1 /*
2  * Copyright 2012 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * on the rights to use, copy, modify, merge, publish, distribute, sub
8  * license, and/or sell copies of the Software, and to permit persons to whom
9  * the Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21  * USE OR OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include "gallivm/lp_bld_const.h"
25 #include "gallivm/lp_bld_gather.h"
26 #include "gallivm/lp_bld_intr.h"
27 #include "gallivm/lp_bld_logic.h"
28 #include "gallivm/lp_bld_arit.h"
29 #include "gallivm/lp_bld_flow.h"
30 #include "gallivm/lp_bld_misc.h"
31 #include "util/u_memory.h"
32 #include "util/u_string.h"
33 #include "tgsi/tgsi_build.h"
34 #include "tgsi/tgsi_util.h"
35 #include "tgsi/tgsi_dump.h"
36 
37 #include "ac_binary.h"
38 #include "ac_llvm_util.h"
39 #include "ac_exp_param.h"
40 #include "ac_shader_util.h"
41 #include "si_shader_internal.h"
42 #include "si_pipe.h"
43 #include "sid.h"
44 
45 #include "compiler/nir/nir.h"
46 
47 static const char *scratch_rsrc_dword0_symbol =
48 	"SCRATCH_RSRC_DWORD0";
49 
50 static const char *scratch_rsrc_dword1_symbol =
51 	"SCRATCH_RSRC_DWORD1";
52 
53 struct si_shader_output_values
54 {
55 	LLVMValueRef values[4];
56 	unsigned semantic_name;
57 	unsigned semantic_index;
58 	ubyte vertex_stream[4];
59 };
60 
61 /**
62  * Used to collect types and other info about arguments of the LLVM function
63  * before the function is created.
64  */
65 struct si_function_info {
66 	LLVMTypeRef types[100];
67 	LLVMValueRef *assign[100];
68 	unsigned num_sgpr_params;
69 	unsigned num_params;
70 };
71 
72 enum si_arg_regfile {
73 	ARG_SGPR,
74 	ARG_VGPR
75 };
76 
77 static void si_init_shader_ctx(struct si_shader_context *ctx,
78 			       struct si_screen *sscreen,
79 			       LLVMTargetMachineRef tm);
80 
81 static void si_llvm_emit_barrier(const struct lp_build_tgsi_action *action,
82 				 struct lp_build_tgsi_context *bld_base,
83 				 struct lp_build_emit_data *emit_data);
84 
85 static void si_dump_shader_key(unsigned processor, const struct si_shader *shader,
86 			       FILE *f);
87 
88 static void si_build_vs_prolog_function(struct si_shader_context *ctx,
89 					union si_shader_part_key *key);
90 static void si_build_tcs_epilog_function(struct si_shader_context *ctx,
91 					 union si_shader_part_key *key);
92 static void si_build_ps_prolog_function(struct si_shader_context *ctx,
93 					union si_shader_part_key *key);
94 static void si_build_ps_epilog_function(struct si_shader_context *ctx,
95 					union si_shader_part_key *key);
96 
97 /* Ideally pass the sample mask input to the PS epilog as v14, which
98  * is its usual location, so that the shader doesn't have to add v_mov.
99  */
100 #define PS_EPILOG_SAMPLEMASK_MIN_LOC 14
101 
102 enum {
103 	CONST_ADDR_SPACE = 2,
104 	LOCAL_ADDR_SPACE = 3,
105 };
106 
llvm_type_is_64bit(struct si_shader_context * ctx,LLVMTypeRef type)107 static bool llvm_type_is_64bit(struct si_shader_context *ctx,
108 			       LLVMTypeRef type)
109 {
110 	if (type == ctx->ac.i64 || type == ctx->ac.f64)
111 		return true;
112 
113 	return false;
114 }
115 
is_merged_shader(struct si_shader * shader)116 static bool is_merged_shader(struct si_shader *shader)
117 {
118 	if (shader->selector->screen->info.chip_class <= VI)
119 		return false;
120 
121 	return shader->key.as_ls ||
122 	       shader->key.as_es ||
123 	       shader->selector->type == PIPE_SHADER_TESS_CTRL ||
124 	       shader->selector->type == PIPE_SHADER_GEOMETRY;
125 }
126 
si_init_function_info(struct si_function_info * fninfo)127 static void si_init_function_info(struct si_function_info *fninfo)
128 {
129 	fninfo->num_params = 0;
130 	fninfo->num_sgpr_params = 0;
131 }
132 
add_arg_assign(struct si_function_info * fninfo,enum si_arg_regfile regfile,LLVMTypeRef type,LLVMValueRef * assign)133 static unsigned add_arg_assign(struct si_function_info *fninfo,
134 			enum si_arg_regfile regfile, LLVMTypeRef type,
135 			LLVMValueRef *assign)
136 {
137 	assert(regfile != ARG_SGPR || fninfo->num_sgpr_params == fninfo->num_params);
138 
139 	unsigned idx = fninfo->num_params++;
140 	assert(idx < ARRAY_SIZE(fninfo->types));
141 
142 	if (regfile == ARG_SGPR)
143 		fninfo->num_sgpr_params = fninfo->num_params;
144 
145 	fninfo->types[idx] = type;
146 	fninfo->assign[idx] = assign;
147 	return idx;
148 }
149 
add_arg(struct si_function_info * fninfo,enum si_arg_regfile regfile,LLVMTypeRef type)150 static unsigned add_arg(struct si_function_info *fninfo,
151 			enum si_arg_regfile regfile, LLVMTypeRef type)
152 {
153 	return add_arg_assign(fninfo, regfile, type, NULL);
154 }
155 
add_arg_assign_checked(struct si_function_info * fninfo,enum si_arg_regfile regfile,LLVMTypeRef type,LLVMValueRef * assign,unsigned idx)156 static void add_arg_assign_checked(struct si_function_info *fninfo,
157 				   enum si_arg_regfile regfile, LLVMTypeRef type,
158 				   LLVMValueRef *assign, unsigned idx)
159 {
160 	MAYBE_UNUSED unsigned actual = add_arg_assign(fninfo, regfile, type, assign);
161 	assert(actual == idx);
162 }
163 
add_arg_checked(struct si_function_info * fninfo,enum si_arg_regfile regfile,LLVMTypeRef type,unsigned idx)164 static void add_arg_checked(struct si_function_info *fninfo,
165 			    enum si_arg_regfile regfile, LLVMTypeRef type,
166 			    unsigned idx)
167 {
168 	add_arg_assign_checked(fninfo, regfile, type, NULL, idx);
169 }
170 
171 /**
172  * Returns a unique index for a per-patch semantic name and index. The index
173  * must be less than 32, so that a 32-bit bitmask of used inputs or outputs
174  * can be calculated.
175  */
si_shader_io_get_unique_index_patch(unsigned semantic_name,unsigned index)176 unsigned si_shader_io_get_unique_index_patch(unsigned semantic_name, unsigned index)
177 {
178 	switch (semantic_name) {
179 	case TGSI_SEMANTIC_TESSOUTER:
180 		return 0;
181 	case TGSI_SEMANTIC_TESSINNER:
182 		return 1;
183 	case TGSI_SEMANTIC_PATCH:
184 		assert(index < 30);
185 		return 2 + index;
186 
187 	default:
188 		assert(!"invalid semantic name");
189 		return 0;
190 	}
191 }
192 
193 /**
194  * Returns a unique index for a semantic name and index. The index must be
195  * less than 64, so that a 64-bit bitmask of used inputs or outputs can be
196  * calculated.
197  */
si_shader_io_get_unique_index(unsigned semantic_name,unsigned index)198 unsigned si_shader_io_get_unique_index(unsigned semantic_name, unsigned index)
199 {
200 	switch (semantic_name) {
201 	case TGSI_SEMANTIC_POSITION:
202 		return 0;
203 	case TGSI_SEMANTIC_GENERIC:
204 		/* Since some shader stages use the the highest used IO index
205 		 * to determine the size to allocate for inputs/outputs
206 		 * (in LDS, tess and GS rings). GENERIC should be placed right
207 		 * after POSITION to make that size as small as possible.
208 		 */
209 		if (index < SI_MAX_IO_GENERIC)
210 			return 1 + index;
211 
212 		assert(!"invalid generic index");
213 		return 0;
214 	case TGSI_SEMANTIC_PSIZE:
215 		return SI_MAX_IO_GENERIC + 1;
216 	case TGSI_SEMANTIC_CLIPDIST:
217 		assert(index <= 1);
218 		return SI_MAX_IO_GENERIC + 2 + index;
219 	case TGSI_SEMANTIC_FOG:
220 		return SI_MAX_IO_GENERIC + 4;
221 	case TGSI_SEMANTIC_LAYER:
222 		return SI_MAX_IO_GENERIC + 5;
223 	case TGSI_SEMANTIC_VIEWPORT_INDEX:
224 		return SI_MAX_IO_GENERIC + 6;
225 	case TGSI_SEMANTIC_PRIMID:
226 		return SI_MAX_IO_GENERIC + 7;
227 	case TGSI_SEMANTIC_COLOR: /* these alias */
228 	case TGSI_SEMANTIC_BCOLOR:
229 		assert(index < 2);
230 		return SI_MAX_IO_GENERIC + 8 + index;
231 	case TGSI_SEMANTIC_TEXCOORD:
232 		assert(index < 8);
233 		assert(SI_MAX_IO_GENERIC + 10 + index < 64);
234 		return SI_MAX_IO_GENERIC + 10 + index;
235 	default:
236 		assert(!"invalid semantic name");
237 		return 0;
238 	}
239 }
240 
241 /**
242  * Get the value of a shader input parameter and extract a bitfield.
243  */
unpack_llvm_param(struct si_shader_context * ctx,LLVMValueRef value,unsigned rshift,unsigned bitwidth)244 static LLVMValueRef unpack_llvm_param(struct si_shader_context *ctx,
245 				      LLVMValueRef value, unsigned rshift,
246 				      unsigned bitwidth)
247 {
248 	if (LLVMGetTypeKind(LLVMTypeOf(value)) == LLVMFloatTypeKind)
249 		value = ac_to_integer(&ctx->ac, value);
250 
251 	if (rshift)
252 		value = LLVMBuildLShr(ctx->ac.builder, value,
253 				      LLVMConstInt(ctx->i32, rshift, 0), "");
254 
255 	if (rshift + bitwidth < 32) {
256 		unsigned mask = (1 << bitwidth) - 1;
257 		value = LLVMBuildAnd(ctx->ac.builder, value,
258 				     LLVMConstInt(ctx->i32, mask, 0), "");
259 	}
260 
261 	return value;
262 }
263 
unpack_param(struct si_shader_context * ctx,unsigned param,unsigned rshift,unsigned bitwidth)264 static LLVMValueRef unpack_param(struct si_shader_context *ctx,
265 				 unsigned param, unsigned rshift,
266 				 unsigned bitwidth)
267 {
268 	LLVMValueRef value = LLVMGetParam(ctx->main_fn, param);
269 
270 	return unpack_llvm_param(ctx, value, rshift, bitwidth);
271 }
272 
get_rel_patch_id(struct si_shader_context * ctx)273 static LLVMValueRef get_rel_patch_id(struct si_shader_context *ctx)
274 {
275 	switch (ctx->type) {
276 	case PIPE_SHADER_TESS_CTRL:
277 		return unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 0, 8);
278 
279 	case PIPE_SHADER_TESS_EVAL:
280 		return LLVMGetParam(ctx->main_fn,
281 				    ctx->param_tes_rel_patch_id);
282 
283 	default:
284 		assert(0);
285 		return NULL;
286 	}
287 }
288 
289 /* Tessellation shaders pass outputs to the next shader using LDS.
290  *
291  * LS outputs = TCS inputs
292  * TCS outputs = TES inputs
293  *
294  * The LDS layout is:
295  * - TCS inputs for patch 0
296  * - TCS inputs for patch 1
297  * - TCS inputs for patch 2		= get_tcs_in_current_patch_offset (if RelPatchID==2)
298  * - ...
299  * - TCS outputs for patch 0            = get_tcs_out_patch0_offset
300  * - Per-patch TCS outputs for patch 0  = get_tcs_out_patch0_patch_data_offset
301  * - TCS outputs for patch 1
302  * - Per-patch TCS outputs for patch 1
303  * - TCS outputs for patch 2            = get_tcs_out_current_patch_offset (if RelPatchID==2)
304  * - Per-patch TCS outputs for patch 2  = get_tcs_out_current_patch_data_offset (if RelPatchID==2)
305  * - ...
306  *
307  * All three shaders VS(LS), TCS, TES share the same LDS space.
308  */
309 
310 static LLVMValueRef
get_tcs_in_patch_stride(struct si_shader_context * ctx)311 get_tcs_in_patch_stride(struct si_shader_context *ctx)
312 {
313 	return unpack_param(ctx, ctx->param_vs_state_bits, 8, 13);
314 }
315 
get_tcs_out_vertex_dw_stride_constant(struct si_shader_context * ctx)316 static unsigned get_tcs_out_vertex_dw_stride_constant(struct si_shader_context *ctx)
317 {
318 	assert(ctx->type == PIPE_SHADER_TESS_CTRL);
319 
320 	if (ctx->shader->key.mono.u.ff_tcs_inputs_to_copy)
321 		return util_last_bit64(ctx->shader->key.mono.u.ff_tcs_inputs_to_copy) * 4;
322 
323 	return util_last_bit64(ctx->shader->selector->outputs_written) * 4;
324 }
325 
get_tcs_out_vertex_dw_stride(struct si_shader_context * ctx)326 static LLVMValueRef get_tcs_out_vertex_dw_stride(struct si_shader_context *ctx)
327 {
328 	unsigned stride = get_tcs_out_vertex_dw_stride_constant(ctx);
329 
330 	return LLVMConstInt(ctx->i32, stride, 0);
331 }
332 
get_tcs_out_patch_stride(struct si_shader_context * ctx)333 static LLVMValueRef get_tcs_out_patch_stride(struct si_shader_context *ctx)
334 {
335 	if (ctx->shader->key.mono.u.ff_tcs_inputs_to_copy)
336 		return unpack_param(ctx, ctx->param_tcs_out_lds_layout, 0, 13);
337 
338 	const struct tgsi_shader_info *info = &ctx->shader->selector->info;
339 	unsigned tcs_out_vertices = info->properties[TGSI_PROPERTY_TCS_VERTICES_OUT];
340 	unsigned vertex_dw_stride = get_tcs_out_vertex_dw_stride_constant(ctx);
341 	unsigned num_patch_outputs = util_last_bit64(ctx->shader->selector->patch_outputs_written);
342 	unsigned patch_dw_stride = tcs_out_vertices * vertex_dw_stride +
343 				   num_patch_outputs * 4;
344 	return LLVMConstInt(ctx->i32, patch_dw_stride, 0);
345 }
346 
347 static LLVMValueRef
get_tcs_out_patch0_offset(struct si_shader_context * ctx)348 get_tcs_out_patch0_offset(struct si_shader_context *ctx)
349 {
350 	return lp_build_mul_imm(&ctx->bld_base.uint_bld,
351 				unpack_param(ctx,
352 					     ctx->param_tcs_out_lds_offsets,
353 					     0, 16),
354 				4);
355 }
356 
357 static LLVMValueRef
get_tcs_out_patch0_patch_data_offset(struct si_shader_context * ctx)358 get_tcs_out_patch0_patch_data_offset(struct si_shader_context *ctx)
359 {
360 	return lp_build_mul_imm(&ctx->bld_base.uint_bld,
361 				unpack_param(ctx,
362 					     ctx->param_tcs_out_lds_offsets,
363 					     16, 16),
364 				4);
365 }
366 
367 static LLVMValueRef
get_tcs_in_current_patch_offset(struct si_shader_context * ctx)368 get_tcs_in_current_patch_offset(struct si_shader_context *ctx)
369 {
370 	LLVMValueRef patch_stride = get_tcs_in_patch_stride(ctx);
371 	LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
372 
373 	return LLVMBuildMul(ctx->ac.builder, patch_stride, rel_patch_id, "");
374 }
375 
376 static LLVMValueRef
get_tcs_out_current_patch_offset(struct si_shader_context * ctx)377 get_tcs_out_current_patch_offset(struct si_shader_context *ctx)
378 {
379 	LLVMValueRef patch0_offset = get_tcs_out_patch0_offset(ctx);
380 	LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
381 	LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
382 
383 	return LLVMBuildAdd(ctx->ac.builder, patch0_offset,
384 			    LLVMBuildMul(ctx->ac.builder, patch_stride,
385 					 rel_patch_id, ""),
386 			    "");
387 }
388 
389 static LLVMValueRef
get_tcs_out_current_patch_data_offset(struct si_shader_context * ctx)390 get_tcs_out_current_patch_data_offset(struct si_shader_context *ctx)
391 {
392 	LLVMValueRef patch0_patch_data_offset =
393 		get_tcs_out_patch0_patch_data_offset(ctx);
394 	LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
395 	LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
396 
397 	return LLVMBuildAdd(ctx->ac.builder, patch0_patch_data_offset,
398 			    LLVMBuildMul(ctx->ac.builder, patch_stride,
399 					 rel_patch_id, ""),
400 			    "");
401 }
402 
get_num_tcs_out_vertices(struct si_shader_context * ctx)403 static LLVMValueRef get_num_tcs_out_vertices(struct si_shader_context *ctx)
404 {
405 	unsigned tcs_out_vertices =
406 		ctx->shader->selector ?
407 		ctx->shader->selector->info.properties[TGSI_PROPERTY_TCS_VERTICES_OUT] : 0;
408 
409 	/* If !tcs_out_vertices, it's either the fixed-func TCS or the TCS epilog. */
410 	if (ctx->type == PIPE_SHADER_TESS_CTRL && tcs_out_vertices)
411 		return LLVMConstInt(ctx->i32, tcs_out_vertices, 0);
412 
413 	return unpack_param(ctx, ctx->param_tcs_offchip_layout, 6, 6);
414 }
415 
get_tcs_in_vertex_dw_stride(struct si_shader_context * ctx)416 static LLVMValueRef get_tcs_in_vertex_dw_stride(struct si_shader_context *ctx)
417 {
418 	unsigned stride;
419 
420 	switch (ctx->type) {
421 	case PIPE_SHADER_VERTEX:
422 		stride = util_last_bit64(ctx->shader->selector->outputs_written);
423 		return LLVMConstInt(ctx->i32, stride * 4, 0);
424 
425 	case PIPE_SHADER_TESS_CTRL:
426 		if (ctx->screen->info.chip_class >= GFX9 &&
427 		    ctx->shader->is_monolithic) {
428 			stride = util_last_bit64(ctx->shader->key.part.tcs.ls->outputs_written);
429 			return LLVMConstInt(ctx->i32, stride * 4, 0);
430 		}
431 		return unpack_param(ctx, ctx->param_vs_state_bits, 24, 8);
432 
433 	default:
434 		assert(0);
435 		return NULL;
436 	}
437 }
438 
get_instance_index_for_fetch(struct si_shader_context * ctx,unsigned param_start_instance,LLVMValueRef divisor)439 static LLVMValueRef get_instance_index_for_fetch(
440 	struct si_shader_context *ctx,
441 	unsigned param_start_instance, LLVMValueRef divisor)
442 {
443 	LLVMValueRef result = ctx->abi.instance_id;
444 
445 	/* The division must be done before START_INSTANCE is added. */
446 	if (divisor != ctx->i32_1)
447 		result = LLVMBuildUDiv(ctx->ac.builder, result, divisor, "");
448 
449 	return LLVMBuildAdd(ctx->ac.builder, result,
450 			    LLVMGetParam(ctx->main_fn, param_start_instance), "");
451 }
452 
453 /* Bitcast <4 x float> to <2 x double>, extract the component, and convert
454  * to float. */
extract_double_to_float(struct si_shader_context * ctx,LLVMValueRef vec4,unsigned double_index)455 static LLVMValueRef extract_double_to_float(struct si_shader_context *ctx,
456 					    LLVMValueRef vec4,
457 					    unsigned double_index)
458 {
459 	LLVMBuilderRef builder = ctx->ac.builder;
460 	LLVMTypeRef f64 = LLVMDoubleTypeInContext(ctx->ac.context);
461 	LLVMValueRef dvec2 = LLVMBuildBitCast(builder, vec4,
462 					      LLVMVectorType(f64, 2), "");
463 	LLVMValueRef index = LLVMConstInt(ctx->i32, double_index, 0);
464 	LLVMValueRef value = LLVMBuildExtractElement(builder, dvec2, index, "");
465 	return LLVMBuildFPTrunc(builder, value, ctx->f32, "");
466 }
467 
unpack_sint16(struct si_shader_context * ctx,LLVMValueRef i32,unsigned index)468 static LLVMValueRef unpack_sint16(struct si_shader_context *ctx,
469 				 LLVMValueRef i32, unsigned index)
470 {
471 	assert(index <= 1);
472 
473 	if (index == 1)
474 		return LLVMBuildAShr(ctx->ac.builder, i32,
475 				     LLVMConstInt(ctx->i32, 16, 0), "");
476 
477 	return LLVMBuildSExt(ctx->ac.builder,
478 			     LLVMBuildTrunc(ctx->ac.builder, i32,
479 					    ctx->ac.i16, ""),
480 			     ctx->i32, "");
481 }
482 
si_llvm_load_input_vs(struct si_shader_context * ctx,unsigned input_index,LLVMValueRef out[4])483 void si_llvm_load_input_vs(
484 	struct si_shader_context *ctx,
485 	unsigned input_index,
486 	LLVMValueRef out[4])
487 {
488 	unsigned vs_blit_property =
489 		ctx->shader->selector->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS];
490 
491 	if (vs_blit_property) {
492 		LLVMValueRef vertex_id = ctx->abi.vertex_id;
493 		LLVMValueRef sel_x1 = LLVMBuildICmp(ctx->ac.builder,
494 						    LLVMIntULE, vertex_id,
495 						    ctx->i32_1, "");
496 		/* Use LLVMIntNE, because we have 3 vertices and only
497 		 * the middle one should use y2.
498 		 */
499 		LLVMValueRef sel_y1 = LLVMBuildICmp(ctx->ac.builder,
500 						    LLVMIntNE, vertex_id,
501 						    ctx->i32_1, "");
502 
503 		if (input_index == 0) {
504 			/* Position: */
505 			LLVMValueRef x1y1 = LLVMGetParam(ctx->main_fn,
506 							 ctx->param_vs_blit_inputs);
507 			LLVMValueRef x2y2 = LLVMGetParam(ctx->main_fn,
508 							 ctx->param_vs_blit_inputs + 1);
509 
510 			LLVMValueRef x1 = unpack_sint16(ctx, x1y1, 0);
511 			LLVMValueRef y1 = unpack_sint16(ctx, x1y1, 1);
512 			LLVMValueRef x2 = unpack_sint16(ctx, x2y2, 0);
513 			LLVMValueRef y2 = unpack_sint16(ctx, x2y2, 1);
514 
515 			LLVMValueRef x = LLVMBuildSelect(ctx->ac.builder, sel_x1,
516 							 x1, x2, "");
517 			LLVMValueRef y = LLVMBuildSelect(ctx->ac.builder, sel_y1,
518 							 y1, y2, "");
519 
520 			out[0] = LLVMBuildSIToFP(ctx->ac.builder, x, ctx->f32, "");
521 			out[1] = LLVMBuildSIToFP(ctx->ac.builder, y, ctx->f32, "");
522 			out[2] = LLVMGetParam(ctx->main_fn,
523 					      ctx->param_vs_blit_inputs + 2);
524 			out[3] = ctx->ac.f32_1;
525 			return;
526 		}
527 
528 		/* Color or texture coordinates: */
529 		assert(input_index == 1);
530 
531 		if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_COLOR) {
532 			for (int i = 0; i < 4; i++) {
533 				out[i] = LLVMGetParam(ctx->main_fn,
534 						      ctx->param_vs_blit_inputs + 3 + i);
535 			}
536 		} else {
537 			assert(vs_blit_property == SI_VS_BLIT_SGPRS_POS_TEXCOORD);
538 			LLVMValueRef x1 = LLVMGetParam(ctx->main_fn,
539 						       ctx->param_vs_blit_inputs + 3);
540 			LLVMValueRef y1 = LLVMGetParam(ctx->main_fn,
541 						       ctx->param_vs_blit_inputs + 4);
542 			LLVMValueRef x2 = LLVMGetParam(ctx->main_fn,
543 						       ctx->param_vs_blit_inputs + 5);
544 			LLVMValueRef y2 = LLVMGetParam(ctx->main_fn,
545 						       ctx->param_vs_blit_inputs + 6);
546 
547 			out[0] = LLVMBuildSelect(ctx->ac.builder, sel_x1,
548 						 x1, x2, "");
549 			out[1] = LLVMBuildSelect(ctx->ac.builder, sel_y1,
550 						 y1, y2, "");
551 			out[2] = LLVMGetParam(ctx->main_fn,
552 					      ctx->param_vs_blit_inputs + 7);
553 			out[3] = LLVMGetParam(ctx->main_fn,
554 					      ctx->param_vs_blit_inputs + 8);
555 		}
556 		return;
557 	}
558 
559 	unsigned chan;
560 	unsigned fix_fetch;
561 	unsigned num_fetches;
562 	unsigned fetch_stride;
563 
564 	LLVMValueRef t_list_ptr;
565 	LLVMValueRef t_offset;
566 	LLVMValueRef t_list;
567 	LLVMValueRef vertex_index;
568 	LLVMValueRef input[3];
569 
570 	/* Load the T list */
571 	t_list_ptr = LLVMGetParam(ctx->main_fn, ctx->param_vertex_buffers);
572 
573 	t_offset = LLVMConstInt(ctx->i32, input_index, 0);
574 
575 	t_list = ac_build_load_to_sgpr(&ctx->ac, t_list_ptr, t_offset);
576 
577 	vertex_index = LLVMGetParam(ctx->main_fn,
578 				    ctx->param_vertex_index0 +
579 				    input_index);
580 
581 	fix_fetch = ctx->shader->key.mono.vs_fix_fetch[input_index];
582 
583 	/* Do multiple loads for special formats. */
584 	switch (fix_fetch) {
585 	case SI_FIX_FETCH_RGB_64_FLOAT:
586 		num_fetches = 3; /* 3 2-dword loads */
587 		fetch_stride = 8;
588 		break;
589 	case SI_FIX_FETCH_RGBA_64_FLOAT:
590 		num_fetches = 2; /* 2 4-dword loads */
591 		fetch_stride = 16;
592 		break;
593 	case SI_FIX_FETCH_RGB_8:
594 	case SI_FIX_FETCH_RGB_8_INT:
595 		num_fetches = 3;
596 		fetch_stride = 1;
597 		break;
598 	case SI_FIX_FETCH_RGB_16:
599 	case SI_FIX_FETCH_RGB_16_INT:
600 		num_fetches = 3;
601 		fetch_stride = 2;
602 		break;
603 	default:
604 		num_fetches = 1;
605 		fetch_stride = 0;
606 	}
607 
608 	for (unsigned i = 0; i < num_fetches; i++) {
609 		LLVMValueRef voffset = LLVMConstInt(ctx->i32, fetch_stride * i, 0);
610 
611 		input[i] = ac_build_buffer_load_format(&ctx->ac, t_list,
612 						       vertex_index, voffset,
613 						       true);
614 	}
615 
616 	/* Break up the vec4 into individual components */
617 	for (chan = 0; chan < 4; chan++) {
618 		LLVMValueRef llvm_chan = LLVMConstInt(ctx->i32, chan, 0);
619 		out[chan] = LLVMBuildExtractElement(ctx->ac.builder,
620 						    input[0], llvm_chan, "");
621 	}
622 
623 	switch (fix_fetch) {
624 	case SI_FIX_FETCH_A2_SNORM:
625 	case SI_FIX_FETCH_A2_SSCALED:
626 	case SI_FIX_FETCH_A2_SINT: {
627 		/* The hardware returns an unsigned value; convert it to a
628 		 * signed one.
629 		 */
630 		LLVMValueRef tmp = out[3];
631 		LLVMValueRef c30 = LLVMConstInt(ctx->i32, 30, 0);
632 
633 		/* First, recover the sign-extended signed integer value. */
634 		if (fix_fetch == SI_FIX_FETCH_A2_SSCALED)
635 			tmp = LLVMBuildFPToUI(ctx->ac.builder, tmp, ctx->i32, "");
636 		else
637 			tmp = ac_to_integer(&ctx->ac, tmp);
638 
639 		/* For the integer-like cases, do a natural sign extension.
640 		 *
641 		 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
642 		 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
643 		 * exponent.
644 		 */
645 		tmp = LLVMBuildShl(ctx->ac.builder, tmp,
646 				   fix_fetch == SI_FIX_FETCH_A2_SNORM ?
647 				   LLVMConstInt(ctx->i32, 7, 0) : c30, "");
648 		tmp = LLVMBuildAShr(ctx->ac.builder, tmp, c30, "");
649 
650 		/* Convert back to the right type. */
651 		if (fix_fetch == SI_FIX_FETCH_A2_SNORM) {
652 			LLVMValueRef clamp;
653 			LLVMValueRef neg_one = LLVMConstReal(ctx->f32, -1.0);
654 			tmp = LLVMBuildSIToFP(ctx->ac.builder, tmp, ctx->f32, "");
655 			clamp = LLVMBuildFCmp(ctx->ac.builder, LLVMRealULT, tmp, neg_one, "");
656 			tmp = LLVMBuildSelect(ctx->ac.builder, clamp, neg_one, tmp, "");
657 		} else if (fix_fetch == SI_FIX_FETCH_A2_SSCALED) {
658 			tmp = LLVMBuildSIToFP(ctx->ac.builder, tmp, ctx->f32, "");
659 		}
660 
661 		out[3] = tmp;
662 		break;
663 	}
664 	case SI_FIX_FETCH_RGBA_32_UNORM:
665 	case SI_FIX_FETCH_RGBX_32_UNORM:
666 		for (chan = 0; chan < 4; chan++) {
667 			out[chan] = ac_to_integer(&ctx->ac, out[chan]);
668 			out[chan] = LLVMBuildUIToFP(ctx->ac.builder,
669 						    out[chan], ctx->f32, "");
670 			out[chan] = LLVMBuildFMul(ctx->ac.builder, out[chan],
671 						  LLVMConstReal(ctx->f32, 1.0 / UINT_MAX), "");
672 		}
673 		/* RGBX UINT returns 1 in alpha, which would be rounded to 0 by normalizing. */
674 		if (fix_fetch == SI_FIX_FETCH_RGBX_32_UNORM)
675 			out[3] = LLVMConstReal(ctx->f32, 1);
676 		break;
677 	case SI_FIX_FETCH_RGBA_32_SNORM:
678 	case SI_FIX_FETCH_RGBX_32_SNORM:
679 	case SI_FIX_FETCH_RGBA_32_FIXED:
680 	case SI_FIX_FETCH_RGBX_32_FIXED: {
681 		double scale;
682 		if (fix_fetch >= SI_FIX_FETCH_RGBA_32_FIXED)
683 			scale = 1.0 / 0x10000;
684 		else
685 			scale = 1.0 / INT_MAX;
686 
687 		for (chan = 0; chan < 4; chan++) {
688 			out[chan] = ac_to_integer(&ctx->ac, out[chan]);
689 			out[chan] = LLVMBuildSIToFP(ctx->ac.builder,
690 						    out[chan], ctx->f32, "");
691 			out[chan] = LLVMBuildFMul(ctx->ac.builder, out[chan],
692 						  LLVMConstReal(ctx->f32, scale), "");
693 		}
694 		/* RGBX SINT returns 1 in alpha, which would be rounded to 0 by normalizing. */
695 		if (fix_fetch == SI_FIX_FETCH_RGBX_32_SNORM ||
696 		    fix_fetch == SI_FIX_FETCH_RGBX_32_FIXED)
697 			out[3] = LLVMConstReal(ctx->f32, 1);
698 		break;
699 	}
700 	case SI_FIX_FETCH_RGBA_32_USCALED:
701 		for (chan = 0; chan < 4; chan++) {
702 			out[chan] = ac_to_integer(&ctx->ac, out[chan]);
703 			out[chan] = LLVMBuildUIToFP(ctx->ac.builder,
704 						    out[chan], ctx->f32, "");
705 		}
706 		break;
707 	case SI_FIX_FETCH_RGBA_32_SSCALED:
708 		for (chan = 0; chan < 4; chan++) {
709 			out[chan] = ac_to_integer(&ctx->ac, out[chan]);
710 			out[chan] = LLVMBuildSIToFP(ctx->ac.builder,
711 						    out[chan], ctx->f32, "");
712 		}
713 		break;
714 	case SI_FIX_FETCH_RG_64_FLOAT:
715 		for (chan = 0; chan < 2; chan++)
716 			out[chan] = extract_double_to_float(ctx, input[0], chan);
717 
718 		out[2] = LLVMConstReal(ctx->f32, 0);
719 		out[3] = LLVMConstReal(ctx->f32, 1);
720 		break;
721 	case SI_FIX_FETCH_RGB_64_FLOAT:
722 		for (chan = 0; chan < 3; chan++)
723 			out[chan] = extract_double_to_float(ctx, input[chan], 0);
724 
725 		out[3] = LLVMConstReal(ctx->f32, 1);
726 		break;
727 	case SI_FIX_FETCH_RGBA_64_FLOAT:
728 		for (chan = 0; chan < 4; chan++) {
729 			out[chan] = extract_double_to_float(ctx, input[chan / 2],
730 							    chan % 2);
731 		}
732 		break;
733 	case SI_FIX_FETCH_RGB_8:
734 	case SI_FIX_FETCH_RGB_8_INT:
735 	case SI_FIX_FETCH_RGB_16:
736 	case SI_FIX_FETCH_RGB_16_INT:
737 		for (chan = 0; chan < 3; chan++) {
738 			out[chan] = LLVMBuildExtractElement(ctx->ac.builder,
739 							    input[chan],
740 							    ctx->i32_0, "");
741 		}
742 		if (fix_fetch == SI_FIX_FETCH_RGB_8 ||
743 		    fix_fetch == SI_FIX_FETCH_RGB_16) {
744 			out[3] = LLVMConstReal(ctx->f32, 1);
745 		} else {
746 			out[3] = ac_to_float(&ctx->ac, ctx->i32_1);
747 		}
748 		break;
749 	}
750 }
751 
declare_input_vs(struct si_shader_context * ctx,unsigned input_index,const struct tgsi_full_declaration * decl,LLVMValueRef out[4])752 static void declare_input_vs(
753 	struct si_shader_context *ctx,
754 	unsigned input_index,
755 	const struct tgsi_full_declaration *decl,
756 	LLVMValueRef out[4])
757 {
758 	si_llvm_load_input_vs(ctx, input_index, out);
759 }
760 
get_primitive_id(struct si_shader_context * ctx,unsigned swizzle)761 static LLVMValueRef get_primitive_id(struct si_shader_context *ctx,
762 				     unsigned swizzle)
763 {
764 	if (swizzle > 0)
765 		return ctx->i32_0;
766 
767 	switch (ctx->type) {
768 	case PIPE_SHADER_VERTEX:
769 		return LLVMGetParam(ctx->main_fn,
770 				    ctx->param_vs_prim_id);
771 	case PIPE_SHADER_TESS_CTRL:
772 		return ctx->abi.tcs_patch_id;
773 	case PIPE_SHADER_TESS_EVAL:
774 		return ctx->abi.tes_patch_id;
775 	case PIPE_SHADER_GEOMETRY:
776 		return ctx->abi.gs_prim_id;
777 	default:
778 		assert(0);
779 		return ctx->i32_0;
780 	}
781 }
782 
783 /**
784  * Return the value of tgsi_ind_register for indexing.
785  * This is the indirect index with the constant offset added to it.
786  */
si_get_indirect_index(struct si_shader_context * ctx,const struct tgsi_ind_register * ind,unsigned addr_mul,int rel_index)787 LLVMValueRef si_get_indirect_index(struct si_shader_context *ctx,
788 				   const struct tgsi_ind_register *ind,
789 				   unsigned addr_mul,
790 				   int rel_index)
791 {
792 	LLVMValueRef result;
793 
794 	if (ind->File == TGSI_FILE_ADDRESS) {
795 		result = ctx->addrs[ind->Index][ind->Swizzle];
796 		result = LLVMBuildLoad(ctx->ac.builder, result, "");
797 	} else {
798 		struct tgsi_full_src_register src = {};
799 
800 		src.Register.File = ind->File;
801 		src.Register.Index = ind->Index;
802 
803 		/* Set the second index to 0 for constants. */
804 		if (ind->File == TGSI_FILE_CONSTANT)
805 			src.Register.Dimension = 1;
806 
807 		result = ctx->bld_base.emit_fetch_funcs[ind->File](&ctx->bld_base, &src,
808 								   TGSI_TYPE_SIGNED,
809 								   ind->Swizzle);
810 		result = ac_to_integer(&ctx->ac, result);
811 	}
812 
813 	if (addr_mul != 1)
814 		result = LLVMBuildMul(ctx->ac.builder, result,
815 				      LLVMConstInt(ctx->i32, addr_mul, 0), "");
816 	result = LLVMBuildAdd(ctx->ac.builder, result,
817 			      LLVMConstInt(ctx->i32, rel_index, 0), "");
818 	return result;
819 }
820 
821 /**
822  * Like si_get_indirect_index, but restricts the return value to a (possibly
823  * undefined) value inside [0..num).
824  */
si_get_bounded_indirect_index(struct si_shader_context * ctx,const struct tgsi_ind_register * ind,int rel_index,unsigned num)825 LLVMValueRef si_get_bounded_indirect_index(struct si_shader_context *ctx,
826 					   const struct tgsi_ind_register *ind,
827 					   int rel_index, unsigned num)
828 {
829 	LLVMValueRef result = si_get_indirect_index(ctx, ind, 1, rel_index);
830 
831 	return si_llvm_bound_index(ctx, result, num);
832 }
833 
get_dw_address_from_generic_indices(struct si_shader_context * ctx,LLVMValueRef vertex_dw_stride,LLVMValueRef base_addr,LLVMValueRef vertex_index,LLVMValueRef param_index,unsigned input_index,ubyte * name,ubyte * index,bool is_patch)834 static LLVMValueRef get_dw_address_from_generic_indices(struct si_shader_context *ctx,
835 							LLVMValueRef vertex_dw_stride,
836 							LLVMValueRef base_addr,
837 							LLVMValueRef vertex_index,
838 							LLVMValueRef param_index,
839 							unsigned input_index,
840 							ubyte *name,
841 							ubyte *index,
842 							bool is_patch)
843 {
844 	if (vertex_dw_stride) {
845 		base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
846 					 LLVMBuildMul(ctx->ac.builder, vertex_index,
847 						      vertex_dw_stride, ""), "");
848 	}
849 
850 	if (param_index) {
851 		base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
852 					 LLVMBuildMul(ctx->ac.builder, param_index,
853 						      LLVMConstInt(ctx->i32, 4, 0), ""), "");
854 	}
855 
856 	int param = is_patch ?
857 		si_shader_io_get_unique_index_patch(name[input_index],
858 						    index[input_index]) :
859 		si_shader_io_get_unique_index(name[input_index],
860 					      index[input_index]);
861 
862 	/* Add the base address of the element. */
863 	return LLVMBuildAdd(ctx->ac.builder, base_addr,
864 			    LLVMConstInt(ctx->i32, param * 4, 0), "");
865 }
866 
867 /**
868  * Calculate a dword address given an input or output register and a stride.
869  */
get_dw_address(struct si_shader_context * ctx,const struct tgsi_full_dst_register * dst,const struct tgsi_full_src_register * src,LLVMValueRef vertex_dw_stride,LLVMValueRef base_addr)870 static LLVMValueRef get_dw_address(struct si_shader_context *ctx,
871 				   const struct tgsi_full_dst_register *dst,
872 				   const struct tgsi_full_src_register *src,
873 				   LLVMValueRef vertex_dw_stride,
874 				   LLVMValueRef base_addr)
875 {
876 	struct tgsi_shader_info *info = &ctx->shader->selector->info;
877 	ubyte *name, *index, *array_first;
878 	int input_index;
879 	struct tgsi_full_dst_register reg;
880 	LLVMValueRef vertex_index = NULL;
881 	LLVMValueRef ind_index = NULL;
882 
883 	/* Set the register description. The address computation is the same
884 	 * for sources and destinations. */
885 	if (src) {
886 		reg.Register.File = src->Register.File;
887 		reg.Register.Index = src->Register.Index;
888 		reg.Register.Indirect = src->Register.Indirect;
889 		reg.Register.Dimension = src->Register.Dimension;
890 		reg.Indirect = src->Indirect;
891 		reg.Dimension = src->Dimension;
892 		reg.DimIndirect = src->DimIndirect;
893 	} else
894 		reg = *dst;
895 
896 	/* If the register is 2-dimensional (e.g. an array of vertices
897 	 * in a primitive), calculate the base address of the vertex. */
898 	if (reg.Register.Dimension) {
899 		if (reg.Dimension.Indirect)
900 			vertex_index = si_get_indirect_index(ctx, &reg.DimIndirect,
901 						      1, reg.Dimension.Index);
902 		else
903 			vertex_index = LLVMConstInt(ctx->i32, reg.Dimension.Index, 0);
904 	}
905 
906 	/* Get information about the register. */
907 	if (reg.Register.File == TGSI_FILE_INPUT) {
908 		name = info->input_semantic_name;
909 		index = info->input_semantic_index;
910 		array_first = info->input_array_first;
911 	} else if (reg.Register.File == TGSI_FILE_OUTPUT) {
912 		name = info->output_semantic_name;
913 		index = info->output_semantic_index;
914 		array_first = info->output_array_first;
915 	} else {
916 		assert(0);
917 		return NULL;
918 	}
919 
920 	if (reg.Register.Indirect) {
921 		/* Add the relative address of the element. */
922 		if (reg.Indirect.ArrayID)
923 			input_index = array_first[reg.Indirect.ArrayID];
924 		else
925 			input_index = reg.Register.Index;
926 
927 		ind_index = si_get_indirect_index(ctx, &reg.Indirect,
928 						  1, reg.Register.Index - input_index);
929 	} else {
930 		input_index = reg.Register.Index;
931 	}
932 
933 	return get_dw_address_from_generic_indices(ctx, vertex_dw_stride,
934 						   base_addr, vertex_index,
935 						   ind_index, input_index,
936 						   name, index,
937 						   !reg.Register.Dimension);
938 }
939 
940 /* The offchip buffer layout for TCS->TES is
941  *
942  * - attribute 0 of patch 0 vertex 0
943  * - attribute 0 of patch 0 vertex 1
944  * - attribute 0 of patch 0 vertex 2
945  *   ...
946  * - attribute 0 of patch 1 vertex 0
947  * - attribute 0 of patch 1 vertex 1
948  *   ...
949  * - attribute 1 of patch 0 vertex 0
950  * - attribute 1 of patch 0 vertex 1
951  *   ...
952  * - per patch attribute 0 of patch 0
953  * - per patch attribute 0 of patch 1
954  *   ...
955  *
956  * Note that every attribute has 4 components.
