cache,
341 				   const unsigned char *sha1,
342 				   struct radv_shader_variant **variants,
343 				   const void *const *codes,
344 				   const unsigned *code_sizes)
345 {
346 	if (!cache)
347 		cache = device->mem_cache;
348 
349 	pthread_mutex_lock(&cache->mutex);
350 	struct cache_entry *entry = radv_pipeline_cache_search_unlocked(cache, sha1);
351 	if (entry) {
352 		for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
353 			if (entry->variants[i]) {
354 				radv_shader_variant_destroy(cache->device, variants[i]);
355 				variants[i] = entry->variants[i];
356 			} else {
357 				entry->variants[i] = variants[i];
358 			}
359 			if (variants[i])
360 				p_atomic_inc(&variants[i]->ref_count);
361 		}
362 		pthread_mutex_unlock(&cache->mutex);
363 		return;
364 	}
365 	size_t size = sizeof(*entry);
366 	for (int i = 0; i < MESA_SHADER_STAGES; ++i)
367 		if (variants[i])
368 			size += sizeof(struct cache_entry_variant_info) + code_sizes[i];
369 
370 
371 	entry = vk_alloc(&cache->alloc, size, 8,
372 			   VK_SYSTEM_ALLOCATION_SCOPE_CACHE);
373 	if (!entry) {
374 		pthread_mutex_unlock(&cache->mutex);
375 		return;
376 	}
377 
378 	memset(entry, 0, sizeof(*entry));
379 	memcpy(entry->sha1, sha1, 20);
380 
381 	char* p = entry->code;
382 	struct cache_entry_variant_info info;
383 	memset(&info, 0, sizeof(info));
384 
385 	for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
386 		if (!variants[i])
387 			continue;
388 
389 		entry->code_sizes[i] = code_sizes[i];
390 
391 		info.config = variants[i]->config;
392 		info.variant_info = variants[i]->info;
393 		info.rsrc1 = variants[i]->rsrc1;
394 		info.rsrc2 = variants[i]->rsrc2;
395 		memcpy(p, &info, sizeof(struct cache_entry_variant_info));
396 		p += sizeof(struct cache_entry_variant_info);
397 
398 		memcpy(p, codes[i], code_sizes[i]);
399 		p += code_sizes[i];
400 	}
401 
402 	/* Always add cache items to disk. This will allow collection of
403 	 * compiled shaders by third parties such as steam, even if the app
404 	 * implements its own pipeline cache.
405 	 */
406 	if (device->physical_device->disk_cache) {
407 		uint8_t disk_sha1[20];
408 		disk_cache_compute_key(device->physical_device->disk_cache, sha1, 20,
409 			       disk_sha1);
410 		disk_cache_put(device->physical_device->disk_cache,
411 			       disk_sha1, entry, entry_size(entry), NULL);
412 	}
413 
414 	/* We delay setting the variant so we have reproducible disk cache
415 	 * items.
416 	 */
417 	for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
418 		if (!variants[i])
419 			continue;
420 
421 		entry->variants[i] = variants[i];
422 		p_atomic_inc(&variants[i]->ref_count);
423 	}
424 
425 	radv_pipeline_cache_add_entry(cache, entry);
426 
427 	cache->modified = true;
428 	pthread_mutex_unlock(&cache->mutex);
429 	return;
430 }
431 
432 struct cache_header {
433 	uint32_t header_size;
434 	uint32_t header_version;
435 	uint32_t vendor_id;
436 	uint32_t device_id;
437 	uint8_t  uuid[VK_UUID_SIZE];
438 };
439 
440 void
radv_pipeline_cache_load(struct radv_pipeline_cache * cache,const void * data,size_t size)441 radv_pipeline_cache_load(struct radv_pipeline_cache *cache,
442 			 const void *data, size_t size)
443 {
444 	struct radv_device *device = cache->device;
445 	struct cache_header header;
446 
447 	if (size < sizeof(header))
448 		return;
449 	memcpy(&header, data, sizeof(header));
450 	if (header.header_size < sizeof(header))
451 		return;
452 	if (header.header_version != VK_PIPELINE_CACHE_HEADER_VERSION_ONE)
453 		return;
454 	if (header.vendor_id != ATI_VENDOR_ID)
455 		return;
456 	if (header.device_id != device->physical_device->rad_info.pci_id)
457 		return;
458 	if (memcmp(header.uuid, device->physical_device->cache_uuid, VK_UUID_SIZE) != 0)
459 		return;
460 
461 	char *end = (void *) data + size;
462 	char *p = (void *) data + header.header_size;
463 
464 	while (end - p >= sizeof(struct cache_entry)) {
465 		struct cache_entry *entry = (struct cache_entry*)p;
466 		struct cache_entry *dest_entry;
467 		size_t size = entry_size(entry);
468 		if(end - p < size)
469 			break;
470 
471 		dest_entry = vk_alloc(&cache->alloc, size,
472 					8, VK_SYSTEM_ALLOCATION_SCOPE_CACHE);
473 		if (dest_entry) {
474 			memcpy(dest_entry, entry, size);
475 			for (int i = 0; i < MESA_SHADER_STAGES; ++i)
476 				dest_entry->variants[i] = NULL;
477 			radv_pipeline_cache_add_entry(cache, dest_entry);
478 		}
479 		p += size;
480 	}
481 }
482 
radv_CreatePipelineCache(VkDevice _device,const VkPipelineCacheCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkPipelineCache * pPipelineCache)483 VkResult radv_CreatePipelineCache(
484 	VkDevice                                    _device,
485 	const VkPipelineCacheCreateInfo*            pCreateInfo,