957  */
get_tcs_tes_buffer_address(struct si_shader_context * ctx,LLVMValueRef rel_patch_id,LLVMValueRef vertex_index,LLVMValueRef param_index)958 static LLVMValueRef get_tcs_tes_buffer_address(struct si_shader_context *ctx,
959 					       LLVMValueRef rel_patch_id,
960                                                LLVMValueRef vertex_index,
961                                                LLVMValueRef param_index)
962 {
963 	LLVMValueRef base_addr, vertices_per_patch, num_patches, total_vertices;
964 	LLVMValueRef param_stride, constant16;
965 
966 	vertices_per_patch = get_num_tcs_out_vertices(ctx);
967 	num_patches = unpack_param(ctx, ctx->param_tcs_offchip_layout, 0, 6);
968 	total_vertices = LLVMBuildMul(ctx->ac.builder, vertices_per_patch,
969 	                              num_patches, "");
970 
971 	constant16 = LLVMConstInt(ctx->i32, 16, 0);
972 	if (vertex_index) {
973 		base_addr = LLVMBuildMul(ctx->ac.builder, rel_patch_id,
974 		                         vertices_per_patch, "");
975 
976 		base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
977 		                         vertex_index, "");
978 
979 		param_stride = total_vertices;
980 	} else {
981 		base_addr = rel_patch_id;
982 		param_stride = num_patches;
983 	}
984 
985 	base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
986 	                         LLVMBuildMul(ctx->ac.builder, param_index,
987 	                                      param_stride, ""), "");
988 
989 	base_addr = LLVMBuildMul(ctx->ac.builder, base_addr, constant16, "");
990 
991 	if (!vertex_index) {
992 		LLVMValueRef patch_data_offset =
993 		           unpack_param(ctx, ctx->param_tcs_offchip_layout, 12, 20);
994 
995 		base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
996 		                         patch_data_offset, "");
997 	}
998 	return base_addr;
999 }
1000 
1001 /* This is a generic helper that can be shared by the NIR and TGSI backends */
get_tcs_tes_buffer_address_from_generic_indices(struct si_shader_context * ctx,LLVMValueRef vertex_index,LLVMValueRef param_index,unsigned param_base,ubyte * name,ubyte * index,bool is_patch)1002 static LLVMValueRef get_tcs_tes_buffer_address_from_generic_indices(
1003 					struct si_shader_context *ctx,
1004 					LLVMValueRef vertex_index,
1005 					LLVMValueRef param_index,
1006 					unsigned param_base,
1007 					ubyte *name,
1008 					ubyte *index,
1009 					bool is_patch)
1010 {
1011 	unsigned param_index_base;
1012 
1013 	param_index_base = is_patch ?
1014 		si_shader_io_get_unique_index_patch(name[param_base], index[param_base]) :
1015 		si_shader_io_get_unique_index(name[param_base], index[param_base]);
1016 
1017 	if (param_index) {
1018 		param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
1019 					   LLVMConstInt(ctx->i32, param_index_base, 0),
1020 					   "");
1021 	} else {
1022 		param_index = LLVMConstInt(ctx->i32, param_index_base, 0);
1023 	}
1024 
1025 	return get_tcs_tes_buffer_address(ctx, get_rel_patch_id(ctx),
1026 					  vertex_index, param_index);
1027 }
1028 
get_tcs_tes_buffer_address_from_reg(struct si_shader_context * ctx,const struct tgsi_full_dst_register * dst,const struct tgsi_full_src_register * src)1029 static LLVMValueRef get_tcs_tes_buffer_address_from_reg(
1030                                        struct si_shader_context *ctx,
1031                                        const struct tgsi_full_dst_register *dst,
1032                                        const struct tgsi_full_src_register *src)
1033 {
1034 	struct tgsi_shader_info *info = &ctx->shader->selector->info;
1035 	ubyte *name, *index, *array_first;
1036 	struct tgsi_full_src_register reg;
1037 	LLVMValueRef vertex_index = NULL;
1038 	LLVMValueRef param_index = NULL;
1039 	unsigned param_base;
1040 
1041 	reg = src ? *src : tgsi_full_src_register_from_dst(dst);
1042 
1043 	if (reg.Register.Dimension) {
1044 
1045 		if (reg.Dimension.Indirect)
1046 			vertex_index = si_get_indirect_index(ctx, &reg.DimIndirect,
1047 							     1, reg.Dimension.Index);
1048 		else
1049 			vertex_index = LLVMConstInt(ctx->i32, reg.Dimension.Index, 0);
1050 	}
1051 
1052 	/* Get information about the register. */
1053 	if (reg.Register.File == TGSI_FILE_INPUT) {
1054 		name = info->input_semantic_name;
1055 		index = info->input_semantic_index;
1056 		array_first = info->input_array_first;
1057 	} else if (reg.Register.File == TGSI_FILE_OUTPUT) {
1058 		name = info->output_semantic_name;
1059 		index = info->output_semantic_index;
1060 		array_first = info->output_array_first;
1061 	} else {
1062 		assert(0);
1063 		return NULL;
1064 	}
1065 
1066 	if (reg.Register.Indirect) {
1067 		if (reg.Indirect.ArrayID)
1068 			param_base = array_first[reg.Indirect.ArrayID];
1069 		else
1070 			param_base = reg.Register.Index;
1071 
1072 		param_index = si_get_indirect_index(ctx, &reg.Indirect,
1073 						    1, reg.Register.Index - param_base);
1074 
1075 	} else {
1076 		param_base = reg.Register.Index;
1077 	}
1078 
1079 	return get_tcs_tes_buffer_address_from_generic_indices(ctx, vertex_index,
1080 							       param_index, param_base,
1081 							       name, index, !reg.Register.Dimension);
1082 }
1083 
buffer_load(struct lp_build_tgsi_context * bld_base,LLVMTypeRef type,unsigned swizzle,LLVMValueRef buffer,LLVMValueRef offset,LLVMValueRef base,bool can_speculate)1084 static LLVMValueRef buffer_load(struct lp_build_tgsi_context *bld_base,
1085                                 LLVMTypeRef type, unsigned swizzle,
1086                                 LLVMValueRef buffer, LLVMValueRef offset,
1087                                 LLVMValueRef base, bool can_speculate)
1088 {
1089 	struct si_shader_context *ctx = si_shader_context(bld_base);
1090 	LLVMValueRef value, value2;
1091 	LLVMTypeRef vec_type = LLVMVectorType(type, 4);
1092 
1093 	if (swizzle == ~0) {
1094 		value = ac_build_buffer_load(&ctx->ac, buffer, 4, NULL, base, offset,
1095 					     0, 1, 0, can_speculate, false);
1096 
1097 		return LLVMBuildBitCast(ctx->ac.builder, value, vec_type, "");
1098 	}
1099 
1100 	if (!llvm_type_is_64bit(ctx, type)) {
1101 		value = ac_build_buffer_load(&ctx->ac, buffer, 4, NULL, base, offset,
1102 					     0, 1, 0, can_speculate, false);
1103 
1104 		value = LLVMBuildBitCast(ctx->ac.builder, value, vec_type, "");
1105 		return LLVMBuildExtractElement(ctx->ac.builder, value,
1106 		                    LLVMConstInt(ctx->i32, swizzle, 0), "");
1107 	}
1108 
1109 	value = ac_build_buffer_load(&ctx->ac, buffer, 1, NULL, base, offset,
1110 	                          swizzle * 4, 1, 0, can_speculate, false);
1111 
1112 	value2 = ac_build_buffer_load(&ctx->ac, buffer, 1, NULL, base, offset,
1113 	                           swizzle * 4 + 4, 1, 0, can_speculate, false);
1114 
1115 	return si_llvm_emit_fetch_64bit(bld_base, type, value, value2);
1116 }
1117 
1118 /**
1119  * Load from LDS.
1120  *
1121  * \param type		output value type
1122  * \param swizzle	offset (typically 0..3); it can be ~0, which loads a vec4
1123  * \param dw_addr	address in dwords
1124  */
lds_load(struct lp_build_tgsi_context * bld_base,LLVMTypeRef type,unsigned swizzle,LLVMValueRef dw_addr)1125 static LLVMValueRef lds_load(struct lp_build_tgsi_context *bld_base,
1126 			     LLVMTypeRef type, unsigned swizzle,
1127 			     LLVMValueRef dw_addr)
1128 {
1129 	struct si_shader_context *ctx = si_shader_context(bld_base);
1130 	LLVMValueRef value;
1131 
1132 	if (swizzle == ~0) {
1133 		LLVMValueRef values[TGSI_NUM_CHANNELS];
1134 
1135 		for (unsigned chan = 0; chan < TGSI_NUM_CHANNELS; chan++)
1136 			values[chan] = lds_load(bld_base, type, chan, dw_addr);
1137 
1138 		return lp_build_gather_values(&ctx->gallivm, values,
1139 					      TGSI_NUM_CHANNELS);
1140 	}
1141 
1142 	/* Split 64-bit loads. */
1143 	if (llvm_type_is_64bit(ctx, type)) {
1144 		LLVMValueRef lo, hi;
1145 
1146 		lo = lds_load(bld_base, ctx->i32, swizzle, dw_addr);
1147 		hi = lds_load(bld_base, ctx->i32, swizzle + 1, dw_addr);
1148 		return si_llvm_emit_fetch_64bit(bld_base, type, lo, hi);
1149 	}
1150 
1151 	dw_addr = lp_build_add(&bld_base->uint_bld, dw_addr,
1152 			    LLVMConstInt(ctx->i32, swizzle, 0));
1153 
1154 	value = ac_lds_load(&ctx->ac, dw_addr);
1155 
1156 	return LLVMBuildBitCast(ctx->ac.builder, value, type, "");
1157 }
1158 
1159 /**
1160  * Store to LDS.
1161  *
1162  * \param swizzle	offset (typically 0..3)
1163  * \param dw_addr	address in dwords
1164  * \param value		value to store
1165  */
lds_store(struct si_shader_context * ctx,unsigned dw_offset_imm,LLVMValueRef dw_addr,LLVMValueRef value)1166 static void lds_store(struct si_shader_context *ctx,
1167 		      unsigned dw_offset_imm, LLVMValueRef dw_addr,
1168 		      LLVMValueRef value)
1169 {
1170 	dw_addr = lp_build_add(&ctx->bld_base.uint_bld, dw_addr,
1171 			    LLVMConstInt(ctx->i32, dw_offset_imm, 0));
1172 
1173 	ac_lds_store(&ctx->ac, dw_addr, value);
1174 }
1175 
desc_from_addr_base64k(struct si_shader_context * ctx,unsigned param)1176 static LLVMValueRef desc_from_addr_base64k(struct si_shader_context *ctx,
1177 						  unsigned param)
1178 {
1179 	LLVMBuilderRef builder = ctx->ac.builder;
1180 
1181 	LLVMValueRef addr = LLVMGetParam(ctx->main_fn, param);
1182 	addr = LLVMBuildZExt(builder, addr, ctx->i64, "");
1183 	addr = LLVMBuildShl(builder, addr, LLVMConstInt(ctx->i64, 16, 0), "");
1184 
1185 	uint64_t desc2 = 0xffffffff;
1186 	uint64_t desc3 = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
1187 			 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
1188 		         S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
1189 		         S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
1190 			 S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
1191 		         S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
1192 	LLVMValueRef hi = LLVMConstInt(ctx->i64, desc2 | (desc3 << 32), 0);
1193 
1194 	LLVMValueRef desc = LLVMGetUndef(LLVMVectorType(ctx->i64, 2));
1195 	desc = LLVMBuildInsertElement(builder, desc, addr, ctx->i32_0, "");
1196 	desc = LLVMBuildInsertElement(builder, desc, hi, ctx->i32_1, "");
1197 	return LLVMBuildBitCast(builder, desc, ctx->v4i32, "");
1198 }
1199 
fetch_input_tcs(struct lp_build_tgsi_context * bld_base,const struct tgsi_full_src_register * reg,enum tgsi_opcode_type type,unsigned swizzle)1200 static LLVMValueRef fetch_input_tcs(
1201 	struct lp_build_tgsi_context *bld_base,
1202 	const struct tgsi_full_src_register *reg,
1203 	enum tgsi_opcode_type type, unsigned swizzle)
1204 {
1205 	struct si_shader_context *ctx = si_shader_context(bld_base);
1206 	LLVMValueRef dw_addr, stride;
1207 
1208 	stride = get_tcs_in_vertex_dw_stride(ctx);
1209 	dw_addr = get_tcs_in_current_patch_offset(ctx);
1210 	dw_addr = get_dw_address(ctx, NULL, reg, stride, dw_addr);
1211 
1212 	return lds_load(bld_base, tgsi2llvmtype(bld_base, type), swizzle, dw_addr);
1213 }
1214 
si_nir_load_tcs_varyings(struct ac_shader_abi * abi,LLVMValueRef vertex_index,LLVMValueRef param_index,unsigned const_index,unsigned location,unsigned driver_location,unsigned component,unsigned num_components,bool is_patch,bool is_compact,bool load_input)1215 static LLVMValueRef si_nir_load_tcs_varyings(struct ac_shader_abi *abi,
1216 					     LLVMValueRef vertex_index,
1217 					     LLVMValueRef param_index,
1218 					     unsigned const_index,
1219 					     unsigned location,
1220 					     unsigned driver_location,
1221 					     unsigned component,
1222 					     unsigned num_components,
1223 					     bool is_patch,
1224 					     bool is_compact,
1225 					     bool load_input)
1226 {
1227 	struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1228 	struct tgsi_shader_info *info = &ctx->shader->selector->info;
1229 	struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
1230 	LLVMValueRef dw_addr, stride;
1231 
1232 	driver_location = driver_location / 4;
1233 
1234 	if (load_input) {
1235 		stride = get_tcs_in_vertex_dw_stride(ctx);
1236 		dw_addr = get_tcs_in_current_patch_offset(ctx);
1237 	} else {
1238 		if (is_patch) {
1239 			stride = NULL;
1240 			dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1241 		} else {
1242 			stride = get_tcs_out_vertex_dw_stride(ctx);
1243 			dw_addr = get_tcs_out_current_patch_offset(ctx);
1244 		}
1245 	}
1246 
1247 	if (param_index) {
1248 		/* Add the constant index to the indirect index */
1249 		param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
1250 					   LLVMConstInt(ctx->i32, const_index, 0), "");
1251 	} else {
1252 		param_index = LLVMConstInt(ctx->i32, const_index, 0);
1253 	}
1254 
1255 	dw_addr = get_dw_address_from_generic_indices(ctx, stride, dw_addr,
1256 						      vertex_index, param_index,
1257 						      driver_location,
1258 						      info->input_semantic_name,
1259 						      info->input_semantic_index,
1260 						      is_patch);
1261 
1262 	LLVMValueRef value[4];
1263 	for (unsigned i = 0; i < num_components + component; i++) {
1264 		value[i] = lds_load(bld_base, ctx->i32, i, dw_addr);
1265 	}
1266 
1267 	return ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1268 }
1269 
fetch_output_tcs(struct lp_build_tgsi_context * bld_base,const struct tgsi_full_src_register * reg,enum tgsi_opcode_type type,unsigned swizzle)1270 static LLVMValueRef fetch_output_tcs(
1271 		struct lp_build_tgsi_context *bld_base,
1272 		const struct tgsi_full_src_register *reg,
1273 		enum tgsi_opcode_type type, unsigned swizzle)
1274 {
1275 	struct si_shader_context *ctx = si_shader_context(bld_base);
1276 	LLVMValueRef dw_addr, stride;
1277 
1278 	if (reg->Register.Dimension) {
1279 		stride = get_tcs_out_vertex_dw_stride(ctx);
1280 		dw_addr = get_tcs_out_current_patch_offset(ctx);
1281 		dw_addr = get_dw_address(ctx, NULL, reg, stride, dw_addr);
1282 	} else {
1283 		dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1284 		dw_addr = get_dw_address(ctx, NULL, reg, NULL, dw_addr);
1285 	}
1286 
1287 	return lds_load(bld_base, tgsi2llvmtype(bld_base, type), swizzle, dw_addr);
1288 }
1289 
fetch_input_tes(struct lp_build_tgsi_context * bld_base,const struct tgsi_full_src_register * reg,enum tgsi_opcode_type type,unsigned swizzle)1290 static LLVMValueRef fetch_input_tes(
1291 	struct lp_build_tgsi_context *bld_base,
1292 	const struct tgsi_full_src_register *reg,
1293 	enum tgsi_opcode_type type, unsigned swizzle)
1294 {
1295 	struct si_shader_context *ctx = si_shader_context(bld_base);
1296 	LLVMValueRef buffer, base, addr;
1297 
1298 	buffer = desc_from_addr_base64k(ctx, ctx->param_tcs_offchip_addr_base64k);
1299 
1300 	base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1301 	addr = get_tcs_tes_buffer_address_from_reg(ctx, NULL, reg);
1302 
1303 	return buffer_load(bld_base, tgsi2llvmtype(bld_base, type), swizzle,
1304 			   buffer, base, addr, true);
1305 }
1306 
si_nir_load_input_tes(struct ac_shader_abi * abi,LLVMValueRef vertex_index,LLVMValueRef param_index,unsigned const_index,unsigned location,unsigned driver_location,unsigned component,unsigned num_components,bool is_patch,bool is_compact,bool load_input)1307 LLVMValueRef si_nir_load_input_tes(struct ac_shader_abi *abi,
1308 				   LLVMValueRef vertex_index,
1309 				   LLVMValueRef param_index,
1310 				   unsigned const_index,
1311 				   unsigned location,
1312 				   unsigned driver_location,
1313 				   unsigned component,
1314 				   unsigned num_components,
1315 				   bool is_patch,
1316 				   bool is_compact,
1317 				   bool load_input)
1318 {
1319 	struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1320 	struct tgsi_shader_info *info = &ctx->shader->selector->info;
1321 	LLVMValueRef buffer, base, addr;
1322 
1323 	driver_location = driver_location / 4;
1324 
1325 	buffer = desc_from_addr_base64k(ctx, ctx->param_tcs_offchip_addr_base64k);
1326 
1327 	base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1328 
1329 	if (param_index) {
1330 		/* Add the constant index to the indirect index */
1331 		param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
1332 					   LLVMConstInt(ctx->i32, const_index, 0), "");
1333 	} else {
1334 		param_index = LLVMConstInt(ctx->i32, const_index, 0);
1335 	}
1336 
1337 	addr = get_tcs_tes_buffer_address_from_generic_indices(ctx, vertex_index,
1338 							       param_index, driver_location,
1339 							       info->input_semantic_name,
1340 							       info->input_semantic_index,
1341 							       is_patch);
1342 
1343 	/* TODO: This will generate rather ordinary llvm code, although it
1344 	 * should be easy for the optimiser to fix up. In future we might want
1345 	 * to refactor buffer_load(), but for now this maximises code sharing
1346 	 * between the NIR and TGSI backends.
1347 	 */
1348 	LLVMValueRef value[4];
1349 	for (unsigned i = component; i < num_components + component; i++) {
1350 		value[i] = buffer_load(&ctx->bld_base, ctx->i32, i, buffer, base, addr, true);
1351 	}
1352 
1353 	return ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1354 }
1355 
store_output_tcs(struct lp_build_tgsi_context * bld_base,const struct tgsi_full_instruction * inst,const struct tgsi_opcode_info * info,unsigned index,LLVMValueRef dst[4])1356 static void store_output_tcs(struct lp_build_tgsi_context *bld_base,
1357 			     const struct tgsi_full_instruction *inst,
1358 			     const struct tgsi_opcode_info *info,
1359 			     unsigned index,
1360 			     LLVMValueRef dst[4])
1361 {
1362 	struct si_shader_context *ctx = si_shader_context(bld_base);
1363 	const struct tgsi_full_dst_register *reg = &inst->Dst[index];
1364 	const struct tgsi_shader_info *sh_info = &ctx->shader->selector->info;
1365 	unsigned chan_index;
1366 	LLVMValueRef dw_addr, stride;
1367 	LLVMValueRef buffer, base, buf_addr;
1368 	LLVMValueRef values[4];
1369 	bool skip_lds_store;
1370 	bool is_tess_factor = false, is_tess_inner = false;
1371 
1372 	/* Only handle per-patch and per-vertex outputs here.
1373 	 * Vectors will be lowered to scalars and this function will be called again.
1374 	 */
1375 	if (reg->Register.File != TGSI_FILE_OUTPUT ||
1376 	    (dst[0] && LLVMGetTypeKind(LLVMTypeOf(dst[0])) == LLVMVectorTypeKind)) {
1377 		si_llvm_emit_store(bld_base, inst, info, index, dst);
1378 		return;
1379 	}
1380 
1381 	if (reg->Register.Dimension) {
1382 		stride = get_tcs_out_vertex_dw_stride(ctx);
1383 		dw_addr = get_tcs_out_current_patch_offset(ctx);
1384 		dw_addr = get_dw_address(ctx, reg, NULL, stride, dw_addr);
1385 		skip_lds_store = !sh_info->reads_pervertex_outputs;
1386 	} else {
1387 		dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1388 		dw_addr = get_dw_address(ctx, reg, NULL, NULL, dw_addr);
1389 		skip_lds_store = !sh_info->reads_perpatch_outputs;
1390 
1391 		if (!reg->Register.Indirect) {
1392 			int name = sh_info->output_semantic_name[reg->Register.Index];
1393 
1394 			/* Always write tess factors into LDS for the TCS epilog. */
1395 			if (name == TGSI_SEMANTIC_TESSINNER ||
1396 			    name == TGSI_SEMANTIC_TESSOUTER) {
1397 				/* The epilog doesn't read LDS if invocation 0 defines tess factors. */
1398 				skip_lds_store = !sh_info->reads_tessfactor_outputs &&
1399 						 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs;
1400 				is_tess_factor = true;
1401 				is_tess_inner = name == TGSI_SEMANTIC_TESSINNER;
1402 			}
1403 		}
1404 	}
1405 
1406 	buffer = desc_from_addr_base64k(ctx, ctx->param_tcs_offchip_addr_base64k);
1407 
1408 	base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1409 	buf_addr = get_tcs_tes_buffer_address_from_reg(ctx, reg, NULL);
1410 
1411 	uint32_t writemask = reg->Register.WriteMask;
1412 	while (writemask) {
1413 		chan_index = u_bit_scan(&writemask);
1414 		LLVMValueRef value = dst[chan_index];
1415 
1416 		if (inst->Instruction.Saturate)
1417 			value = ac_build_clamp(&ctx->ac, value);
1418 
1419 		/* Skip LDS stores if there is no LDS read of this output. */
1420 		if (!skip_lds_store)
1421 			lds_store(ctx, chan_index, dw_addr, value);
1422 
1423 		value = ac_to_integer(&ctx->ac, value);
1424 		values[chan_index] = value;
1425 
1426 		if (reg->Register.WriteMask != 0xF && !is_tess_factor) {
1427 			ac_build_buffer_store_dword(&ctx->ac, buffer, value, 1,
1428 						    buf_addr, base,
1429 						    4 * chan_index, 1, 0, true, false);
1430 		}
1431 
1432 		/* Write tess factors into VGPRs for the epilog. */
1433 		if (is_tess_factor &&
1434 		    ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs) {
1435 			if (!is_tess_inner) {
1436 				LLVMBuildStore(ctx->ac.builder, value, /* outer */
1437 					       ctx->invoc0_tess_factors[chan_index]);
1438 			} else if (chan_index < 2) {
1439 				LLVMBuildStore(ctx->ac.builder, value, /* inner */
1440 					       ctx->invoc0_tess_factors[4 + chan_index]);
1441 			}
1442 		}
1443 	}
1444 
1445 	if (reg->Register.WriteMask == 0xF && !is_tess_factor) {
1446 		LLVMValueRef value = lp_build_gather_values(&ctx->gallivm,
1447 		                                            values, 4);
1448 		ac_build_buffer_store_dword(&ctx->ac, buffer, value, 4, buf_addr,
1449 					    base, 0, 1, 0, true, false);
1450 	}
1451 }
1452 
si_nir_store_output_tcs(struct ac_shader_abi * abi,const struct nir_variable * var,LLVMValueRef vertex_index,LLVMValueRef param_index,unsigned const_index,LLVMValueRef src,unsigned writemask)1453 static void si_nir_store_output_tcs(struct ac_shader_abi *abi,
1454 				    const struct nir_variable *var,
1455 				    LLVMValueRef vertex_index,
1456 				    LLVMValueRef param_index,
1457 				    unsigned const_index,
1458 				    LLVMValueRef src,
1459 				    unsigned writemask)
1460 {
1461 	struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1462 	struct tgsi_shader_info *info = &ctx->shader->selector->info;
1463 	const unsigned component = var->data.location_frac;
1464 	const bool is_patch = var->data.patch;
1465 	unsigned driver_location = var->data.driver_location;
1466 	LLVMValueRef dw_addr, stride;
1467 	LLVMValueRef buffer, base, addr;
1468 	LLVMValueRef values[4];
1469 	bool skip_lds_store;
1470 	bool is_tess_factor = false, is_tess_inner = false;
1471 
1472 	driver_location = driver_location / 4;
1473 
1474 	if (param_index) {
1475 		/* Add the constant index to the indirect index */
1476 		param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
1477 					   LLVMConstInt(ctx->i32, const_index, 0), "");
1478 	} else {
1479 		if (const_index != 0)
1480 			param_index = LLVMConstInt(ctx->i32, const_index, 0);
1481 	}
1482 
1483 	if (!is_patch) {
1484 		stride = get_tcs_out_vertex_dw_stride(ctx);
1485 		dw_addr = get_tcs_out_current_patch_offset(ctx);
1486 		dw_addr = get_dw_address_from_generic_indices(ctx, stride, dw_addr,
1487 							      vertex_index, param_index,
1488 							      driver_location,
1489 							      info->output_semantic_name,
1490 							      info->output_semantic_index,
1491 							      is_patch);
1492 
1493 		skip_lds_store = !info->reads_pervertex_outputs;
1494 	} else {
1495 		dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1496 		dw_addr = get_dw_address_from_generic_indices(ctx, NULL, dw_addr,
1497 							      vertex_index, param_index,
1498 							      driver_location,
1499 							      info->output_semantic_name,
1500 							      info->output_semantic_index,
1501 							      is_patch);
1502 
1503 		skip_lds_store = !info->reads_perpatch_outputs;
1504 
1505 		if (!param_index) {
1506 			int name = info->output_semantic_name[driver_location];
1507 
1508 			/* Always write tess factors into LDS for the TCS epilog. */
1509 			if (name == TGSI_SEMANTIC_TESSINNER ||
1510 			    name == TGSI_SEMANTIC_TESSOUTER) {
1511 				/* The epilog doesn't read LDS if invocation 0 defines tess factors. */
1512 				skip_lds_store = !info->reads_tessfactor_outputs &&
1513 						 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs;
1514 				is_tess_factor = true;
1515 				is_tess_inner = name == TGSI_SEMANTIC_TESSINNER;
1516 			}
1517 		}
1518 	}
1519 
1520 	buffer = desc_from_addr_base64k(ctx, ctx->param_tcs_offchip_addr_base64k);
1521 
1522 	base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1523 
1524 	addr = get_tcs_tes_buffer_address_from_generic_indices(ctx, vertex_index,
1525 							       param_index, driver_location,
1526 							       info->output_semantic_name,
1527 							       info->output_semantic_index,
1528 							       is_patch);
1529 
1530 	for (unsigned chan = 0; chan < 4; chan++) {
1531 		if (!(writemask & (1 << chan)))
1532 			continue;
1533 		LLVMValueRef value = ac_llvm_extract_elem(&ctx->ac, src, chan - component);
1534 
1535 		/* Skip LDS stores if there is no LDS read of this output. */
1536 		if (!skip_lds_store)
1537 			ac_lds_store(&ctx->ac, dw_addr, value);
1538 
1539 		value = ac_to_integer(&ctx->ac, value);
1540 		values[chan] = value;
1541 
1542 		if (writemask != 0xF && !is_tess_factor) {
1543 			ac_build_buffer_store_dword(&ctx->ac, buffer, value, 1,
1544 						    addr, base,
1545 						    4 * chan, 1, 0, true, false);
1546 		}
1547 
1548 		/* Write tess factors into VGPRs for the epilog. */
1549 		if (is_tess_factor &&
1550 		    ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs) {
1551 			if (!is_tess_inner) {
1552 				LLVMBuildStore(ctx->ac.builder, value, /* outer */
1553 					       ctx->invoc0_tess_factors[chan]);
1554 			} else if (chan < 2) {
1555 				LLVMBuildStore(ctx->ac.builder, value, /* inner */
1556 					       ctx->invoc0_tess_factors[4 + chan]);
1557 			}
1558 		}
1559 	}
1560 
1561 	if (writemask == 0xF && !is_tess_factor) {
1562 		LLVMValueRef value = lp_build_gather_values(&ctx->gallivm,
1563 		                                            values, 4);
1564 		ac_build_buffer_store_dword(&ctx->ac, buffer, value, 4, addr,
1565 					    base, 0, 1, 0, true, false);
1566 	}
1567 }
1568 
si_llvm_load_input_gs(struct ac_shader_abi * abi,unsigned input_index,unsigned vtx_offset_param,LLVMTypeRef type,unsigned swizzle)1569 LLVMValueRef si_llvm_load_input_gs(struct ac_shader_abi *abi,
1570 				   unsigned input_index,
1571 				   unsigned vtx_offset_param,
1572 				   LLVMTypeRef type,
1573 				   unsigned swizzle)
1574 {
1575 	struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1576 	struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
1577 	struct si_shader *shader = ctx->shader;
1578 	struct lp_build_context *uint =	&ctx->bld_base.uint_bld;
1579 	LLVMValueRef vtx_offset, soffset;
1580 	struct tgsi_shader_info *info = &shader->selector->info;
1581 	unsigned semantic_name = info->input_semantic_name[input_index];
1582 	unsigned semantic_index = info->input_semantic_index[input_index];
1583 	unsigned param;
1584 	LLVMValueRef value;
1585 
1586 	param = si_shader_io_get_unique_index(semantic_name, semantic_index);
1587 
1588 	/* GFX9 has the ESGS ring in LDS. */
1589 	if (ctx->screen->info.chip_class >= GFX9) {
1590 		unsigned index = vtx_offset_param;
1591 
1592 		switch (index / 2) {
1593 		case 0:
1594 			vtx_offset = unpack_param(ctx, ctx->param_gs_vtx01_offset,
1595 						  index % 2 ? 16 : 0, 16);
1596 			break;
1597 		case 1:
1598 			vtx_offset = unpack_param(ctx, ctx->param_gs_vtx23_offset,
1599 						  index % 2 ? 16 : 0, 16);
1600 			break;
1601 		case 2:
1602 			vtx_offset = unpack_param(ctx, ctx->param_gs_vtx45_offset,
1603 						  index % 2 ? 16 : 0, 16);
1604 			break;
1605 		default:
1606 			assert(0);
1607 			return NULL;
1608 		}
1609 
1610 		vtx_offset = LLVMBuildAdd(ctx->ac.builder, vtx_offset,
1611 					  LLVMConstInt(ctx->i32, param * 4, 0), "");
1612 		return lds_load(bld_base, type, swizzle, vtx_offset);
1613 	}
1614 
1615 	/* GFX6: input load from the ESGS ring in memory. */
1616 	if (swizzle == ~0) {
1617 		LLVMValueRef values[TGSI_NUM_CHANNELS];
1618 		unsigned chan;
1619 		for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1620 			values[chan] = si_llvm_load_input_gs(abi, input_index, vtx_offset_param,
1621 							     type, chan);
1622 		}
1623 		return lp_build_gather_values(&ctx->gallivm, values,
1624 					      TGSI_NUM_CHANNELS);
1625 	}
1626 
1627 	/* Get the vertex offset parameter on GFX6. */
1628 	LLVMValueRef gs_vtx_offset = ctx->gs_vtx_offset[vtx_offset_param];
1629 
1630 	vtx_offset = lp_build_mul_imm(uint, gs_vtx_offset, 4);
1631 
1632 	soffset = LLVMConstInt(ctx->i32, (param * 4 + swizzle) * 256, 0);
1633 
1634 	value = ac_build_buffer_load(&ctx->ac, ctx->esgs_ring, 1, ctx->i32_0,
1635 				     vtx_offset, soffset, 0, 1, 0, true, false);
1636 	if (llvm_type_is_64bit(ctx, type)) {
1637 		LLVMValueRef value2;
1638 		soffset = LLVMConstInt(ctx->i32, (param * 4 + swizzle + 1) * 256, 0);
1639 
1640 		value2 = ac_build_buffer_load(&ctx->ac, ctx->esgs_ring, 1,
1641 					      ctx->i32_0, vtx_offset, soffset,
1642 					      0, 1, 0, true, false);
1643 		return si_llvm_emit_fetch_64bit(bld_base, type, value, value2);
1644 	}
1645 	return LLVMBuildBitCast(ctx->ac.builder, value, type, "");
1646 }
1647 
fetch_input_gs(struct lp_build_tgsi_context * bld_base,const struct tgsi_full_src_register * reg,enum tgsi_opcode_type type,unsigned swizzle)1648 static LLVMValueRef fetch_input_gs(
1649 	struct lp_build_tgsi_context *bld_base,
1650 	const struct tgsi_full_src_register *reg,
1651 	enum tgsi_opcode_type type,
1652 	unsigned swizzle)
1653 {
1654 	struct si_shader_context *ctx = si_shader_context(bld_base);
1655 	struct tgsi_shader_info *info = &ctx->shader->selector->info;
1656 
1657 	unsigned semantic_name = info->input_semantic_name[reg->Register.Index];
1658 	if (swizzle != ~0 && semantic_name == TGSI_SEMANTIC_PRIMID)
1659 		return get_primitive_id(ctx, swizzle);
1660 
1661 	if (!reg->Register.Dimension)
1662 		return NULL;
1663 
1664 	return si_llvm_load_input_gs(&ctx->abi, reg->Register.Index,
1665 				     reg->Dimension.Index,
1666 				     tgsi2llvmtype(bld_base, type),
1667 				     swizzle);
1668 }
1669 
lookup_interp_param_index(unsigned interpolate,unsigned location)1670 static int lookup_interp_param_index(unsigned interpolate, unsigned location)
1671 {
1672 	switch (interpolate) {
1673 	case TGSI_INTERPOLATE_CONSTANT:
1674 		return 0;
1675 
1676 	case TGSI_INTERPOLATE_LINEAR:
1677 		if (location == TGSI_INTERPOLATE_LOC_SAMPLE)
1678 			return SI_PARAM_LINEAR_SAMPLE;
1679 		else if (location == TGSI_INTERPOLATE_LOC_CENTROID)
1680 			return SI_PARAM_LINEAR_CENTROID;
1681 		else
1682 			return SI_PARAM_LINEAR_CENTER;
1683 		break;
1684 	case TGSI_INTERPOLATE_COLOR:
1685 	case TGSI_INTERPOLATE_PERSPECTIVE:
1686 		if (location == TGSI_INTERPOLATE_LOC_SAMPLE)
1687 			return SI_PARAM_PERSP_SAMPLE;
1688 		else if (location == TGSI_INTERPOLATE_LOC_CENTROID)
1689 			return SI_PARAM_PERSP_CENTROID;
1690 		else
1691 			return SI_PARAM_PERSP_CENTER;
1692 		break;
1693 	default:
1694 		fprintf(stderr, "Warning: Unhandled interpolation mode.\n");
1695 		return -1;
1696 	}
1697 }
1698 
si_build_fs_interp(struct si_shader_context * ctx,unsigned attr_index,unsigned chan,LLVMValueRef prim_mask,LLVMValueRef i,LLVMValueRef j)1699 static LLVMValueRef si_build_fs_interp(struct si_shader_context *ctx,
1700 				       unsigned attr_index, unsigned chan,
1701 				       LLVMValueRef prim_mask,
1702 				       LLVMValueRef i, LLVMValueRef j)
1703 {
1704 	if (i || j) {
1705 		return ac_build_fs_interp(&ctx->ac,
1706 					  LLVMConstInt(ctx->i32, chan, 0),
1707 					  LLVMConstInt(ctx->i32, attr_index, 0),
1708 					  prim_mask, i, j);
1709 	}
1710 	return ac_build_fs_interp_mov(&ctx->ac,
1711 				      LLVMConstInt(ctx->i32, 2, 0), /* P0 */
1712 				      LLVMConstInt(ctx->i32, chan, 0),
1713 				      LLVMConstInt(ctx->i32, attr_index, 0),
1714 				      prim_mask);
1715 }
1716 
1717 /**
1718  * Interpolate a fragment shader input.
1719  *
1720  * @param ctx		context
1721  * @param input_index		index of the input in hardware
1722  * @param semantic_name		TGSI_SEMANTIC_*
1723  * @param semantic_index	semantic index
1724  * @param num_interp_inputs	number of all interpolated inputs (= BCOLOR offset)
1725  * @param colors_read_mask	color components read (4 bits for each color, 8 bits in total)
1726  * @param interp_param		interpolation weights (i,j)
1727  * @param prim_mask		SI_PARAM_PRIM_MASK
1728  * @param face			SI_PARAM_FRONT_FACE
1729  * @param result		the return value (4 components)
1730  */
interp_fs_input(struct si_shader_context * ctx,unsigned input_index,unsigned semantic_name,unsigned semantic_index,unsigned num_interp_inputs,unsigned colors_read_mask,LLVMValueRef interp_param,LLVMValueRef prim_mask,LLVMValueRef face,LLVMValueRef result[4])1731 static void interp_fs_input(struct si_shader_context *ctx,
1732 			    unsigned input_index,
1733 			    unsigned semantic_name,
1734 			    unsigned semantic_index,
1735 			    unsigned num_interp_inputs,
1736 			    unsigned colors_read_mask,
1737 			    LLVMValueRef interp_param,
1738 			    LLVMValueRef prim_mask,
1739 			    LLVMValueRef face,
1740 			    LLVMValueRef result[4])
1741 {
1742 	LLVMValueRef i = NULL, j = NULL;
1743 	unsigned chan;
1744 
1745 	/* fs.constant returns the param from the middle vertex, so it's not
1746 	 * really useful for flat shading. It's meant to be used for custom
1747 	 * interpolation (but the intrinsic can't fetch from the other two
1748 	 * vertices).
1749 	 *
1750 	 * Luckily, it doesn't matter, because we rely on the FLAT_SHADE state
1751 	 * to do the right thing. The only reason we use fs.constant is that
1752 	 * fs.interp cannot be used on integers, because they can be equal
1753 	 * to NaN.
1754 	 *
1755 	 * When interp is false we will use fs.constant or for newer llvm,
1756          * amdgcn.interp.mov.
1757 	 */
1758 	bool interp = interp_param != NULL;
1759 
1760 	if (interp) {
1761 		interp_param = LLVMBuildBitCast(ctx->ac.builder, interp_param,
1762 						LLVMVectorType(ctx->f32, 2), "");
1763 
1764 		i = LLVMBuildExtractElement(ctx->ac.builder, interp_param,
1765 						ctx->i32_0, "");
1766 		j = LLVMBuildExtractElement(ctx->ac.builder, interp_param,
1767 						ctx->i32_1, "");
1768 	}
1769 
1770 	if (semantic_name == TGSI_SEMANTIC_COLOR &&
1771 	    ctx->shader->key.part.ps.prolog.color_two_side) {
1772 		LLVMValueRef is_face_positive;
1773 
1774 		/* If BCOLOR0 is used, BCOLOR1 is at offset "num_inputs + 1",
1775 		 * otherwise it's at offset "num_inputs".
1776 		 */
1777 		unsigned back_attr_offset = num_interp_inputs;
1778 		if (semantic_index == 1 && colors_read_mask & 0xf)
1779 			back_attr_offset += 1;
1780 
1781 		is_face_positive = LLVMBuildICmp(ctx->ac.builder, LLVMIntNE,
1782 						 face, ctx->i32_0, "");
1783 
1784 		for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1785 			LLVMValueRef front, back;
1786 
1787 			front = si_build_fs_interp(ctx,
1788 						   input_index, chan,
1789 						   prim_mask, i, j);
1790 			back = si_build_fs_interp(ctx,
1791 						  back_attr_offset, chan,
1792 						  prim_mask, i, j);
1793 
1794 			result[chan] = LLVMBuildSelect(ctx->ac.builder,
1795 						is_face_positive,
1796 						front,
1797 						back,
1798 						"");
1799 		}
1800 	} else if (semantic_name == TGSI_SEMANTIC_FOG) {
1801 		result[0] = si_build_fs_interp(ctx, input_index,
1802 					       0, prim_mask, i, j);
1803 		result[1] =
1804 		result[2] = LLVMConstReal(ctx->f32, 0.0f);
1805 		result[3] = LLVMConstReal(ctx->f32, 1.0f);
1806 	} else {
1807 		for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1808 			result[chan] = si_build_fs_interp(ctx,
1809 							  input_index, chan,
1810 							  prim_mask, i, j);
1811 		}
1812 	}
1813 }
1814 
si_llvm_load_input_fs(struct si_shader_context * ctx,unsigned input_index,LLVMValueRef out[4])1815 void si_llvm_load_input_fs(
1816 	struct si_shader_context *ctx,
1817 	unsigned input_index,
1818 	LLVMValueRef out[4])
1819 {
1820 	struct lp_build_context *base = &ctx->bld_base.base;
1821 	struct si_shader *shader = ctx->shader;
1822 	struct tgsi_shader_info *info = &shader->selector->info;
1823 	LLVMValueRef main_fn = ctx->main_fn;
1824 	LLVMValueRef interp_param = NULL;
1825 	int interp_param_idx;
1826 	enum tgsi_semantic semantic_name = info->input_semantic_name[input_index];
1827 	unsigned semantic_index = info->input_semantic_index[input_index];
1828 	enum tgsi_interpolate_mode interp_mode = info->input_interpolate[input_index];
1829 	enum tgsi_interpolate_loc interp_loc = info->input_interpolate_loc[input_index];
1830 
1831 	/* Get colors from input VGPRs (set by the prolog). */
1832 	if (semantic_name == TGSI_SEMANTIC_COLOR) {
1833 		unsigned colors_read = shader->selector->info.colors_read;
1834 		unsigned mask = colors_read >> (semantic_index * 4);
1835 		unsigned offset = SI_PARAM_POS_FIXED_PT + 1 +
1836 				  (semantic_index ? util_bitcount(colors_read & 0xf) : 0);
1837 
1838 		out[0] = mask & 0x1 ? LLVMGetParam(main_fn, offset++) : base->undef;
1839 		out[1] = mask & 0x2 ? LLVMGetParam(main_fn, offset++) : base->undef;
1840 		out[2] = mask & 0x4 ? LLVMGetParam(main_fn, offset++) : base->undef;
1841 		out[3] = mask & 0x8 ? LLVMGetParam(main_fn, offset++) : base->undef;
1842 		return;
1843 	}
1844 
1845 	interp_param_idx = lookup_interp_param_index(interp_mode, interp_loc);
1846 	if (interp_param_idx == -1)
1847 		return;
1848 	else if (interp_param_idx) {
1849 		interp_param = LLVMGetParam(ctx->main_fn, interp_param_idx);
1850 	}
1851 
1852 	interp_fs_input(ctx, input_index, semantic_name,
1853 			semantic_index, 0, /* this param is unused */
1854 			shader->selector->info.colors_read, interp_param,
1855 			LLVMGetParam(main_fn, SI_PARAM_PRIM_MASK),
1856 			LLVMGetParam(main_fn, SI_PARAM_FRONT_FACE),
1857 			&out[0]);
1858 }
1859 
declare_input_fs(struct si_shader_context * ctx,unsigned input_index,const struct tgsi_full_declaration * decl,LLVMValueRef out[4])1860 static void declare_input_fs(
1861 	struct si_shader_context *ctx,
1862 	unsigned input_index,
1863 	const struct tgsi_full_declaration *decl,
1864 	LLVMValueRef out[4])
1865 {
1866 	si_llvm_load_input_fs(ctx, input_index, out);
1867 }
1868 
get_sample_id(struct si_shader_context * ctx)1869 static LLVMValueRef get_sample_id(struct si_shader_context *ctx)
1870 {
1871 	return unpack_param(ctx, SI_PARAM_ANCILLARY, 8, 4);
1872 }
1873 
1874 
1875 /**
1876  * Load a dword from a constant buffer.
1877  */
buffer_load_const(struct si_shader_context * ctx,LLVMValueRef resource,LLVMValueRef offset)1878 static LLVMValueRef buffer_load_const(struct si_shader_context *ctx,
1879 				      LLVMValueRef resource,
1880 				      LLVMValueRef offset)
1881 {
1882 	return ac_build_buffer_load(&ctx->ac, resource, 1, NULL, offset, NULL,
1883 				    0, 0, 0, true, true);
1884 }
1885 
load_sample_position(struct si_shader_context * ctx,LLVMValueRef sample_id)1886 static LLVMValueRef load_sample_position(struct si_shader_context *ctx, LLVMValueRef sample_id)
1887 {
1888 	struct lp_build_context *uint_bld = &ctx->bld_base.uint_bld;
1889 	LLVMValueRef desc = LLVMGetParam(ctx->main_fn, ctx->param_rw_buffers);
1890 	LLVMValueRef buf_index = LLVMConstInt(ctx->i32, SI_PS_CONST_SAMPLE_POSITIONS, 0);
1891 	LLVMValueRef resource = ac_build_load_to_sgpr(&ctx->ac, desc, buf_index);
1892 
1893 	/* offset = sample_id * 8  (8 = 2 floats containing samplepos.xy) */
1894 	LLVMValueRef offset0 = lp_build_mul_imm(uint_bld, sample_id, 8);
1895 	LLVMValueRef offset1 = LLVMBuildAdd(ctx->ac.builder, offset0, LLVMConstInt(ctx->i32, 4, 0), "");
1896 
1897 	LLVMValueRef pos[4] = {
1898 		buffer_load_const(ctx, resource, offset0),
1899 		buffer_load_const(ctx, resource, offset1),
1900 		LLVMConstReal(ctx->f32, 0),
1901 		LLVMConstReal(ctx->f32, 0)
1902 	};
1903 
1904 	return lp_build_gather_values(&ctx->gallivm, pos, 4);
1905 }
1906 
si_load_tess_coord(struct ac_shader_abi * abi,LLVMTypeRef type,unsigned num_components)1907 static LLVMValueRef si_load_tess_coord(struct ac_shader_abi *abi,
1908 				       LLVMTypeRef type,
1909 				       unsigned num_components)
1910 {
1911 	struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1912 	struct lp_build_context *bld = &ctx->bld_base.base;
1913 
1914 	LLVMValueRef coord[4] = {
1915 		LLVMGetParam(ctx->main_fn, ctx->param_tes_u),
1916 		LLVMGetParam(ctx->main_fn, ctx->param_tes_v),
1917 		ctx->ac.f32_0,
1918 		ctx->ac.f32_0
1919 	};
1920 
1921 	/* For triangles, the vector should be (u, v, 1-u-v). */
1922 	if (ctx->shader->selector->info.properties[TGSI_PROPERTY_TES_PRIM_MODE] ==
1923 	    PIPE_PRIM_TRIANGLES)
1924 		coord[2] = lp_build_sub(bld, ctx->ac.f32_1,
1925 					lp_build_add(bld, coord[0], coord[1]));
1926 
1927 	return lp_build_gather_values(&ctx->gallivm, coord, 4);
1928 }
1929 
load_tess_level(struct si_shader_context * ctx,unsigned semantic_name)1930 static LLVMValueRef load_tess_level(struct si_shader_context *ctx,
1931 				    unsigned semantic_name)
1932 {
1933 	LLVMValueRef buffer, base, addr;
1934 
1935 	int param = si_shader_io_get_unique_index_patch(semantic_name, 0);
1936 
1937 	buffer = desc_from_addr_base64k(ctx, ctx->param_tcs_offchip_addr_base64k);
1938 
1939 	base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1940 	addr = get_tcs_tes_buffer_address(ctx, get_rel_patch_id(ctx), NULL,
1941 					  LLVMConstInt(ctx->i32, param, 0));
1942 
1943 	return buffer_load(&ctx->bld_base, ctx->f32,
1944 			   ~0, buffer, base, addr, true);
1945 
1946 }
1947 
si_load_tess_level(struct ac_shader_abi * abi,unsigned varying_id)1948 static LLVMValueRef si_load_tess_level(struct ac_shader_abi *abi,
1949 				       unsigned varying_id)
1950 {
1951 	struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1952 	unsigned semantic_name;
1953 
1954 	switch (varying_id) {
1955 	case VARYING_SLOT_TESS_LEVEL_INNER:
1956 		semantic_name = TGSI_SEMANTIC_TESSINNER;
1957 		break;
1958 	case VARYING_SLOT_TESS_LEVEL_OUTER:
1959 		semantic_name = TGSI_SEMANTIC_TESSOUTER;
1960 		break;
1961 	default:
1962 		unreachable("unknown tess level");
1963 	}
1964 
1965 	return load_tess_level(ctx, semantic_name);
1966 
1967 }
1968 
si_load_patch_vertices_in(struct ac_shader_abi * abi)1969 static LLVMValueRef si_load_patch_vertices_in(struct ac_shader_abi *abi)
1970 {
1971 	struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1972 	if (ctx->type == PIPE_SHADER_TESS_CTRL)
1973 		return unpack_param(ctx, ctx->param_tcs_out_lds_layout, 26, 6);
1974 	else if (ctx->type == PIPE_SHADER_TESS_EVAL)
1975 		return get_num_tcs_out_vertices(ctx);
1976 	else
1977 		unreachable("invalid shader stage for TGSI_SEMANTIC_VERTICESIN");
1978 }
1979 
si_load_system_value(struct si_shader_context * ctx,unsigned index,const struct tgsi_full_declaration * decl)1980 void si_load_system_value(struct si_shader_context *ctx,
1981 			  unsigned index,
1982 			  const struct tgsi_full_declaration *decl)
1983 {
1984 	LLVMValueRef value = 0;
1985 
1986 	assert(index < RADEON_LLVM_MAX_SYSTEM_VALUES);
1987 
1988 	switch (decl->Semantic.Name) {
1989 	case TGSI_SEMANTIC_INSTANCEID:
1990 		value = ctx->abi.instance_id;
1991 		break;
1992 
1993 	case TGSI_SEMANTIC_VERTEXID:
1994 		value = LLVMBuildAdd(ctx->ac.builder,
1995 				     ctx->abi.vertex_id,
1996 				     ctx->abi.base_vertex, "");
1997 		break;
1998 
1999 	case TGSI_SEMANTIC_VERTEXID_NOBASE:
2000 		/* Unused. Clarify the meaning in indexed vs. non-indexed
2001 		 * draws if this is ever used again. */
2002 		assert(false);
2003 		break;
2004 
2005 	case TGSI_SEMANTIC_BASEVERTEX:
2006 	{
2007 		/* For non-indexed draws, the base vertex set by the driver
2008 		 * (for direct draws) or the CP (for indirect draws) is the
2009 		 * first vertex ID, but GLSL expects 0 to be returned.
2010 		 */
2011 		LLVMValueRef vs_state = LLVMGetParam(ctx->main_fn, ctx->param_vs_state_bits);
2012 		LLVMValueRef indexed;
2013 
2014 		indexed = LLVMBuildLShr(ctx->ac.builder, vs_state, ctx->i32_1, "");
2015 		indexed = LLVMBuildTrunc(ctx->ac.builder, indexed, ctx->i1, "");
2016 
2017 		value = LLVMBuildSelect(ctx->ac.builder, indexed,
2018 					ctx->abi.base_vertex, ctx->i32_0, "");
2019 		break;
2020 	}
2021 
2022 	case TGSI_SEMANTIC_BASEINSTANCE:
2023 		value = ctx->abi.start_instance;
2024 		break;
2025 
2026 	case TGSI_SEMANTIC_DRAWID:
2027 		value = ctx->abi.draw_id;
2028 		break;
2029 
2030 	case TGSI_SEMANTIC_INVOCATIONID:
2031 		if (ctx->type == PIPE_SHADER_TESS_CTRL)
2032 			value = unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 8, 5);
2033 		else if (ctx->type == PIPE_SHADER_GEOMETRY)
2034 			value = ctx->abi.gs_invocation_id;
2035 		else
2036 			assert(!"INVOCATIONID not implemented");
2037 		break;
2038 
2039 	case TGSI_SEMANTIC_POSITION:
2040 	{
2041 		LLVMValueRef pos[4] = {
2042 			LLVMGetParam(ctx->main_fn, SI_PARAM_POS_X_FLOAT),
2043 			LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Y_FLOAT),
2044 			LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Z_FLOAT),
2045 			lp_build_emit_llvm_unary(&ctx->bld_base, TGSI_OPCODE_RCP,
2046 						 LLVMGetParam(ctx->main_fn,
2047 							      SI_PARAM_POS_W_FLOAT)),
2048 		};
2049 		value = lp_build_gather_values(&ctx->gallivm, pos, 4);
2050 		break;
2051 	}
2052 
2053 	case TGSI_SEMANTIC_FACE:
2054 		value = ctx->abi.front_face;
2055 		break;
2056 
2057 	case TGSI_SEMANTIC_SAMPLEID:
2058 		value = get_sample_id(ctx);
2059 		break;
2060 
2061 	case TGSI_SEMANTIC_SAMPLEPOS: {
2062 		LLVMValueRef pos[4] = {
2063 			LLVMGetParam(ctx->main_fn, SI_PARAM_POS_X_FLOAT),
2064 			LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Y_FLOAT),
2065 			LLVMConstReal(ctx->f32, 0),
2066 			LLVMConstReal(ctx->f32, 0)
2067 		};
2068 		pos[0] = lp_build_emit_llvm_unary(&ctx->bld_base,
2069 						  TGSI_OPCODE_FRC, pos[0]);
2070 		pos[1] = lp_build_emit_llvm_unary(&ctx->bld_base,
2071 						  TGSI_OPCODE_FRC, pos[1]);
2072 		value = lp_build_gather_values(&ctx->gallivm, pos, 4);
2073 		break;
2074 	}
2075 
2076 	case TGSI_SEMANTIC_SAMPLEMASK:
2077 		/* This can only occur with the OpenGL Core profile, which
2078 		 * doesn't support smoothing.
2079 		 */
2080 		value = LLVMGetParam(ctx->main_fn, SI_PARAM_SAMPLE_COVERAGE);
2081 		break;
2082 
2083 	case TGSI_SEMANTIC_TESSCOORD:
2084 		value = si_load_tess_coord(&ctx->abi, NULL, 4);
2085 		break;
2086 
2087 	case TGSI_SEMANTIC_VERTICESIN:
2088 		value = si_load_patch_vertices_in(&ctx->abi);
2089 		break;
2090 
2091 	case TGSI_SEMANTIC_TESSINNER:
2092 	case TGSI_SEMANTIC_TESSOUTER:
2093 		value = load_tess_level(ctx, decl->Semantic.Name);
2094 		break;
2095 
2096 	case TGSI_SEMANTIC_DEFAULT_TESSOUTER_SI:
2097 	case TGSI_SEMANTIC_DEFAULT_TESSINNER_SI:
2098 	{
2099 		LLVMValueRef buf, slot, val[4];
2100 		int i, offset;
2101 
2102 		slot = LLVMConstInt(ctx->i32, SI_HS_CONST_DEFAULT_TESS_LEVELS, 0);
2103 		buf = LLVMGetParam(ctx->main_fn, ctx->param_rw_buffers);
2104 		buf = ac_build_load_to_sgpr(&ctx->ac, buf, slot);
2105 		offset = decl->Semantic.Name == TGSI_SEMANTIC_DEFAULT_TESSINNER_SI ? 4 : 0;
2106 
2107 		for (i = 0; i < 4; i++)
2108 			val[i] = buffer_load_const(ctx, buf,
2109 						   LLVMConstInt(ctx->i32, (offset + i) * 4, 0));
2110 		value = lp_build_gather_values(&ctx->gallivm, val, 4);
2111 		break;
2112 	}
2113 
2114 	case TGSI_SEMANTIC_PRIMID:
2115 		value = get_primitive_id(ctx, 0);
2116 		break;
2117 
2118 	case TGSI_SEMANTIC_GRID_SIZE:
2119 		value = LLVMGetParam(ctx->main_fn, ctx->param_grid_size);
2120 		break;
2121 
2122 	case TGSI_SEMANTIC_BLOCK_SIZE:
2123 	{
2124 		LLVMValueRef values[3];
2125 		unsigned i;
2126 		unsigned *properties = ctx->shader->selector->info.properties;
2127 
2128 		if (properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] != 0) {
2129 			unsigned sizes[3] = {
2130 				properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH],
2131 				properties[TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT],
2132 				properties[TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH]
2133 			};
2134 
2135 			for (i = 0; i < 3; ++i)
2136 				values[i] = LLVMConstInt(ctx->i32, sizes[i], 0);
2137 
2138 			value = lp_build_gather_values(&ctx->gallivm, values, 3);
2139 		} else {
2140 			value = LLVMGetParam(ctx->main_fn, ctx->param_block_size);
2141 		}
2142 		break;
2143 	}
2144 
2145 	case TGSI_SEMANTIC_BLOCK_ID:
2146 	{
2147 		LLVMValueRef values[3];
2148 
2149 		for (int i = 0; i < 3; i++) {
2150 			values[i] = ctx->i32_0;
2151 			if (ctx->param_block_id[i] >= 0) {
2152 				values[i] = LLVMGetParam(ctx->main_fn,
2153 							 ctx->param_block_id[i]);
2154 			}
2155 		}
2156 		value = lp_build_gather_values(&ctx->gallivm, values, 3);
2157 		break;
2158 	}
2159 
2160 	case TGSI_SEMANTIC_THREAD_ID:
2161 		value = LLVMGetParam(ctx->main_fn, ctx->param_thread_id);
2162 		break;
2163 
2164 	case TGSI_SEMANTIC_HELPER_INVOCATION:
2165 		value = lp_build_intrinsic(ctx->ac.builder,
2166 					   "llvm.amdgcn.ps.live",
2167 					   ctx->i1, NULL, 0,
2168 					   LP_FUNC_ATTR_READNONE);
2169 		value = LLVMBuildNot(ctx->ac.builder, value, "");
2170 		value = LLVMBuildSExt(ctx->ac.builder, value, ctx->i32, "");
2171 		break;
2172 
2173 	case TGSI_SEMANTIC_SUBGROUP_SIZE:
2174 		value = LLVMConstInt(ctx->i32, 64, 0);
2175 		break;
2176 
2177 	case TGSI_SEMANTIC_SUBGROUP_INVOCATION:
2178 		value = ac_get_thread_id(&ctx->ac);
2179 		break;
2180 
2181 	case TGSI_SEMANTIC_SUBGROUP_EQ_MASK:
2182 	{
2183 		LLVMValueRef id = ac_get_thread_id(&ctx->ac);
2184 		id = LLVMBuildZExt(ctx->ac.builder, id, ctx->i64, "");
2185 		value = LLVMBuildShl(ctx->ac.builder, LLVMConstInt(ctx->i64, 1, 0), id, "");
2186 		value = LLVMBuildBitCast(ctx->ac.builder, value, ctx->v2i32, "");
2187 		break;
2188 	}
2189 
2190 	case TGSI_SEMANTIC_SUBGROUP_GE_MASK:
2191 	case TGSI_SEMANTIC_SUBGROUP_GT_MASK:
2192 	case TGSI_SEMANTIC_SUBGROUP_LE_MASK:
2193 	case TGSI_SEMANTIC_SUBGROUP_LT_MASK:
2194 	{
2195 		LLVMValueRef id = ac_get_thread_id(&ctx->ac);
2196 		if (decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_GT_MASK ||
2197 		    decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_LE_MASK) {
2198 			/* All bits set except LSB */
2199 			value = LLVMConstInt(ctx->i64, -2, 0);
2200 		} else {
2201 			/* All bits set */
2202 			value = LLVMConstInt(ctx->i64, -1, 0);
2203 		}
2204 		id = LLVMBuildZExt(ctx->ac.builder, id, ctx->i64, "");
2205 		value = LLVMBuildShl(ctx->ac.builder, value, id, "");
2206 		if (decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_LE_MASK ||
2207 		    decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_LT_MASK)
2208 			value = LLVMBuildNot(ctx->ac.builder, value, "");
2209 		value = LLVMBuildBitCast(ctx->ac.builder, value, ctx->v2i32, "");
2210 		break;
2211 	}
2212 
2213 	default:
2214 		assert(!"unknown system value");
2215 		return;
2216 	}
2217 
2218 	ctx->system_values[index] = value;
2219 }
2220 
si_declare_compute_memory(struct si_shader_context * ctx,const struct tgsi_full_declaration * decl)2221 void si_declare_compute_memory(struct si_shader_context *ctx,
2222 			       const struct tgsi_full_declaration *decl)
2223 {
2224 	struct si_shader_selector *sel = ctx->shader->selector;
2225 
2226 	LLVMTypeRef i8p = LLVMPointerType(ctx->i8, LOCAL_ADDR_SPACE);
2227 	LLVMValueRef var;
2228 
2229 	assert(decl->Declaration.MemType == TGSI_MEMORY_TYPE_SHARED);
2230 	assert(decl->Range.First == decl->Range.Last);
2231 	assert(!ctx->ac.lds);
2232 
2233 	var = LLVMAddGlobalInAddressSpace(ctx->ac.module,
2234 	                                  LLVMArrayType(ctx->i8, sel->local_size),
2235 	                                  "compute_lds",
2236 	                                  LOCAL_ADDR_SPACE);
2237 	LLVMSetAlignment(var, 4);
2238 
2239 	ctx->ac.lds = LLVMBuildBitCast(ctx->ac.builder, var, i8p, "");
2240 }
2241 
load_const_buffer_desc(struct si_shader_context * ctx,int i)2242 static LLVMValueRef load_const_buffer_desc(struct si_shader_context *ctx, int i)
2243 {
2244 	LLVMValueRef list_ptr = LLVMGetParam(ctx->main_fn,
2245 					     ctx->param_const_and_shader_buffers);
2246 
2247 	return ac_build_load_to_sgpr(&ctx->ac, list_ptr,
2248 				     LLVMConstInt(ctx->i32, si_get_constbuf_slot(i), 0));
2249 }
2250 
load_ubo(struct ac_shader_abi * abi,LLVMValueRef index)2251 static LLVMValueRef load_ubo(struct ac_shader_abi *abi, LLVMValueRef index)
2252 {
2253 	struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2254 	LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, ctx->param_const_and_shader_buffers);
2255 
2256 	index = si_llvm_bound_index(ctx, index, ctx->num_const_buffers);
2257 	index = LLVMBuildAdd(ctx->ac.builder, index,
2258 			     LLVMConstInt(ctx->i32, SI_NUM_SHADER_BUFFERS, 0), "");
2259 
2260 	return ac_build_load_to_sgpr(&ctx->ac, ptr, index);
2261 }
2262 
2263 static LLVMValueRef
load_ssbo(struct ac_shader_abi * abi,LLVMValueRef index,bool write)2264 load_ssbo(struct ac_shader_abi *abi, LLVMValueRef index, bool write)
2265 {
2266 	struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2267 	LLVMValueRef rsrc_ptr = LLVMGetParam(ctx->main_fn,
2268 					     ctx->param_const_and_shader_buffers);
2269 
2270 	index = si_llvm_bound_index(ctx, index, ctx->num_shader_buffers);
2271 	index = LLVMBuildSub(ctx->ac.builder,
2272 			     LLVMConstInt(ctx->i32, SI_NUM_SHADER_BUFFERS - 1, 0),
2273 			     index, "");
2274 
2275 	return ac_build_load_to_sgpr(&ctx->ac, rsrc_ptr, index);
2276 }
2277 
fetch_constant(struct lp_build_tgsi_context * bld_base,const struct tgsi_full_src_register * reg,enum tgsi_opcode_type type,unsigned swizzle)2278 static LLVMValueRef fetch_constant(
2279 	struct lp_build_tgsi_context *bld_base,
2280 	const struct tgsi_full_src_register *reg,
2281 	enum tgsi_opcode_type type,
2282 	unsigned swizzle)
2283 {
2284 	struct si_shader_context *ctx = si_shader_context(bld_base);
2285 	struct si_shader_selector *sel = ctx->shader->selector;
2286 	const struct tgsi_ind_register *ireg = &reg->Indirect;
2287 	unsigned buf, idx;
2288 
2289 	LLVMValueRef addr, bufp;
2290 
2291 	if (swizzle == LP_CHAN_ALL) {
2292 		unsigned chan;
2293 		LLVMValueRef values[4];
2294 		for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan)
2295 			values[chan] = fetch_constant(bld_base, reg, type, chan);
2296 
2297 		return lp_build_gather_values(&ctx->gallivm, values, 4);
2298 	}
2299 
2300 	/* Split 64-bit loads. */
2301 	if (tgsi_type_is_64bit(type)) {
2302 		LLVMValueRef lo, hi;
2303 
2304 		lo = fetch_constant(bld_base, reg, TGSI_TYPE_UNSIGNED, swizzle);
2305 		hi = fetch_constant(bld_base, reg, TGSI_TYPE_UNSIGNED, swizzle + 1);
2306 		return si_llvm_emit_fetch_64bit(bld_base, tgsi2llvmtype(bld_base, type),
2307 						lo, hi);
2308 	}
2309 
2310 	idx = reg->Register.Index * 4 + swizzle;
2311 	if (reg->Register.Indirect) {
2312 		addr = si_get_indirect_index(ctx, ireg, 16, idx * 4);
2313 	} else {
2314 		addr = LLVMConstInt(ctx->i32, idx * 4, 0);
2315 	}
2316 
2317 	/* Fast path when user data SGPRs point to constant buffer 0 directly. */
2318 	if (sel->info.const_buffers_declared == 1 &&
2319 	    sel->info.shader_buffers_declared == 0) {
2320 		LLVMValueRef ptr =
2321 			LLVMGetParam(ctx->main_fn, ctx->param_const_and_shader_buffers);
2322 
2323 		/* This enables use of s_load_dword and flat_load_dword for const buffer 0
2324 		 * loads, and up to x4 load opcode merging. However, it leads to horrible
2325 		 * code reducing SIMD wave occupancy from 8 to 2 in many cases.
2326 		 *
2327 		 * Using s_buffer_load_dword (x1) seems to be the best option right now.
2328 		 *
2329 		 * LLVM 5.0 on SI doesn't insert a required s_nop between SALU setting
2330 		 * a descriptor and s_buffer_load_dword using it, so we can't expand
2331 		 * the pointer into a full descriptor like below. We have to use
2332 		 * s_load_dword instead. The only case when LLVM 5.0 would select
2333 		 * s_buffer_load_dword (that we have to prevent) is when we use use
2334 		 * a literal offset where we don't need bounds checking.
2335 		 */
2336 		if (ctx->screen->info.chip_class == SI &&
2337                     HAVE_LLVM < 0x0600 &&
2338                     !reg->Register.Indirect) {
2339 			addr = LLVMBuildLShr(ctx->ac.builder, addr, LLVMConstInt(ctx->i32, 2, 0), "");
2340 			LLVMValueRef result = ac_build_load_invariant(&ctx->ac, ptr, addr);
2341 			return bitcast(bld_base, type, result);
2342 		}
2343 
2344 		/* Do the bounds checking with a descriptor, because
2345 		 * doing computation and manual bounds checking of 64-bit
2346 		 * addresses generates horrible VALU code with very high
2347 		 * VGPR usage and very low SIMD occupancy.
2348 		 */
2349 		ptr = LLVMBuildPtrToInt(ctx->ac.builder, ptr, ctx->i64, "");
2350 		ptr = LLVMBuildBitCast(ctx->ac.builder, ptr, ctx->v2i32, "");
2351 
2352 		LLVMValueRef desc_elems[] = {
2353 			LLVMBuildExtractElement(ctx->ac.builder, ptr, ctx->i32_0, ""),
2354 			LLVMBuildExtractElement(ctx->ac.builder, ptr, ctx->i32_1, ""),
2355 			LLVMConstInt(ctx->i32, (sel->info.const_file_max[0] + 1) * 16, 0),
2356 			LLVMConstInt(ctx->i32,
2357 				S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
2358 				S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
2359 				S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
2360 				S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
2361 				S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
2362 				S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32), 0)
2363 		};
2364 		LLVMValueRef desc = ac_build_gather_values(&ctx->ac, desc_elems, 4);
2365 		LLVMValueRef result = buffer_load_const(ctx, desc, addr);
2366 		return bitcast(bld_base, type, result);
2367 	}
2368 
2369 	assert(reg->Register.Dimension);
2370 	buf = reg->Dimension.Index;
2371 
2372 	if (reg->Dimension.Indirect) {
2373 		LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, ctx->param_const_and_shader_buffers);
2374 		LLVMValueRef index;
2375 		index = si_get_bounded_indirect_index(ctx, &reg->DimIndirect,
2376 						      reg->Dimension.Index,
2377 						      ctx->num_const_buffers);
2378 		index = LLVMBuildAdd(ctx->ac.builder, index,
2379 				     LLVMConstInt(ctx->i32, SI_NUM_SHADER_BUFFERS, 0), "");
2380 		bufp = ac_build_load_to_sgpr(&ctx->ac, ptr, index);
2381 	} else
2382 		bufp = load_const_buffer_desc(ctx, buf);
2383 
2384 	return bitcast(bld_base, type, buffer_load_const(ctx, bufp, addr));
2385 }
2386 
2387 /* Upper 16 bits must be zero. */
si_llvm_pack_two_int16(struct si_shader_context * ctx,LLVMValueRef val[2])2388 static LLVMValueRef si_llvm_pack_two_int16(struct si_shader_context *ctx,
2389 					   LLVMValueRef val[2])
2390 {
2391 	return LLVMBuildOr(ctx->ac.builder, val[0],
2392 			   LLVMBuildShl(ctx->ac.builder, val[1],
2393 					LLVMConstInt(ctx->i32, 16, 0),
2394 					""), "");
2395 }
2396 
2397 /* Upper 16 bits are ignored and will be dropped. */
si_llvm_pack_two_int32_as_int16(struct si_shader_context * ctx,LLVMValueRef val[2])2398 static LLVMValueRef si_llvm_pack_two_int32_as_int16(struct si_shader_context *ctx,
2399 						    LLVMValueRef val[2])
2400 {
2401 	LLVMValueRef v[2] = {
2402 		LLVMBuildAnd(ctx->ac.builder, val[0],
2403 			     LLVMConstInt(ctx->i32, 0xffff, 0), ""),
2404 		val[1],
2405 	};
2406 	return si_llvm_pack_two_int16(ctx, v);
2407 }
2408 
2409 /* Initialize arguments for the shader export intrinsic */
si_llvm_init_export_args(struct si_shader_context * ctx,LLVMValueRef * values,unsigned target,struct ac_export_args * args)2410 static void si_llvm_init_export_args(struct si_shader_context *ctx,
2411 				     LLVMValueRef *values,
2412 				     unsigned target,
2413 				     struct ac_export_args *args)
2414 {
2415 	LLVMValueRef f32undef = LLVMGetUndef(ctx->ac.f32);
2416 	LLVMBuilderRef builder = ctx->ac.builder;
2417 	LLVMValueRef val[4];
2418 	unsigned spi_shader_col_format = V_028714_SPI_SHADER_32_ABGR;
2419 	unsigned chan;
2420 	bool is_int8, is_int10;
2421 
2422 	/* Default is 0xf. Adjusted below depending on the format. */
2423 	args->enabled_channels = 0xf; /* writemask */
2424 
2425 	/* Specify whether the EXEC mask represents the valid mask */
2426 	args->valid_mask = 0;
2427 
2428 	/* Specify whether this is the last export */
2429 	args->done = 0;
2430 
2431 	/* Specify the target we are exporting */
2432 	args->target = target;
2433 
2434 	if (ctx->type == PIPE_SHADER_FRAGMENT) {
2435 		const struct si_shader_key *key = &ctx->shader->key;
2436 		unsigned col_formats = key->part.ps.epilog.spi_shader_col_format;
2437 		int cbuf = target - V_008DFC_SQ_EXP_MRT;
2438 
2439 		assert(cbuf >= 0 && cbuf < 8);
2440 		spi_shader_col_format = (col_formats >> (cbuf * 4)) & 0xf;
2441 		is_int8 = (key->part.ps.epilog.color_is_int8 >> cbuf) & 0x1;
2442 		is_int10 = (key->part.ps.epilog.color_is_int10 >> cbuf) & 0x1;
2443 	}
2444 
2445 	args->compr = false;
2446 	args->out[0] = f32undef;
2447 	args->out[1] = f32undef;
2448 	args->out[2] = f32undef;
2449 	args->out[3] = f32undef;
2450 
2451 	switch (spi_shader_col_format) {
2452 	case V_028714_SPI_SHADER_ZERO:
2453 		args->enabled_channels = 0; /* writemask */
2454 		args->target = V_008DFC_SQ_EXP_NULL;
2455 		break;
2456 
2457 	case V_028714_SPI_SHADER_32_R:
2458 		args->enabled_channels = 1; /* writemask */
2459 		args->out[0] = values[0];
2460 		break;
2461 
2462 	case V_028714_SPI_SHADER_32_GR:
2463 		args->enabled_channels = 0x3; /* writemask */
2464 		args->out[0] = values[0];
2465 		args->out[1] = values[1];
2466 		break;
2467 
2468 	case V_028714_SPI_SHADER_32_AR:
2469 		args->enabled_channels = 0x9; /* writemask */
2470 		args->out[0] = values[0];
2471 		args->out[3] = values[3];
2472 		break;
2473 
2474 	case V_028714_SPI_SHADER_FP16_ABGR:
2475 		args->compr = 1; /* COMPR flag */
2476 
2477 		for (chan = 0; chan < 2; chan++) {
2478 			LLVMValueRef pack_args[2] = {
2479 				values[2 * chan],
2480 				values[2 * chan + 1]
2481 			};
2482 			LLVMValueRef packed;
2483 
2484 			packed = ac_build_cvt_pkrtz_f16(&ctx->ac, pack_args);
2485 			args->out[chan] = ac_to_float(&ctx->ac, packed);
2486 		}
2487 		break;
2488 
2489 	case V_028714_SPI_SHADER_UNORM16_ABGR:
2490 		for (chan = 0; chan < 4; chan++) {
2491 			val[chan] = ac_build_clamp(&ctx->ac, values[chan]);
2492 			val[chan] = LLVMBuildFMul(builder, val[chan],
2493 						  LLVMConstReal(ctx->f32, 65535), "");
2494 			val[chan] = LLVMBuildFAdd(builder, val[chan],
2495 						  LLVMConstReal(ctx->f32, 0.5), "");
2496 			val[chan] = LLVMBuildFPToUI(builder, val[chan],
2497 						    ctx->i32, "");
2498 		}
2499 
2500 		args->compr = 1; /* COMPR flag */
2501 		args->out[0] = ac_to_float(&ctx->ac, si_llvm_pack_two_int16(ctx, val));
2502 		args->out[1] = ac_to_float(&ctx->ac, si_llvm_pack_two_int16(ctx, val+2));
2503 		break;
2504 
2505 	case V_028714_SPI_SHADER_SNORM16_ABGR:
2506 		for (chan = 0; chan < 4; chan++) {
2507 			/* Clamp between [-1, 1]. */
2508 			val[chan] = lp_build_emit_llvm_binary(&ctx->bld_base, TGSI_OPCODE_MIN,
2509 							      values[chan],
2510 							      LLVMConstReal(ctx->f32, 1));
2511 			val[chan] = lp_build_emit_llvm_binary(&ctx->bld_base, TGSI_OPCODE_MAX,
2512 							      val[chan],
2513 							      LLVMConstReal(ctx->f32, -1));
2514 			/* Convert to a signed integer in [-32767, 32767]. */
2515 			val[chan] = LLVMBuildFMul(builder, val[chan],
2516 						  LLVMConstReal(ctx->f32, 32767), "");
2517 			/* If positive, add 0.5, else add -0.5. */
2518 			val[chan] = LLVMBuildFAdd(builder, val[chan],
2519 					LLVMBuildSelect(builder,
2520 						LLVMBuildFCmp(builder, LLVMRealOGE,
2521 							      val[chan], ctx->ac.f32_0, ""),
2522 						LLVMConstReal(ctx->f32, 0.5),
2523 						LLVMConstReal(ctx->f32, -0.5), ""), "");
2524 			val[chan] = LLVMBuildFPToSI(builder, val[chan], ctx->i32, "");
2525 		}
2526 
2527 		args->compr = 1; /* COMPR flag */
2528 		args->out[0] = ac_to_float(&ctx->ac, si_llvm_pack_two_int32_as_int16(ctx, val));
2529 		args->out[1] = ac_to_float(&ctx->ac, si_llvm_pack_two_int32_as_int16(ctx, val+2));
2530 		break;
2531 
2532 	case V_028714_SPI_SHADER_UINT16_ABGR: {
2533 		LLVMValueRef max_rgb = LLVMConstInt(ctx->i32,
2534 			is_int8 ? 255 : is_int10 ? 1023 : 65535, 0);
2535 		LLVMValueRef max_alpha =
2536 			!is_int10 ? max_rgb : LLVMConstInt(ctx->i32, 3, 0);
2537 
2538 		/* Clamp. */
2539 		for (chan = 0; chan < 4; chan++) {
2540 			val[chan] = ac_to_integer(&ctx->ac, values[chan]);
2541 			val[chan] = lp_build_emit_llvm_binary(&ctx->bld_base, TGSI_OPCODE_UMIN,
2542 					val[chan],
2543 					chan == 3 ? max_alpha : max_rgb);
2544 		}
2545 
2546 		args->compr = 1; /* COMPR flag */
2547 		args->out[0] = ac_to_float(&ctx->ac, si_llvm_pack_two_int16(ctx, val));
2548 		args->out[1] = ac_to_float(&ctx->ac, si_llvm_pack_two_int16(ctx, val+2));
2549 		break;
2550 	}
2551 
2552 	case V_028714_SPI_SHADER_SINT16_ABGR: {
2553 		LLVMValueRef max_rgb = LLVMConstInt(ctx->i32,
2554 			is_int8 ? 127 : is_int10 ? 511 : 32767, 0);
2555 		LLVMValueRef min_rgb = LLVMConstInt(ctx->i32,
2556 			is_int8 ? -128 : is_int10 ? -512 : -32768, 0);
2557 		LLVMValueRef max_alpha =
2558 			!is_int10 ? max_rgb : ctx->i32_1;
2559 		LLVMValueRef min_alpha =
2560 			!is_int10 ? min_rgb : LLVMConstInt(ctx->i32, -2, 0);
2561 
2562 		/* Clamp. */
2563 		for (chan = 0; chan < 4; chan++) {
2564 			val[chan] = ac_to_integer(&ctx->ac, values[chan]);
2565 			val[chan] = lp_build_emit_llvm_binary(&ctx->bld_base,
2566 					TGSI_OPCODE_IMIN,
2567 					val[chan], chan == 3 ? max_alpha : max_rgb);
2568 			val[chan] = lp_build_emit_llvm_binary(&ctx->bld_base,
2569 					TGSI_OPCODE_IMAX,
2570 					val[chan], chan == 3 ? min_alpha : min_rgb);
2571 		}
2572 
2573 		args->compr = 1; /* COMPR flag */
2574 		args->out[0] = ac_to_float(&ctx->ac, si_llvm_pack_two_int32_as_int16(ctx, val));
2575 		args->out[1] = ac_to_float(&ctx->ac, si_llvm_pack_two_int32_as_int16(ctx, val+2));
2576 		break;
2577 	}
2578 
2579 	case V_028714_SPI_SHADER_32_ABGR:
2580 		memcpy(&args->out[0], values, sizeof(values[0]) * 4);
2581 		break;
2582 	}
2583 }
2584 
si_alpha_test(struct lp_build_tgsi_context * bld_base,LLVMValueRef alpha)2585 static void si_alpha_test(struct lp_build_tgsi_context *bld_base,
2586 			  LLVMValueRef alpha)
2587 {
2588 	struct si_shader_context *ctx = si_shader_context(bld_base);
2589 
2590 	if (ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_NEVER) {
2591 		static LLVMRealPredicate cond_map[PIPE_FUNC_ALWAYS + 1] = {
2592 			[PIPE_FUNC_LESS] = LLVMRealOLT,
2593 			[PIPE_FUNC_EQUAL] = LLVMRealOEQ,
2594 			[PIPE_FUNC_LEQUAL] = LLVMRealOLE,
2595 			[PIPE_FUNC_GREATER] = LLVMRealOGT,
2596 			[PIPE_FUNC_NOTEQUAL] = LLVMRealONE,
2597 			[PIPE_FUNC_GEQUAL] = LLVMRealOGE,
2598 		};
2599 		LLVMRealPredicate cond = cond_map[ctx->shader->key.part.ps.epilog.alpha_func];
2600 		assert(cond);
2601 
2602 		LLVMValueRef alpha_ref = LLVMGetParam(ctx->main_fn,
2603 				SI_PARAM_ALPHA_REF);
2604 		LLVMValueRef alpha_pass =
2605 			LLVMBuildFCmp(ctx->ac.builder, cond, alpha, alpha_ref, "");
2606 		ac_build_kill_if_false(&ctx->ac, alpha_pass);
2607 	} else {
2608 		ac_build_kill_if_false(&ctx->ac, LLVMConstInt(ctx->i1, 0, 0));
2609 	}
2610 }
2611 
si_scale_alpha_by_sample_mask(struct lp_build_tgsi_context * bld_base,LLVMValueRef alpha,unsigned samplemask_param)2612 static LLVMValueRef si_scale_alpha_by_sample_mask(struct lp_build_tgsi_context *bld_base,
2613 						  LLVMValueRef alpha,
2614 						  unsigned samplemask_param)
2615 {
2616 	struct si_shader_context *ctx = si_shader_context(bld_base);
2617 	LLVMValueRef coverage;
2618 
2619 	/* alpha = alpha * popcount(coverage) / SI_NUM_SMOOTH_AA_SAMPLES */
2620 	coverage = LLVMGetParam(ctx->main_fn,
2621 				samplemask_param);
2622 	coverage = ac_to_integer(&ctx->ac, coverage);
2623 
2624 	coverage = lp_build_intrinsic(ctx->ac.builder, "llvm.ctpop.i32",
2625 				   ctx->i32,
2626 				   &coverage, 1, LP_FUNC_ATTR_READNONE);
2627 
2628 	coverage = LLVMBuildUIToFP(ctx->ac.builder, coverage,
2629 				   ctx->f32, "");
2630 
2631 	coverage = LLVMBuildFMul(ctx->ac.builder, coverage,
2632 				 LLVMConstReal(ctx->f32,
2633 					1.0 / SI_NUM_SMOOTH_AA_SAMPLES), "");
2634 
2635 	return LLVMBuildFMul(ctx->ac.builder, alpha, coverage, "");
2636 }
2637 
si_llvm_emit_clipvertex(struct si_shader_context * ctx,struct ac_export_args * pos,LLVMValueRef * out_elts)2638 static void si_llvm_emit_clipvertex(struct si_shader_context *ctx,
2639 				    struct ac_export_args *pos, LLVMValueRef *out_elts)
2640 {
2641 	unsigned reg_index;
2642 	unsigned chan;
2643 	unsigned const_chan;
2644 	LLVMValueRef base_elt;
2645 	LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, ctx->param_rw_buffers);
2646 	LLVMValueRef constbuf_index = LLVMConstInt(ctx->i32,
2647 						   SI_VS_CONST_CLIP_PLANES, 0);
2648 	LLVMValueRef const_resource = ac_build_load_to_sgpr(&ctx->ac, ptr, constbuf_index);
2649 
2650 	for (reg_index = 0; reg_index < 2; reg_index ++) {
2651 		struct ac_export_args *args = &pos[2 + reg_index];
2652 
2653 		args->out[0] =
2654 		args->out[1] =
2655 		args->out[2] =
2656 		args->out[3] = LLVMConstReal(ctx->f32, 0.0f);
2657 
2658 		/* Compute dot products of position and user clip plane vectors */
2659 		for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2660 			for (const_chan = 0; const_chan < TGSI_NUM_CHANNELS; const_chan++) {
2661 				LLVMValueRef addr =
2662 					LLVMConstInt(ctx->i32, ((reg_index * 4 + chan) * 4 +
2663 								const_chan) * 4, 0);
2664 				base_elt = buffer_load_const(ctx, const_resource,
2665 							     addr);
2666 				args->out[chan] =
2667 					lp_build_add(&ctx->bld_base.base, args->out[chan],
2668 						     lp_build_mul(&ctx->bld_base.base, base_elt,
2669 								  out_elts[const_chan]));
2670 			}
2671 		}
2672 
2673 		args->enabled_channels = 0xf;
2674 		args->valid_mask = 0;
2675 		args->done = 0;
2676 		args->target = V_008DFC_SQ_EXP_POS + 2 + reg_index;
2677 		args->compr = 0;
2678 	}
2679 }
2680 
si_dump_streamout(struct pipe_stream_output_info * so)2681 static void si_dump_streamout(struct pipe_stream_output_info *so)
2682 {
2683 	unsigned i;
2684 
2685 	if (so->num_outputs)
2686 		fprintf(stderr, "STREAMOUT\n");
2687 
2688 	for (i = 0; i < so->num_outputs; i++) {
2689 		unsigned mask = ((1 << so->output[i].num_components) - 1) <<
2690 				so->output[i].start_component;
2691 		fprintf(stderr, "  %i: BUF%i[%i..%i] <- OUT[%i].%s%s%s%s\n",
2692 			i, so->output[i].output_buffer,
2693 			so->output[i].dst_offset, so->output[i].dst_offset + so->output[i].num_components - 1,
2694 			so->output[i].register_index,
2695 			mask & 1 ? "x" : "",
2696 		        mask & 2 ? "y" : "",
2697 		        mask & 4 ? "z" : "",
2698 		        mask & 8 ? "w" : "");
2699 	}
2700 }
2701 
emit_streamout_output(struct si_shader_context * ctx,LLVMValueRef const * so_buffers,LLVMValueRef const * so_write_offsets,struct pipe_stream_output * stream_out,struct si_shader_output_values * shader_out)2702 static void emit_streamout_output(struct si_shader_context *ctx,
2703 				  LLVMValueRef const *so_buffers,
2704 				  LLVMValueRef const *so_write_offsets,
2705 				  struct pipe_stream_output *stream_out,
2706 				  struct si_shader_output_values *shader_out)
2707 {
2708 	unsigned buf_idx = stream_out->output_buffer;
2709 	unsigned start = stream_out->start_component;
2710 	unsigned num_comps = stream_out->num_components;
2711 	LLVMValueRef out[4];
2712 
2713 	assert(num_comps && num_comps <= 4);
2714 	if (!num_comps || num_comps > 4)
2715 		return;
2716 
2717 	/* Load the output as int. */
2718 	for (int j = 0; j < num_comps; j++) {
2719 		assert(stream_out->stream == shader_out->vertex_stream[start + j]);
2720 
2721 		out[j] = ac_to_integer(&ctx->ac, shader_out->values[start + j]);
2722 	}
2723 
2724 	/* Pack the output. */
2725 	LLVMValueRef vdata = NULL;
2726 
2727 	switch (num_comps) {
2728 	case 1: /* as i32 */
2729 		vdata = out[0];
2730 		break;
2731 	case 2: /* as v2i32 */
2732 	case 3: /* as v4i32 (aligned to 4) */
2733 	case 4: /* as v4i32 */
2734 		vdata = LLVMGetUndef(LLVMVectorType(ctx->i32, util_next_power_of_two(num_comps)));
2735 		for (int j = 0; j < num_comps; j++) {
2736 			vdata = LLVMBuildInsertElement(ctx->ac.builder, vdata, out[j],
2737 						       LLVMConstInt(ctx->i32, j, 0), "");
2738 		}
2739 		break;
2740 	}
2741 
2742 	ac_build_buffer_store_dword(&ctx->ac, so_buffers[buf_idx],
2743 				    vdata, num_comps,
2744 				    so_write_offsets[buf_idx],
2745 				    ctx->i32_0,
2746 				    stream_out->dst_offset * 4, 1, 1, true, false);
2747 }
2748 
2749 /**
2750  * Write streamout data to buffers for vertex stream @p stream (different
2751  * vertex streams can occur for GS copy shaders).