486 	const VkAllocationCallbacks*                pAllocator,
487 	VkPipelineCache*                            pPipelineCache)
488 {
489 	RADV_FROM_HANDLE(radv_device, device, _device);
490 	struct radv_pipeline_cache *cache;
491 
492 	assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO);
493 	assert(pCreateInfo->flags == 0);
494 
495 	cache = vk_alloc2(&device->alloc, pAllocator,
496 			    sizeof(*cache), 8,
497 			    VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
498 	if (cache == NULL)
499 		return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
500 
501 	if (pAllocator)
502 		cache->alloc = *pAllocator;
503 	else
504 		cache->alloc = device->alloc;
505 
506 	radv_pipeline_cache_init(cache, device);
507 
508 	if (pCreateInfo->initialDataSize > 0) {
509 		radv_pipeline_cache_load(cache,
510 					 pCreateInfo->pInitialData,
511 					 pCreateInfo->initialDataSize);
512 	}
513 
514 	*pPipelineCache = radv_pipeline_cache_to_handle(cache);
515 
516 	return VK_SUCCESS;
517 }
518 
radv_DestroyPipelineCache(VkDevice _device,VkPipelineCache _cache,const VkAllocationCallbacks * pAllocator)519 void radv_DestroyPipelineCache(
520 	VkDevice                                    _device,
521 	VkPipelineCache                             _cache,
522 	const VkAllocationCallbacks*                pAllocator)
523 {
524 	RADV_FROM_HANDLE(radv_device, device, _device);
525 	RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache);
526 
527 	if (!cache)
528 		return;
529 	radv_pipeline_cache_finish(cache);
530 
531 	vk_free2(&device->alloc, pAllocator, cache);
532 }
533 
radv_GetPipelineCacheData(VkDevice _device,VkPipelineCache _cache,size_t * pDataSize,void * pData)534 VkResult radv_GetPipelineCacheData(
535 	VkDevice                                    _device,
536 	VkPipelineCache                             _cache,
537 	size_t*                                     pDataSize,
538 	void*                                       pData)
539 {
540 	RADV_FROM_HANDLE(radv_device, device, _device);
541 	RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache);
542 	struct cache_header *header;
543 	VkResult result = VK_SUCCESS;
544 
545 	pthread_mutex_lock(&cache->mutex);
546 
547 	const size_t size = sizeof(*header) + cache->total_size;
548 	if (pData == NULL) {
549 		pthread_mutex_unlock(&cache->mutex);
550 		*pDataSize = size;
551 		return VK_SUCCESS;
552 	}
553 	if (*pDataSize < sizeof(*header)) {
554 		pthread_mutex_unlock(&cache->mutex);
555 		*pDataSize = 0;
556 		return VK_INCOMPLETE;
557 	}
558 	void *p = pData, *end = pData + *pDataSize;
559 	header = p;
560 	header->header_size = sizeof(*header);
561 	header->header_version = VK_PIPELINE_CACHE_HEADER_VERSION_ONE;
562 	header->vendor_id = ATI_VENDOR_ID;
563 	header->device_id = device->physical_device->rad_info.pci_id;
564 	memcpy(header->uuid, device->physical_device->cache_uuid, VK_UUID_SIZE);
565 	p += header->header_size;
566 
567 	struct cache_entry *entry;
568 	for (uint32_t i = 0; i < cache->table_size; i++) {
569 		if (!cache->hash_table[i])
570 			continue;
571 		entry = cache->hash_table[i];
572 		const uint32_t size = entry_size(entry);
573 		if (end < p + size) {
574 			result = VK_INCOMPLETE;
575 			break;
576 		}
577 
578 		memcpy(p, entry, size);
579 		for(int j = 0; j < MESA_SHADER_STAGES; ++j)
580 			((struct cache_entry*)p)->variants[j] = NULL;
581 		p += size;
582 	}
583 	*pDataSize = p - pData;
584 
585 	pthread_mutex_unlock(&cache->mutex);
586 	return result;
587 }
588 
589 static void
radv_pipeline_cache_merge(struct radv_pipeline_cache * dst,struct radv_pipeline_cache * src)590 radv_pipeline_cache_merge(struct radv_pipeline_cache *dst,
591 			  struct radv_pipeline_cache *src)
592 {
593 	for (uint32_t i = 0; i < src->table_size; i++) {
594 		struct cache_entry *entry = src->hash_table[i];
595 		if (!entry || radv_pipeline_cache_search(dst, entry->sha1))
596 			continue;
597 
598 		radv_pipeline_cache_add_entry(dst, entry);
599 
600 		src->hash_table[i] = NULL;
601 	}
602 }
603 
radv_MergePipelineCaches(VkDevice _device,VkPipelineCache destCache,uint32_t srcCacheCount,const VkPipelineCache * pSrcCaches)604 VkResult radv_MergePipelineCaches(
605 	VkDevice                                    _device,
606 	VkPipelineCache                             destCache,
607 	uint32_t                                    srcCacheCount,
608 	const VkPipelineCache*                      pSrcCaches)
609 {
610 	RADV_FROM_HANDLE(radv_pipeline_cache, dst, destCache);
611 
612 	for (uint32_t i = 0; i < srcCacheCount; i++) {
613 		RADV_FROM_HANDLE(radv_pipeline_cache, src, pSrcCaches[i]);
614 
615 		radv_pipeline_cache_merge(dst, src);
616 	}
617 
618 	return VK_SUCCESS;
619 }
620