2752  */
si_llvm_emit_streamout(struct si_shader_context * ctx,struct si_shader_output_values * outputs,unsigned noutput,unsigned stream)2753 static void si_llvm_emit_streamout(struct si_shader_context *ctx,
2754 				   struct si_shader_output_values *outputs,
2755 				   unsigned noutput, unsigned stream)
2756 {
2757 	struct si_shader_selector *sel = ctx->shader->selector;
2758 	struct pipe_stream_output_info *so = &sel->so;
2759 	LLVMBuilderRef builder = ctx->ac.builder;
2760 	int i;
2761 	struct lp_build_if_state if_ctx;
2762 
2763 	/* Get bits [22:16], i.e. (so_param >> 16) & 127; */
2764 	LLVMValueRef so_vtx_count =
2765 		unpack_param(ctx, ctx->param_streamout_config, 16, 7);
2766 
2767 	LLVMValueRef tid = ac_get_thread_id(&ctx->ac);
2768 
2769 	/* can_emit = tid < so_vtx_count; */
2770 	LLVMValueRef can_emit =
2771 		LLVMBuildICmp(builder, LLVMIntULT, tid, so_vtx_count, "");
2772 
2773 	/* Emit the streamout code conditionally. This actually avoids
2774 	 * out-of-bounds buffer access. The hw tells us via the SGPR
2775 	 * (so_vtx_count) which threads are allowed to emit streamout data. */
2776 	lp_build_if(&if_ctx, &ctx->gallivm, can_emit);
2777 	{
2778 		/* The buffer offset is computed as follows:
2779 		 *   ByteOffset = streamout_offset[buffer_id]*4 +
2780 		 *                (streamout_write_index + thread_id)*stride[buffer_id] +
2781 		 *                attrib_offset
2782                  */
2783 
2784 		LLVMValueRef so_write_index =
2785 			LLVMGetParam(ctx->main_fn,
2786 				     ctx->param_streamout_write_index);
2787 
2788 		/* Compute (streamout_write_index + thread_id). */
2789 		so_write_index = LLVMBuildAdd(builder, so_write_index, tid, "");
2790 
2791 		/* Load the descriptor and compute the write offset for each
2792 		 * enabled buffer. */
2793 		LLVMValueRef so_write_offset[4] = {};
2794 		LLVMValueRef so_buffers[4];
2795 		LLVMValueRef buf_ptr = LLVMGetParam(ctx->main_fn,
2796 						    ctx->param_rw_buffers);
2797 
2798 		for (i = 0; i < 4; i++) {
2799 			if (!so->stride[i])
2800 				continue;
2801 
2802 			LLVMValueRef offset = LLVMConstInt(ctx->i32,
2803 							   SI_VS_STREAMOUT_BUF0 + i, 0);
2804 
2805 			so_buffers[i] = ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
2806 
2807 			LLVMValueRef so_offset = LLVMGetParam(ctx->main_fn,
2808 							      ctx->param_streamout_offset[i]);
2809 			so_offset = LLVMBuildMul(builder, so_offset, LLVMConstInt(ctx->i32, 4, 0), "");
2810 
2811 			so_write_offset[i] = LLVMBuildMul(builder, so_write_index,
2812 							  LLVMConstInt(ctx->i32, so->stride[i]*4, 0), "");
2813 			so_write_offset[i] = LLVMBuildAdd(builder, so_write_offset[i], so_offset, "");
2814 		}
2815 
2816 		/* Write streamout data. */
2817 		for (i = 0; i < so->num_outputs; i++) {
2818 			unsigned reg = so->output[i].register_index;
2819 
2820 			if (reg >= noutput)
2821 				continue;
2822 
2823 			if (stream != so->output[i].stream)
2824 				continue;
2825 
2826 			emit_streamout_output(ctx, so_buffers, so_write_offset,
2827 					      &so->output[i], &outputs[reg]);
2828 		}
2829 	}
2830 	lp_build_endif(&if_ctx);
2831 }
2832 
si_export_param(struct si_shader_context * ctx,unsigned index,LLVMValueRef * values)2833 static void si_export_param(struct si_shader_context *ctx, unsigned index,
2834 			    LLVMValueRef *values)
2835 {
2836 	struct ac_export_args args;
2837 
2838 	si_llvm_init_export_args(ctx, values,
2839 				 V_008DFC_SQ_EXP_PARAM + index, &args);
2840 	ac_build_export(&ctx->ac, &args);
2841 }
2842 
si_build_param_exports(struct si_shader_context * ctx,struct si_shader_output_values * outputs,unsigned noutput)2843 static void si_build_param_exports(struct si_shader_context *ctx,
2844 				   struct si_shader_output_values *outputs,
2845 			           unsigned noutput)
2846 {
2847 	struct si_shader *shader = ctx->shader;
2848 	unsigned param_count = 0;
2849 
2850 	for (unsigned i = 0; i < noutput; i++) {
2851 		unsigned semantic_name = outputs[i].semantic_name;
2852 		unsigned semantic_index = outputs[i].semantic_index;
2853 
2854 		if (outputs[i].vertex_stream[0] != 0 &&
2855 		    outputs[i].vertex_stream[1] != 0 &&
2856 		    outputs[i].vertex_stream[2] != 0 &&
2857 		    outputs[i].vertex_stream[3] != 0)
2858 			continue;
2859 
2860 		switch (semantic_name) {
2861 		case TGSI_SEMANTIC_LAYER:
2862 		case TGSI_SEMANTIC_VIEWPORT_INDEX:
2863 		case TGSI_SEMANTIC_CLIPDIST:
2864 		case TGSI_SEMANTIC_COLOR:
2865 		case TGSI_SEMANTIC_BCOLOR:
2866 		case TGSI_SEMANTIC_PRIMID:
2867 		case TGSI_SEMANTIC_FOG:
2868 		case TGSI_SEMANTIC_TEXCOORD:
2869 		case TGSI_SEMANTIC_GENERIC:
2870 			break;
2871 		default:
2872 			continue;
2873 		}
2874 
2875 		if ((semantic_name != TGSI_SEMANTIC_GENERIC ||
2876 		     semantic_index < SI_MAX_IO_GENERIC) &&
2877 		    shader->key.opt.kill_outputs &
2878 		    (1ull << si_shader_io_get_unique_index(semantic_name, semantic_index)))
2879 			continue;
2880 
2881 		si_export_param(ctx, param_count, outputs[i].values);
2882 
2883 		assert(i < ARRAY_SIZE(shader->info.vs_output_param_offset));
2884 		shader->info.vs_output_param_offset[i] = param_count++;
2885 	}
2886 
2887 	shader->info.nr_param_exports = param_count;
2888 }
2889 
2890 /* Generate export instructions for hardware VS shader stage */
si_llvm_export_vs(struct si_shader_context * ctx,struct si_shader_output_values * outputs,unsigned noutput)2891 static void si_llvm_export_vs(struct si_shader_context *ctx,
2892 			      struct si_shader_output_values *outputs,
2893 			      unsigned noutput)
2894 {
2895 	struct si_shader *shader = ctx->shader;
2896 	struct ac_export_args pos_args[4] = {};
2897 	LLVMValueRef psize_value = NULL, edgeflag_value = NULL, layer_value = NULL, viewport_index_value = NULL;
2898 	unsigned pos_idx;
2899 	int i;
2900 
2901 	/* Build position exports. */
2902 	for (i = 0; i < noutput; i++) {
2903 		switch (outputs[i].semantic_name) {
2904 		case TGSI_SEMANTIC_POSITION:
2905 			si_llvm_init_export_args(ctx, outputs[i].values,
2906 						 V_008DFC_SQ_EXP_POS, &pos_args[0]);
2907 			break;
2908 		case TGSI_SEMANTIC_PSIZE:
2909 			psize_value = outputs[i].values[0];
2910 			break;
2911 		case TGSI_SEMANTIC_LAYER:
2912 			layer_value = outputs[i].values[0];
2913 			break;
2914 		case TGSI_SEMANTIC_VIEWPORT_INDEX:
2915 			viewport_index_value = outputs[i].values[0];
2916 			break;
2917 		case TGSI_SEMANTIC_EDGEFLAG:
2918 			edgeflag_value = outputs[i].values[0];
2919 			break;
2920 		case TGSI_SEMANTIC_CLIPDIST:
2921 			if (!shader->key.opt.clip_disable) {
2922 				unsigned index = 2 + outputs[i].semantic_index;
2923 				si_llvm_init_export_args(ctx, outputs[i].values,
2924 							 V_008DFC_SQ_EXP_POS + index,
2925 							 &pos_args[index]);
2926 			}
2927 			break;
2928 		case TGSI_SEMANTIC_CLIPVERTEX:
2929 			if (!shader->key.opt.clip_disable) {
2930 				si_llvm_emit_clipvertex(ctx, pos_args,
2931 							outputs[i].values);
2932 			}
2933 			break;
2934 		}
2935 	}
2936 
2937 	/* We need to add the position output manually if it's missing. */
2938 	if (!pos_args[0].out[0]) {
2939 		pos_args[0].enabled_channels = 0xf; /* writemask */
2940 		pos_args[0].valid_mask = 0; /* EXEC mask */
2941 		pos_args[0].done = 0; /* last export? */
2942 		pos_args[0].target = V_008DFC_SQ_EXP_POS;
2943 		pos_args[0].compr = 0; /* COMPR flag */
2944 		pos_args[0].out[0] = ctx->ac.f32_0; /* X */
2945 		pos_args[0].out[1] = ctx->ac.f32_0; /* Y */
2946 		pos_args[0].out[2] = ctx->ac.f32_0; /* Z */
2947 		pos_args[0].out[3] = ctx->ac.f32_1;  /* W */
2948 	}
2949 
2950 	/* Write the misc vector (point size, edgeflag, layer, viewport). */
2951 	if (shader->selector->info.writes_psize ||
2952 	    shader->selector->info.writes_edgeflag ||
2953 	    shader->selector->info.writes_viewport_index ||
2954 	    shader->selector->info.writes_layer) {
2955 		pos_args[1].enabled_channels = shader->selector->info.writes_psize |
2956 					       (shader->selector->info.writes_edgeflag << 1) |
2957 					       (shader->selector->info.writes_layer << 2);
2958 
2959 		pos_args[1].valid_mask = 0; /* EXEC mask */
2960 		pos_args[1].done = 0; /* last export? */
2961 		pos_args[1].target = V_008DFC_SQ_EXP_POS + 1;
2962 		pos_args[1].compr = 0; /* COMPR flag */
2963 		pos_args[1].out[0] = ctx->ac.f32_0; /* X */
2964 		pos_args[1].out[1] = ctx->ac.f32_0; /* Y */
2965 		pos_args[1].out[2] = ctx->ac.f32_0; /* Z */
2966 		pos_args[1].out[3] = ctx->ac.f32_0; /* W */
2967 
2968 		if (shader->selector->info.writes_psize)
2969 			pos_args[1].out[0] = psize_value;
2970 
2971 		if (shader->selector->info.writes_edgeflag) {
2972 			/* The output is a float, but the hw expects an integer
2973 			 * with the first bit containing the edge flag. */
2974 			edgeflag_value = LLVMBuildFPToUI(ctx->ac.builder,
2975 							 edgeflag_value,
2976 							 ctx->i32, "");
2977 			edgeflag_value = ac_build_umin(&ctx->ac,
2978 						      edgeflag_value,
2979 						      ctx->i32_1);
2980 
2981 			/* The LLVM intrinsic expects a float. */
2982 			pos_args[1].out[1] = ac_to_float(&ctx->ac, edgeflag_value);
2983 		}
2984 
2985 		if (ctx->screen->info.chip_class >= GFX9) {
2986 			/* GFX9 has the layer in out.z[10:0] and the viewport
2987 			 * index in out.z[19:16].
2988 			 */
2989 			if (shader->selector->info.writes_layer)
2990 				pos_args[1].out[2] = layer_value;
2991 
2992 			if (shader->selector->info.writes_viewport_index) {
2993 				LLVMValueRef v = viewport_index_value;
2994 
2995 				v = ac_to_integer(&ctx->ac, v);
2996 				v = LLVMBuildShl(ctx->ac.builder, v,
2997 						 LLVMConstInt(ctx->i32, 16, 0), "");
2998 				v = LLVMBuildOr(ctx->ac.builder, v,
2999 						ac_to_integer(&ctx->ac,  pos_args[1].out[2]), "");
3000 				pos_args[1].out[2] = ac_to_float(&ctx->ac, v);
3001 				pos_args[1].enabled_channels |= 1 << 2;
3002 			}
3003 		} else {
3004 			if (shader->selector->info.writes_layer)
3005 				pos_args[1].out[2] = layer_value;
3006 
3007 			if (shader->selector->info.writes_viewport_index) {
3008 				pos_args[1].out[3] = viewport_index_value;
3009 				pos_args[1].enabled_channels |= 1 << 3;
3010 			}
3011 		}
3012 	}
3013 
3014 	for (i = 0; i < 4; i++)
3015 		if (pos_args[i].out[0])
3016 			shader->info.nr_pos_exports++;
3017 
3018 	pos_idx = 0;
3019 	for (i = 0; i < 4; i++) {
3020 		if (!pos_args[i].out[0])
3021 			continue;
3022 
3023 		/* Specify the target we are exporting */
3024 		pos_args[i].target = V_008DFC_SQ_EXP_POS + pos_idx++;
3025 
3026 		if (pos_idx == shader->info.nr_pos_exports)
3027 			/* Specify that this is the last export */
3028 			pos_args[i].done = 1;
3029 
3030 		ac_build_export(&ctx->ac, &pos_args[i]);
3031 	}
3032 
3033 	/* Build parameter exports. */
3034 	si_build_param_exports(ctx, outputs, noutput);
3035 }
3036 
3037 /**
3038  * Forward all outputs from the vertex shader to the TES. This is only used
3039  * for the fixed function TCS.
3040  */
si_copy_tcs_inputs(struct lp_build_tgsi_context * bld_base)3041 static void si_copy_tcs_inputs(struct lp_build_tgsi_context *bld_base)
3042 {
3043 	struct si_shader_context *ctx = si_shader_context(bld_base);
3044 	LLVMValueRef invocation_id, buffer, buffer_offset;
3045 	LLVMValueRef lds_vertex_stride, lds_vertex_offset, lds_base;
3046 	uint64_t inputs;
3047 
3048 	invocation_id = unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 8, 5);
3049 	buffer = desc_from_addr_base64k(ctx, ctx->param_tcs_offchip_addr_base64k);
3050 	buffer_offset = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
3051 
3052 	lds_vertex_stride = get_tcs_in_vertex_dw_stride(ctx);
3053 	lds_vertex_offset = LLVMBuildMul(ctx->ac.builder, invocation_id,
3054 	                                 lds_vertex_stride, "");
3055 	lds_base = get_tcs_in_current_patch_offset(ctx);
3056 	lds_base = LLVMBuildAdd(ctx->ac.builder, lds_base, lds_vertex_offset, "");
3057 
3058 	inputs = ctx->shader->key.mono.u.ff_tcs_inputs_to_copy;
3059 	while (inputs) {
3060 		unsigned i = u_bit_scan64(&inputs);
3061 
3062 		LLVMValueRef lds_ptr = LLVMBuildAdd(ctx->ac.builder, lds_base,
3063 		                            LLVMConstInt(ctx->i32, 4 * i, 0),
3064 		                             "");
3065 
3066 		LLVMValueRef buffer_addr = get_tcs_tes_buffer_address(ctx,
3067 					      get_rel_patch_id(ctx),
3068 		                              invocation_id,
3069 		                              LLVMConstInt(ctx->i32, i, 0));
3070 
3071 		LLVMValueRef value = lds_load(bld_base, ctx->ac.i32, ~0,
3072 		                              lds_ptr);
3073 
3074 		ac_build_buffer_store_dword(&ctx->ac, buffer, value, 4, buffer_addr,
3075 					    buffer_offset, 0, 1, 0, true, false);
3076 	}
3077 }
3078 
si_write_tess_factors(struct lp_build_tgsi_context * bld_base,LLVMValueRef rel_patch_id,LLVMValueRef invocation_id,LLVMValueRef tcs_out_current_patch_data_offset,LLVMValueRef invoc0_tf_outer[4],LLVMValueRef invoc0_tf_inner[2])3079 static void si_write_tess_factors(struct lp_build_tgsi_context *bld_base,
3080 				  LLVMValueRef rel_patch_id,
3081 				  LLVMValueRef invocation_id,
3082 				  LLVMValueRef tcs_out_current_patch_data_offset,
3083 				  LLVMValueRef invoc0_tf_outer[4],
3084 				  LLVMValueRef invoc0_tf_inner[2])
3085 {
3086 	struct si_shader_context *ctx = si_shader_context(bld_base);
3087 	struct si_shader *shader = ctx->shader;
3088 	unsigned tess_inner_index, tess_outer_index;
3089 	LLVMValueRef lds_base, lds_inner, lds_outer, byteoffset, buffer;
3090 	LLVMValueRef out[6], vec0, vec1, tf_base, inner[4], outer[4];
3091 	unsigned stride, outer_comps, inner_comps, i, offset;
3092 	struct lp_build_if_state if_ctx, inner_if_ctx;
3093 
3094 	/* Add a barrier before loading tess factors from LDS. */
3095 	if (!shader->key.part.tcs.epilog.invoc0_tess_factors_are_def)
3096 		si_llvm_emit_barrier(NULL, bld_base, NULL);
3097 
3098 	/* Do this only for invocation 0, because the tess levels are per-patch,
3099 	 * not per-vertex.
3100 	 *
3101 	 * This can't jump, because invocation 0 executes this. It should
3102 	 * at least mask out the loads and stores for other invocations.
3103 	 */
3104 	lp_build_if(&if_ctx, &ctx->gallivm,
3105 		    LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
3106 				  invocation_id, ctx->i32_0, ""));
3107 
3108 	/* Determine the layout of one tess factor element in the buffer. */
3109 	switch (shader->key.part.tcs.epilog.prim_mode) {
3110 	case PIPE_PRIM_LINES:
3111 		stride = 2; /* 2 dwords, 1 vec2 store */
3112 		outer_comps = 2;
3113 		inner_comps = 0;
3114 		break;
3115 	case PIPE_PRIM_TRIANGLES:
3116 		stride = 4; /* 4 dwords, 1 vec4 store */
3117 		outer_comps = 3;
3118 		inner_comps = 1;
3119 		break;
3120 	case PIPE_PRIM_QUADS:
3121 		stride = 6; /* 6 dwords, 2 stores (vec4 + vec2) */
3122 		outer_comps = 4;
3123 		inner_comps = 2;
3124 		break;
3125 	default:
3126 		assert(0);
3127 		return;
3128 	}
3129 
3130 	for (i = 0; i < 4; i++) {
3131 		inner[i] = LLVMGetUndef(ctx->i32);
3132 		outer[i] = LLVMGetUndef(ctx->i32);
3133 	}
3134 
3135 	if (shader->key.part.tcs.epilog.invoc0_tess_factors_are_def) {
3136 		/* Tess factors are in VGPRs. */
3137 		for (i = 0; i < outer_comps; i++)
3138 			outer[i] = out[i] = invoc0_tf_outer[i];
3139 		for (i = 0; i < inner_comps; i++)
3140 			inner[i] = out[outer_comps+i] = invoc0_tf_inner[i];
3141 	} else {
3142 		/* Load tess_inner and tess_outer from LDS.
3143 		 * Any invocation can write them, so we can't get them from a temporary.
3144 		 */
3145 		tess_inner_index = si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSINNER, 0);
3146 		tess_outer_index = si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSOUTER, 0);
3147 
3148 		lds_base = tcs_out_current_patch_data_offset;
3149 		lds_inner = LLVMBuildAdd(ctx->ac.builder, lds_base,
3150 					 LLVMConstInt(ctx->i32,
3151 						      tess_inner_index * 4, 0), "");
3152 		lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_base,
3153 					 LLVMConstInt(ctx->i32,
3154 						      tess_outer_index * 4, 0), "");
3155 
3156 		for (i = 0; i < outer_comps; i++) {
3157 			outer[i] = out[i] =
3158 				lds_load(bld_base, ctx->ac.i32, i, lds_outer);
3159 		}
3160 		for (i = 0; i < inner_comps; i++) {
3161 			inner[i] = out[outer_comps+i] =
3162 				lds_load(bld_base, ctx->ac.i32, i, lds_inner);
3163 		}
3164 	}
3165 
3166 	if (shader->key.part.tcs.epilog.prim_mode == PIPE_PRIM_LINES) {
3167 		/* For isolines, the hardware expects tess factors in the
3168 		 * reverse order from what GLSL / TGSI specify.
3169 		 */
3170 		LLVMValueRef tmp = out[0];
3171 		out[0] = out[1];
3172 		out[1] = tmp;
3173 	}
3174 
3175 	/* Convert the outputs to vectors for stores. */
3176 	vec0 = lp_build_gather_values(&ctx->gallivm, out, MIN2(stride, 4));
3177 	vec1 = NULL;
3178 
3179 	if (stride > 4)
3180 		vec1 = lp_build_gather_values(&ctx->gallivm, out+4, stride - 4);
3181 
3182 	/* Get the buffer. */
3183 	buffer = desc_from_addr_base64k(ctx, ctx->param_tcs_factor_addr_base64k);
3184 
3185 	/* Get the offset. */
3186 	tf_base = LLVMGetParam(ctx->main_fn,
3187 			       ctx->param_tcs_factor_offset);
3188 	byteoffset = LLVMBuildMul(ctx->ac.builder, rel_patch_id,
3189 				  LLVMConstInt(ctx->i32, 4 * stride, 0), "");
3190 
3191 	lp_build_if(&inner_if_ctx, &ctx->gallivm,
3192 		    LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
3193 				  rel_patch_id, ctx->i32_0, ""));
3194 
3195 	/* Store the dynamic HS control word. */
3196 	offset = 0;
3197 	if (ctx->screen->info.chip_class <= VI) {
3198 		ac_build_buffer_store_dword(&ctx->ac, buffer,
3199 					    LLVMConstInt(ctx->i32, 0x80000000, 0),
3200 					    1, ctx->i32_0, tf_base,
3201 					    offset, 1, 0, true, false);
3202 		offset += 4;
3203 	}
3204 
3205 	lp_build_endif(&inner_if_ctx);
3206 
3207 	/* Store the tessellation factors. */
3208 	ac_build_buffer_store_dword(&ctx->ac, buffer, vec0,
3209 				    MIN2(stride, 4), byteoffset, tf_base,
3210 				    offset, 1, 0, true, false);
3211 	offset += 16;
3212 	if (vec1)
3213 		ac_build_buffer_store_dword(&ctx->ac, buffer, vec1,
3214 					    stride - 4, byteoffset, tf_base,
3215 					    offset, 1, 0, true, false);
3216 
3217 	/* Store the tess factors into the offchip buffer if TES reads them. */
3218 	if (shader->key.part.tcs.epilog.tes_reads_tess_factors) {
3219 		LLVMValueRef buf, base, inner_vec, outer_vec, tf_outer_offset;
3220 		LLVMValueRef tf_inner_offset;
3221 		unsigned param_outer, param_inner;
3222 
3223 		buf = desc_from_addr_base64k(ctx, ctx->param_tcs_offchip_addr_base64k);
3224 		base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
3225 
3226 		param_outer = si_shader_io_get_unique_index_patch(
3227 				      TGSI_SEMANTIC_TESSOUTER, 0);
3228 		tf_outer_offset = get_tcs_tes_buffer_address(ctx, rel_patch_id, NULL,
3229 					LLVMConstInt(ctx->i32, param_outer, 0));
3230 
3231 		outer_vec = lp_build_gather_values(&ctx->gallivm, outer,
3232 						   util_next_power_of_two(outer_comps));
3233 
3234 		ac_build_buffer_store_dword(&ctx->ac, buf, outer_vec,
3235 					    outer_comps, tf_outer_offset,
3236 					    base, 0, 1, 0, true, false);
3237 		if (inner_comps) {
3238 			param_inner = si_shader_io_get_unique_index_patch(
3239 					      TGSI_SEMANTIC_TESSINNER, 0);
3240 			tf_inner_offset = get_tcs_tes_buffer_address(ctx, rel_patch_id, NULL,
3241 					LLVMConstInt(ctx->i32, param_inner, 0));
3242 
3243 			inner_vec = inner_comps == 1 ? inner[0] :
3244 				    lp_build_gather_values(&ctx->gallivm, inner, inner_comps);
3245 			ac_build_buffer_store_dword(&ctx->ac, buf, inner_vec,
3246 						    inner_comps, tf_inner_offset,
3247 						    base, 0, 1, 0, true, false);
3248 		}
3249 	}
3250 
3251 	lp_build_endif(&if_ctx);
3252 }
3253 
3254 static LLVMValueRef
si_insert_input_ret(struct si_shader_context * ctx,LLVMValueRef ret,unsigned param,unsigned return_index)3255 si_insert_input_ret(struct si_shader_context *ctx, LLVMValueRef ret,
3256 		    unsigned param, unsigned return_index)
3257 {
3258 	return LLVMBuildInsertValue(ctx->ac.builder, ret,
3259 				    LLVMGetParam(ctx->main_fn, param),
3260 				    return_index, "");
3261 }
3262 
3263 static LLVMValueRef
si_insert_input_ret_float(struct si_shader_context * ctx,LLVMValueRef ret,unsigned param,unsigned return_index)3264 si_insert_input_ret_float(struct si_shader_context *ctx, LLVMValueRef ret,
3265 			  unsigned param, unsigned return_index)
3266 {
3267 	LLVMBuilderRef builder = ctx->ac.builder;
3268 	LLVMValueRef p = LLVMGetParam(ctx->main_fn, param);
3269 
3270 	return LLVMBuildInsertValue(builder, ret,
3271 				    ac_to_float(&ctx->ac, p),
3272 				    return_index, "");
3273 }
3274 
3275 static LLVMValueRef
si_insert_input_ptr_as_2xi32(struct si_shader_context * ctx,LLVMValueRef ret,unsigned param,unsigned return_index)3276 si_insert_input_ptr_as_2xi32(struct si_shader_context *ctx, LLVMValueRef ret,
3277 			     unsigned param, unsigned return_index)
3278 {
3279 	LLVMBuilderRef builder = ctx->ac.builder;
3280 	LLVMValueRef ptr, lo, hi;
3281 
3282 	ptr = LLVMGetParam(ctx->main_fn, param);
3283 	ptr = LLVMBuildPtrToInt(builder, ptr, ctx->i64, "");
3284 	ptr = LLVMBuildBitCast(builder, ptr, ctx->v2i32, "");
3285 	lo = LLVMBuildExtractElement(builder, ptr, ctx->i32_0, "");
3286 	hi = LLVMBuildExtractElement(builder, ptr, ctx->i32_1, "");
3287 	ret = LLVMBuildInsertValue(builder, ret, lo, return_index, "");
3288 	return LLVMBuildInsertValue(builder, ret, hi, return_index + 1, "");
3289 }
3290 
3291 /* This only writes the tessellation factor levels. */
si_llvm_emit_tcs_epilogue(struct ac_shader_abi * abi,unsigned max_outputs,LLVMValueRef * addrs)3292 static void si_llvm_emit_tcs_epilogue(struct ac_shader_abi *abi,
3293 				      unsigned max_outputs,
3294 				      LLVMValueRef *addrs)
3295 {
3296 	struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3297 	struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
3298 	LLVMBuilderRef builder = ctx->ac.builder;
3299 	LLVMValueRef rel_patch_id, invocation_id, tf_lds_offset;
3300 
3301 	si_copy_tcs_inputs(bld_base);
3302 
3303 	rel_patch_id = get_rel_patch_id(ctx);
3304 	invocation_id = unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 8, 5);
3305 	tf_lds_offset = get_tcs_out_current_patch_data_offset(ctx);
3306 
3307 	if (ctx->screen->info.chip_class >= GFX9) {
3308 		LLVMBasicBlockRef blocks[2] = {
3309 			LLVMGetInsertBlock(builder),
3310 			ctx->merged_wrap_if_state.entry_block
3311 		};
3312 		LLVMValueRef values[2];
3313 
3314 		lp_build_endif(&ctx->merged_wrap_if_state);
3315 
3316 		values[0] = rel_patch_id;
3317 		values[1] = LLVMGetUndef(ctx->i32);
3318 		rel_patch_id = ac_build_phi(&ctx->ac, ctx->i32, 2, values, blocks);
3319 
3320 		values[0] = tf_lds_offset;
3321 		values[1] = LLVMGetUndef(ctx->i32);
3322 		tf_lds_offset = ac_build_phi(&ctx->ac, ctx->i32, 2, values, blocks);
3323 
3324 		values[0] = invocation_id;
3325 		values[1] = ctx->i32_1; /* cause the epilog to skip threads */
3326 		invocation_id = ac_build_phi(&ctx->ac, ctx->i32, 2, values, blocks);
3327 	}
3328 
3329 	/* Return epilog parameters from this function. */
3330 	LLVMValueRef ret = ctx->return_value;
3331 	unsigned vgpr;
3332 
3333 	if (ctx->screen->info.chip_class >= GFX9) {
3334 		ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_layout,
3335 					  8 + GFX9_SGPR_TCS_OFFCHIP_LAYOUT);
3336 		ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_addr_base64k,
3337 					  8 + GFX9_SGPR_TCS_OFFCHIP_ADDR_BASE64K);
3338 		ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_addr_base64k,
3339 					  8 + GFX9_SGPR_TCS_FACTOR_ADDR_BASE64K);
3340 		/* Tess offchip and tess factor offsets are at the beginning. */
3341 		ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_offset, 2);
3342 		ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_offset, 4);
3343 		vgpr = 8 + GFX9_SGPR_TCS_FACTOR_ADDR_BASE64K + 1;
3344 	} else {
3345 		ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_layout,
3346 					  GFX6_SGPR_TCS_OFFCHIP_LAYOUT);
3347 		ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_addr_base64k,
3348 					  GFX6_SGPR_TCS_OFFCHIP_ADDR_BASE64K);
3349 		ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_addr_base64k,
3350 					  GFX6_SGPR_TCS_FACTOR_ADDR_BASE64K);
3351 		/* Tess offchip and tess factor offsets are after user SGPRs. */
3352 		ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_offset,
3353 					  GFX6_TCS_NUM_USER_SGPR);
3354 		ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_offset,
3355 					  GFX6_TCS_NUM_USER_SGPR + 1);
3356 		vgpr = GFX6_TCS_NUM_USER_SGPR + 2;
3357 	}
3358 
3359 	/* VGPRs */
3360 	rel_patch_id = ac_to_float(&ctx->ac, rel_patch_id);
3361 	invocation_id = ac_to_float(&ctx->ac, invocation_id);
3362 	tf_lds_offset = ac_to_float(&ctx->ac, tf_lds_offset);
3363 
3364 	/* Leave a hole corresponding to the two input VGPRs. This ensures that
3365 	 * the invocation_id output does not alias the tcs_rel_ids input,
3366 	 * which saves a V_MOV on gfx9.
3367 	 */
3368 	vgpr += 2;
3369 
3370 	ret = LLVMBuildInsertValue(builder, ret, rel_patch_id, vgpr++, "");
3371 	ret = LLVMBuildInsertValue(builder, ret, invocation_id, vgpr++, "");
3372 
3373 	if (ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs) {
3374 		vgpr++; /* skip the tess factor LDS offset */
3375 		for (unsigned i = 0; i < 6; i++) {
3376 			LLVMValueRef value =
3377 				LLVMBuildLoad(builder, ctx->invoc0_tess_factors[i], "");
3378 			value = ac_to_float(&ctx->ac, value);
3379 			ret = LLVMBuildInsertValue(builder, ret, value, vgpr++, "");
3380 		}
3381 	} else {
3382 		ret = LLVMBuildInsertValue(builder, ret, tf_lds_offset, vgpr++, "");
3383 	}
3384 	ctx->return_value = ret;
3385 }
3386 
3387 /* Pass TCS inputs from LS to TCS on GFX9. */
si_set_ls_return_value_for_tcs(struct si_shader_context * ctx)3388 static void si_set_ls_return_value_for_tcs(struct si_shader_context *ctx)
3389 {
3390 	LLVMValueRef ret = ctx->return_value;
3391 
3392 	ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_offset, 2);
3393 	ret = si_insert_input_ret(ctx, ret, ctx->param_merged_wave_info, 3);
3394 	ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_offset, 4);
3395 	ret = si_insert_input_ret(ctx, ret, ctx->param_merged_scratch_offset, 5);
3396 
3397 	ret = si_insert_input_ptr_as_2xi32(ctx, ret, ctx->param_rw_buffers,
3398 					   8 + SI_SGPR_RW_BUFFERS);
3399 	ret = si_insert_input_ptr_as_2xi32(ctx, ret,
3400 		ctx->param_bindless_samplers_and_images,
3401 		8 + SI_SGPR_BINDLESS_SAMPLERS_AND_IMAGES);
3402 
3403 	ret = si_insert_input_ret(ctx, ret, ctx->param_vs_state_bits,
3404 				  8 + SI_SGPR_VS_STATE_BITS);
3405 	ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_layout,
3406 				  8 + GFX9_SGPR_TCS_OFFCHIP_LAYOUT);
3407 	ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_offsets,
3408 				  8 + GFX9_SGPR_TCS_OUT_OFFSETS);
3409 	ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_layout,
3410 				  8 + GFX9_SGPR_TCS_OUT_LAYOUT);
3411 	ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_addr_base64k,
3412 				  8 + GFX9_SGPR_TCS_OFFCHIP_ADDR_BASE64K);
3413 	ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_addr_base64k,
3414 				  8 + GFX9_SGPR_TCS_FACTOR_ADDR_BASE64K);
3415 
3416 	unsigned desc_param = ctx->param_tcs_factor_addr_base64k + 2;
3417 	ret = si_insert_input_ptr_as_2xi32(ctx, ret, desc_param,
3418 					   8 + GFX9_SGPR_TCS_CONST_AND_SHADER_BUFFERS);
3419 	ret = si_insert_input_ptr_as_2xi32(ctx, ret, desc_param + 1,
3420 					   8 + GFX9_SGPR_TCS_SAMPLERS_AND_IMAGES);
3421 
3422 	unsigned vgpr = 8 + GFX9_TCS_NUM_USER_SGPR;
3423 	ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
3424 				   ac_to_float(&ctx->ac, ctx->abi.tcs_patch_id),
3425 				   vgpr++, "");
3426 	ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
3427 				   ac_to_float(&ctx->ac, ctx->abi.tcs_rel_ids),
3428 				   vgpr++, "");
3429 	ctx->return_value = ret;
3430 }
3431 
3432 /* Pass GS inputs from ES to GS on GFX9. */
si_set_es_return_value_for_gs(struct si_shader_context * ctx)3433 static void si_set_es_return_value_for_gs(struct si_shader_context *ctx)
3434 {
3435 	LLVMValueRef ret = ctx->return_value;
3436 
3437 	ret = si_insert_input_ret(ctx, ret, ctx->param_gs2vs_offset, 2);
3438 	ret = si_insert_input_ret(ctx, ret, ctx->param_merged_wave_info, 3);
3439 	ret = si_insert_input_ret(ctx, ret, ctx->param_merged_scratch_offset, 5);
3440 
3441 	ret = si_insert_input_ptr_as_2xi32(ctx, ret, ctx->param_rw_buffers,
3442 					   8 + SI_SGPR_RW_BUFFERS);
3443 	ret = si_insert_input_ptr_as_2xi32(ctx, ret,
3444 		ctx->param_bindless_samplers_and_images,
3445 		8 + SI_SGPR_BINDLESS_SAMPLERS_AND_IMAGES);
3446 
3447 	unsigned desc_param = ctx->param_vs_state_bits + 1;
3448 	ret = si_insert_input_ptr_as_2xi32(ctx, ret, desc_param,
3449 					   8 + GFX9_SGPR_GS_CONST_AND_SHADER_BUFFERS);
3450 	ret = si_insert_input_ptr_as_2xi32(ctx, ret, desc_param + 1,
3451 					   8 + GFX9_SGPR_GS_SAMPLERS_AND_IMAGES);
3452 
3453 	unsigned vgpr = 8 + GFX9_GS_NUM_USER_SGPR;
3454 	for (unsigned i = 0; i < 5; i++) {
3455 		unsigned param = ctx->param_gs_vtx01_offset + i;
3456 		ret = si_insert_input_ret_float(ctx, ret, param, vgpr++);
3457 	}
3458 	ctx->return_value = ret;
3459 }
3460 
si_llvm_emit_ls_epilogue(struct ac_shader_abi * abi,unsigned max_outputs,LLVMValueRef * addrs)3461 static void si_llvm_emit_ls_epilogue(struct ac_shader_abi *abi,
3462 				     unsigned max_outputs,
3463 				     LLVMValueRef *addrs)
3464 {
3465 	struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3466 	struct si_shader *shader = ctx->shader;
3467 	struct tgsi_shader_info *info = &shader->selector->info;
3468 	unsigned i, chan;
3469 	LLVMValueRef vertex_id = LLVMGetParam(ctx->main_fn,
3470 					      ctx->param_rel_auto_id);
3471 	LLVMValueRef vertex_dw_stride = get_tcs_in_vertex_dw_stride(ctx);
3472 	LLVMValueRef base_dw_addr = LLVMBuildMul(ctx->ac.builder, vertex_id,
3473 						 vertex_dw_stride, "");
3474 
3475 	/* Write outputs to LDS. The next shader (TCS aka HS) will read
3476 	 * its inputs from it. */
3477 	for (i = 0; i < info->num_outputs; i++) {
3478 		unsigned name = info->output_semantic_name[i];
3479 		unsigned index = info->output_semantic_index[i];
3480 
3481 		/* The ARB_shader_viewport_layer_array spec contains the
3482 		 * following issue:
3483 		 *
3484 		 *    2) What happens if gl_ViewportIndex or gl_Layer is
3485 		 *    written in the vertex shader and a geometry shader is
3486 		 *    present?
3487 		 *
3488 		 *    RESOLVED: The value written by the last vertex processing
3489 		 *    stage is used. If the last vertex processing stage
3490 		 *    (vertex, tessellation evaluation or geometry) does not
3491 		 *    statically assign to gl_ViewportIndex or gl_Layer, index
3492 		 *    or layer zero is assumed.
3493 		 *
3494 		 * So writes to those outputs in VS-as-LS are simply ignored.
3495 		 */
3496 		if (name == TGSI_SEMANTIC_LAYER ||
3497 		    name == TGSI_SEMANTIC_VIEWPORT_INDEX)
3498 			continue;
3499 
3500 		int param = si_shader_io_get_unique_index(name, index);
3501 		LLVMValueRef dw_addr = LLVMBuildAdd(ctx->ac.builder, base_dw_addr,
3502 					LLVMConstInt(ctx->i32, param * 4, 0), "");
3503 
3504 		for (chan = 0; chan < 4; chan++) {
3505 			if (!(info->output_usagemask[i] & (1 << chan)))
3506 				continue;
3507 
3508 			lds_store(ctx, chan, dw_addr,
3509 				  LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], ""));
3510 		}
3511 	}
3512 
3513 	if (ctx->screen->info.chip_class >= GFX9)
3514 		si_set_ls_return_value_for_tcs(ctx);
3515 }
3516 
si_llvm_emit_es_epilogue(struct ac_shader_abi * abi,unsigned max_outputs,LLVMValueRef * addrs)3517 static void si_llvm_emit_es_epilogue(struct ac_shader_abi *abi,
3518 				     unsigned max_outputs,
3519 				     LLVMValueRef *addrs)
3520 {
3521 	struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3522 	struct si_shader *es = ctx->shader;
3523 	struct tgsi_shader_info *info = &es->selector->info;
3524 	LLVMValueRef soffset = LLVMGetParam(ctx->main_fn,
3525 					    ctx->param_es2gs_offset);
3526 	LLVMValueRef lds_base = NULL;
3527 	unsigned chan;
3528 	int i;
3529 
3530 	if (ctx->screen->info.chip_class >= GFX9 && info->num_outputs) {
3531 		unsigned itemsize_dw = es->selector->esgs_itemsize / 4;
3532 		LLVMValueRef vertex_idx = ac_get_thread_id(&ctx->ac);
3533 		LLVMValueRef wave_idx = unpack_param(ctx, ctx->param_merged_wave_info, 24, 4);
3534 		vertex_idx = LLVMBuildOr(ctx->ac.builder, vertex_idx,
3535 					 LLVMBuildMul(ctx->ac.builder, wave_idx,
3536 						      LLVMConstInt(ctx->i32, 64, false), ""), "");
3537 		lds_base = LLVMBuildMul(ctx->ac.builder, vertex_idx,
3538 					LLVMConstInt(ctx->i32, itemsize_dw, 0), "");
3539 	}
3540 
3541 	for (i = 0; i < info->num_outputs; i++) {
3542 		int param;
3543 
3544 		if (info->output_semantic_name[i] == TGSI_SEMANTIC_VIEWPORT_INDEX ||
3545 		    info->output_semantic_name[i] == TGSI_SEMANTIC_LAYER)
3546 			continue;
3547 
3548 		param = si_shader_io_get_unique_index(info->output_semantic_name[i],
3549 						      info->output_semantic_index[i]);
3550 
3551 		for (chan = 0; chan < 4; chan++) {
3552 			LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], "");
3553 			out_val = ac_to_integer(&ctx->ac, out_val);
3554 
3555 			/* GFX9 has the ESGS ring in LDS. */
3556 			if (ctx->screen->info.chip_class >= GFX9) {
3557 				lds_store(ctx, param * 4 + chan, lds_base, out_val);
3558 				continue;
3559 			}
3560 
3561 			ac_build_buffer_store_dword(&ctx->ac,
3562 						    ctx->esgs_ring,
3563 						    out_val, 1, NULL, soffset,
3564 						    (4 * param + chan) * 4,
3565 						    1, 1, true, true);
3566 		}
3567 	}
3568 
3569 	if (ctx->screen->info.chip_class >= GFX9)
3570 		si_set_es_return_value_for_gs(ctx);
3571 }
3572 
si_get_gs_wave_id(struct si_shader_context * ctx)3573 static LLVMValueRef si_get_gs_wave_id(struct si_shader_context *ctx)
3574 {
3575 	if (ctx->screen->info.chip_class >= GFX9)
3576 		return unpack_param(ctx, ctx->param_merged_wave_info, 16, 8);
3577 	else
3578 		return LLVMGetParam(ctx->main_fn, ctx->param_gs_wave_id);
3579 }
3580 
emit_gs_epilogue(struct si_shader_context * ctx)3581 static void emit_gs_epilogue(struct si_shader_context *ctx)
3582 {
3583 	ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_NOP | AC_SENDMSG_GS_DONE,
3584 			 si_get_gs_wave_id(ctx));
3585 
3586 	if (ctx->screen->info.chip_class >= GFX9)
3587 		lp_build_endif(&ctx->merged_wrap_if_state);
3588 }
3589 
si_llvm_emit_gs_epilogue(struct ac_shader_abi * abi,unsigned max_outputs,LLVMValueRef * addrs)3590 static void si_llvm_emit_gs_epilogue(struct ac_shader_abi *abi,
3591 				     unsigned max_outputs,
3592 				     LLVMValueRef *addrs)
3593 {
3594 	struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3595 	struct tgsi_shader_info UNUSED *info = &ctx->shader->selector->info;
3596 
3597 	assert(info->num_outputs <= max_outputs);
3598 
3599 	emit_gs_epilogue(ctx);
3600 }
3601 
si_tgsi_emit_gs_epilogue(struct lp_build_tgsi_context * bld_base)3602 static void si_tgsi_emit_gs_epilogue(struct lp_build_tgsi_context *bld_base)
3603 {
3604 	struct si_shader_context *ctx = si_shader_context(bld_base);
3605 	emit_gs_epilogue(ctx);
3606 }
3607 
si_llvm_emit_vs_epilogue(struct ac_shader_abi * abi,unsigned max_outputs,LLVMValueRef * addrs)3608 static void si_llvm_emit_vs_epilogue(struct ac_shader_abi *abi,
3609 				     unsigned max_outputs,
3610 				     LLVMValueRef *addrs)
3611 {
3612 	struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3613 	struct tgsi_shader_info *info = &ctx->shader->selector->info;
3614 	struct si_shader_output_values *outputs = NULL;
3615 	int i,j;
3616 
3617 	assert(!ctx->shader->is_gs_copy_shader);
3618 	assert(info->num_outputs <= max_outputs);
3619 
3620 	outputs = MALLOC((info->num_outputs + 1) * sizeof(outputs[0]));
3621 
3622 	/* Vertex color clamping.
3623 	 *
3624 	 * This uses a state constant loaded in a user data SGPR and
3625 	 * an IF statement is added that clamps all colors if the constant
3626 	 * is true.
3627 	 */
3628 	if (ctx->type == PIPE_SHADER_VERTEX) {
3629 		struct lp_build_if_state if_ctx;
3630 		LLVMValueRef cond = NULL;
3631 		LLVMValueRef addr, val;
3632 
3633 		for (i = 0; i < info->num_outputs; i++) {
3634 			if (info->output_semantic_name[i] != TGSI_SEMANTIC_COLOR &&
3635 			    info->output_semantic_name[i] != TGSI_SEMANTIC_BCOLOR)
3636 				continue;
3637 
3638 			/* We've found a color. */
3639 			if (!cond) {
3640 				/* The state is in the first bit of the user SGPR. */
3641 				cond = LLVMGetParam(ctx->main_fn,
3642 						    ctx->param_vs_state_bits);
3643 				cond = LLVMBuildTrunc(ctx->ac.builder, cond,
3644 						      ctx->i1, "");
3645 				lp_build_if(&if_ctx, &ctx->gallivm, cond);
3646 			}
3647 
3648 			for (j = 0; j < 4; j++) {
3649 				addr = addrs[4 * i + j];
3650 				val = LLVMBuildLoad(ctx->ac.builder, addr, "");
3651 				val = ac_build_clamp(&ctx->ac, val);
3652 				LLVMBuildStore(ctx->ac.builder, val, addr);
3653 			}
3654 		}
3655 
3656 		if (cond)
3657 			lp_build_endif(&if_ctx);
3658 	}
3659 
3660 	for (i = 0; i < info->num_outputs; i++) {
3661 		outputs[i].semantic_name = info->output_semantic_name[i];
3662 		outputs[i].semantic_index = info->output_semantic_index[i];
3663 
3664 		for (j = 0; j < 4; j++) {
3665 			outputs[i].values[j] =
3666 				LLVMBuildLoad(ctx->ac.builder,
3667 					      addrs[4 * i + j],
3668 					      "");
3669 			outputs[i].vertex_stream[j] =
3670 				(info->output_streams[i] >> (2 * j)) & 3;
3671 		}
3672 	}
3673 
3674 	if (ctx->shader->selector->so.num_outputs)
3675 		si_llvm_emit_streamout(ctx, outputs, i, 0);
3676 
3677 	/* Export PrimitiveID. */
3678 	if (ctx->shader->key.mono.u.vs_export_prim_id) {
3679 		outputs[i].semantic_name = TGSI_SEMANTIC_PRIMID;
3680 		outputs[i].semantic_index = 0;
3681 		outputs[i].values[0] = ac_to_float(&ctx->ac, get_primitive_id(ctx, 0));
3682 		for (j = 1; j < 4; j++)
3683 			outputs[i].values[j] = LLVMConstReal(ctx->f32, 0);
3684 
3685 		memset(outputs[i].vertex_stream, 0,
3686 		       sizeof(outputs[i].vertex_stream));
3687 		i++;
3688 	}
3689 
3690 	si_llvm_export_vs(ctx, outputs, i);
3691 	FREE(outputs);
3692 }
3693 
si_tgsi_emit_epilogue(struct lp_build_tgsi_context * bld_base)3694 static void si_tgsi_emit_epilogue(struct lp_build_tgsi_context *bld_base)
3695 {
3696 	struct si_shader_context *ctx = si_shader_context(bld_base);
3697 
3698 	ctx->abi.emit_outputs(&ctx->abi, RADEON_LLVM_MAX_OUTPUTS,
3699 			      &ctx->outputs[0][0]);
3700 }
3701 
3702 struct si_ps_exports {
3703 	unsigned num;
3704 	struct ac_export_args args[10];
3705 };
3706 
si_export_mrt_z(struct lp_build_tgsi_context * bld_base,LLVMValueRef depth,LLVMValueRef stencil,LLVMValueRef samplemask,struct si_ps_exports * exp)3707 static void si_export_mrt_z(struct lp_build_tgsi_context *bld_base,
3708 			    LLVMValueRef depth, LLVMValueRef stencil,
3709 			    LLVMValueRef samplemask, struct si_ps_exports *exp)
3710 {
3711 	struct si_shader_context *ctx = si_shader_context(bld_base);
3712 	struct ac_export_args args;
3713 
3714 	ac_export_mrt_z(&ctx->ac, depth, stencil, samplemask, &args);
3715 
3716 	memcpy(&exp->args[exp->num++], &args, sizeof(args));
3717 }
3718 
si_export_mrt_color(struct lp_build_tgsi_context * bld_base,LLVMValueRef * color,unsigned index,unsigned samplemask_param,bool is_last,struct si_ps_exports * exp)3719 static void si_export_mrt_color(struct lp_build_tgsi_context *bld_base,
3720 				LLVMValueRef *color, unsigned index,
3721 				unsigned samplemask_param,
3722 				bool is_last, struct si_ps_exports *exp)
3723 {
3724 	struct si_shader_context *ctx = si_shader_context(bld_base);
3725 	int i;
3726 
3727 	/* Clamp color */
3728 	if (ctx->shader->key.part.ps.epilog.clamp_color)
3729 		for (i = 0; i < 4; i++)
3730 			color[i] = ac_build_clamp(&ctx->ac, color[i]);
3731 
3732 	/* Alpha to one */
3733 	if (ctx->shader->key.part.ps.epilog.alpha_to_one)
3734 		color[3] = ctx->ac.f32_1;
3735 
3736 	/* Alpha test */
3737 	if (index == 0 &&
3738 	    ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_ALWAYS)
3739 		si_alpha_test(bld_base, color[3]);
3740 
3741 	/* Line & polygon smoothing */
3742 	if (ctx->shader->key.part.ps.epilog.poly_line_smoothing)
3743 		color[3] = si_scale_alpha_by_sample_mask(bld_base, color[3],
3744 							 samplemask_param);
3745 
3746 	/* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
3747 	if (ctx->shader->key.part.ps.epilog.last_cbuf > 0) {
3748 		struct ac_export_args args[8];
3749 		int c, last = -1;
3750 
3751 		/* Get the export arguments, also find out what the last one is. */
3752 		for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
3753 			si_llvm_init_export_args(ctx, color,
3754 						 V_008DFC_SQ_EXP_MRT + c, &args[c]);
3755 			if (args[c].enabled_channels)
3756 				last = c;
3757 		}
3758 
3759 		/* Emit all exports. */
3760 		for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
3761 			if (is_last && last == c) {
3762 				args[c].valid_mask = 1; /* whether the EXEC mask is valid */
3763 				args[c].done = 1; /* DONE bit */
3764 			} else if (!args[c].enabled_channels)
3765 				continue; /* unnecessary NULL export */
3766 
3767 			memcpy(&exp->args[exp->num++], &args[c], sizeof(args[c]));
3768 		}
3769 	} else {
3770 		struct ac_export_args args;
3771 
3772 		/* Export */
3773 		si_llvm_init_export_args(ctx, color, V_008DFC_SQ_EXP_MRT + index,
3774 					 &args);
3775 		if (is_last) {
3776 			args.valid_mask = 1; /* whether the EXEC mask is valid */
3777 			args.done = 1; /* DONE bit */
3778 		} else if (!args.enabled_channels)
3779 			return; /* unnecessary NULL export */
3780 
3781 		memcpy(&exp->args[exp->num++], &args, sizeof(args));
3782 	}
3783 }
3784 
si_emit_ps_exports(struct si_shader_context * ctx,struct si_ps_exports * exp)3785 static void si_emit_ps_exports(struct si_shader_context *ctx,
3786 			       struct si_ps_exports *exp)
3787 {
3788 	for (unsigned i = 0; i < exp->num; i++)
3789 		ac_build_export(&ctx->ac, &exp->args[i]);
3790 }
3791 
si_export_null(struct lp_build_tgsi_context * bld_base)3792 static void si_export_null(struct lp_build_tgsi_context *bld_base)
3793 {
3794 	struct si_shader_context *ctx = si_shader_context(bld_base);
3795 	struct lp_build_context *base = &bld_base->base;
3796 	struct ac_export_args args;
3797 
3798 	args.enabled_channels = 0x0; /* enabled channels */
3799 	args.valid_mask = 1; /* whether the EXEC mask is valid */
3800 	args.done = 1; /* DONE bit */
3801 	args.target = V_008DFC_SQ_EXP_NULL;
3802 	args.compr = 0; /* COMPR flag (0 = 32-bit export) */
3803 	args.out[0] = base->undef; /* R */
3804 	args.out[1] = base->undef; /* G */
3805 	args.out[2] = base->undef; /* B */
3806 	args.out[3] = base->undef; /* A */
3807 
3808 	ac_build_export(&ctx->ac, &args);
3809 }
3810 
3811 /**
3812  * Return PS outputs in this order:
3813  *
3814  * v[0:3] = color0.xyzw
3815  * v[4:7] = color1.xyzw
3816  * ...
3817  * vN+0 = Depth
3818  * vN+1 = Stencil
3819  * vN+2 = SampleMask
3820  * vN+3 = SampleMaskIn (used for OpenGL smoothing)
3821  *
3822  * The alpha-ref SGPR is returned via its original location.
3823  */
si_llvm_return_fs_outputs(struct ac_shader_abi * abi,unsigned max_outputs,LLVMValueRef * addrs)3824 static void si_llvm_return_fs_outputs(struct ac_shader_abi *abi,
3825 				      unsigned max_outputs,
3826 				      LLVMValueRef *addrs)
3827 {
3828 	struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3829 	struct si_shader *shader = ctx->shader;
3830 	struct tgsi_shader_info *info = &shader->selector->info;
3831 	LLVMBuilderRef builder = ctx->ac.builder;
3832 	unsigned i, j, first_vgpr, vgpr;
3833 
3834 	LLVMValueRef color[8][4] = {};
3835 	LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
3836 	LLVMValueRef ret;
3837 
3838 	if (ctx->postponed_kill)
3839 		ac_build_kill_if_false(&ctx->ac, LLVMBuildLoad(builder, ctx->postponed_kill, ""));
3840 
3841 	/* Read the output values. */
3842 	for (i = 0; i < info->num_outputs; i++) {
3843 		unsigned semantic_name = info->output_semantic_name[i];
3844 		unsigned semantic_index = info->output_semantic_index[i];
3845 
3846 		switch (semantic_name) {
3847 		case TGSI_SEMANTIC_COLOR:
3848 			assert(semantic_index < 8);
3849 			for (j = 0; j < 4; j++) {
3850 				LLVMValueRef ptr = addrs[4 * i + j];
3851 				LLVMValueRef result = LLVMBuildLoad(builder, ptr, "");
3852 				color[semantic_index][j] = result;
3853 			}
3854 			break;
3855 		case TGSI_SEMANTIC_POSITION:
3856 			depth = LLVMBuildLoad(builder,
3857 					      addrs[4 * i + 2], "");
3858 			break;
3859 		case TGSI_SEMANTIC_STENCIL:
3860 			stencil = LLVMBuildLoad(builder,
3861 						addrs[4 * i + 1], "");
3862 			break;
3863 		case TGSI_SEMANTIC_SAMPLEMASK:
3864 			samplemask = LLVMBuildLoad(builder,
3865 						   addrs[4 * i + 0], "");
3866 			break;
3867 		default:
3868 			fprintf(stderr, "Warning: SI unhandled fs output type:%d\n",
3869 				semantic_name);
3870 		}
3871 	}
3872 
3873 	/* Fill the return structure. */
3874 	ret = ctx->return_value;
3875 
3876 	/* Set SGPRs. */
3877 	ret = LLVMBuildInsertValue(builder, ret,
3878 				   ac_to_integer(&ctx->ac,
3879                                                  LLVMGetParam(ctx->main_fn,
3880                                                               SI_PARAM_ALPHA_REF)),
3881 				   SI_SGPR_ALPHA_REF, "");
3882 
3883 	/* Set VGPRs */
3884 	first_vgpr = vgpr = SI_SGPR_ALPHA_REF + 1;
3885 	for (i = 0; i < ARRAY_SIZE(color); i++) {
3886 		if (!color[i][0])
3887 			continue;
3888 
3889 		for (j = 0; j < 4; j++)
3890 			ret = LLVMBuildInsertValue(builder, ret, color[i][j], vgpr++, "");
3891 	}
3892 	if (depth)
3893 		ret = LLVMBuildInsertValue(builder, ret, depth, vgpr++, "");
3894 	if (stencil)
3895 		ret = LLVMBuildInsertValue(builder, ret, stencil, vgpr++, "");
3896 	if (samplemask)
3897 		ret = LLVMBuildInsertValue(builder, ret, samplemask, vgpr++, "");
3898 
3899 	/* Add the input sample mask for smoothing at the end. */
3900 	if (vgpr < first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC)
3901 		vgpr = first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC;
3902 	ret = LLVMBuildInsertValue(builder, ret,
3903 				   LLVMGetParam(ctx->main_fn,
3904 						SI_PARAM_SAMPLE_COVERAGE), vgpr++, "");
3905 
3906 	ctx->return_value = ret;
3907 }
3908 
membar_emit(const struct lp_build_tgsi_action * action,struct lp_build_tgsi_context * bld_base,struct lp_build_emit_data * emit_data)3909 static void membar_emit(
3910 		const struct lp_build_tgsi_action *action,
3911 		struct lp_build_tgsi_context *bld_base,
3912 		struct lp_build_emit_data *emit_data)
3913 {
3914 	struct si_shader_context *ctx = si_shader_context(bld_base);
3915 	LLVMValueRef src0 = lp_build_emit_fetch(bld_base, emit_data->inst, 0, 0);
3916 	unsigned flags = LLVMConstIntGetZExtValue(src0);
3917 	unsigned waitcnt = NOOP_WAITCNT;
3918 
3919 	if (flags & TGSI_MEMBAR_THREAD_GROUP)
3920 		waitcnt &= VM_CNT & LGKM_CNT;
3921 
3922 	if (flags & (TGSI_MEMBAR_ATOMIC_BUFFER |
3923 		     TGSI_MEMBAR_SHADER_BUFFER |
3924 		     TGSI_MEMBAR_SHADER_IMAGE))
3925 		waitcnt &= VM_CNT;
3926 
3927 	if (flags & TGSI_MEMBAR_SHARED)
3928 		waitcnt &= LGKM_CNT;
3929 
3930 	if (waitcnt != NOOP_WAITCNT)
3931 		ac_build_waitcnt(&ctx->ac, waitcnt);
3932 }
3933 
clock_emit(const struct lp_build_tgsi_action * action,struct lp_build_tgsi_context * bld_base,struct lp_build_emit_data * emit_data)3934 static void clock_emit(
3935 		const struct lp_build_tgsi_action *action,
3936 		struct lp_build_tgsi_context *bld_base,
3937 		struct lp_build_emit_data *emit_data)
3938 {
3939 	struct si_shader_context *ctx = si_shader_context(bld_base);
3940 	LLVMValueRef tmp;
3941 
3942 	tmp = lp_build_intrinsic(ctx->ac.builder, "llvm.readcyclecounter",
3943 				 ctx->i64, NULL, 0, 0);
3944 	tmp = LLVMBuildBitCast(ctx->ac.builder, tmp, ctx->v2i32, "");
3945 
3946 	emit_data->output[0] =
3947 		LLVMBuildExtractElement(ctx->ac.builder, tmp, ctx->i32_0, "");
3948 	emit_data->output[1] =
3949 		LLVMBuildExtractElement(ctx->ac.builder, tmp, ctx->i32_1, "");
3950 }
3951 
si_const_array(LLVMTypeRef elem_type,int num_elements)3952 LLVMTypeRef si_const_array(LLVMTypeRef elem_type, int num_elements)
3953 {
3954 	return LLVMPointerType(LLVMArrayType(elem_type, num_elements),
3955 			       CONST_ADDR_SPACE);
3956 }
3957 
si_llvm_emit_ddxy(const struct lp_build_tgsi_action * action,struct lp_build_tgsi_context * bld_base,struct lp_build_emit_data * emit_data)3958 static void si_llvm_emit_ddxy(
3959 	const struct lp_build_tgsi_action *action,
3960 	struct lp_build_tgsi_context *bld_base,
3961 	struct lp_build_emit_data *emit_data)
3962 {
3963 	struct si_shader_context *ctx = si_shader_context(bld_base);
3964 	unsigned opcode = emit_data->info->opcode;
3965 	LLVMValueRef val;
3966 	int idx;
3967 	unsigned mask;
3968 
3969 	if (opcode == TGSI_OPCODE_DDX_FINE)
3970 		mask = AC_TID_MASK_LEFT;
3971 	else if (opcode == TGSI_OPCODE_DDY_FINE)
3972 		mask = AC_TID_MASK_TOP;
3973 	else
3974 		mask = AC_TID_MASK_TOP_LEFT;
3975 
3976 	/* for DDX we want to next X pixel, DDY next Y pixel. */
3977 	idx = (opcode == TGSI_OPCODE_DDX || opcode == TGSI_OPCODE_DDX_FINE) ? 1 : 2;
3978 
3979 	val = ac_to_integer(&ctx->ac, emit_data->args[0]);
3980 	val = ac_build_ddxy(&ctx->ac, mask, idx, val);
3981 	emit_data->output[emit_data->chan] = val;
3982 }
3983 
3984 /*
3985  * this takes an I,J coordinate pair,
3986  * and works out the X and Y derivatives.
3987  * it returns DDX(I), DDX(J), DDY(I), DDY(J).
3988  */
si_llvm_emit_ddxy_interp(struct lp_build_tgsi_context * bld_base,LLVMValueRef interp_ij)3989 static LLVMValueRef si_llvm_emit_ddxy_interp(
3990 	struct lp_build_tgsi_context *bld_base,
3991 	LLVMValueRef interp_ij)
3992 {
3993 	struct si_shader_context *ctx = si_shader_context(bld_base);
3994 	LLVMValueRef result[4], a;
3995 	unsigned i;
3996 
3997 	for (i = 0; i < 2; i++) {
3998 		a = LLVMBuildExtractElement(ctx->ac.builder, interp_ij,
3999 					    LLVMConstInt(ctx->i32, i, 0), "");
4000 		result[i] = lp_build_emit_llvm_unary(bld_base, TGSI_OPCODE_DDX, a);
4001 		result[2+i] = lp_build_emit_llvm_unary(bld_base, TGSI_OPCODE_DDY, a);
4002 	}
4003 
4004 	return lp_build_gather_values(&ctx->gallivm, result, 4);
4005 }
4006 
interp_fetch_args(struct lp_build_tgsi_context * bld_base,struct lp_build_emit_data * emit_data)4007 static void interp_fetch_args(
4008 	struct lp_build_tgsi_context *bld_base,
4009 	struct lp_build_emit_data *emit_data)
4010 {
4011 	struct si_shader_context *ctx = si_shader_context(bld_base);
4012 	const struct tgsi_full_instruction *inst = emit_data->inst;
4013 
4014 	if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET) {
4015 		/* offset is in second src, first two channels */
4016 		emit_data->args[0] = lp_build_emit_fetch(bld_base,
4017 							 emit_data->inst, 1,
4018 							 TGSI_CHAN_X);
4019 		emit_data->args[1] = lp_build_emit_fetch(bld_base,
4020 							 emit_data->inst, 1,
4021 							 TGSI_CHAN_Y);
4022 		emit_data->arg_count = 2;
4023 	} else if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
4024 		LLVMValueRef sample_position;
4025 		LLVMValueRef sample_id;
4026 		LLVMValueRef halfval = LLVMConstReal(ctx->f32, 0.5f);
4027 
4028 		/* fetch sample ID, then fetch its sample position,
4029 		 * and place into first two channels.
4030 		 */
4031 		sample_id = lp_build_emit_fetch(bld_base,
4032 						emit_data->inst, 1, TGSI_CHAN_X);
4033 		sample_id = ac_to_integer(&ctx->ac, sample_id);
4034 
4035 		/* Section 8.13.2 (Interpolation Functions) of the OpenGL Shading
4036 		 * Language 4.50 spec says about interpolateAtSample:
4037 		 *
4038 		 *    "Returns the value of the input interpolant variable at
4039 		 *     the location of sample number sample. If multisample
4040 		 *     buffers are not available, the input variable will be
4041 		 *     evaluated at the center of the pixel. If sample sample
4042 		 *     does not exist, the position used to interpolate the
4043 		 *     input variable is undefined."
4044 		 *
4045 		 * This means that sample_id values outside of the valid are
4046 		 * in fact valid input, and the usual mechanism for loading the
4047 		 * sample position doesn't work.
4048 		 */
4049 		if (ctx->shader->key.mono.u.ps.interpolate_at_sample_force_center) {
4050 			LLVMValueRef center[4] = {
4051 				LLVMConstReal(ctx->f32, 0.5),
4052 				LLVMConstReal(ctx->f32, 0.5),
4053 				ctx->ac.f32_0,
4054 				ctx->ac.f32_0,
4055 			};
4056 
4057 			sample_position = lp_build_gather_values(&ctx->gallivm, center, 4);
4058 		} else {
4059 			sample_position = load_sample_position(ctx, sample_id);
4060 		}
4061 
4062 		emit_data->args[0] = LLVMBuildExtractElement(ctx->ac.builder,
4063 							     sample_position,
4064 							     ctx->i32_0, "");
4065 
4066 		emit_data->args[0] = LLVMBuildFSub(ctx->ac.builder, emit_data->args[0], halfval, "");
4067 		emit_data->args[1] = LLVMBuildExtractElement(ctx->ac.builder,
4068 							     sample_position,
4069 							     ctx->i32_1, "");
4070 		emit_data->args[1] = LLVMBuildFSub(ctx->ac.builder, emit_data->args[1], halfval, "");
4071 		emit_data->arg_count = 2;
4072 	}
4073 }
4074 
build_interp_intrinsic(const struct lp_build_tgsi_action * action,struct lp_build_tgsi_context * bld_base,struct lp_build_emit_data * emit_data)4075 static void build_interp_intrinsic(const struct lp_build_tgsi_action *action,
4076 				struct lp_build_tgsi_context *bld_base,
4077 				struct lp_build_emit_data *emit_data)
4078 {
4079 	struct si_shader_context *ctx = si_shader_context(bld_base);
4080 	struct si_shader *shader = ctx->shader;
4081 	const struct tgsi_shader_info *info = &shader->selector->info;
4082 	LLVMValueRef interp_param;
4083 	const struct tgsi_full_instruction *inst = emit_data->inst;
4084 	const struct tgsi_full_src_register *input = &inst->Src[0];
4085 	int input_base, input_array_size;
4086 	int chan;
4087 	int i;
4088 	LLVMValueRef prim_mask = LLVMGetParam(ctx->main_fn, SI_PARAM_PRIM_MASK);
4089 	LLVMValueRef array_idx;
4090 	int interp_param_idx;
4091 	unsigned interp;
4092 	unsigned location;
4093 
4094 	assert(input->Register.File == TGSI_FILE_INPUT);
4095 
4096 	if (input->Register.Indirect) {
4097 		unsigned array_id = input->Indirect.ArrayID;
4098 
4099 		if (array_id) {
4100 			input_base = info->input_array_first[array_id];
4101 			input_array_size = info->input_array_last[array_id] - input_base + 1;
4102 		} else {
4103 			input_base = inst->Src[0].Register.Index;
4104 			input_array_size = info->num_inputs - input_base;
4105 		}
4106 
4107 		array_idx = si_get_indirect_index(ctx, &input->Indirect,
4108 						  1, input->Register.Index - input_base);
4109 	} else {
4110 		input_base = inst->Src[0].Register.Index;
4111 		input_array_size = 1;
4112 		array_idx = ctx->i32_0;
4113 	}
4114 
4115 	interp = shader->selector->info.input_interpolate[input_base];
4116 
4117 	if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET ||
4118 	    inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE)
4119 		location = TGSI_INTERPOLATE_LOC_CENTER;
4120 	else
4121 		location = TGSI_INTERPOLATE_LOC_CENTROID;
4122 
4123 	interp_param_idx = lookup_interp_param_index(interp, location);
4124 	if (interp_param_idx == -1)
4125 		return;
4126 	else if (interp_param_idx)
4127 		interp_param = LLVMGetParam(ctx->main_fn, interp_param_idx);
4128 	else
4129 		interp_param = NULL;
4130 
4131 	if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET ||
4132 	    inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
4133 		LLVMValueRef ij_out[2];
4134 		LLVMValueRef ddxy_out = si_llvm_emit_ddxy_interp(bld_base, interp_param);
4135 
4136 		/*
4137 		 * take the I then J parameters, and the DDX/Y for it, and
4138 		 * calculate the IJ inputs for the interpolator.
4139 		 * temp1 = ddx * offset/sample.x + I;
4140 		 * interp_param.I = ddy * offset/sample.y + temp1;
4141 		 * temp1 = ddx * offset/sample.x + J;
4142 		 * interp_param.J = ddy * offset/sample.y + temp1;
4143 		 */
4144 		for (i = 0; i < 2; i++) {
4145 			LLVMValueRef ix_ll = LLVMConstInt(ctx->i32, i, 0);
4146 			LLVMValueRef iy_ll = LLVMConstInt(ctx->i32, i + 2, 0);
4147 			LLVMValueRef ddx_el = LLVMBuildExtractElement(ctx->ac.builder,
4148 								      ddxy_out, ix_ll, "");
4149 			LLVMValueRef ddy_el = LLVMBuildExtractElement(ctx->ac.builder,
4150 								      ddxy_out, iy_ll, "");
4151 			LLVMValueRef interp_el = LLVMBuildExtractElement(ctx->ac.builder,
4152 									 interp_param, ix_ll, "");
4153 			LLVMValueRef temp1, temp2;
4154 
4155 			interp_el = ac_to_float(&ctx->ac, interp_el);
4156 
4157 			temp1 = LLVMBuildFMul(ctx->ac.builder, ddx_el, emit_data->args[0], "");
4158 
4159 			temp1 = LLVMBuildFAdd(ctx->ac.builder, temp1, interp_el, "");
4160 
4161 			temp2 = LLVMBuildFMul(ctx->ac.builder, ddy_el, emit_data->args[1], "");
4162 
4163 			ij_out[i] = LLVMBuildFAdd(ctx->ac.builder, temp2, temp1, "");
4164 		}
4165 		interp_param = lp_build_gather_values(&ctx->gallivm, ij_out, 2);
4166 	}
4167 
4168 	if (interp_param)
4169 		interp_param = ac_to_float(&ctx->ac, interp_param);
4170 
4171 	for (chan = 0; chan < 4; chan++) {
4172 		LLVMValueRef gather = LLVMGetUndef(LLVMVectorType(ctx->f32, input_array_size));
4173 		unsigned schan = tgsi_util_get_full_src_register_swizzle(&inst->Src[0], chan);
4174 
4175 		for (unsigned idx = 0; idx < input_array_size; ++idx) {
4176 			LLVMValueRef v, i = NULL, j = NULL;
4177 
4178 			if (interp_param) {
4179 				i = LLVMBuildExtractElement(
4180 					ctx->ac.builder, interp_param, ctx->i32_0, "");
4181 				j = LLVMBuildExtractElement(
4182 					ctx->ac.builder, interp_param, ctx->i32_1, "");
4183 			}
4184 			v = si_build_fs_interp(ctx, input_base + idx, schan,
4185 					       prim_mask, i, j);
4186 
4187 			gather = LLVMBuildInsertElement(ctx->ac.builder,
4188 				gather, v, LLVMConstInt(ctx->i32, idx, false), "");
4189 		}
4190 
4191 		emit_data->output[chan] = LLVMBuildExtractElement(
4192 			ctx->ac.builder, gather, array_idx, "");
4193 	}
4194 }
4195 
vote_all_emit(const struct lp_build_tgsi_action * action,struct lp_build_tgsi_context * bld_base,struct lp_build_emit_data * emit_data)4196 static void vote_all_emit(
4197 	const struct lp_build_tgsi_action *action,
4198 	struct lp_build_tgsi_context *bld_base,
4199 	struct lp_build_emit_data *emit_data)
4200 {
4201 	struct si_shader_context *ctx = si_shader_context(bld_base);
4202 
4203         LLVMValueRef tmp = ac_build_vote_all(&ctx->ac, emit_data->args[0]);
4204 	emit_data->output[emit_data->chan] =
4205 		LLVMBuildSExt(ctx->ac.builder, tmp, ctx->i32, "");
4206 }
4207 
vote_any_emit(const struct lp_build_tgsi_action * action,struct lp_build_tgsi_context * bld_base,struct lp_build_emit_data * emit_data)4208 static void vote_any_emit(
4209 	const struct lp_build_tgsi_action *action,
4210 	struct lp_build_tgsi_context *bld_base,
4211 	struct lp_build_emit_data *emit_data)
4212 {
4213 	struct si_shader_context *ctx = si_shader_context(bld_base);
4214 
4215         LLVMValueRef tmp = ac_build_vote_any(&ctx->ac, emit_data->args[0]);
4216 	emit_data->output[emit_data->chan] =
4217 		LLVMBuildSExt(ctx->ac.builder, tmp, ctx->i32, "");
4218 }
4219 
vote_eq_emit(const struct lp_build_tgsi_action * action,struct lp_build_tgsi_context * bld_base,struct lp_build_emit_data * emit_data)4220 static void vote_eq_emit(
4221 	const struct lp_build_tgsi_action *action,
4222 	struct lp_build_tgsi_context *bld_base,
4223 	struct lp_build_emit_data *emit_data)
4224 {
4225 	struct si_shader_context *ctx = si_shader_context(bld_base);
4226 
4227         LLVMValueRef tmp = ac_build_vote_eq(&ctx->ac, emit_data->args[0]);
4228 	emit_data->output[emit_data->chan] =
4229 		LLVMBuildSExt(ctx->ac.builder, tmp, ctx->i32, "");
4230 }
4231 
ballot_emit(const struct lp_build_tgsi_action * action,struct lp_build_tgsi_context * bld_base,struct lp_build_emit_data * emit_data)4232 static void ballot_emit(
4233 	const struct lp_build_tgsi_action *action,
4234 	struct lp_build_tgsi_context *bld_base,
4235 	struct lp_build_emit_data *emit_data)
4236 {
4237 	struct si_shader_context *ctx = si_shader_context(bld_base);
4238 	LLVMBuilderRef builder = ctx->ac.builder;
4239 	LLVMValueRef tmp;
4240 
4241 	tmp = lp_build_emit_fetch(bld_base, emit_data->inst, 0, TGSI_CHAN_X);
4242 	tmp = ac_build_ballot(&ctx->ac, tmp);
4243 	tmp = LLVMBuildBitCast(builder, tmp, ctx->v2i32, "");
4244 
4245 	emit_data->output[0] = LLVMBuildExtractElement(builder, tmp, ctx->i32_0, "");
4246 	emit_data->output[1] = LLVMBuildExtractElement(builder, tmp, ctx->i32_1, "");
4247 }
4248 
read_invoc_fetch_args(struct lp_build_tgsi_context * bld_base,struct lp_build_emit_data * emit_data)4249 static void read_invoc_fetch_args(
4250 	struct lp_build_tgsi_context *bld_base,
4251 	struct lp_build_emit_data *emit_data)
4252 {
4253 	emit_data->args[0] = lp_build_emit_fetch(bld_base, emit_data->inst,
4254 						 0, emit_data->src_chan);
4255 
4256 	/* Always read the source invocation (= lane) from the X channel. */
4257 	emit_data->args[1] = lp_build_emit_fetch(bld_base, emit_data->inst,
4258 						 1, TGSI_CHAN_X);
4259 	emit_data->arg_count = 2;
4260 }
4261 
read_lane_emit(const struct lp_build_tgsi_action * action,struct lp_build_tgsi_context * bld_base,struct lp_build_emit_data * emit_data)4262 static void read_lane_emit(
4263 	const struct lp_build_tgsi_action *action,
4264 	struct lp_build_tgsi_context *bld_base,
4265 	struct lp_build_emit_data *emit_data)
4266 {
4267 	struct si_shader_context *ctx = si_shader_context(bld_base);
4268 
4269 	/* We currently have no other way to prevent LLVM from lifting the icmp
4270 	 * calls to a dominating basic block.
4271 	 */
4272 	ac_build_optimization_barrier(&ctx->ac, &emit_data->args[0]);
4273 
4274 	for (unsigned i = 0; i < emit_data->arg_count; ++i)
4275 		emit_data->args[i] = ac_to_integer(&ctx->ac, emit_data->args[i]);
4276 
4277 	emit_data->output[emit_data->chan] =
4278 		ac_build_intrinsic(&ctx->ac, action->intr_name,
4279 				   ctx->i32, emit_data->args, emit_data->arg_count,
4280 				   AC_FUNC_ATTR_READNONE |
4281 				   AC_FUNC_ATTR_CONVERGENT);
4282 }
4283 
si_llvm_get_stream(struct lp_build_tgsi_context * bld_base,struct lp_build_emit_data * emit_data)4284 static unsigned si_llvm_get_stream(struct lp_build_tgsi_context *bld_base,
4285 				       struct lp_build_emit_data *emit_data)
4286 {
4287 	struct si_shader_context *ctx = si_shader_context(bld_base);
4288 	struct tgsi_src_register src0 = emit_data->inst->Src[0].Register;
4289 	LLVMValueRef imm;
4290 	unsigned stream;
4291 
4292 	assert(src0.File == TGSI_FILE_IMMEDIATE);
4293 
4294 	imm = ctx->imms[src0.Index * TGSI_NUM_CHANNELS + src0.SwizzleX];
4295 	stream = LLVMConstIntGetZExtValue(imm) & 0x3;
4296 	return stream;
4297 }
4298 
4299 /* Emit one vertex from the geometry shader */
si_llvm_emit_vertex(struct ac_shader_abi * abi,unsigned stream,LLVMValueRef * addrs)4300 static void si_llvm_emit_vertex(struct ac_shader_abi *abi,
4301 				unsigned stream,
4302 				LLVMValueRef *addrs)
4303 {
4304 	struct si_shader_context *ctx = si_shader_context_from_abi(abi);
4305 	struct tgsi_shader_info *info = &ctx->shader->selector->info;
4306 	struct lp_build_context *uint = &ctx->bld_base.uint_bld;
4307 	struct si_shader *shader = ctx->shader;
4308 	struct lp_build_if_state if_state;
4309 	LLVMValueRef soffset = LLVMGetParam(ctx->main_fn,
4310 					    ctx->param_gs2vs_offset);
4311 	LLVMValueRef gs_next_vertex;
4312 	LLVMValueRef can_emit;
4313 	unsigned chan, offset;
4314 	int i;
4315 
4316 	/* Write vertex attribute values to GSVS ring */
4317 	gs_next_vertex = LLVMBuildLoad(ctx->ac.builder,
4318 				       ctx->gs_next_vertex[stream],
4319 				       "");
4320 
4321 	/* If this thread has already emitted the declared maximum number of
4322 	 * vertices, skip the write: excessive vertex emissions are not
4323 	 * supposed to have any effect.
4324 	 *
4325 	 * If the shader has no writes to memory, kill it instead. This skips
4326 	 * further memory loads and may allow LLVM to skip to the end
4327 	 * altogether.
4328 	 */
4329 	can_emit = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, gs_next_vertex,
4330 				 LLVMConstInt(ctx->i32,
4331 					      shader->selector->gs_max_out_vertices, 0), "");
4332 
4333 	bool use_kill = !info->writes_memory;
4334 	if (use_kill) {
4335 		ac_build_kill_if_false(&ctx->ac, can_emit);
4336 	} else {
4337 		lp_build_if(&if_state, &ctx->gallivm, can_emit);
4338 	}
4339 
4340 	offset = 0;
4341 	for (i = 0; i < info->num_outputs; i++) {
4342 		for (chan = 0; chan < 4; chan++) {
4343 			if (!(info->output_usagemask[i] & (1 << chan)) ||
4344 			    ((info->output_streams[i] >> (2 * chan)) & 3) != stream)
4345 				continue;
4346 
4347 			LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], "");
4348 			LLVMValueRef voffset =
4349 				LLVMConstInt(ctx->i32, offset *
4350 					     shader->selector->gs_max_out_vertices, 0);
4351 			offset++;
4352 
4353 			voffset = lp_build_add(uint, voffset, gs_next_vertex);
4354 			voffset = lp_build_mul_imm(uint, voffset, 4);
4355 
4356 			out_val = ac_to_integer(&ctx->ac, out_val);
4357 
4358 			ac_build_buffer_store_dword(&ctx->ac,
4359 						    ctx->gsvs_ring[stream],
4360 						    out_val, 1,
4361 						    voffset, soffset, 0,
4362 						    1, 1, true, true);
4363 		}
4364 	}
4365 
4366 	gs_next_vertex = lp_build_add(uint, gs_next_vertex,
4367 				      ctx->i32_1);
4368 
4369 	LLVMBuildStore(ctx->ac.builder, gs_next_vertex, ctx->gs_next_vertex[stream]);
4370 
4371 	/* Signal vertex emission */
4372 	ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_EMIT | AC_SENDMSG_GS | (stream << 8),
4373 			 si_get_gs_wave_id(ctx));
4374 	if (!use_kill)
4375 		lp_build_endif(&if_state);
4376 }
4377 
4378 /* Emit one vertex from the geometry shader */
si_tgsi_emit_vertex(const struct lp_build_tgsi_action * action,struct lp_build_tgsi_context * bld_base,struct lp_build_emit_data * emit_data)4379 static void si_tgsi_emit_vertex(
4380 	const struct lp_build_tgsi_action *action,
4381 	struct lp_build_tgsi_context *bld_base,
4382 	struct lp_build_emit_data *emit_data)
4383 {
4384 	struct si_shader_context *ctx = si_shader_context(bld_base);
4385 	unsigned stream = si_llvm_get_stream(bld_base, emit_data);
4386 
4387 	si_llvm_emit_vertex(&ctx->abi, stream, ctx->outputs[0]);
4388 }
4389 
4390 /* Cut one primitive from the geometry shader */
si_llvm_emit_primitive(struct ac_shader_abi * abi,unsigned stream)4391 static void si_llvm_emit_primitive(struct ac_shader_abi *abi,
4392 				   unsigned stream)
4393 {
4394 	struct si_shader_context *ctx = si_shader_context_from_abi(abi);
4395 
4396 	/* Signal primitive cut */
4397 	ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_CUT | AC_SENDMSG_GS | (stream << 8),
4398 			 si_get_gs_wave_id(ctx));
4399 }
4400 
4401 /* Cut one primitive from the geometry shader */
si_tgsi_emit_primitive(const struct lp_build_tgsi_action * action,struct lp_build_tgsi_context * bld_base,struct lp_build_emit_data * emit_data)4402 static void si_tgsi_emit_primitive(
4403 	const struct lp_build_tgsi_action *action,
4404 	struct lp_build_tgsi_context *bld_base,
4405 	struct lp_build_emit_data *emit_data)
4406 {
4407 	struct si_shader_context *ctx = si_shader_context(bld_base);
4408 
4409 	si_llvm_emit_primitive(&ctx->abi, si_llvm_get_stream(bld_base, emit_data));
4410 }
4411 
si_llvm_emit_barrier(const struct lp_build_tgsi_action * action,struct lp_build_tgsi_context * bld_base,struct lp_build_emit_data * emit_data)4412 static void si_llvm_emit_barrier(const struct lp_build_tgsi_action *action,
4413 				 struct lp_build_tgsi_context *bld_base,
4414 				 struct lp_build_emit_data *emit_data)
4415 {
4416 	struct si_shader_context *ctx = si_shader_context(bld_base);
4417 
4418 	/* SI only (thanks to a hw bug workaround):
4419 	 * The real barrier instruction isn’t needed, because an entire patch
4420 	 * always fits into a single wave.
4421 	 */
4422 	if (ctx->screen->info.chip_class == SI &&
4423 	    ctx->type == PIPE_SHADER_TESS_CTRL) {
4424 		ac_build_waitcnt(&ctx->ac, LGKM_CNT & VM_CNT);
4425 		return;
4426 	}
4427 
4428 	lp_build_intrinsic(ctx->ac.builder,
4429 			   "llvm.amdgcn.s.barrier",
4430 			   ctx->voidt, NULL, 0, LP_FUNC_ATTR_CONVERGENT);
4431 }
4432 
4433 static const struct lp_build_tgsi_action interp_action = {
4434 	.fetch_args = interp_fetch_args,
4435 	.emit = build_interp_intrinsic,
4436 };
4437 
si_create_function(struct si_shader_context * ctx,const char * name,LLVMTypeRef * returns,unsigned num_returns,struct si_function_info * fninfo,unsigned max_workgroup_size)4438 static void si_create_function(struct si_shader_context *ctx,
4439 			       const char *name,
4440 			       LLVMTypeRef *returns, unsigned num_returns,
4441 			       struct si_function_info *fninfo,
4442 			       unsigned max_workgroup_size)
4443 {
4444 	int i;
4445 
4446 	si_llvm_create_func(ctx, name, returns, num_returns,
4447 			    fninfo->types, fninfo->num_params);
4448 	ctx->return_value = LLVMGetUndef(ctx->return_type);
4449 
4450 	for (i = 0; i < fninfo->num_sgpr_params; ++i) {
4451 		LLVMValueRef P = LLVMGetParam(ctx->main_fn, i);
4452 
4453 		/* The combination of:
4454 		 * - ByVal
4455 		 * - dereferenceable
4456 		 * - invariant.load
4457 		 * allows the optimization passes to move loads and reduces
4458 		 * SGPR spilling significantly.
4459 		 */
4460 		if (LLVMGetTypeKind(LLVMTypeOf(P)) == LLVMPointerTypeKind) {
4461 			lp_add_function_attr(ctx->main_fn, i + 1, LP_FUNC_ATTR_BYVAL);
4462 			lp_add_function_attr(ctx->main_fn, i + 1, LP_FUNC_ATTR_NOALIAS);
4463 			ac_add_attr_dereferenceable(P, UINT64_MAX);
4464 		} else
4465 			lp_add_function_attr(ctx->main_fn, i + 1, LP_FUNC_ATTR_INREG);
4466 	}
4467 
4468 	for (i = 0; i < fninfo->num_params; ++i) {
4469 		if (fninfo->assign[i])
4470 			*fninfo->assign[i] = LLVMGetParam(ctx->main_fn, i);
4471 	}
4472 
4473 	if (max_workgroup_size) {
4474 		si_llvm_add_attribute(ctx->main_fn, "amdgpu-max-work-group-size",
4475 				      max_workgroup_size);
4476 	}
4477 	LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4478 					   "no-signed-zeros-fp-math",
4479 					   "true");
4480 
4481 	if (ctx->screen->debug_flags & DBG(UNSAFE_MATH)) {
4482 		/* These were copied from some LLVM test. */
4483 		LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4484 						   "less-precise-fpmad",
4485 						   "true");
4486 		LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4487 						   "no-infs-fp-math",
4488 						   "true");
4489 		LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4490 						   "no-nans-fp-math",
4491 						   "true");
4492 		LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4493 						   "unsafe-fp-math",
4494 						   "true");
4495 	}
4496 }
4497 
declare_streamout_params(struct si_shader_context * ctx,struct pipe_stream_output_info * so,struct si_function_info * fninfo)4498 static void declare_streamout_params(struct si_shader_context *ctx,
4499 				     struct pipe_stream_output_info *so,
4500 				     struct si_function_info *fninfo)
4501 {
4502 	int i;
4503 
4504 	/* Streamout SGPRs. */
4505 	if (so->num_outputs) {
4506 		if (ctx->type != PIPE_SHADER_TESS_EVAL)
4507 			ctx->param_streamout_config = add_arg(fninfo, ARG_SGPR, ctx->ac.i32);
4508 		else
4509 			ctx->param_streamout_config = fninfo->num_params - 1;
4510 
4511 		ctx->param_streamout_write_index = add_arg(fninfo, ARG_SGPR, ctx->ac.i32);
4512 	}
4513 	/* A streamout buffer offset is loaded if the stride is non-zero. */
4514 	for (i = 0; i < 4; i++) {
4515 		if (!so->stride[i])
4516 			continue;
4517 
4518 		ctx->param_streamout_offset[i] = add_arg(fninfo, ARG_SGPR, ctx->ac.i32);
4519 	}
4520 }
4521 
si_get_max_workgroup_size(const struct si_shader * shader)4522 static unsigned si_get_max_workgroup_size(const struct si_shader *shader)
4523 {
4524 	switch (shader->selector->type) {
4525 	case PIPE_SHADER_TESS_CTRL:
4526 		/* Return this so that LLVM doesn't remove s_barrier
4527 		 * instructions on chips where we use s_barrier. */
4528 		return shader->selector->screen->info.chip_class >= CIK ? 128 : 64;
4529 
4530 	case PIPE_SHADER_GEOMETRY:
4531 		return shader->selector->screen->info.chip_class >= GFX9 ? 128 : 64;
4532 
4533 	case PIPE_SHADER_COMPUTE:
4534 		break; /* see below */
4535 
4536 	default:
4537 		return 0;
4538 	}
4539 
4540 	const unsigned *properties = shader->selector->info.properties;
4541 	unsigned max_work_group_size =
4542 	               properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] *
4543 	               properties[TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT] *
4544 	               properties[TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH];
4545 
4546 	if (!max_work_group_size) {
4547 		/* This is a variable group size compute shader,
4548 		 * compile it for the maximum possible group size.
4549 		 */
4550 		max_work_group_size = SI_MAX_VARIABLE_THREADS_PER_BLOCK;
4551 	}
4552 	return max_work_group_size;
4553 }
4554 
declare_per_stage_desc_pointers(struct si_shader_context * ctx,struct si_function_info * fninfo,bool assign_params)4555 static void declare_per_stage_desc_pointers(struct si_shader_context *ctx,
4556 					    struct si_function_info *fninfo,
4557 					    bool assign_params)
4558 {
4559 	LLVMTypeRef const_shader_buf_type;
4560 
4561 	if (ctx->shader->selector->info.const_buffers_declared == 1 &&
4562 	    ctx->shader->selector->info.shader_buffers_declared == 0)
4563 		const_shader_buf_type = ctx->f32;
4564 	else
4565 		const_shader_buf_type = ctx->v4i32;
4566 
4567 	unsigned const_and_shader_buffers =
4568 		add_arg(fninfo, ARG_SGPR,
4569 			si_const_array(const_shader_buf_type, 0));
4570 
4571 	unsigned samplers_and_images =
4572 		add_arg(fninfo, ARG_SGPR,
4573 			si_const_array(ctx->v8i32,
4574 				       SI_NUM_IMAGES + SI_NUM_SAMPLERS * 2));
4575 
4576 	if (assign_params) {
4577 		ctx->param_const_and_shader_buffers = const_and_shader_buffers;
4578 		ctx->param_samplers_and_images = samplers_and_images;
4579 	}
4580 }
4581 
declare_global_desc_pointers(struct si_shader_context * ctx,struct si_function_info * fninfo)4582 static void declare_global_desc_pointers(struct si_shader_context *ctx,
4583 					 struct si_function_info *fninfo)
4584 {
4585 	ctx->param_rw_buffers = add_arg(fninfo, ARG_SGPR,
4586 		si_const_array(ctx->v4i32, SI_NUM_RW_BUFFERS));
4587 	ctx->param_bindless_samplers_and_images = add_arg(fninfo, ARG_SGPR,
4588 		si_const_array(ctx->v8i32, 0));
4589 }
4590 
declare_vs_specific_input_sgprs(struct si_shader_context * ctx,struct si_function_info * fninfo)4591 static void declare_vs_specific_input_sgprs(struct si_shader_context *ctx,
4592 					    struct si_function_info *fninfo)
4593 {
4594 	ctx->param_vertex_buffers = add_arg(fninfo, ARG_SGPR,
4595 		si_const_array(ctx->v4i32, SI_NUM_VERTEX_BUFFERS));
4596 	add_arg_assign(fninfo, ARG_SGPR, ctx->i32, &ctx->abi.base_vertex);
4597 	add_arg_assign(fninfo, ARG_SGPR, ctx->i32, &ctx->abi.start_instance);
4598 	add_arg_assign(fninfo, ARG_SGPR, ctx->i32, &ctx->abi.draw_id);
4599 	ctx->param_vs_state_bits = add_arg(fninfo, ARG_SGPR, ctx->i32);
4600 }
4601 
declare_vs_input_vgprs(struct si_shader_context * ctx,struct si_function_info * fninfo,unsigned * num_prolog_vgprs)4602 static void declare_vs_input_vgprs(struct si_shader_context *ctx,
4603 				   struct si_function_info *fninfo,
4604 				   unsigned *num_prolog_vgprs)
4605 {
4606 	struct si_shader *shader = ctx->shader;
4607 
4608 	add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.vertex_id);
4609 	if (shader->key.as_ls) {
4610 		ctx->param_rel_auto_id = add_arg(fninfo, ARG_VGPR, ctx->i32);
4611 		add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.instance_id);
4612 	} else {
4613 		add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.instance_id);
4614 		ctx->param_vs_prim_id = add_arg(fninfo, ARG_VGPR, ctx->i32);
4615 	}
4616 	add_arg(fninfo, ARG_VGPR, ctx->i32); /* unused */
4617 
4618 	if (!shader->is_gs_copy_shader) {
4619 		/* Vertex load indices. */
4620 		ctx->param_vertex_index0 = fninfo->num_params;
4621 		for (unsigned i = 0; i < shader->selector->info.num_inputs; i++)
4622 			add_arg(fninfo, ARG_VGPR, ctx->i32);
4623 		*num_prolog_vgprs += shader->selector->info.num_inputs;
4624 	}
4625 }
4626 
declare_tes_input_vgprs(struct si_shader_context * ctx,struct si_function_info * fninfo)4627 static void declare_tes_input_vgprs(struct si_shader_context *ctx,
4628 				    struct si_function_info *fninfo)
4629 {
4630 	ctx->param_tes_u = add_arg(fninfo, ARG_VGPR, ctx->f32);
4631 	ctx->param_tes_v = add_arg(fninfo, ARG_VGPR, ctx->f32);
4632 	ctx->param_tes_rel_patch_id = add_arg(fninfo, ARG_VGPR, ctx->i32);
4633 	add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tes_patch_id);
4634 }
4635 
4636 enum {
4637 	/* Convenient merged shader definitions. */
4638 	SI_SHADER_MERGED_VERTEX_TESSCTRL = PIPE_SHADER_TYPES,
4639 	SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY,
4640 };
4641 
create_function(struct si_shader_context * ctx)4642 static void create_function(struct si_shader_context *ctx)
4643 {
4644 	struct si_shader *shader = ctx->shader;
4645 	struct si_function_info fninfo;
4646 	LLVMTypeRef returns[16+32*4];
4647 	unsigned i, num_return_sgprs;
4648 	unsigned num_returns = 0;
4649 	unsigned num_prolog_vgprs = 0;
4650 	unsigned type = ctx->type;
4651 	unsigned vs_blit_property =
4652 		shader->selector->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS];
4653 
4654 	si_init_function_info(&fninfo);
4655 
4656 	/* Set MERGED shaders. */
4657 	if (ctx->screen->info.chip_class >= GFX9) {
4658 		if (shader->key.as_ls || type == PIPE_SHADER_TESS_CTRL)
4659 			type = SI_SHADER_MERGED_VERTEX_TESSCTRL; /* LS or HS */
4660 		else if (shader->key.as_es || type == PIPE_SHADER_GEOMETRY)
4661 			type = SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY;
4662 	}
4663 
4664 	LLVMTypeRef v3i32 = LLVMVectorType(ctx->i32, 3);
4665 
4666 	switch (type) {
4667 	case PIPE_SHADER_VERTEX:
4668 		declare_global_desc_pointers(ctx, &fninfo);
4669 
4670 		if (vs_blit_property) {
4671 			ctx->param_vs_blit_inputs = fninfo.num_params;
4672 			add_arg(&fninfo, ARG_SGPR, ctx->i32); /* i16 x1, y1 */
4673 			add_arg(&fninfo, ARG_SGPR, ctx->i32); /* i16 x2, y2 */
4674 			add_arg(&fninfo, ARG_SGPR, ctx->f32); /* depth */
4675 
4676 			if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_COLOR) {
4677 				add_arg(&fninfo, ARG_SGPR, ctx->f32); /* color0 */
4678 				add_arg(&fninfo, ARG_SGPR, ctx->f32); /* color1 */
4679 				add_arg(&fninfo, ARG_SGPR, ctx->f32); /* color2 */
4680 				add_arg(&fninfo, ARG_SGPR, ctx->f32); /* color3 */
4681 			} else if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_TEXCOORD) {
4682 				add_arg(&fninfo, ARG_SGPR, ctx->f32); /* texcoord.x1 */
4683 				add_arg(&fninfo, ARG_SGPR, ctx->f32); /* texcoord.y1 */
4684 				add_arg(&fninfo, ARG_SGPR, ctx->f32); /* texcoord.x2 */
4685 				add_arg(&fninfo, ARG_SGPR, ctx->f32); /* texcoord.y2 */
4686 				add_arg(&fninfo, ARG_SGPR, ctx->f32); /* texcoord.z */
4687 				add_arg(&fninfo, ARG_SGPR, ctx->f32); /* texcoord.w */
4688 			}
4689 
4690 			/* VGPRs */
4691 			declare_vs_input_vgprs(ctx, &fninfo, &num_prolog_vgprs);
4692 			break;
4693 		}
4694 
4695 		declare_per_stage_desc_pointers(ctx, &fninfo, true);
4696 		declare_vs_specific_input_sgprs(ctx, &fninfo);
4697 
4698 		if (shader->key.as_es) {
4699 			ctx->param_es2gs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4700 		} else if (shader->key.as_ls) {
4701 			/* no extra parameters */
4702 		} else {
4703 			if (shader->is_gs_copy_shader) {
4704 				fninfo.num_params = ctx->param_rw_buffers + 1;
4705 				fninfo.num_sgpr_params = fninfo.num_params;
4706 			}
4707 
4708 			/* The locations of the other parameters are assigned dynamically. */
4709 			declare_streamout_params(ctx, &shader->selector->so,
4710 						 &fninfo);
4711 		}
4712 
4713 		/* VGPRs */
4714 		declare_vs_input_vgprs(ctx, &fninfo, &num_prolog_vgprs);
4715 		break;
4716 
4717 	case PIPE_SHADER_TESS_CTRL: /* SI-CI-VI */
4718 		declare_global_desc_pointers(ctx, &fninfo);
4719 		declare_per_stage_desc_pointers(ctx, &fninfo, true);
4720 		ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4721 		ctx->param_tcs_out_lds_offsets = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4722 		ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4723 		ctx->param_vs_state_bits = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4724 		ctx->param_tcs_offchip_addr_base64k = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4725 		ctx->param_tcs_factor_addr_base64k = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4726 		ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4727 		ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4728 
4729 		/* VGPRs */
4730 		add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_patch_id);
4731 		add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_rel_ids);
4732 
4733 		/* param_tcs_offchip_offset and param_tcs_factor_offset are
4734 		 * placed after the user SGPRs.
4735 		 */
4736 		for (i = 0; i < GFX6_TCS_NUM_USER_SGPR + 2; i++)
4737 			returns[num_returns++] = ctx->i32; /* SGPRs */
4738 		for (i = 0; i < 11; i++)
4739 			returns[num_returns++] = ctx->f32; /* VGPRs */
4740 		break;
4741 
4742 	case SI_SHADER_MERGED_VERTEX_TESSCTRL:
4743 		/* Merged stages have 8 system SGPRs at the beginning. */
4744 		add_arg(&fninfo, ARG_SGPR, ctx->i32); /* SPI_SHADER_USER_DATA_ADDR_LO_HS */
4745 		add_arg(&fninfo, ARG_SGPR, ctx->i32); /* SPI_SHADER_USER_DATA_ADDR_HI_HS */
4746 		ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4747 		ctx->param_merged_wave_info = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4748 		ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4749 		ctx->param_merged_scratch_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4750 		add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4751 		add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4752 
4753 		declare_global_desc_pointers(ctx, &fninfo);
4754 		declare_per_stage_desc_pointers(ctx, &fninfo,
4755 						ctx->type == PIPE_SHADER_VERTEX);
4756 		declare_vs_specific_input_sgprs(ctx, &fninfo);
4757 
4758 		ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4759 		ctx->param_tcs_out_lds_offsets = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4760 		ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4761 		ctx->param_tcs_offchip_addr_base64k = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4762 		ctx->param_tcs_factor_addr_base64k = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4763 		add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4764 
4765 		declare_per_stage_desc_pointers(ctx, &fninfo,
4766 						ctx->type == PIPE_SHADER_TESS_CTRL);
4767 
4768 		/* VGPRs (first TCS, then VS) */
4769 		add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_patch_id);
4770 		add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_rel_ids);
4771 
4772 		if (ctx->type == PIPE_SHADER_VERTEX) {
4773 			declare_vs_input_vgprs(ctx, &fninfo,
4774 					       &num_prolog_vgprs);
4775 
4776 			/* LS return values are inputs to the TCS main shader part. */
4777 			for (i = 0; i < 8 + GFX9_TCS_NUM_USER_SGPR; i++)
4778 				returns[num_returns++] = ctx->i32; /* SGPRs */
4779 			for (i = 0; i < 2; i++)
4780 				returns[num_returns++] = ctx->f32; /* VGPRs */
4781 		} else {
4782 			/* TCS return values are inputs to the TCS epilog.
4783 			 *
4784 			 * param_tcs_offchip_offset, param_tcs_factor_offset,
4785 			 * param_tcs_offchip_layout, and param_rw_buffers
4786 			 * should be passed to the epilog.
4787 			 */
4788 			for (i = 0; i <= 8 + GFX9_SGPR_TCS_FACTOR_ADDR_BASE64K; i++)
4789 				returns[num_returns++] = ctx->i32; /* SGPRs */
4790 			for (i = 0; i < 11; i++)
4791 				returns[num_returns++] = ctx->f32; /* VGPRs */
4792 		}
4793 		break;
4794 
4795 	case SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY:
4796 		/* Merged stages have 8 system SGPRs at the beginning. */
4797 		add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused (SPI_SHADER_USER_DATA_ADDR_LO_GS) */
4798 		add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused (SPI_SHADER_USER_DATA_ADDR_HI_GS) */
4799 		ctx->param_gs2vs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4800 		ctx->param_merged_wave_info = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4801 		ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4802 		ctx->param_merged_scratch_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4803 		add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused (SPI_SHADER_PGM_LO/HI_GS << 8) */
4804 		add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused (SPI_SHADER_PGM_LO/HI_GS >> 24) */
4805 
4806 		declare_global_desc_pointers(ctx, &fninfo);
4807 		declare_per_stage_desc_pointers(ctx, &fninfo,
4808 						(ctx->type == PIPE_SHADER_VERTEX ||
4809 						 ctx->type == PIPE_SHADER_TESS_EVAL));
4810 		if (ctx->type == PIPE_SHADER_VERTEX) {
4811 			declare_vs_specific_input_sgprs(ctx, &fninfo);
4812 		} else {
4813 			/* TESS_EVAL (and also GEOMETRY):
4814 			 * Declare as many input SGPRs as the VS has. */
4815 			ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4816 			ctx->param_tcs_offchip_addr_base64k = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4817 			add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4818 			add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4819 			add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4820 			ctx->param_vs_state_bits = add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4821 		}
4822 
4823 		declare_per_stage_desc_pointers(ctx, &fninfo,
4824 						ctx->type == PIPE_SHADER_GEOMETRY);
4825 
4826 		/* VGPRs (first GS, then VS/TES) */
4827 		ctx->param_gs_vtx01_offset = add_arg(&fninfo, ARG_VGPR, ctx->i32);
4828 		ctx->param_gs_vtx23_offset = add_arg(&fninfo, ARG_VGPR, ctx->i32);
4829 		add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_prim_id);
4830 		add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_invocation_id);
4831 		ctx->param_gs_vtx45_offset = add_arg(&fninfo, ARG_VGPR, ctx->i32);
4832 
4833 		if (ctx->type == PIPE_SHADER_VERTEX) {
4834 			declare_vs_input_vgprs(ctx, &fninfo,
4835 					       &num_prolog_vgprs);
4836 		} else if (ctx->type == PIPE_SHADER_TESS_EVAL) {
4837 			declare_tes_input_vgprs(ctx, &fninfo);
4838 		}
4839 
4840 		if (ctx->type == PIPE_SHADER_VERTEX ||
4841 		    ctx->type == PIPE_SHADER_TESS_EVAL) {
4842 			/* ES return values are inputs to GS. */
4843 			for (i = 0; i < 8 + GFX9_GS_NUM_USER_SGPR; i++)
4844 				returns[num_returns++] = ctx->i32; /* SGPRs */
4845 			for (i = 0; i < 5; i++)
4846 				returns[num_returns++] = ctx->f32; /* VGPRs */
4847 		}
4848 		break;
4849 
4850 	case PIPE_SHADER_TESS_EVAL:
4851 		declare_global_desc_pointers(ctx, &fninfo);
4852 		declare_per_stage_desc_pointers(ctx, &fninfo, true);
4853 		ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4854 		ctx->param_tcs_offchip_addr_base64k = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4855 
4856 		if (shader->key.as_es) {
4857 			ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4858 			add_arg(&fninfo, ARG_SGPR, ctx->i32);
4859 			ctx->param_es2gs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4860 		} else {
4861 			add_arg(&fninfo, ARG_SGPR, ctx->i32);
4862 			declare_streamout_params(ctx, &shader->selector->so,
4863 						 &fninfo);
4864 			ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4865 		}
4866 
4867 		/* VGPRs */
4868 		declare_tes_input_vgprs(ctx, &fninfo);
4869 		break;
4870 
4871 	case PIPE_SHADER_GEOMETRY:
4872 		declare_global_desc_pointers(ctx, &fninfo);
4873 		declare_per_stage_desc_pointers(ctx, &fninfo, true);
4874 		ctx->param_gs2vs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4875 		ctx->param_gs_wave_id = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4876 
4877 		/* VGPRs */
4878 		add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[0]);
4879 		add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[1]);
4880 		add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_prim_id);
4881 		add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[2]);
4882 		add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[3]);
4883 		add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[4]);
4884 		add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[5]);
4885 		add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_invocation_id);
4886 		break;
4887 
4888 	case PIPE_SHADER_FRAGMENT:
4889 		declare_global_desc_pointers(ctx, &fninfo);
4890 		declare_per_stage_desc_pointers(ctx, &fninfo, true);
4891 		add_arg_checked(&fninfo, ARG_SGPR, ctx->f32, SI_PARAM_ALPHA_REF);
4892 		add_arg_checked(&fninfo, ARG_SGPR, ctx->i32, SI_PARAM_PRIM_MASK);
4893 
4894 		add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_PERSP_SAMPLE);
4895 		add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_PERSP_CENTER);
4896 		add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_PERSP_CENTROID);
4897 		add_arg_checked(&fninfo, ARG_VGPR, v3i32, SI_PARAM_PERSP_PULL_MODEL);
4898 		add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_LINEAR_SAMPLE);
4899 		add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_LINEAR_CENTER);
4900 		add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_LINEAR_CENTROID);
4901 		add_arg_checked(&fninfo, ARG_VGPR, ctx->f32, SI_PARAM_LINE_STIPPLE_TEX);
4902 		add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4903 				       &ctx->abi.frag_pos[0], SI_PARAM_POS_X_FLOAT);
4904 		add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4905 				       &ctx->abi.frag_pos[1], SI_PARAM_POS_Y_FLOAT);
4906 		add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4907 				       &ctx->abi.frag_pos[2], SI_PARAM_POS_Z_FLOAT);
4908 		add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4909 				       &ctx->abi.frag_pos[3], SI_PARAM_POS_W_FLOAT);
4910 		add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->i32,
4911 				       &ctx->abi.front_face, SI_PARAM_FRONT_FACE);
4912 		shader->info.face_vgpr_index = 20;
4913 		add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->i32,
4914 				       &ctx->abi.ancillary, SI_PARAM_ANCILLARY);
4915 		shader->info.ancillary_vgpr_index = 21;
4916 		add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4917 				       &ctx->abi.sample_coverage, SI_PARAM_SAMPLE_COVERAGE);
4918 		add_arg_checked(&fninfo, ARG_VGPR, ctx->i32, SI_PARAM_POS_FIXED_PT);
4919 
4920 		/* Color inputs from the prolog. */
4921 		if (shader->selector->info.colors_read) {
4922 			unsigned num_color_elements =
4923 				util_bitcount(shader->selector->info.colors_read);
4924 
4925 			assert(fninfo.num_params + num_color_elements <= ARRAY_SIZE(fninfo.types));
4926 			for (i = 0; i < num_color_elements; i++)
4927 				add_arg(&fninfo, ARG_VGPR, ctx->f32);
4928 
4929 			num_prolog_vgprs += num_color_elements;
4930 		}
4931 
4932 		/* Outputs for the epilog. */
4933 		num_return_sgprs = SI_SGPR_ALPHA_REF + 1;
4934 		num_returns =
4935 			num_return_sgprs +
4936 			util_bitcount(shader->selector->info.colors_written) * 4 +
4937 			shader->selector->info.writes_z +
4938 			shader->selector->info.writes_stencil +
4939 			shader->selector->info.writes_samplemask +
4940 			1 /* SampleMaskIn */;
4941 
4942 		num_returns = MAX2(num_returns,
4943 				   num_return_sgprs +
4944 				   PS_EPILOG_SAMPLEMASK_MIN_LOC + 1);
4945 
4946 		for (i = 0; i < num_return_sgprs; i++)
4947 			returns[i] = ctx->i32;
4948 		for (; i < num_returns; i++)
4949 			returns[i] = ctx->f32;
4950 		break;
4951 
4952 	case PIPE_SHADER_COMPUTE:
4953 		declare_global_desc_pointers(ctx, &fninfo);
4954 		declare_per_stage_desc_pointers(ctx, &fninfo, true);
4955 		if (shader->selector->info.uses_grid_size)
4956 			ctx->param_grid_size = add_arg(&fninfo, ARG_SGPR, v3i32);
4957 		if (shader->selector->info.uses_block_size)
4958 			ctx->param_block_size = add_arg(&fninfo, ARG_SGPR, v3i32);
4959 
4960 		for (i = 0; i < 3; i++) {
4961 			ctx->param_block_id[i] = -1;
4962 			if (shader->selector->info.uses_block_id[i])
4963 				ctx->param_block_id[i] = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4964 		}
4965 
4966 		ctx->param_thread_id = add_arg(&fninfo, ARG_VGPR, v3i32);
4967 		break;
4968 	default:
4969 		assert(0 && "unimplemented shader");
4970 		return;
4971 	}
4972 
4973 	si_create_function(ctx, "main", returns, num_returns, &fninfo,
4974 			   si_get_max_workgroup_size(shader));
4975 
4976 	/* Reserve register locations for VGPR inputs the PS prolog may need. */
4977 	if (ctx->type == PIPE_SHADER_FRAGMENT &&
4978 	    ctx->separate_prolog) {
4979 		si_llvm_add_attribute(ctx->main_fn,
4980 				      "InitialPSInputAddr",
4981 				      S_0286D0_PERSP_SAMPLE_ENA(1) |
4982 				      S_0286D0_PERSP_CENTER_ENA(1) |
4983 				      S_0286D0_PERSP_CENTROID_ENA(1) |
4984 				      S_0286D0_LINEAR_SAMPLE_ENA(1) |
4985 				      S_0286D0_LINEAR_CENTER_ENA(1) |
4986 				      S_0286D0_LINEAR_CENTROID_ENA(1) |
4987 				      S_0286D0_FRONT_FACE_ENA(1) |
4988 				      S_0286D0_ANCILLARY_ENA(1) |
4989 				      S_0286D0_POS_FIXED_PT_ENA(1));
4990 	}
4991 
4992 	shader->info.num_input_sgprs = 0;
4993 	shader->info.num_input_vgprs = 0;
4994 
4995 	for (i = 0; i < fninfo.num_sgpr_params; ++i)
4996 		shader->info.num_input_sgprs += ac_get_type_size(fninfo.types[i]) / 4;
4997 
4998 	for (; i < fninfo.num_params; ++i)
4999 		shader->info.num_input_vgprs += ac_get_type_size(fninfo.types[i]) / 4;
5000 
5001 	assert(shader->info.num_input_vgprs >= num_prolog_vgprs);
5002 	shader->info.num_input_vgprs -= num_prolog_vgprs;
5003 
5004 	if (shader->key.as_ls ||
5005 	    ctx->type == PIPE_SHADER_TESS_CTRL ||
5006 	    /* GFX9 has the ESGS ring buffer in LDS. */
5007 	    type == SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY)
5008 		ac_declare_lds_as_pointer(&ctx->ac);
5009 }
5010 
5011 /**
5012  * Load ESGS and GSVS ring buffer resource descriptors and save the variables
5013  * for later use.
5014  */
preload_ring_buffers(struct si_shader_context * ctx)5015 static void preload_ring_buffers(struct si_shader_context *ctx)
5016 {
5017 	LLVMBuilderRef builder = ctx->ac.builder;
5018 
5019 	LLVMValueRef buf_ptr = LLVMGetParam(ctx->main_fn,
5020 					    ctx->param_rw_buffers);
5021 
5022 	if (ctx->screen->info.chip_class <= VI &&
5023 	    (ctx->shader->key.as_es || ctx->type == PIPE_SHADER_GEOMETRY)) {
5024 		unsigned ring =
5025 			ctx->type == PIPE_SHADER_GEOMETRY ? SI_GS_RING_ESGS
5026 							     : SI_ES_RING_ESGS;
5027 		LLVMValueRef offset = LLVMConstInt(ctx->i32, ring, 0);
5028 
5029 		ctx->esgs_ring =
5030 			ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
5031 	}
5032 
5033 	if (ctx->shader->is_gs_copy_shader) {
5034 		LLVMValueRef offset = LLVMConstInt(ctx->i32, SI_RING_GSVS, 0);
5035 
5036 		ctx->gsvs_ring[0] =
5037 			ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
5038 	} else if (ctx->type == PIPE_SHADER_GEOMETRY) {
5039 		const struct si_shader_selector *sel = ctx->shader->selector;
5040 		LLVMValueRef offset = LLVMConstInt(ctx->i32, SI_RING_GSVS, 0);
5041 		LLVMValueRef base_ring;
5042 
5043 		base_ring = ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
5044 
5045 		/* The conceptual layout of the GSVS ring is
5046 		 *   v0c0 .. vLv0 v0c1 .. vLc1 ..
5047 		 * but the real memory layout is swizzled across
5048 		 * threads:
5049 		 *   t0v0c0 .. t15v0c0 t0v1c0 .. t15v1c0 ... t15vLcL
5050 		 *   t16v0c0 ..
5051 		 * Override the buffer descriptor accordingly.
5052 		 */
5053 		LLVMTypeRef v2i64 = LLVMVectorType(ctx->i64, 2);
5054 		uint64_t stream_offset = 0;
5055 
5056 		for (unsigned stream = 0; stream < 4; ++stream) {
5057 			unsigned num_components;
5058 			unsigned stride;
5059 			unsigned num_records;
5060 			LLVMValueRef ring, tmp;
5061 
5062 			num_components = sel->info.num_stream_output_components[stream];
5063 			if (!num_components)
5064 				continue;
5065 
5066 			stride = 4 * num_components * sel->gs_max_out_vertices;
5067 
5068 			/* Limit on the stride field for <= CIK. */
5069 			assert(stride < (1 << 14));
5070 
5071 			num_records = 64;
5072 
5073 			ring = LLVMBuildBitCast(builder, base_ring, v2i64, "");
5074 			tmp = LLVMBuildExtractElement(builder, ring, ctx->i32_0, "");
5075 			tmp = LLVMBuildAdd(builder, tmp,
5076 					   LLVMConstInt(ctx->i64,
5077 							stream_offset, 0), "");
5078 			stream_offset += stride * 64;
5079 
5080 			ring = LLVMBuildInsertElement(builder, ring, tmp, ctx->i32_0, "");
5081 			ring = LLVMBuildBitCast(builder, ring, ctx->v4i32, "");
5082 			tmp = LLVMBuildExtractElement(builder, ring, ctx->i32_1, "");
5083 			tmp = LLVMBuildOr(builder, tmp,
5084 				LLVMConstInt(ctx->i32,
5085 					     S_008F04_STRIDE(stride) |
5086 					     S_008F04_SWIZZLE_ENABLE(1), 0), "");
5087 			ring = LLVMBuildInsertElement(builder, ring, tmp, ctx->i32_1, "");
5088 			ring = LLVMBuildInsertElement(builder, ring,
5089 					LLVMConstInt(ctx->i32, num_records, 0),
5090 					LLVMConstInt(ctx->i32, 2, 0), "");
5091 			ring = LLVMBuildInsertElement(builder, ring,
5092 				LLVMConstInt(ctx->i32,
5093 					     S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5094 					     S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5095 					     S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5096 					     S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
5097 					     S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5098 					     S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) |
5099 					     S_008F0C_ELEMENT_SIZE(1) | /* element_size = 4 (bytes) */
5100 					     S_008F0C_INDEX_STRIDE(1) | /* index_stride = 16 (elements) */
5101 					     S_008F0C_ADD_TID_ENABLE(1),
5102 					     0),
5103 				LLVMConstInt(ctx->i32, 3, 0), "");
5104 
5105 			ctx->gsvs_ring[stream] = ring;
5106 		}
5107 	}
5108 }
5109 
si_llvm_emit_polygon_stipple(struct si_shader_context * ctx,LLVMValueRef param_rw_buffers,unsigned param_pos_fixed_pt)5110 static void si_llvm_emit_polygon_stipple(struct si_shader_context *ctx,
5111 					 LLVMValueRef param_rw_buffers,
5112 					 unsigned param_pos_fixed_pt)
5113 {
5114 	LLVMBuilderRef builder = ctx->ac.builder;
5115 	LLVMValueRef slot, desc, offset, row, bit, address[2];
5116 
5117 	/* Use the fixed-point gl_FragCoord input.
5118 	 * Since the stipple pattern is 32x32 and it repeats, just get 5 bits
5119 	 * per coordinate to get the repeating effect.
5120 	 */
5121 	address[0] = unpack_param(ctx, param_pos_fixed_pt, 0, 5);
5122 	address[1] = unpack_param(ctx, param_pos_fixed_pt, 16, 5);
5123 
5124 	/* Load the buffer descriptor. */
5125 	slot = LLVMConstInt(ctx->i32, SI_PS_CONST_POLY_STIPPLE, 0);
5126 	desc = ac_build_load_to_sgpr(&ctx->ac, param_rw_buffers, slot);
5127 
5128 	/* The stipple pattern is 32x32, each row has 32 bits. */
5129 	offset = LLVMBuildMul(builder, address[1],
5130 			      LLVMConstInt(ctx->i32, 4, 0), "");
5131 	row = buffer_load_const(ctx, desc, offset);
5132 	row = ac_to_integer(&ctx->ac, row);
5133 	bit = LLVMBuildLShr(builder, row, address[0], "");
5134 	bit = LLVMBuildTrunc(builder, bit, ctx->i1, "");
5135 	ac_build_kill_if_false(&ctx->ac, bit);
5136 }
5137 
si_shader_binary_read_config(struct ac_shader_binary * binary,struct si_shader_config * conf,unsigned symbol_offset)5138 void si_shader_binary_read_config(struct ac_shader_binary *binary,
5139 				  struct si_shader_config *conf,
5140 				  unsigned symbol_offset)
5141 {
5142 	unsigned i;
5143 	const unsigned char *config =
5144 		ac_shader_binary_config_start(binary, symbol_offset);
5145 	bool really_needs_scratch = false;
5146 
5147 	/* LLVM adds SGPR spills to the scratch size.
5148 	 * Find out if we really need the scratch buffer.
5149 	 */
5150 	for (i = 0; i < binary->reloc_count; i++) {
5151 		const struct ac_shader_reloc *reloc = &binary->relocs[i];
5152 
5153 		if (!strcmp(scratch_rsrc_dword0_symbol, reloc->name) ||
5154 		    !strcmp(scratch_rsrc_dword1_symbol, reloc->name)) {
5155 			really_needs_scratch = true;
5156 			break;
5157 		}
5158 	}
5159 
5160 	/* XXX: We may be able to emit some of these values directly rather than
5161 	 * extracting fields to be emitted later.
5162 	 */
5163 
5164 	for (i = 0; i < binary->config_size_per_symbol; i+= 8) {
5165 		unsigned reg = util_le32_to_cpu(*(uint32_t*)(config + i));
5166 		unsigned value = util_le32_to_cpu(*(uint32_t*)(config + i + 4));
5167 		switch (reg) {
5168 		case R_00B028_SPI_SHADER_PGM_RSRC1_PS:
5169 		case R_00B128_SPI_SHADER_PGM_RSRC1_VS:
5170 		case R_00B228_SPI_SHADER_PGM_RSRC1_GS:
5171 		case R_00B428_SPI_SHADER_PGM_RSRC1_HS:
5172 		case R_00B848_COMPUTE_PGM_RSRC1:
5173 			conf->num_sgprs = MAX2(conf->num_sgprs, (G_00B028_SGPRS(value) + 1) * 8);
5174 			conf->num_vgprs = MAX2(conf->num_vgprs, (G_00B028_VGPRS(value) + 1) * 4);
5175 			conf->float_mode =  G_00B028_FLOAT_MODE(value);
5176 			conf->rsrc1 = value;
5177 			break;
5178 		case R_00B02C_SPI_SHADER_PGM_RSRC2_PS:
5179 			conf->lds_size = MAX2(conf->lds_size, G_00B02C_EXTRA_LDS_SIZE(value));
5180 			break;
5181 		case R_00B84C_COMPUTE_PGM_RSRC2:
5182 			conf->lds_size = MAX2(conf->lds_size, G_00B84C_LDS_SIZE(value));
5183 			conf->rsrc2 = value;
5184 			break;
5185 		case R_0286CC_SPI_PS_INPUT_ENA:
5186 			conf->spi_ps_input_ena = value;
5187 			break;
5188 		case R_0286D0_SPI_PS_INPUT_ADDR:
5189 			conf->spi_ps_input_addr = value;
5190 			break;
5191 		case R_0286E8_SPI_TMPRING_SIZE:
5192 		case R_00B860_COMPUTE_TMPRING_SIZE:
5193 			/* WAVESIZE is in units of 256 dwords. */
5194 			if (really_needs_scratch)
5195 				conf->scratch_bytes_per_wave =
5196 					G_00B860_WAVESIZE(value) * 256 * 4;
5197 			break;
5198 		case 0x4: /* SPILLED_SGPRS */
5199 			conf->spilled_sgprs = value;
5200 			break;
5201 		case 0x8: /* SPILLED_VGPRS */
5202 			conf->spilled_vgprs = value;
5203 			break;
5204 		default:
5205 			{
5206 				static bool printed;
5207 
5208 				if (!printed) {
5209 					fprintf(stderr, "Warning: LLVM emitted unknown "
5210 						"config register: 0x%x\n", reg);
5211 					printed = true;
5212 				}
5213 			}
5214 			break;
5215 		}
5216 	}
5217 
5218 	if (!conf->spi_ps_input_addr)
5219 		conf->spi_ps_input_addr = conf->spi_ps_input_ena;
5220 }
5221 
si_shader_apply_scratch_relocs(struct si_shader * shader,uint64_t scratch_va)5222 void si_shader_apply_scratch_relocs(struct si_shader *shader,
5223 				    uint64_t scratch_va)
5224 {
5225 	unsigned i;
5226 	uint32_t scratch_rsrc_dword0 = scratch_va;
5227 	uint32_t scratch_rsrc_dword1 =
5228 		S_008F04_BASE_ADDRESS_HI(scratch_va >> 32);
5229 
5230 	/* Enable scratch coalescing. */
5231 	scratch_rsrc_dword1 |= S_008F04_SWIZZLE_ENABLE(1);
5232 
5233 	for (i = 0 ; i < shader->binary.reloc_count; i++) {
5234 		const struct ac_shader_reloc *reloc =
5235 					&shader->binary.relocs[i];
5236 		if (!strcmp(scratch_rsrc_dword0_symbol, reloc->name)) {
5237 			util_memcpy_cpu_to_le32(shader->binary.code + reloc->offset,
5238 			&scratch_rsrc_dword0, 4);
5239 		} else if (!strcmp(scratch_rsrc_dword1_symbol, reloc->name)) {
5240 			util_memcpy_cpu_to_le32(shader->binary.code + reloc->offset,
5241 			&scratch_rsrc_dword1, 4);
5242 		}
5243 	}
5244 }
5245 
si_get_shader_binary_size(const struct si_shader * shader)5246 static unsigned si_get_shader_binary_size(const struct si_shader *shader)
5247 {
5248 	unsigned size = shader->binary.code_size;
5249 
5250 	if (shader->prolog)
5251 		size += shader->prolog->binary.code_size;
5252 	if (shader->previous_stage)
5253 		size += shader->previous_stage->binary.code_size;
5254 	if (shader->prolog2)
5255 		size += shader->prolog2->binary.code_size;
5256 	if (shader->epilog)
5257 		size += shader->epilog->binary.code_size;
5258 	return size;
5259 }
5260 
si_shader_binary_upload(struct si_screen * sscreen,struct si_shader * shader)5261 int si_shader_binary_upload(struct si_screen *sscreen, struct si_shader *shader)
5262 {
5263 	const struct ac_shader_binary *prolog =
5264 		shader->prolog ? &shader->prolog->binary : NULL;
5265 	const struct ac_shader_binary *previous_stage =
5266 		shader->previous_stage ? &shader->previous_stage->binary : NULL;
5267 	const struct ac_shader_binary *prolog2 =
5268 		shader->prolog2 ? &shader->prolog2->binary : NULL;
5269 	const struct ac_shader_binary *epilog =
5270 		shader->epilog ? &shader->epilog->binary : NULL;
5271 	const struct ac_shader_binary *mainb = &shader->binary;
5272 	unsigned bo_size = si_get_shader_binary_size(shader) +
5273 			   (!epilog ? mainb->rodata_size : 0);
5274 	unsigned char *ptr;
5275 
5276 	assert(!prolog || !prolog->rodata_size);
5277 	assert(!previous_stage || !previous_stage->rodata_size);
5278 	assert(!prolog2 || !prolog2->rodata_size);
5279 	assert((!prolog && !previous_stage && !prolog2 && !epilog) ||
5280 	       !mainb->rodata_size);
5281 	assert(!epilog || !epilog->rodata_size);
5282 
5283 	r600_resource_reference(&shader->bo, NULL);
5284 	shader->bo = (struct r600_resource*)
5285 		     si_aligned_buffer_create(&sscreen->b,
5286 					      sscreen->cpdma_prefetch_writes_memory ?
5287 						0 : R600_RESOURCE_FLAG_READ_ONLY,
5288                                               PIPE_USAGE_IMMUTABLE,
5289                                               align(bo_size, SI_CPDMA_ALIGNMENT),
5290                                               256);
5291 	if (!shader->bo)
5292 		return -ENOMEM;
5293 
5294 	/* Upload. */
5295 	ptr = sscreen->ws->buffer_map(shader->bo->buf, NULL,
5296 					PIPE_TRANSFER_READ_WRITE |
5297 					PIPE_TRANSFER_UNSYNCHRONIZED);
5298 
5299 	/* Don't use util_memcpy_cpu_to_le32. LLVM binaries are
5300 	 * endian-independent. */
5301 	if (prolog) {
5302 		memcpy(ptr, prolog->code, prolog->code_size);
5303 		ptr += prolog->code_size;
5304 	}
5305 	if (previous_stage) {
5306 		memcpy(ptr, previous_stage->code, previous_stage->code_size);
5307 		ptr += previous_stage->code_size;
5308 	}
5309 	if (prolog2) {
5310 		memcpy(ptr, prolog2->code, prolog2->code_size);
5311 		ptr += prolog2->code_size;
5312 	}
5313 
5314 	memcpy(ptr, mainb->code, mainb->code_size);
5315 	ptr += mainb->code_size;
5316 
5317 	if (epilog)
5318 		memcpy(ptr, epilog->code, epilog->code_size);
5319 	else if (mainb->rodata_size > 0)
5320 		memcpy(ptr, mainb->rodata, mainb->rodata_size);
5321 
5322 	sscreen->ws->buffer_unmap(shader->bo->buf);
5323 	return 0;
5324 }
5325 
si_shader_dump_disassembly(const struct ac_shader_binary * binary,struct pipe_debug_callback * debug,const char * name,FILE * file)5326 static void si_shader_dump_disassembly(const struct ac_shader_binary *binary,
5327 				       struct pipe_debug_callback *debug,
5328 				       const char *name, FILE *file)
5329 {
5330 	char *line, *p;
5331 	unsigned i, count;
5332 
5333 	if (binary->disasm_string) {
5334 		fprintf(file, "Shader %s disassembly:\n", name);
5335 		fprintf(file, "%s", binary->disasm_string);
5336 
5337 		if (debug && debug->debug_message) {
5338 			/* Very long debug messages are cut off, so send the
5339 			 * disassembly one line at a time. This causes more
5340 			 * overhead, but on the plus side it simplifies
5341 			 * parsing of resulting logs.
5342 			 */
5343 			pipe_debug_message(debug, SHADER_INFO,
5344 					   "Shader Disassembly Begin");
5345 
5346 			line = binary->disasm_string;
5347 			while (*line) {
5348 				p = util_strchrnul(line, '\n');
5349 				count = p - line;
5350 
5351 				if (count) {
5352 					pipe_debug_message(debug, SHADER_INFO,
5353 							   "%.*s", count, line);
5354 				}
5355 
5356 				if (!*p)
5357 					break;
5358 				line = p + 1;
5359 			}
5360 
5361 			pipe_debug_message(debug, SHADER_INFO,
5362 					   "Shader Disassembly End");
5363 		}
5364 	} else {
5365 		fprintf(file, "Shader %s binary:\n", name);
5366 		for (i = 0; i < binary->code_size; i += 4) {
5367 			fprintf(file, "@0x%x: %02x%02x%02x%02x\n", i,
5368 				binary->code[i + 3], binary->code[i + 2],
5369 				binary->code[i + 1], binary->code[i]);
5370 		}
5371 	}
5372 }
5373 
si_shader_dump_stats(struct si_screen * sscreen,const struct si_shader * shader,struct pipe_debug_callback * debug,unsigned processor,FILE * file,bool check_debug_option)5374 static void si_shader_dump_stats(struct si_screen *sscreen,
5375 				 const struct si_shader *shader,
5376 			         struct pipe_debug_callback *debug,
5377 			         unsigned processor,
5378 				 FILE *file,
5379 				 bool check_debug_option)
5380 {
5381 	const struct si_shader_config *conf = &shader->config;
5382 	unsigned num_inputs = shader->selector ? shader->selector->info.num_inputs : 0;
5383 	unsigned code_size = si_get_shader_binary_size(shader);
5384 	unsigned lds_increment = sscreen->info.chip_class >= CIK ? 512 : 256;
5385 	unsigned lds_per_wave = 0;
5386 	unsigned max_simd_waves;
5387 
5388 	switch (sscreen->info.family) {
5389 	/* These always have 8 waves: */
5390 	case CHIP_POLARIS10:
5391 	case CHIP_POLARIS11:
5392 	case CHIP_POLARIS12:
5393 		max_simd_waves = 8;
5394 		break;
5395 	default:
5396 		max_simd_waves = 10;
5397 	}
5398 
5399 	/* Compute LDS usage for PS. */
5400 	switch (processor) {
5401 	case PIPE_SHADER_FRAGMENT:
5402 		/* The minimum usage per wave is (num_inputs * 48). The maximum
5403 		 * usage is (num_inputs * 48 * 16).
5404 		 * We can get anything in between and it varies between waves.
5405 		 *
5406 		 * The 48 bytes per input for a single primitive is equal to
5407 		 * 4 bytes/component * 4 components/input * 3 points.
5408 		 *
5409 		 * Other stages don't know the size at compile time or don't
5410 		 * allocate LDS per wave, but instead they do it per thread group.
5411 		 */
5412 		lds_per_wave = conf->lds_size * lds_increment +
5413 			       align(num_inputs * 48, lds_increment);
5414 		break;
5415 	case PIPE_SHADER_COMPUTE:
5416 		if (shader->selector) {
5417 			unsigned max_workgroup_size =
5418 				si_get_max_workgroup_size(shader);
5419 			lds_per_wave = (conf->lds_size * lds_increment) /
5420 				       DIV_ROUND_UP(max_workgroup_size, 64);
5421 		}
5422 		break;
5423 	}
5424 
5425 	/* Compute the per-SIMD wave counts. */
5426 	if (conf->num_sgprs) {
5427 		if (sscreen->info.chip_class >= VI)
5428 			max_simd_waves = MIN2(max_simd_waves, 800 / conf->num_sgprs);
5429 		else
5430 			max_simd_waves = MIN2(max_simd_waves, 512 / conf->num_sgprs);
5431 	}
5432 
5433 	if (conf->num_vgprs)
5434 		max_simd_waves = MIN2(max_simd_waves, 256 / conf->num_vgprs);
5435 
5436 	/* LDS is 64KB per CU (4 SIMDs), which is 16KB per SIMD (usage above
5437 	 * 16KB makes some SIMDs unoccupied). */
5438 	if (lds_per_wave)
5439 		max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
5440 
5441 	if (!check_debug_option ||
5442 	    si_can_dump_shader(sscreen, processor)) {
5443 		if (processor == PIPE_SHADER_FRAGMENT) {
5444 			fprintf(file, "*** SHADER CONFIG ***\n"
5445 				"SPI_PS_INPUT_ADDR = 0x%04x\n"
5446 				"SPI_PS_INPUT_ENA  = 0x%04x\n",
5447 				conf->spi_ps_input_addr, conf->spi_ps_input_ena);
5448 		}
5449 
5450 		fprintf(file, "*** SHADER STATS ***\n"
5451 			"SGPRS: %d\n"
5452 			"VGPRS: %d\n"
5453 		        "Spilled SGPRs: %d\n"
5454 			"Spilled VGPRs: %d\n"
5455 			"Private memory VGPRs: %d\n"
5456 			"Code Size: %d bytes\n"
5457 			"LDS: %d blocks\n"
5458 			"Scratch: %d bytes per wave\n"
5459 			"Max Waves: %d\n"
5460 			"********************\n\n\n",
5461 			conf->num_sgprs, conf->num_vgprs,
5462 			conf->spilled_sgprs, conf->spilled_vgprs,
5463 			conf->private_mem_vgprs, code_size,
5464 			conf->lds_size, conf->scratch_bytes_per_wave,
5465 			max_simd_waves);
5466 	}
5467 
5468 	pipe_debug_message(debug, SHADER_INFO,
5469 			   "Shader Stats: SGPRS: %d VGPRS: %d Code Size: %d "
5470 			   "LDS: %d Scratch: %d Max Waves: %d Spilled SGPRs: %d "
5471 			   "Spilled VGPRs: %d PrivMem VGPRs: %d",
5472 			   conf->num_sgprs, conf->num_vgprs, code_size,
5473 			   conf->lds_size, conf->scratch_bytes_per_wave,
5474 			   max_simd_waves, conf->spilled_sgprs,
5475 			   conf->spilled_vgprs, conf->private_mem_vgprs);
5476 }
5477 
si_get_shader_name(const struct si_shader * shader,unsigned processor)5478 const char *si_get_shader_name(const struct si_shader *shader, unsigned processor)
5479 {
5480 	switch (processor) {
5481 	case PIPE_SHADER_VERTEX:
5482 		if (shader->key.as_es)
5483 			return "Vertex Shader as ES";
5484 		else if (shader->key.as_ls)
5485 			return "Vertex Shader as LS";
5486 		else
5487 			return "Vertex Shader as VS";
5488 	case PIPE_SHADER_TESS_CTRL:
5489 		return "Tessellation Control Shader";
5490 	case PIPE_SHADER_TESS_EVAL:
5491 		if (shader->key.as_es)
5492 			return "Tessellation Evaluation Shader as ES";
5493 		else
5494 			return "Tessellation Evaluation Shader as VS";
5495 	case PIPE_SHADER_GEOMETRY:
5496 		if (shader->is_gs_copy_shader)
5497 			return "GS Copy Shader as VS";
5498 		else
5499 			return "Geometry Shader";
5500 	case PIPE_SHADER_FRAGMENT:
5501 		return "Pixel Shader";
5502 	case PIPE_SHADER_COMPUTE:
5503 		return "Compute Shader";
5504 	default:
5505 		return "Unknown Shader";
5506 	}
5507 }
5508 
si_shader_dump(struct si_screen * sscreen,const struct si_shader * shader,struct pipe_debug_callback * debug,unsigned processor,FILE * file,bool check_debug_option)5509 void si_shader_dump(struct si_screen *sscreen, const struct si_shader *shader,
5510 		    struct pipe_debug_callback *debug, unsigned processor,
5511 		    FILE *file, bool check_debug_option)
5512 {
5513 	if (!check_debug_option ||
5514 	    si_can_dump_shader(sscreen, processor))
5515 		si_dump_shader_key(processor, shader, file);
5516 
5517 	if (!check_debug_option && shader->binary.llvm_ir_string) {
5518 		if (shader->previous_stage &&
5519 		    shader->previous_stage->binary.llvm_ir_string) {
5520 			fprintf(file, "\n%s - previous stage - LLVM IR:\n\n",
5521 				si_get_shader_name(shader, processor));
5522 			fprintf(file, "%s\n", shader->previous_stage->binary.llvm_ir_string);
5523 		}
5524 
5525 		fprintf(file, "\n%s - main shader part - LLVM IR:\n\n",
5526 			si_get_shader_name(shader, processor));
5527 		fprintf(file, "%s\n", shader->binary.llvm_ir_string);
5528 	}
5529 
5530 	if (!check_debug_option ||
5531 	    (si_can_dump_shader(sscreen, processor) &&
5532 	     !(sscreen->debug_flags & DBG(NO_ASM)))) {
5533 		fprintf(file, "\n%s:\n", si_get_shader_name(shader, processor));
5534 
5535 		if (shader->prolog)
5536 			si_shader_dump_disassembly(&shader->prolog->binary,
5537 						   debug, "prolog", file);
5538 		if (shader->previous_stage)
5539 			si_shader_dump_disassembly(&shader->previous_stage->binary,
5540 						   debug, "previous stage", file);
5541 		if (shader->prolog2)
5542 			si_shader_dump_disassembly(&shader->prolog2->binary,
5543 						   debug, "prolog2", file);
5544 
5545 		si_shader_dump_disassembly(&shader->binary, debug, "main", file);
5546 
5547 		if (shader->epilog)
5548 			si_shader_dump_disassembly(&shader->epilog->binary,
5549 						   debug, "epilog", file);
5550 		fprintf(file, "\n");
5551 	}
5552 
5553 	si_shader_dump_stats(sscreen, shader, debug, processor, file,
5554 			     check_debug_option);
5555 }
5556 
si_compile_llvm(struct si_screen * sscreen,struct ac_shader_binary * binary,struct si_shader_config * conf,LLVMTargetMachineRef tm,LLVMModuleRef mod,struct pipe_debug_callback * debug,unsigned processor,const char * name)5557 static int si_compile_llvm(struct si_screen *sscreen,
5558 			   struct ac_shader_binary *binary,
5559 			   struct si_shader_config *conf,
5560 			   LLVMTargetMachineRef tm,
5561 			   LLVMModuleRef mod,
5562 			   struct pipe_debug_callback *debug,
5563 			   unsigned processor,
5564 			   const char *name)
5565 {
5566 	int r = 0;
5567 	unsigned count = p_atomic_inc_return(&sscreen->num_compilations);
5568 
5569 	if (si_can_dump_shader(sscreen, processor)) {
5570 		fprintf(stderr, "radeonsi: Compiling shader %d\n", count);
5571 
5572 		if (!(sscreen->debug_flags & (DBG(NO_IR) | DBG(PREOPT_IR)))) {
5573 			fprintf(stderr, "%s LLVM IR:\n\n", name);
5574 			ac_dump_module(mod);
5575 			fprintf(stderr, "\n");
5576 		}
5577 	}
5578 
5579 	if (sscreen->record_llvm_ir) {
5580 		char *ir = LLVMPrintModuleToString(mod);
5581 		binary->llvm_ir_string = strdup(ir);
5582 		LLVMDisposeMessage(ir);
5583 	}
5584 
5585 	if (!si_replace_shader(count, binary)) {
5586 		r = si_llvm_compile(mod, binary, tm, debug);
5587 		if (r)
5588 			return r;
5589 	}
5590 
5591 	si_shader_binary_read_config(binary, conf, 0);
5592 
5593 	/* Enable 64-bit and 16-bit denormals, because there is no performance
5594 	 * cost.
5595 	 *
5596 	 * If denormals are enabled, all floating-point output modifiers are
5597 	 * ignored.
5598 	 *
5599 	 * Don't enable denormals for 32-bit floats, because:
5600 	 * - Floating-point output modifiers would be ignored by the hw.
5601 	 * - Some opcodes don't support denormals, such as v_mad_f32. We would
5602 	 *   have to stop using those.
5603 	 * - SI & CI would be very slow.
5604 	 */
5605 	conf->float_mode |= V_00B028_FP_64_DENORMS;
5606 
5607 	FREE(binary->config);
5608 	FREE(binary->global_symbol_offsets);
5609 	binary->config = NULL;
5610 	binary->global_symbol_offsets = NULL;
5611 
5612 	/* Some shaders can't have rodata because their binaries can be
5613 	 * concatenated.
5614 	 */
5615 	if (binary->rodata_size &&
5616 	    (processor == PIPE_SHADER_VERTEX ||
5617 	     processor == PIPE_SHADER_TESS_CTRL ||
5618 	     processor == PIPE_SHADER_TESS_EVAL ||
5619 	     processor == PIPE_SHADER_FRAGMENT)) {
5620 		fprintf(stderr, "radeonsi: The shader can't have rodata.");
5621 		return -EINVAL;
5622 	}
5623 
5624 	return r;
5625 }
5626 
si_llvm_build_ret(struct si_shader_context * ctx,LLVMValueRef ret)5627 static void si_llvm_build_ret(struct si_shader_context *ctx, LLVMValueRef ret)
5628 {
5629 	if (LLVMGetTypeKind(LLVMTypeOf(ret)) == LLVMVoidTypeKind)
5630 		LLVMBuildRetVoid(ctx->ac.builder);
5631 	else
5632 		LLVMBuildRet(ctx->ac.builder, ret);
5633 }
5634 
5635 /* Generate code for the hardware VS shader stage to go with a geometry shader */
5636 struct si_shader *
si_generate_gs_copy_shader(struct si_screen * sscreen,LLVMTargetMachineRef tm,struct si_shader_selector * gs_selector,struct pipe_debug_callback * debug)5637 si_generate_gs_copy_shader(struct si_screen *sscreen,
5638 			   LLVMTargetMachineRef tm,
5639 			   struct si_shader_selector *gs_selector,
5640 			   struct pipe_debug_callback *debug)
5641 {
5642 	struct si_shader_context ctx;
5643 	struct si_shader *shader;
5644 	LLVMBuilderRef builder;
5645 	struct lp_build_tgsi_context *bld_base = &ctx.bld_base;
5646 	struct lp_build_context *uint = &bld_base->uint_bld;
5647 	struct si_shader_output_values *outputs;
5648 	struct tgsi_shader_info *gsinfo = &gs_selector->info;
5649 	int i, r;
5650 
5651 	outputs = MALLOC(gsinfo->num_outputs * sizeof(outputs[0]));
5652 
5653 	if (!outputs)
5654 		return NULL;
5655 
5656 	shader = CALLOC_STRUCT(si_shader);
5657 	if (!shader) {
5658 		FREE(outputs);
5659 		return NULL;
5660 	}
5661 
5662 	/* We can leave the fence as permanently signaled because the GS copy
5663 	 * shader only becomes visible globally after it has been compiled. */
5664 	util_queue_fence_init(&shader->ready);
5665 
5666 	shader->selector = gs_selector;
5667 	shader->is_gs_copy_shader = true;
5668 
5669 	si_init_shader_ctx(&ctx, sscreen, tm);
5670 	ctx.shader = shader;
5671 	ctx.type = PIPE_SHADER_VERTEX;
5672 
5673 	builder = ctx.ac.builder;
5674 
5675 	create_function(&ctx);
5676 	preload_ring_buffers(&ctx);
5677 
5678 	LLVMValueRef voffset =
5679 		lp_build_mul_imm(uint, ctx.abi.vertex_id, 4);
5680 
5681 	/* Fetch the vertex stream ID.*/
5682 	LLVMValueRef stream_id;
5683 
5684 	if (gs_selector->so.num_outputs)
5685 		stream_id = unpack_param(&ctx, ctx.param_streamout_config, 24, 2);
5686 	else
5687 		stream_id = ctx.i32_0;
5688 
5689 	/* Fill in output information. */
5690 	for (i = 0; i < gsinfo->num_outputs; ++i) {
5691 		outputs[i].semantic_name = gsinfo->output_semantic_name[i];
5692 		outputs[i].semantic_index = gsinfo->output_semantic_index[i];
5693 
5694 		for (int chan = 0; chan < 4; chan++) {
5695 			outputs[i].vertex_stream[chan] =
5696 				(gsinfo->output_streams[i] >> (2 * chan)) & 3;
5697 		}
5698 	}
5699 
5700 	LLVMBasicBlockRef end_bb;
5701 	LLVMValueRef switch_inst;
5702 
5703 	end_bb = LLVMAppendBasicBlockInContext(ctx.ac.context, ctx.main_fn, "end");
5704 	switch_inst = LLVMBuildSwitch(builder, stream_id, end_bb, 4);
5705 
5706 	for (int stream = 0; stream < 4; stream++) {
5707 		LLVMBasicBlockRef bb;
5708 		unsigned offset;
5709 
5710 		if (!gsinfo->num_stream_output_components[stream])
5711 			continue;
5712 
5713 		if (stream > 0 && !gs_selector->so.num_outputs)
5714 			continue;
5715 
5716 		bb = LLVMInsertBasicBlockInContext(ctx.ac.context, end_bb, "out");
5717 		LLVMAddCase(switch_inst, LLVMConstInt(ctx.i32, stream, 0), bb);
5718 		LLVMPositionBuilderAtEnd(builder, bb);
5719 
5720 		/* Fetch vertex data from GSVS ring */
5721 		offset = 0;
5722 		for (i = 0; i < gsinfo->num_outputs; ++i) {
5723 			for (unsigned chan = 0; chan < 4; chan++) {
5724 				if (!(gsinfo->output_usagemask[i] & (1 << chan)) ||
5725 				    outputs[i].vertex_stream[chan] != stream) {
5726 					outputs[i].values[chan] = ctx.bld_base.base.undef;
5727 					continue;
5728 				}
5729 
5730 				LLVMValueRef soffset = LLVMConstInt(ctx.i32,
5731 					offset * gs_selector->gs_max_out_vertices * 16 * 4, 0);
5732 				offset++;
5733 
5734 				outputs[i].values[chan] =
5735 					ac_build_buffer_load(&ctx.ac,
5736 							     ctx.gsvs_ring[0], 1,
5737 							     ctx.i32_0, voffset,
5738 							     soffset, 0, 1, 1,
5739 							     true, false);
5740 			}
5741 		}
5742 
5743 		/* Streamout and exports. */
5744 		if (gs_selector->so.num_outputs) {
5745 			si_llvm_emit_streamout(&ctx, outputs,
5746 					       gsinfo->num_outputs,
5747 					       stream);
5748 		}
5749 
5750 		if (stream == 0)
5751 			si_llvm_export_vs(&ctx, outputs, gsinfo->num_outputs);
5752 
5753 		LLVMBuildBr(builder, end_bb);
5754 	}
5755 
5756 	LLVMPositionBuilderAtEnd(builder, end_bb);
5757 
5758 	LLVMBuildRetVoid(ctx.ac.builder);
5759 
5760 	ctx.type = PIPE_SHADER_GEOMETRY; /* override for shader dumping */
5761 	si_llvm_optimize_module(&ctx);
5762 
5763 	r = si_compile_llvm(sscreen, &ctx.shader->binary,
5764 			    &ctx.shader->config, ctx.tm,
5765 			    ctx.gallivm.module,
5766 			    debug, PIPE_SHADER_GEOMETRY,
5767 			    "GS Copy Shader");
5768 	if (!r) {
5769 		if (si_can_dump_shader(sscreen, PIPE_SHADER_GEOMETRY))
5770 			fprintf(stderr, "GS Copy Shader:\n");
5771 		si_shader_dump(sscreen, ctx.shader, debug,
5772 			       PIPE_SHADER_GEOMETRY, stderr, true);
5773 		r = si_shader_binary_upload(sscreen, ctx.shader);
5774 	}
5775 
5776 	si_llvm_dispose(&ctx);
5777 
5778 	FREE(outputs);
5779 
5780 	if (r != 0) {
5781 		FREE(shader);
5782 		shader = NULL;
5783 	}
5784 	return shader;
5785 }
5786 
si_dump_shader_key_vs(const struct si_shader_key * key,const struct si_vs_prolog_bits * prolog,const char * prefix,FILE * f)5787 static void si_dump_shader_key_vs(const struct si_shader_key *key,
5788 				  const struct si_vs_prolog_bits *prolog,
5789 				  const char *prefix, FILE *f)
5790 {
5791 	fprintf(f, "  %s.instance_divisor_is_one = %u\n",
5792 		prefix, prolog->instance_divisor_is_one);
5793 	fprintf(f, "  %s.instance_divisor_is_fetched = %u\n",
5794 		prefix, prolog->instance_divisor_is_fetched);
5795 	fprintf(f, "  %s.ls_vgpr_fix = %u\n",
5796 		prefix, prolog->ls_vgpr_fix);
5797 
5798 	fprintf(f, "  mono.vs.fix_fetch = {");
5799 	for (int i = 0; i < SI_MAX_ATTRIBS; i++)
5800 		fprintf(f, !i ? "%u" : ", %u", key->mono.vs_fix_fetch[i]);
5801 	fprintf(f, "}\n");
5802 }
5803 
si_dump_shader_key(unsigned processor,const struct si_shader * shader,FILE * f)5804 static void si_dump_shader_key(unsigned processor, const struct si_shader *shader,
5805 			       FILE *f)
5806 {
5807 	const struct si_shader_key *key = &shader->key;
5808 
5809 	fprintf(f, "SHADER KEY\n");
5810 
5811 	switch (processor) {
5812 	case PIPE_SHADER_VERTEX:
5813 		si_dump_shader_key_vs(key, &key->part.vs.prolog,
5814 				      "part.vs.prolog", f);
5815 		fprintf(f, "  as_es = %u\n", key->as_es);
5816 		fprintf(f, "  as_ls = %u\n", key->as_ls);
5817 		fprintf(f, "  mono.u.vs_export_prim_id = %u\n",
5818 			key->mono.u.vs_export_prim_id);
5819 		break;
5820 
5821 	case PIPE_SHADER_TESS_CTRL:
5822 		if (shader->selector->screen->info.chip_class >= GFX9) {
5823 			si_dump_shader_key_vs(key, &key->part.tcs.ls_prolog,
5824 					      "part.tcs.ls_prolog", f);
5825 		}
5826 		fprintf(f, "  part.tcs.epilog.prim_mode = %u\n", key->part.tcs.epilog.prim_mode);
5827 		fprintf(f, "  mono.u.ff_tcs_inputs_to_copy = 0x%"PRIx64"\n", key->mono.u.ff_tcs_inputs_to_copy);
5828 		break;
5829 
5830 	case PIPE_SHADER_TESS_EVAL:
5831 		fprintf(f, "  as_es = %u\n", key->as_es);
5832 		fprintf(f, "  mono.u.vs_export_prim_id = %u\n",
5833 			key->mono.u.vs_export_prim_id);
5834 		break;
5835 
5836 	case PIPE_SHADER_GEOMETRY:
5837 		if (shader->is_gs_copy_shader)
5838 			break;
5839 
5840 		if (shader->selector->screen->info.chip_class >= GFX9 &&
5841 		    key->part.gs.es->type == PIPE_SHADER_VERTEX) {
5842 			si_dump_shader_key_vs(key, &key->part.gs.vs_prolog,
5843 					      "part.gs.vs_prolog", f);
5844 		}
5845 		fprintf(f, "  part.gs.prolog.tri_strip_adj_fix = %u\n", key->part.gs.prolog.tri_strip_adj_fix);
5846 		break;
5847 
5848 	case PIPE_SHADER_COMPUTE:
5849 		break;
5850 
5851 	case PIPE_SHADER_FRAGMENT:
5852 		fprintf(f, "  part.ps.prolog.color_two_side = %u\n", key->part.ps.prolog.color_two_side);
5853 		fprintf(f, "  part.ps.prolog.flatshade_colors = %u\n", key->part.ps.prolog.flatshade_colors);
5854 		fprintf(f, "  part.ps.prolog.poly_stipple = %u\n", key->part.ps.prolog.poly_stipple);
5855 		fprintf(f, "  part.ps.prolog.force_persp_sample_interp = %u\n", key->part.ps.prolog.force_persp_sample_interp);
5856 		fprintf(f, "  part.ps.prolog.force_linear_sample_interp = %u\n", key->part.ps.prolog.force_linear_sample_interp);
5857 		fprintf(f, "  part.ps.prolog.force_persp_center_interp = %u\n", key->part.ps.prolog.force_persp_center_interp);
5858 		fprintf(f, "  part.ps.prolog.force_linear_center_interp = %u\n", key->part.ps.prolog.force_linear_center_interp);
5859 		fprintf(f, "  part.ps.prolog.bc_optimize_for_persp = %u\n", key->part.ps.prolog.bc_optimize_for_persp);
5860 		fprintf(f, "  part.ps.prolog.bc_optimize_for_linear = %u\n", key->part.ps.prolog.bc_optimize_for_linear);
5861 		fprintf(f, "  part.ps.epilog.spi_shader_col_format = 0x%x\n", key->part.ps.epilog.spi_shader_col_format);
5862 		fprintf(f, "  part.ps.epilog.color_is_int8 = 0x%X\n", key->part.ps.epilog.color_is_int8);
5863 		fprintf(f, "  part.ps.epilog.color_is_int10 = 0x%X\n", key->part.ps.epilog.color_is_int10);
5864 		fprintf(f, "  part.ps.epilog.last_cbuf = %u\n", key->part.ps.epilog.last_cbuf);
5865 		fprintf(f, "  part.ps.epilog.alpha_func = %u\n", key->part.ps.epilog.alpha_func);
5866 		fprintf(f, "  part.ps.epilog.alpha_to_one = %u\n", key->part.ps.epilog.alpha_to_one);
5867 		fprintf(f, "  part.ps.epilog.poly_line_smoothing = %u\n", key->part.ps.epilog.poly_line_smoothing);
5868 		fprintf(f, "  part.ps.epilog.clamp_color = %u\n", key->part.ps.epilog.clamp_color);
5869 		break;
5870 
5871 	default:
5872 		assert(0);
5873 	}
5874 
5875 	if ((processor == PIPE_SHADER_GEOMETRY ||
5876 	     processor == PIPE_SHADER_TESS_EVAL ||
5877 	     processor == PIPE_SHADER_VERTEX) &&
5878 	    !key->as_es && !key->as_ls) {
5879 		fprintf(f, "  opt.kill_outputs = 0x%"PRIx64"\n", key->opt.kill_outputs);
5880 		fprintf(f, "  opt.clip_disable = %u\n", key->opt.clip_disable);
5881 	}
5882 }
5883 
si_init_shader_ctx(struct si_shader_context * ctx,struct si_screen * sscreen,LLVMTargetMachineRef tm)5884 static void si_init_shader_ctx(struct si_shader_context *ctx,
5885 			       struct si_screen *sscreen,
5886 			       LLVMTargetMachineRef tm)
5887 {
5888 	struct lp_build_tgsi_context *bld_base;
5889 
5890 	si_llvm_context_init(ctx, sscreen, tm);
5891 
5892 	bld_base = &ctx->bld_base;
5893 	bld_base->emit_fetch_funcs[TGSI_FILE_CONSTANT] = fetch_constant;
5894 
5895 	bld_base->op_actions[TGSI_OPCODE_INTERP_CENTROID] = interp_action;
5896 	bld_base->op_actions[TGSI_OPCODE_INTERP_SAMPLE] = interp_action;
5897 	bld_base->op_actions[TGSI_OPCODE_INTERP_OFFSET] = interp_action;
5898 
5899 	bld_base->op_actions[TGSI_OPCODE_MEMBAR].emit = membar_emit;
5900 
5901 	bld_base->op_actions[TGSI_OPCODE_CLOCK].emit = clock_emit;
5902 
5903 	bld_base->op_actions[TGSI_OPCODE_DDX].emit = si_llvm_emit_ddxy;
5904 	bld_base->op_actions[TGSI_OPCODE_DDY].emit = si_llvm_emit_ddxy;
5905 	bld_base->op_actions[TGSI_OPCODE_DDX_FINE].emit = si_llvm_emit_ddxy;
5906 	bld_base->op_actions[TGSI_OPCODE_DDY_FINE].emit = si_llvm_emit_ddxy;
5907 
5908 	bld_base->op_actions[TGSI_OPCODE_VOTE_ALL].emit = vote_all_emit;
5909 	bld_base->op_actions[TGSI_OPCODE_VOTE_ANY].emit = vote_any_emit;
5910 	bld_base->op_actions[TGSI_OPCODE_VOTE_EQ].emit = vote_eq_emit;
5911 	bld_base->op_actions[TGSI_OPCODE_BALLOT].emit = ballot_emit;
5912 	bld_base->op_actions[TGSI_OPCODE_READ_FIRST].intr_name = "llvm.amdgcn.readfirstlane";
5913 	bld_base->op_actions[TGSI_OPCODE_READ_FIRST].emit = read_lane_emit;
5914 	bld_base->op_actions[TGSI_OPCODE_READ_INVOC].intr_name = "llvm.amdgcn.readlane";
5915 	bld_base->op_actions[TGSI_OPCODE_READ_INVOC].fetch_args = read_invoc_fetch_args;
5916 	bld_base->op_actions[TGSI_OPCODE_READ_INVOC].emit = read_lane_emit;
5917 
5918 	bld_base->op_actions[TGSI_OPCODE_EMIT].emit = si_tgsi_emit_vertex;
5919 	bld_base->op_actions[TGSI_OPCODE_ENDPRIM].emit = si_tgsi_emit_primitive;
5920 	bld_base->op_actions[TGSI_OPCODE_BARRIER].emit = si_llvm_emit_barrier;
5921 }
5922 
si_optimize_vs_outputs(struct si_shader_context * ctx)5923 static void si_optimize_vs_outputs(struct si_shader_context *ctx)
5924 {
5925 	struct si_shader *shader = ctx->shader;
5926 	struct tgsi_shader_info *info = &shader->selector->info;
5927 
5928 	if ((ctx->type != PIPE_SHADER_VERTEX &&
5929 	     ctx->type != PIPE_SHADER_TESS_EVAL) ||
5930 	    shader->key.as_ls ||
5931 	    shader->key.as_es)
5932 		return;
5933 
5934 	ac_optimize_vs_outputs(&ctx->ac,
5935 			       ctx->main_fn,
5936 			       shader->info.vs_output_param_offset,
5937 			       info->num_outputs,
5938 			       &shader->info.nr_param_exports);
5939 }
5940 
si_count_scratch_private_memory(struct si_shader_context * ctx)5941 static void si_count_scratch_private_memory(struct si_shader_context *ctx)
5942 {
5943 	ctx->shader->config.private_mem_vgprs = 0;
5944 
5945 	/* Process all LLVM instructions. */
5946 	LLVMBasicBlockRef bb = LLVMGetFirstBasicBlock(ctx->main_fn);
5947 	while (bb) {
5948 		LLVMValueRef next = LLVMGetFirstInstruction(bb);
5949 
5950 		while (next) {
5951 			LLVMValueRef inst = next;
5952 			next = LLVMGetNextInstruction(next);
5953 
5954 			if (LLVMGetInstructionOpcode(inst) != LLVMAlloca)
5955 				continue;
5956 
5957 			LLVMTypeRef type = LLVMGetElementType(LLVMTypeOf(inst));
5958 			/* No idea why LLVM aligns allocas to 4 elements. */
5959 			unsigned alignment = LLVMGetAlignment(inst);
5960 			unsigned dw_size = align(ac_get_type_size(type) / 4, alignment);
5961 			ctx->shader->config.private_mem_vgprs += dw_size;
5962 		}
5963 		bb = LLVMGetNextBasicBlock(bb);
5964 	}
5965 }
5966 
si_init_exec_from_input(struct si_shader_context * ctx,unsigned param,unsigned bitoffset)5967 static void si_init_exec_from_input(struct si_shader_context *ctx,
5968 				    unsigned param, unsigned bitoffset)
5969 {
5970 	LLVMValueRef args[] = {
5971 		LLVMGetParam(ctx->main_fn, param),
5972 		LLVMConstInt(ctx->i32, bitoffset, 0),
5973 	};
5974 	lp_build_intrinsic(ctx->ac.builder,
5975 			   "llvm.amdgcn.init.exec.from.input",
5976 			   ctx->voidt, args, 2, LP_FUNC_ATTR_CONVERGENT);
5977 }
5978 
si_vs_needs_prolog(const struct si_shader_selector * sel,const struct si_vs_prolog_bits * key)5979 static bool si_vs_needs_prolog(const struct si_shader_selector *sel,
5980 			       const struct si_vs_prolog_bits *key)
5981 {
5982 	/* VGPR initialization fixup for Vega10 and Raven is always done in the
5983 	 * VS prolog. */
5984 	return sel->vs_needs_prolog || key->ls_vgpr_fix;
5985 }
5986 
si_compile_tgsi_main(struct si_shader_context * ctx,bool is_monolithic)5987 static bool si_compile_tgsi_main(struct si_shader_context *ctx,
5988 				 bool is_monolithic)
5989 {
5990 	struct si_shader *shader = ctx->shader;
5991 	struct si_shader_selector *sel = shader->selector;
5992 	struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
5993 
5994 	// TODO clean all this up!
5995 	switch (ctx->type) {
5996 	case PIPE_SHADER_VERTEX:
5997 		ctx->load_input = declare_input_vs;
5998 		if (shader->key.as_ls)
5999 			ctx->abi.emit_outputs = si_llvm_emit_ls_epilogue;
6000 		else if (shader->key.as_es)
6001 			ctx->abi.emit_outputs = si_llvm_emit_es_epilogue;
6002 		else
6003 			ctx->abi.emit_outputs = si_llvm_emit_vs_epilogue;
6004 		bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6005 		break;
6006 	case PIPE_SHADER_TESS_CTRL:
6007 		bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_tcs;
6008 		ctx->abi.load_tess_varyings = si_nir_load_tcs_varyings;
6009 		bld_base->emit_fetch_funcs[TGSI_FILE_OUTPUT] = fetch_output_tcs;
6010 		bld_base->emit_store = store_output_tcs;
6011 		ctx->abi.store_tcs_outputs = si_nir_store_output_tcs;
6012 		ctx->abi.emit_outputs = si_llvm_emit_tcs_epilogue;
6013 		ctx->abi.load_patch_vertices_in = si_load_patch_vertices_in;
6014 		bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6015 		break;
6016 	case PIPE_SHADER_TESS_EVAL:
6017 		bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_tes;
6018 		ctx->abi.load_tess_varyings = si_nir_load_input_tes;
6019 		ctx->abi.load_tess_coord = si_load_tess_coord;
6020 		ctx->abi.load_tess_level = si_load_tess_level;
6021 		ctx->abi.load_patch_vertices_in = si_load_patch_vertices_in;
6022 		if (shader->key.as_es)
6023 			ctx->abi.emit_outputs = si_llvm_emit_es_epilogue;
6024 		else
6025 			ctx->abi.emit_outputs = si_llvm_emit_vs_epilogue;
6026 		bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6027 		break;
6028 	case PIPE_SHADER_GEOMETRY:
6029 		bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_gs;
6030 		ctx->abi.load_inputs = si_nir_load_input_gs;
6031 		ctx->abi.emit_vertex = si_llvm_emit_vertex;
6032 		ctx->abi.emit_primitive = si_llvm_emit_primitive;
6033 		ctx->abi.emit_outputs = si_llvm_emit_gs_epilogue;
6034 		bld_base->emit_epilogue = si_tgsi_emit_gs_epilogue;
6035 		break;
6036 	case PIPE_SHADER_FRAGMENT:
6037 		ctx->load_input = declare_input_fs;
6038 		ctx->abi.emit_outputs = si_llvm_return_fs_outputs;
6039 		bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6040 		break;
6041 	case PIPE_SHADER_COMPUTE:
6042 		break;
6043 	default:
6044 		assert(!"Unsupported shader type");
6045 		return false;
6046 	}
6047 
6048 	ctx->abi.load_ubo = load_ubo;
6049 	ctx->abi.load_ssbo = load_ssbo;
6050 
6051 	create_function(ctx);
6052 	preload_ring_buffers(ctx);
6053 
6054 	/* For GFX9 merged shaders:
6055 	 * - Set EXEC for the first shader. If the prolog is present, set
6056 	 *   EXEC there instead.
6057 	 * - Add a barrier before the second shader.
6058 	 * - In the second shader, reset EXEC to ~0 and wrap the main part in
6059 	 *   an if-statement. This is required for correctness in geometry
6060 	 *   shaders, to ensure that empty GS waves do not send GS_EMIT and
6061 	 *   GS_CUT messages.
6062 	 *
6063 	 * For monolithic merged shaders, the first shader is wrapped in an
6064 	 * if-block together with its prolog in si_build_wrapper_function.
6065 	 */
6066 	if (ctx->screen->info.chip_class >= GFX9) {
6067 		if (!is_monolithic &&
6068 		    sel->info.num_instructions > 1 && /* not empty shader */
6069 		    (shader->key.as_es || shader->key.as_ls) &&
6070 		    (ctx->type == PIPE_SHADER_TESS_EVAL ||
6071 		     (ctx->type == PIPE_SHADER_VERTEX &&
6072 		      !si_vs_needs_prolog(sel, &shader->key.part.vs.prolog)))) {
6073 			si_init_exec_from_input(ctx,
6074 						ctx->param_merged_wave_info, 0);
6075 		} else if (ctx->type == PIPE_SHADER_TESS_CTRL ||
6076 			   ctx->type == PIPE_SHADER_GEOMETRY) {
6077 			if (!is_monolithic)
6078 				ac_init_exec_full_mask(&ctx->ac);
6079 
6080 			/* The barrier must execute for all shaders in a
6081 			 * threadgroup.
6082 			 */
6083 			si_llvm_emit_barrier(NULL, bld_base, NULL);
6084 
6085 			LLVMValueRef num_threads = unpack_param(ctx, ctx->param_merged_wave_info, 8, 8);
6086 			LLVMValueRef ena =
6087 				LLVMBuildICmp(ctx->ac.builder, LLVMIntULT,
6088 					    ac_get_thread_id(&ctx->ac), num_threads, "");
6089 			lp_build_if(&ctx->merged_wrap_if_state, &ctx->gallivm, ena);
6090 		}
6091 	}
6092 
6093 	if (ctx->type == PIPE_SHADER_TESS_CTRL &&
6094 	    sel->tcs_info.tessfactors_are_def_in_all_invocs) {
6095 		for (unsigned i = 0; i < 6; i++) {
6096 			ctx->invoc0_tess_factors[i] =
6097 				lp_build_alloca_undef(&ctx->gallivm, ctx->i32, "");
6098 		}
6099 	}
6100 
6101 	if (ctx->type == PIPE_SHADER_GEOMETRY) {
6102 		int i;
6103 		for (i = 0; i < 4; i++) {
6104 			ctx->gs_next_vertex[i] =
6105 				lp_build_alloca(&ctx->gallivm,
6106 						ctx->i32, "");
6107 		}
6108 	}
6109 
6110 	if (sel->force_correct_derivs_after_kill) {
6111 		ctx->postponed_kill = lp_build_alloca_undef(&ctx->gallivm, ctx->i1, "");
6112 		/* true = don't kill. */
6113 		LLVMBuildStore(ctx->ac.builder, LLVMConstInt(ctx->i1, 1, 0),
6114 			       ctx->postponed_kill);
6115 	}
6116 
6117 	if (sel->tokens) {
6118 		if (!lp_build_tgsi_llvm(bld_base, sel->tokens)) {
6119 			fprintf(stderr, "Failed to translate shader from TGSI to LLVM\n");
6120 			return false;
6121 		}
6122 	} else {
6123 		if (!si_nir_build_llvm(ctx, sel->nir)) {
6124 			fprintf(stderr, "Failed to translate shader from NIR to LLVM\n");
6125 			return false;
6126 		}
6127 	}
6128 
6129 	si_llvm_build_ret(ctx, ctx->return_value);
6130 	return true;
6131 }
6132 
6133 /**
6134  * Compute the VS prolog key, which contains all the information needed to
6135  * build the VS prolog function, and set shader->info bits where needed.
6136  *
6137  * \param info             Shader info of the vertex shader.
6138  * \param num_input_sgprs  Number of input SGPRs for the vertex shader.
6139  * \param prolog_key       Key of the VS prolog
6140  * \param shader_out       The vertex shader, or the next shader if merging LS+HS or ES+GS.
6141  * \param key              Output shader part key.
6142  */
si_get_vs_prolog_key(const struct tgsi_shader_info * info,unsigned num_input_sgprs,const struct si_vs_prolog_bits * prolog_key,struct si_shader * shader_out,union si_shader_part_key * key)6143 static void si_get_vs_prolog_key(const struct tgsi_shader_info *info,
6144 				 unsigned num_input_sgprs,
6145 				 const struct si_vs_prolog_bits *prolog_key,
6146 				 struct si_shader *shader_out,
6147 				 union si_shader_part_key *key)
6148 {
6149 	memset(key, 0, sizeof(*key));
6150 	key->vs_prolog.states = *prolog_key;
6151 	key->vs_prolog.num_input_sgprs = num_input_sgprs;
6152 	key->vs_prolog.last_input = MAX2(1, info->num_inputs) - 1;
6153 	key->vs_prolog.as_ls = shader_out->key.as_ls;
6154 	key->vs_prolog.as_es = shader_out->key.as_es;
6155 
6156 	if (shader_out->selector->type == PIPE_SHADER_TESS_CTRL) {
6157 		key->vs_prolog.as_ls = 1;
6158 		key->vs_prolog.num_merged_next_stage_vgprs = 2;
6159 	} else if (shader_out->selector->type == PIPE_SHADER_GEOMETRY) {
6160 		key->vs_prolog.as_es = 1;
6161 		key->vs_prolog.num_merged_next_stage_vgprs = 5;
6162 	}
6163 
6164 	/* Enable loading the InstanceID VGPR. */
6165 	uint16_t input_mask = u_bit_consecutive(0, info->num_inputs);
6166 
6167 	if ((key->vs_prolog.states.instance_divisor_is_one |
6168 	     key->vs_prolog.states.instance_divisor_is_fetched) & input_mask)
6169 		shader_out->info.uses_instanceid = true;
6170 }
6171 
6172 /**
6173  * Compute the PS prolog key, which contains all the information needed to
6174  * build the PS prolog function, and set related bits in shader->config.
6175  */
si_get_ps_prolog_key(struct si_shader * shader,union si_shader_part_key * key,bool separate_prolog)6176 static void si_get_ps_prolog_key(struct si_shader *shader,
6177 				 union si_shader_part_key *key,
6178 				 bool separate_prolog)
6179 {
6180 	struct tgsi_shader_info *info = &shader->selector->info;
6181 
6182 	memset(key, 0, sizeof(*key));
6183 	key->ps_prolog.states = shader->key.part.ps.prolog;
6184 	key->ps_prolog.colors_read = info->colors_read;
6185 	key->ps_prolog.num_input_sgprs = shader->info.num_input_sgprs;
6186 	key->ps_prolog.num_input_vgprs = shader->info.num_input_vgprs;
6187 	key->ps_prolog.wqm = info->uses_derivatives &&
6188 		(key->ps_prolog.colors_read ||
6189 		 key->ps_prolog.states.force_persp_sample_interp ||
6190 		 key->ps_prolog.states.force_linear_sample_interp ||
6191 		 key->ps_prolog.states.force_persp_center_interp ||
6192 		 key->ps_prolog.states.force_linear_center_interp ||
6193 		 key->ps_prolog.states.bc_optimize_for_persp ||
6194 		 key->ps_prolog.states.bc_optimize_for_linear);
6195 	key->ps_prolog.ancillary_vgpr_index = shader->info.ancillary_vgpr_index;
6196 
6197 	if (info->colors_read) {
6198 		unsigned *color = shader->selector->color_attr_index;
6199 
6200 		if (shader->key.part.ps.prolog.color_two_side) {
6201 			/* BCOLORs are stored after the last input. */
6202 			key->ps_prolog.num_interp_inputs = info->num_inputs;
6203 			key->ps_prolog.face_vgpr_index = shader->info.face_vgpr_index;
6204 			shader->config.spi_ps_input_ena |= S_0286CC_FRONT_FACE_ENA(1);
6205 		}
6206 
6207 		for (unsigned i = 0; i < 2; i++) {
6208 			unsigned interp = info->input_interpolate[color[i]];
6209 			unsigned location = info->input_interpolate_loc[color[i]];
6210 
6211 			if (!(info->colors_read & (0xf << i*4)))
6212 				continue;
6213 
6214 			key->ps_prolog.color_attr_index[i] = color[i];
6215 
6216 			if (shader->key.part.ps.prolog.flatshade_colors &&
6217 			    interp == TGSI_INTERPOLATE_COLOR)
6218 				interp = TGSI_INTERPOLATE_CONSTANT;
6219 
6220 			switch (interp) {
6221 			case TGSI_INTERPOLATE_CONSTANT:
6222 				key->ps_prolog.color_interp_vgpr_index[i] = -1;
6223 				break;
6224 			case TGSI_INTERPOLATE_PERSPECTIVE:
6225 			case TGSI_INTERPOLATE_COLOR:
6226 				/* Force the interpolation location for colors here. */
6227 				if (shader->key.part.ps.prolog.force_persp_sample_interp)
6228 					location = TGSI_INTERPOLATE_LOC_SAMPLE;
6229 				if (shader->key.part.ps.prolog.force_persp_center_interp)
6230 					location = TGSI_INTERPOLATE_LOC_CENTER;
6231 
6232 				switch (location) {
6233 				case TGSI_INTERPOLATE_LOC_SAMPLE:
6234 					key->ps_prolog.color_interp_vgpr_index[i] = 0;
6235 					shader->config.spi_ps_input_ena |=
6236 						S_0286CC_PERSP_SAMPLE_ENA(1);
6237 					break;
6238 				case TGSI_INTERPOLATE_LOC_CENTER:
6239 					key->ps_prolog.color_interp_vgpr_index[i] = 2;
6240 					shader->config.spi_ps_input_ena |=
6241 						S_0286CC_PERSP_CENTER_ENA(1);
6242 					break;
6243 				case TGSI_INTERPOLATE_LOC_CENTROID:
6244 					key->ps_prolog.color_interp_vgpr_index[i] = 4;
6245 					shader->config.spi_ps_input_ena |=
6246 						S_0286CC_PERSP_CENTROID_ENA(1);
6247 					break;
6248 				default:
6249 					assert(0);
6250 				}
6251 				break;
6252 			case TGSI_INTERPOLATE_LINEAR:
6253 				/* Force the interpolation location for colors here. */
6254 				if (shader->key.part.ps.prolog.force_linear_sample_interp)
6255 					location = TGSI_INTERPOLATE_LOC_SAMPLE;
6256 				if (shader->key.part.ps.prolog.force_linear_center_interp)
6257 					location = TGSI_INTERPOLATE_LOC_CENTER;
6258 
6259 				/* The VGPR assignment for non-monolithic shaders
6260 				 * works because InitialPSInputAddr is set on the
6261 				 * main shader and PERSP_PULL_MODEL is never used.
6262 				 */
6263 				switch (location) {
6264 				case TGSI_INTERPOLATE_LOC_SAMPLE:
6265 					key->ps_prolog.color_interp_vgpr_index[i] =
6266 						separate_prolog ? 6 : 9;
6267 					shader->config.spi_ps_input_ena |=
6268 						S_0286CC_LINEAR_SAMPLE_ENA(1);
6269 					break;
6270 				case TGSI_INTERPOLATE_LOC_CENTER:
6271 					key->ps_prolog.color_interp_vgpr_index[i] =
6272 						separate_prolog ? 8 : 11;
6273 					shader->config.spi_ps_input_ena |=
6274 						S_0286CC_LINEAR_CENTER_ENA(1);
6275 					break;
6276 				case TGSI_INTERPOLATE_LOC_CENTROID:
6277 					key->ps_prolog.color_interp_vgpr_index[i] =
6278 						separate_prolog ? 10 : 13;
6279 					shader->config.spi_ps_input_ena |=
6280 						S_0286CC_LINEAR_CENTROID_ENA(1);
6281 					break;
6282 				default:
6283 					assert(0);
6284 				}
6285 				break;
6286 			default:
6287 				assert(0);
6288 			}
6289 		}
6290 	}
6291 }
6292 
6293 /**
6294  * Check whether a PS prolog is required based on the key.
6295  */
si_need_ps_prolog(const union si_shader_part_key * key)6296 static bool si_need_ps_prolog(const union si_shader_part_key *key)
6297 {
6298 	return key->ps_prolog.colors_read ||
6299 	       key->ps_prolog.states.force_persp_sample_interp ||
6300 	       key->ps_prolog.states.force_linear_sample_interp ||
6301 	       key->ps_prolog.states.force_persp_center_interp ||
6302 	       key->ps_prolog.states.force_linear_center_interp ||
6303 	       key->ps_prolog.states.bc_optimize_for_persp ||
6304 	       key->ps_prolog.states.bc_optimize_for_linear ||
6305 	       key->ps_prolog.states.poly_stipple ||
6306 	       key->ps_prolog.states.samplemask_log_ps_iter;
6307 }
6308 
6309 /**
6310  * Compute the PS epilog key, which contains all the information needed to
6311  * build the PS epilog function.
6312  */
si_get_ps_epilog_key(struct si_shader * shader,union si_shader_part_key * key)6313 static void si_get_ps_epilog_key(struct si_shader *shader,
6314 				 union si_shader_part_key *key)
6315 {
6316 	struct tgsi_shader_info *info = &shader->selector->info;
6317 	memset(key, 0, sizeof(*key));
6318 	key->ps_epilog.colors_written = info->colors_written;
6319 	key->ps_epilog.writes_z = info->writes_z;
6320 	key->ps_epilog.writes_stencil = info->writes_stencil;
6321 	key->ps_epilog.writes_samplemask = info->writes_samplemask;
6322 	key->ps_epilog.states = shader->key.part.ps.epilog;
6323 }
6324 
6325 /**
6326  * Build the GS prolog function. Rotate the input vertices for triangle strips
6327  * with adjacency.
6328  */
si_build_gs_prolog_function(struct si_shader_context * ctx,union si_shader_part_key * key)6329 static void si_build_gs_prolog_function(struct si_shader_context *ctx,
6330 					union si_shader_part_key *key)
6331 {
6332 	unsigned num_sgprs, num_vgprs;
6333 	struct si_function_info fninfo;
6334 	LLVMBuilderRef builder = ctx->ac.builder;
6335 	LLVMTypeRef returns[48];
6336 	LLVMValueRef func, ret;
6337 
6338 	si_init_function_info(&fninfo);
6339 
6340 	if (ctx->screen->info.chip_class >= GFX9) {
6341 		num_sgprs = 8 + GFX9_GS_NUM_USER_SGPR;
6342 		num_vgprs = 5; /* ES inputs are not needed by GS */
6343 	} else {
6344 		num_sgprs = GFX6_GS_NUM_USER_SGPR + 2;
6345 		num_vgprs = 8;
6346 	}
6347 
6348 	for (unsigned i = 0; i < num_sgprs; ++i) {
6349 		add_arg(&fninfo, ARG_SGPR, ctx->i32);
6350 		returns[i] = ctx->i32;
6351 	}
6352 
6353 	for (unsigned i = 0; i < num_vgprs; ++i) {
6354 		add_arg(&fninfo, ARG_VGPR, ctx->i32);
6355 		returns[num_sgprs + i] = ctx->f32;
6356 	}
6357 
6358 	/* Create the function. */
6359 	si_create_function(ctx, "gs_prolog", returns, num_sgprs + num_vgprs,
6360 			   &fninfo, 0);
6361 	func = ctx->main_fn;
6362 
6363 	/* Set the full EXEC mask for the prolog, because we are only fiddling
6364 	 * with registers here. The main shader part will set the correct EXEC
6365 	 * mask.
6366 	 */
6367 	if (ctx->screen->info.chip_class >= GFX9 && !key->gs_prolog.is_monolithic)
6368 		ac_init_exec_full_mask(&ctx->ac);
6369 
6370 	/* Copy inputs to outputs. This should be no-op, as the registers match,
6371 	 * but it will prevent the compiler from overwriting them unintentionally.
6372 	 */
6373 	ret = ctx->return_value;
6374 	for (unsigned i = 0; i < num_sgprs; i++) {
6375 		LLVMValueRef p = LLVMGetParam(func, i);
6376 		ret = LLVMBuildInsertValue(builder, ret, p, i, "");
6377 	}
6378 	for (unsigned i = 0; i < num_vgprs; i++) {
6379 		LLVMValueRef p = LLVMGetParam(func, num_sgprs + i);
6380 		p = ac_to_float(&ctx->ac, p);
6381 		ret = LLVMBuildInsertValue(builder, ret, p, num_sgprs + i, "");
6382 	}
6383 
6384 	if (key->gs_prolog.states.tri_strip_adj_fix) {
6385 		/* Remap the input vertices for every other primitive. */
6386 		const unsigned gfx6_vtx_params[6] = {
6387 			num_sgprs,
6388 			num_sgprs + 1,
6389 			num_sgprs + 3,
6390 			num_sgprs + 4,
6391 			num_sgprs + 5,
6392 			num_sgprs + 6
6393 		};
6394 		const unsigned gfx9_vtx_params[3] = {
6395 			num_sgprs,
6396 			num_sgprs + 1,
6397 			num_sgprs + 4,
6398 		};
6399 		LLVMValueRef vtx_in[6], vtx_out[6];
6400 		LLVMValueRef prim_id, rotate;
6401 
6402 		if (ctx->screen->info.chip_class >= GFX9) {
6403 			for (unsigned i = 0; i < 3; i++) {
6404 				vtx_in[i*2] = unpack_param(ctx, gfx9_vtx_params[i], 0, 16);
6405 				vtx_in[i*2+1] = unpack_param(ctx, gfx9_vtx_params[i], 16, 16);
6406 			}
6407 		} else {
6408 			for (unsigned i = 0; i < 6; i++)
6409 				vtx_in[i] = LLVMGetParam(func, gfx6_vtx_params[i]);
6410 		}
6411 
6412 		prim_id = LLVMGetParam(func, num_sgprs + 2);
6413 		rotate = LLVMBuildTrunc(builder, prim_id, ctx->i1, "");
6414 
6415 		for (unsigned i = 0; i < 6; ++i) {
6416 			LLVMValueRef base, rotated;
6417 			base = vtx_in[i];
6418 			rotated = vtx_in[(i + 4) % 6];
6419 			vtx_out[i] = LLVMBuildSelect(builder, rotate, rotated, base, "");
6420 		}
6421 
6422 		if (ctx->screen->info.chip_class >= GFX9) {
6423 			for (unsigned i = 0; i < 3; i++) {
6424 				LLVMValueRef hi, out;
6425 
6426 				hi = LLVMBuildShl(builder, vtx_out[i*2+1],
6427 						  LLVMConstInt(ctx->i32, 16, 0), "");
6428 				out = LLVMBuildOr(builder, vtx_out[i*2], hi, "");
6429 				out = ac_to_float(&ctx->ac, out);
6430 				ret = LLVMBuildInsertValue(builder, ret, out,
6431 							   gfx9_vtx_params[i], "");
6432 			}
6433 		} else {
6434 			for (unsigned i = 0; i < 6; i++) {
6435 				LLVMValueRef out;
6436 
6437 				out = ac_to_float(&ctx->ac, vtx_out[i]);
6438 				ret = LLVMBuildInsertValue(builder, ret, out,
6439 							   gfx6_vtx_params[i], "");
6440 			}
6441 		}
6442 	}
6443 
6444 	LLVMBuildRet(builder, ret);
6445 }
6446 
6447 /**
6448  * Given a list of shader part functions, build a wrapper function that
6449  * runs them in sequence to form a monolithic shader.
6450  */
si_build_wrapper_function(struct si_shader_context * ctx,LLVMValueRef * parts,unsigned num_parts,unsigned main_part,unsigned next_shader_first_part)6451 static void si_build_wrapper_function(struct si_shader_context *ctx,
6452 				      LLVMValueRef *parts,
6453 				      unsigned num_parts,
6454 				      unsigned main_part,
6455 				      unsigned next_shader_first_part)
6456 {
6457 	LLVMBuilderRef builder = ctx->ac.builder;
6458 	/* PS epilog has one arg per color component; gfx9 merged shader
6459 	 * prologs need to forward 32 user SGPRs.
6460 	 */
6461 	struct si_function_info fninfo;
6462 	LLVMValueRef initial[64], out[64];
6463 	LLVMTypeRef function_type;
6464 	unsigned num_first_params;
6465 	unsigned num_out, initial_num_out;
6466 	MAYBE_UNUSED unsigned num_out_sgpr; /* used in debug checks */
6467 	MAYBE_UNUSED unsigned initial_num_out_sgpr; /* used in debug checks */
6468 	unsigned num_sgprs, num_vgprs;
6469 	unsigned gprs;
6470 	struct lp_build_if_state if_state;
6471 
6472 	si_init_function_info(&fninfo);
6473 
6474 	for (unsigned i = 0; i < num_parts; ++i) {
6475 		lp_add_function_attr(parts[i], -1, LP_FUNC_ATTR_ALWAYSINLINE);
6476 		LLVMSetLinkage(parts[i], LLVMPrivateLinkage);
6477 	}
6478 
6479 	/* The parameters of the wrapper function correspond to those of the
6480 	 * first part in terms of SGPRs and VGPRs, but we use the types of the
6481 	 * main part to get the right types. This is relevant for the
6482 	 * dereferenceable attribute on descriptor table pointers.
6483 	 */
6484 	num_sgprs = 0;
6485 	num_vgprs = 0;
6486 
6487 	function_type = LLVMGetElementType(LLVMTypeOf(parts[0]));
6488 	num_first_params = LLVMCountParamTypes(function_type);
6489 
6490 	for (unsigned i = 0; i < num_first_params; ++i) {
6491 		LLVMValueRef param = LLVMGetParam(parts[0], i);
6492 
6493 		if (ac_is_sgpr_param(param)) {
6494 			assert(num_vgprs == 0);
6495 			num_sgprs += ac_get_type_size(LLVMTypeOf(param)) / 4;
6496 		} else {
6497 			num_vgprs += ac_get_type_size(LLVMTypeOf(param)) / 4;
6498 		}
6499 	}
6500 
6501 	gprs = 0;
6502 	while (gprs < num_sgprs + num_vgprs) {
6503 		LLVMValueRef param = LLVMGetParam(parts[main_part], fninfo.num_params);
6504 		LLVMTypeRef type = LLVMTypeOf(param);
6505 		unsigned size = ac_get_type_size(type) / 4;
6506 
6507 		add_arg(&fninfo, gprs < num_sgprs ? ARG_SGPR : ARG_VGPR, type);
6508 
6509 		assert(ac_is_sgpr_param(param) == (gprs < num_sgprs));
6510 		assert(gprs + size <= num_sgprs + num_vgprs &&
6511 		       (gprs >= num_sgprs || gprs + size <= num_sgprs));
6512 
6513 		gprs += size;
6514 	}
6515 
6516 	si_create_function(ctx, "wrapper", NULL, 0, &fninfo,
6517 			   si_get_max_workgroup_size(ctx->shader));
6518 
6519 	if (is_merged_shader(ctx->shader))
6520 		ac_init_exec_full_mask(&ctx->ac);
6521 
6522 	/* Record the arguments of the function as if they were an output of
6523 	 * a previous part.
6524 	 */
6525 	num_out = 0;
6526 	num_out_sgpr = 0;
6527 
6528 	for (unsigned i = 0; i < fninfo.num_params; ++i) {
6529 		LLVMValueRef param = LLVMGetParam(ctx->main_fn, i);
6530 		LLVMTypeRef param_type = LLVMTypeOf(param);
6531 		LLVMTypeRef out_type = i < fninfo.num_sgpr_params ? ctx->i32 : ctx->f32;
6532 		unsigned size = ac_get_type_size(param_type) / 4;
6533 
6534 		if (size == 1) {
6535 			if (param_type != out_type)
6536 				param = LLVMBuildBitCast(builder, param, out_type, "");
6537 			out[num_out++] = param;
6538 		} else {
6539 			LLVMTypeRef vector_type = LLVMVectorType(out_type, size);
6540 
6541 			if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
6542 				param = LLVMBuildPtrToInt(builder, param, ctx->i64, "");
6543 				param_type = ctx->i64;
6544 			}
6545 
6546 			if (param_type != vector_type)
6547 				param = LLVMBuildBitCast(builder, param, vector_type, "");
6548 
6549 			for (unsigned j = 0; j < size; ++j)
6550 				out[num_out++] = LLVMBuildExtractElement(
6551 					builder, param, LLVMConstInt(ctx->i32, j, 0), "");
6552 		}
6553 
6554 		if (i < fninfo.num_sgpr_params)
6555 			num_out_sgpr = num_out;
6556 	}
6557 
6558 	memcpy(initial, out, sizeof(out));
6559 	initial_num_out = num_out;
6560 	initial_num_out_sgpr = num_out_sgpr;
6561 
6562 	/* Now chain the parts. */
6563 	for (unsigned part = 0; part < num_parts; ++part) {
6564 		LLVMValueRef in[48];
6565 		LLVMValueRef ret;
6566 		LLVMTypeRef ret_type;
6567 		unsigned out_idx = 0;
6568 		unsigned num_params = LLVMCountParams(parts[part]);
6569 
6570 		/* Merged shaders are executed conditionally depending
6571 		 * on the number of enabled threads passed in the input SGPRs. */
6572 		if (is_merged_shader(ctx->shader) && part == 0) {
6573 			LLVMValueRef ena, count = initial[3];
6574 
6575 			count = LLVMBuildAnd(builder, count,
6576 					     LLVMConstInt(ctx->i32, 0x7f, 0), "");
6577 			ena = LLVMBuildICmp(builder, LLVMIntULT,
6578 					    ac_get_thread_id(&ctx->ac), count, "");
6579 			lp_build_if(&if_state, &ctx->gallivm, ena);
6580 		}
6581 
6582 		/* Derive arguments for the next part from outputs of the
6583 		 * previous one.
6584 		 */
6585 		for (unsigned param_idx = 0; param_idx < num_params; ++param_idx) {
6586 			LLVMValueRef param;
6587 			LLVMTypeRef param_type;
6588 			bool is_sgpr;
6589 			unsigned param_size;
6590 			LLVMValueRef arg = NULL;
6591 
6592 			param = LLVMGetParam(parts[part], param_idx);
6593 			param_type = LLVMTypeOf(param);
6594 			param_size = ac_get_type_size(param_type) / 4;
6595 			is_sgpr = ac_is_sgpr_param(param);
6596 
6597 			if (is_sgpr) {
6598 #if HAVE_LLVM < 0x0400
6599 				LLVMRemoveAttribute(param, LLVMByValAttribute);
6600 #else
6601 				unsigned kind_id = LLVMGetEnumAttributeKindForName("byval", 5);
6602 				LLVMRemoveEnumAttributeAtIndex(parts[part], param_idx + 1, kind_id);
6603 #endif
6604 				lp_add_function_attr(parts[part], param_idx + 1, LP_FUNC_ATTR_INREG);
6605 			}
6606 
6607 			assert(out_idx + param_size <= (is_sgpr ? num_out_sgpr : num_out));
6608 			assert(is_sgpr || out_idx >= num_out_sgpr);
6609 
6610 			if (param_size == 1)
6611 				arg = out[out_idx];
6612 			else
6613 				arg = lp_build_gather_values(&ctx->gallivm, &out[out_idx], param_size);
6614 
6615 			if (LLVMTypeOf(arg) != param_type) {
6616 				if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
6617 					arg = LLVMBuildBitCast(builder, arg, ctx->i64, "");
6618 					arg = LLVMBuildIntToPtr(builder, arg, param_type, "");
6619 				} else {
6620 					arg = LLVMBuildBitCast(builder, arg, param_type, "");
6621 				}
6622 			}
6623 
6624 			in[param_idx] = arg;
6625 			out_idx += param_size;
6626 		}
6627 
6628 		ret = LLVMBuildCall(builder, parts[part], in, num_params, "");
6629 
6630 		if (is_merged_shader(ctx->shader) &&
6631 		    part + 1 == next_shader_first_part) {
6632 			lp_build_endif(&if_state);
6633 
6634 			/* The second half of the merged shader should use
6635 			 * the inputs from the toplevel (wrapper) function,
6636 			 * not the return value from the last call.
6637 			 *
6638 			 * That's because the last call was executed condi-
6639 			 * tionally, so we can't consume it in the main
6640 			 * block.
6641 			 */
6642 			memcpy(out, initial, sizeof(initial));
6643 			num_out = initial_num_out;
6644 			num_out_sgpr = initial_num_out_sgpr;
6645 			continue;
6646 		}
6647 
6648 		/* Extract the returned GPRs. */
6649 		ret_type = LLVMTypeOf(ret);
6650 		num_out = 0;
6651 		num_out_sgpr = 0;
6652 
6653 		if (LLVMGetTypeKind(ret_type) != LLVMVoidTypeKind) {
6654 			assert(LLVMGetTypeKind(ret_type) == LLVMStructTypeKind);
6655 
6656 			unsigned ret_size = LLVMCountStructElementTypes(ret_type);
6657 
6658 			for (unsigned i = 0; i < ret_size; ++i) {
6659 				LLVMValueRef val =
6660 					LLVMBuildExtractValue(builder, ret, i, "");
6661 
6662 				assert(num_out < ARRAY_SIZE(out));
6663 				out[num_out++] = val;
6664 
6665 				if (LLVMTypeOf(val) == ctx->i32) {
6666 					assert(num_out_sgpr + 1 == num_out);
6667 					num_out_sgpr = num_out;
6668 				}
6669 			}
6670 		}
6671 	}
6672 
6673 	LLVMBuildRetVoid(builder);
6674 }
6675 
si_compile_tgsi_shader(struct si_screen * sscreen,LLVMTargetMachineRef tm,struct si_shader * shader,bool is_monolithic,struct pipe_debug_callback * debug)6676 int si_compile_tgsi_shader(struct si_screen *sscreen,
6677 			   LLVMTargetMachineRef tm,
6678 			   struct si_shader *shader,
6679 			   bool is_monolithic,
6680 			   struct pipe_debug_callback *debug)
6681 {
6682 	struct si_shader_selector *sel = shader->selector;
6683 	struct si_shader_context ctx;
6684 	int r = -1;
6685 
6686 	/* Dump TGSI code before doing TGSI->LLVM conversion in case the
6687 	 * conversion fails. */
6688 	if (si_can_dump_shader(sscreen, sel->info.processor) &&
6689 	    !(sscreen->debug_flags & DBG(NO_TGSI))) {
6690 		if (sel->tokens)
6691 			tgsi_dump(sel->tokens, 0);
6692 		else
6693 			nir_print_shader(sel->nir, stderr);
6694 		si_dump_streamout(&sel->so);
6695 	}
6696 
6697 	si_init_shader_ctx(&ctx, sscreen, tm);
6698 	si_llvm_context_set_tgsi(&ctx, shader);
6699 	ctx.separate_prolog = !is_monolithic;
6700 
6701 	memset(shader->info.vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
6702 	       sizeof(shader->info.vs_output_param_offset));
6703 
6704 	shader->info.uses_instanceid = sel->info.uses_instanceid;
6705 
6706 	if (!si_compile_tgsi_main(&ctx, is_monolithic)) {
6707 		si_llvm_dispose(&ctx);
6708 		return -1;
6709 	}
6710 
6711 	if (is_monolithic && ctx.type == PIPE_SHADER_VERTEX) {
6712 		LLVMValueRef parts[2];
6713 		bool need_prolog = sel->vs_needs_prolog;
6714 
6715 		parts[1] = ctx.main_fn;
6716 
6717 		if (need_prolog) {
6718 			union si_shader_part_key prolog_key;
6719 			si_get_vs_prolog_key(&sel->info,
6720 					     shader->info.num_input_sgprs,
6721 					     &shader->key.part.vs.prolog,
6722 					     shader, &prolog_key);
6723 			si_build_vs_prolog_function(&ctx, &prolog_key);
6724 			parts[0] = ctx.main_fn;
6725 		}
6726 
6727 		si_build_wrapper_function(&ctx, parts + !need_prolog,
6728 					  1 + need_prolog, need_prolog, 0);
6729 	} else if (is_monolithic && ctx.type == PIPE_SHADER_TESS_CTRL) {
6730 		if (sscreen->info.chip_class >= GFX9) {
6731 			struct si_shader_selector *ls = shader->key.part.tcs.ls;
6732 			LLVMValueRef parts[4];
6733 			bool vs_needs_prolog =
6734 				si_vs_needs_prolog(ls, &shader->key.part.tcs.ls_prolog);
6735 
6736 			/* TCS main part */
6737 			parts[2] = ctx.main_fn;
6738 
6739 			/* TCS epilog */
6740 			union si_shader_part_key tcs_epilog_key;
6741 			memset(&tcs_epilog_key, 0, sizeof(tcs_epilog_key));
6742 			tcs_epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
6743 			si_build_tcs_epilog_function(&ctx, &tcs_epilog_key);
6744 			parts[3] = ctx.main_fn;
6745 
6746 			/* VS prolog */
6747 			if (vs_needs_prolog) {
6748 				union si_shader_part_key vs_prolog_key;
6749 				si_get_vs_prolog_key(&ls->info,
6750 						     shader->info.num_input_sgprs,
6751 						     &shader->key.part.tcs.ls_prolog,
6752 						     shader, &vs_prolog_key);
6753 				vs_prolog_key.vs_prolog.is_monolithic = true;
6754 				si_build_vs_prolog_function(&ctx, &vs_prolog_key);
6755 				parts[0] = ctx.main_fn;
6756 			}
6757 
6758 			/* VS as LS main part */
6759 			struct si_shader shader_ls = {};
6760 			shader_ls.selector = ls;
6761 			shader_ls.key.as_ls = 1;
6762 			shader_ls.key.mono = shader->key.mono;
6763 			shader_ls.key.opt = shader->key.opt;
6764 			si_llvm_context_set_tgsi(&ctx, &shader_ls);
6765 
6766 			if (!si_compile_tgsi_main(&ctx, true)) {
6767 				si_llvm_dispose(&ctx);
6768 				return -1;
6769 			}
6770 			shader->info.uses_instanceid |= ls->info.uses_instanceid;
6771 			parts[1] = ctx.main_fn;
6772 
6773 			/* Reset the shader context. */
6774 			ctx.shader = shader;
6775 			ctx.type = PIPE_SHADER_TESS_CTRL;
6776 
6777 			si_build_wrapper_function(&ctx,
6778 						  parts + !vs_needs_prolog,
6779 						  4 - !vs_needs_prolog, 0,
6780 						  vs_needs_prolog ? 2 : 1);
6781 		} else {
6782 			LLVMValueRef parts[2];
6783 			union si_shader_part_key epilog_key;
6784 
6785 			parts[0] = ctx.main_fn;
6786 
6787 			memset(&epilog_key, 0, sizeof(epilog_key));
6788 			epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
6789 			si_build_tcs_epilog_function(&ctx, &epilog_key);
6790 			parts[1] = ctx.main_fn;
6791 
6792 			si_build_wrapper_function(&ctx, parts, 2, 0, 0);
6793 		}
6794 	} else if (is_monolithic && ctx.type == PIPE_SHADER_GEOMETRY) {
6795 		if (ctx.screen->info.chip_class >= GFX9) {
6796 			struct si_shader_selector *es = shader->key.part.gs.es;
6797 			LLVMValueRef es_prolog = NULL;
6798 			LLVMValueRef es_main = NULL;
6799 			LLVMValueRef gs_prolog = NULL;
6800 			LLVMValueRef gs_main = ctx.main_fn;
6801 
6802 			/* GS prolog */
6803 			union si_shader_part_key gs_prolog_key;
6804 			memset(&gs_prolog_key, 0, sizeof(gs_prolog_key));
6805 			gs_prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
6806 			gs_prolog_key.gs_prolog.is_monolithic = true;
6807 			si_build_gs_prolog_function(&ctx, &gs_prolog_key);
6808 			gs_prolog = ctx.main_fn;
6809 
6810 			/* ES prolog */
6811 			if (es->vs_needs_prolog) {
6812 				union si_shader_part_key vs_prolog_key;
6813 				si_get_vs_prolog_key(&es->info,
6814 						     shader->info.num_input_sgprs,
6815 						     &shader->key.part.gs.vs_prolog,
6816 						     shader, &vs_prolog_key);
6817 				vs_prolog_key.vs_prolog.is_monolithic = true;
6818 				si_build_vs_prolog_function(&ctx, &vs_prolog_key);
6819 				es_prolog = ctx.main_fn;
6820 			}
6821 
6822 			/* ES main part */
6823 			struct si_shader shader_es = {};
6824 			shader_es.selector = es;
6825 			shader_es.key.as_es = 1;
6826 			shader_es.key.mono = shader->key.mono;
6827 			shader_es.key.opt = shader->key.opt;
6828 			si_llvm_context_set_tgsi(&ctx, &shader_es);
6829 
6830 			if (!si_compile_tgsi_main(&ctx, true)) {
6831 				si_llvm_dispose(&ctx);
6832 				return -1;
6833 			}
6834 			shader->info.uses_instanceid |= es->info.uses_instanceid;
6835 			es_main = ctx.main_fn;
6836 
6837 			/* Reset the shader context. */
6838 			ctx.shader = shader;
6839 			ctx.type = PIPE_SHADER_GEOMETRY;
6840 
6841 			/* Prepare the array of shader parts. */
6842 			LLVMValueRef parts[4];
6843 			unsigned num_parts = 0, main_part, next_first_part;
6844 
6845 			if (es_prolog)
6846 				parts[num_parts++] = es_prolog;
6847 
6848 			parts[main_part = num_parts++] = es_main;
6849 			parts[next_first_part = num_parts++] = gs_prolog;
6850 			parts[num_parts++] = gs_main;
6851 
6852 			si_build_wrapper_function(&ctx, parts, num_parts,
6853 						  main_part, next_first_part);
6854 		} else {
6855 			LLVMValueRef parts[2];
6856 			union si_shader_part_key prolog_key;
6857 
6858 			parts[1] = ctx.main_fn;
6859 
6860 			memset(&prolog_key, 0, sizeof(prolog_key));
6861 			prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
6862 			si_build_gs_prolog_function(&ctx, &prolog_key);
6863 			parts[0] = ctx.main_fn;
6864 
6865 			si_build_wrapper_function(&ctx, parts, 2, 1, 0);
6866 		}
6867 	} else if (is_monolithic && ctx.type == PIPE_SHADER_FRAGMENT) {
6868 		LLVMValueRef parts[3];
6869 		union si_shader_part_key prolog_key;
6870 		union si_shader_part_key epilog_key;
6871 		bool need_prolog;
6872 
6873 		si_get_ps_prolog_key(shader, &prolog_key, false);
6874 		need_prolog = si_need_ps_prolog(&prolog_key);
6875 
6876 		parts[need_prolog ? 1 : 0] = ctx.main_fn;
6877 
6878 		if (need_prolog) {
6879 			si_build_ps_prolog_function(&ctx, &prolog_key);
6880 			parts[0] = ctx.main_fn;
6881 		}
6882 
6883 		si_get_ps_epilog_key(shader, &epilog_key);
6884 		si_build_ps_epilog_function(&ctx, &epilog_key);
6885 		parts[need_prolog ? 2 : 1] = ctx.main_fn;
6886 
6887 		si_build_wrapper_function(&ctx, parts, need_prolog ? 3 : 2,
6888 					  need_prolog ? 1 : 0, 0);
6889 	}
6890 
6891 	si_llvm_optimize_module(&ctx);
6892 
6893 	/* Post-optimization transformations and analysis. */
6894 	si_optimize_vs_outputs(&ctx);
6895 
6896 	if ((debug && debug->debug_message) ||
6897 	    si_can_dump_shader(sscreen, ctx.type))
6898 		si_count_scratch_private_memory(&ctx);
6899 
6900 	/* Compile to bytecode. */
6901 	r = si_compile_llvm(sscreen, &shader->binary, &shader->config, tm,
6902 			    ctx.gallivm.module, debug, ctx.type, "TGSI shader");
6903 	si_llvm_dispose(&ctx);
6904 	if (r) {
6905 		fprintf(stderr, "LLVM failed to compile shader\n");
6906 		return r;
6907 	}
6908 
6909 	/* Validate SGPR and VGPR usage for compute to detect compiler bugs.
6910 	 * LLVM 3.9svn has this bug.
6911 	 */
6912 	if (sel->type == PIPE_SHADER_COMPUTE) {
6913 		unsigned wave_size = 64;
6914 		unsigned max_vgprs = 256;
6915 		unsigned max_sgprs = sscreen->info.chip_class >= VI ? 800 : 512;
6916 		unsigned max_sgprs_per_wave = 128;
6917 		unsigned max_block_threads = si_get_max_workgroup_size(shader);
6918 		unsigned min_waves_per_cu = DIV_ROUND_UP(max_block_threads, wave_size);
6919 		unsigned min_waves_per_simd = DIV_ROUND_UP(min_waves_per_cu, 4);
6920 
6921 		max_vgprs = max_vgprs / min_waves_per_simd;
6922 		max_sgprs = MIN2(max_sgprs / min_waves_per_simd, max_sgprs_per_wave);
6923 
6924 		if (shader->config.num_sgprs > max_sgprs ||
6925 		    shader->config.num_vgprs > max_vgprs) {
6926 			fprintf(stderr, "LLVM failed to compile a shader correctly: "
6927 				"SGPR:VGPR usage is %u:%u, but the hw limit is %u:%u\n",
6928 				shader->config.num_sgprs, shader->config.num_vgprs,
6929 				max_sgprs, max_vgprs);
6930 
6931 			/* Just terminate the process, because dependent
6932 			 * shaders can hang due to bad input data, but use
6933 			 * the env var to allow shader-db to work.
6934 			 */
6935 			if (!debug_get_bool_option("SI_PASS_BAD_SHADERS", false))
6936 				abort();
6937 		}
6938 	}
6939 
6940 	/* Add the scratch offset to input SGPRs. */
6941 	if (shader->config.scratch_bytes_per_wave && !is_merged_shader(shader))
6942 		shader->info.num_input_sgprs += 1; /* scratch byte offset */
6943 
6944 	/* Calculate the number of fragment input VGPRs. */
6945 	if (ctx.type == PIPE_SHADER_FRAGMENT) {
6946 		shader->info.num_input_vgprs = 0;
6947 		shader->info.face_vgpr_index = -1;
6948 		shader->info.ancillary_vgpr_index = -1;
6949 
6950 		if (G_0286CC_PERSP_SAMPLE_ENA(shader->config.spi_ps_input_addr))
6951 			shader->info.num_input_vgprs += 2;
6952 		if (G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_addr))
6953 			shader->info.num_input_vgprs += 2;
6954 		if (G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_addr))
6955 			shader->info.num_input_vgprs += 2;
6956 		if (G_0286CC_PERSP_PULL_MODEL_ENA(shader->config.spi_ps_input_addr))
6957 			shader->info.num_input_vgprs += 3;
6958 		if (G_0286CC_LINEAR_SAMPLE_ENA(shader->config.spi_ps_input_addr))
6959 			shader->info.num_input_vgprs += 2;
6960 		if (G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_addr))
6961 			shader->info.num_input_vgprs += 2;
6962 		if (G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_addr))
6963 			shader->info.num_input_vgprs += 2;
6964 		if (G_0286CC_LINE_STIPPLE_TEX_ENA(shader->config.spi_ps_input_addr))
6965 			shader->info.num_input_vgprs += 1;
6966 		if (G_0286CC_POS_X_FLOAT_ENA(shader->config.spi_ps_input_addr))
6967 			shader->info.num_input_vgprs += 1;
6968 		if (G_0286CC_POS_Y_FLOAT_ENA(shader->config.spi_ps_input_addr))
6969 			shader->info.num_input_vgprs += 1;
6970 		if (G_0286CC_POS_Z_FLOAT_ENA(shader->config.spi_ps_input_addr))
6971 			shader->info.num_input_vgprs += 1;
6972 		if (G_0286CC_POS_W_FLOAT_ENA(shader->config.spi_ps_input_addr))
6973 			shader->info.num_input_vgprs += 1;
6974 		if (G_0286CC_FRONT_FACE_ENA(shader->config.spi_ps_input_addr)) {
6975 			shader->info.face_vgpr_index = shader->info.num_input_vgprs;
6976 			shader->info.num_input_vgprs += 1;
6977 		}
6978 		if (G_0286CC_ANCILLARY_ENA(shader->config.spi_ps_input_addr)) {
6979 			shader->info.ancillary_vgpr_index = shader->info.num_input_vgprs;
6980 			shader->info.num_input_vgprs += 1;
6981 		}
6982 		if (G_0286CC_SAMPLE_COVERAGE_ENA(shader->config.spi_ps_input_addr))
6983 			shader->info.num_input_vgprs += 1;
6984 		if (G_0286CC_POS_FIXED_PT_ENA(shader->config.spi_ps_input_addr))
6985 			shader->info.num_input_vgprs += 1;
6986 	}
6987 
6988 	return 0;
6989 }
6990 
6991 /**
6992  * Create, compile and return a shader part (prolog or epilog).
6993  *
6994  * \param sscreen	screen
6995  * \param list		list of shader parts of the same category
6996  * \param type		shader type
6997  * \param key		shader part key
6998  * \param prolog	whether the part being requested is a prolog
6999  * \param tm		LLVM target machine
7000  * \param debug		debug callback
7001  * \param build		the callback responsible for building the main function
7002  * \return		non-NULL on success
7003  */
7004 static struct si_shader_part *
si_get_shader_part(struct si_screen * sscreen,struct si_shader_part ** list,enum pipe_shader_type type,bool prolog,union si_shader_part_key * key,LLVMTargetMachineRef tm,struct pipe_debug_callback * debug,void (* build)(struct si_shader_context *,union si_shader_part_key *),const char * name)7005 si_get_shader_part(struct si_screen *sscreen,
7006 		   struct si_shader_part **list,
7007 		   enum pipe_shader_type type,
7008 		   bool prolog,
7009 		   union si_shader_part_key *key,
7010 		   LLVMTargetMachineRef tm,
7011 		   struct pipe_debug_callback *debug,
7012 		   void (*build)(struct si_shader_context *,
7013 				 union si_shader_part_key *),
7014 		   const char *name)
7015 {
7016 	struct si_shader_part *result;
7017 
7018 	mtx_lock(&sscreen->shader_parts_mutex);
7019 
7020 	/* Find existing. */
7021 	for (result = *list; result; result = result->next) {
7022 		if (memcmp(&result->key, key, sizeof(*key)) == 0) {
7023 			mtx_unlock(&sscreen->shader_parts_mutex);
7024 			return result;
7025 		}
7026 	}
7027 
7028 	/* Compile a new one. */
7029 	result = CALLOC_STRUCT(si_shader_part);
7030 	result->key = *key;
7031 
7032 	struct si_shader shader = {};
7033 	struct si_shader_context ctx;
7034 
7035 	si_init_shader_ctx(&ctx, sscreen, tm);
7036 	ctx.shader = &shader;
7037 	ctx.type = type;
7038 
7039 	switch (type) {
7040 	case PIPE_SHADER_VERTEX:
7041 		shader.key.as_ls = key->vs_prolog.as_ls;
7042 		shader.key.as_es = key->vs_prolog.as_es;
7043 		break;
7044 	case PIPE_SHADER_TESS_CTRL:
7045 		assert(!prolog);
7046 		shader.key.part.tcs.epilog = key->tcs_epilog.states;
7047 		break;
7048 	case PIPE_SHADER_GEOMETRY:
7049 		assert(prolog);
7050 		break;
7051 	case PIPE_SHADER_FRAGMENT:
7052 		if (prolog)
7053 			shader.key.part.ps.prolog = key->ps_prolog.states;
7054 		else
7055 			shader.key.part.ps.epilog = key->ps_epilog.states;
7056 		break;
7057 	default:
7058 		unreachable("bad shader part");
7059 	}
7060 
7061 	build(&ctx, key);
7062 
7063 	/* Compile. */
7064 	si_llvm_optimize_module(&ctx);
7065 
7066 	if (si_compile_llvm(sscreen, &result->binary, &result->config, tm,
7067 			    ctx.ac.module, debug, ctx.type, name)) {
7068 		FREE(result);
7069 		result = NULL;
7070 		goto out;
7071 	}
7072 
7073 	result->next = *list;
7074 	*list = result;
7075 
7076 out:
7077 	si_llvm_dispose(&ctx);
7078 	mtx_unlock(&sscreen->shader_parts_mutex);
7079 	return result;
7080 }
7081 
si_prolog_get_rw_buffers(struct si_shader_context * ctx)7082 static LLVMValueRef si_prolog_get_rw_buffers(struct si_shader_context *ctx)
7083 {
7084 	LLVMValueRef ptr[2], list;
7085 	bool is_merged_shader =
7086 		ctx->screen->info.chip_class >= GFX9 &&
7087 		(ctx->type == PIPE_SHADER_TESS_CTRL ||
7088 		 ctx->type == PIPE_SHADER_GEOMETRY ||
7089 		 ctx->shader->key.as_ls || ctx->shader->key.as_es);
7090 
7091 	/* Get the pointer to rw buffers. */
7092 	ptr[0] = LLVMGetParam(ctx->main_fn, (is_merged_shader ? 8 : 0) + SI_SGPR_RW_BUFFERS);
7093 	ptr[1] = LLVMGetParam(ctx->main_fn, (is_merged_shader ? 8 : 0) + SI_SGPR_RW_BUFFERS_HI);
7094 	list = lp_build_gather_values(&ctx->gallivm, ptr, 2);
7095 	list = LLVMBuildBitCast(ctx->ac.builder, list, ctx->i64, "");
7096 	list = LLVMBuildIntToPtr(ctx->ac.builder, list,
7097 				 si_const_array(ctx->v4i32, SI_NUM_RW_BUFFERS), "");
7098 	return list;
7099 }
7100 
7101 /**
7102  * Build the vertex shader prolog function.
7103  *
7104  * The inputs are the same as VS (a lot of SGPRs and 4 VGPR system values).
7105  * All inputs are returned unmodified. The vertex load indices are
7106  * stored after them, which will be used by the API VS for fetching inputs.
7107  *
7108  * For example, the expected outputs for instance_divisors[] = {0, 1, 2} are:
7109  *   input_v0,
7110  *   input_v1,
7111  *   input_v2,
7112  *   input_v3,
7113  *   (VertexID + BaseVertex),
7114  *   (InstanceID + StartInstance),
7115  *   (InstanceID / 2 + StartInstance)
7116  */
si_build_vs_prolog_function(struct si_shader_context * ctx,union si_shader_part_key * key)7117 static void si_build_vs_prolog_function(struct si_shader_context *ctx,
7118 					union si_shader_part_key *key)
7119 {
7120 	struct si_function_info fninfo;
7121 	LLVMTypeRef *returns;
7122 	LLVMValueRef ret, func;
7123 	int num_returns, i;
7124 	unsigned first_vs_vgpr = key->vs_prolog.num_merged_next_stage_vgprs;
7125 	unsigned num_input_vgprs = key->vs_prolog.num_merged_next_stage_vgprs + 4;
7126 	LLVMValueRef input_vgprs[9];
7127 	unsigned num_all_input_regs = key->vs_prolog.num_input_sgprs +
7128 				      num_input_vgprs;
7129 	unsigned user_sgpr_base = key->vs_prolog.num_merged_next_stage_vgprs ? 8 : 0;
7130 
7131 	si_init_function_info(&fninfo);
7132 
7133 	/* 4 preloaded VGPRs + vertex load indices as prolog outputs */
7134 	returns = alloca((num_all_input_regs + key->vs_prolog.last_input + 1) *
7135 			 sizeof(LLVMTypeRef));
7136 	num_returns = 0;
7137 
7138 	/* Declare input and output SGPRs. */
7139 	for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) {
7140 		add_arg(&fninfo, ARG_SGPR, ctx->i32);
7141 		returns[num_returns++] = ctx->i32;
7142 	}
7143 
7144 	/* Preloaded VGPRs (outputs must be floats) */
7145 	for (i = 0; i < num_input_vgprs; i++) {
7146 		add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &input_vgprs[i]);
7147 		returns[num_returns++] = ctx->f32;
7148 	}
7149 
7150 	/* Vertex load indices. */
7151 	for (i = 0; i <= key->vs_prolog.last_input; i++)
7152 		returns[num_returns++] = ctx->f32;
7153 
7154 	/* Create the function. */
7155 	si_create_function(ctx, "vs_prolog", returns, num_returns, &fninfo, 0);
7156 	func = ctx->main_fn;
7157 
7158 	if (key->vs_prolog.num_merged_next_stage_vgprs) {
7159 		if (!key->vs_prolog.is_monolithic)
7160 			si_init_exec_from_input(ctx, 3, 0);
7161 
7162 		if (key->vs_prolog.as_ls &&
7163 		    ctx->screen->has_ls_vgpr_init_bug) {
7164 			/* If there are no HS threads, SPI loads the LS VGPRs
7165 			 * starting at VGPR 0. Shift them back to where they
7166 			 * belong.
7167 			 */
7168 			LLVMValueRef has_hs_threads =
7169 				LLVMBuildICmp(ctx->ac.builder, LLVMIntNE,
7170 				    unpack_param(ctx, 3, 8, 8),
7171 				    ctx->i32_0, "");
7172 
7173 			for (i = 4; i > 0; --i) {
7174 				input_vgprs[i + 1] =
7175 					LLVMBuildSelect(ctx->ac.builder, has_hs_threads,
7176 						        input_vgprs[i + 1],
7177 						        input_vgprs[i - 1], "");
7178 			}
7179 		}
7180 	}
7181 
7182 	ctx->abi.vertex_id = input_vgprs[first_vs_vgpr];
7183 	ctx->abi.instance_id = input_vgprs[first_vs_vgpr + (key->vs_prolog.as_ls ? 2 : 1)];
7184 
7185 	/* Copy inputs to outputs. This should be no-op, as the registers match,
7186 	 * but it will prevent the compiler from overwriting them unintentionally.
7187 	 */
7188 	ret = ctx->return_value;
7189 	for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) {
7190 		LLVMValueRef p = LLVMGetParam(func, i);
7191 		ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p, i, "");
7192 	}
7193 	for (i = 0; i < num_input_vgprs; i++) {
7194 		LLVMValueRef p = input_vgprs[i];
7195 		p = ac_to_float(&ctx->ac, p);
7196 		ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p,
7197 					   key->vs_prolog.num_input_sgprs + i, "");
7198 	}
7199 
7200 	/* Compute vertex load indices from instance divisors. */
7201 	LLVMValueRef instance_divisor_constbuf = NULL;
7202 
7203 	if (key->vs_prolog.states.instance_divisor_is_fetched) {
7204 		LLVMValueRef list = si_prolog_get_rw_buffers(ctx);
7205 		LLVMValueRef buf_index =
7206 			LLVMConstInt(ctx->i32, SI_VS_CONST_INSTANCE_DIVISORS, 0);
7207 		instance_divisor_constbuf =
7208 			ac_build_load_to_sgpr(&ctx->ac, list, buf_index);
7209 	}
7210 
7211 	for (i = 0; i <= key->vs_prolog.last_input; i++) {
7212 		bool divisor_is_one =
7213 			key->vs_prolog.states.instance_divisor_is_one & (1u << i);
7214 		bool divisor_is_fetched =
7215 			key->vs_prolog.states.instance_divisor_is_fetched & (1u << i);
7216 		LLVMValueRef index;
7217 
7218 		if (divisor_is_one || divisor_is_fetched) {
7219 			LLVMValueRef divisor = ctx->i32_1;
7220 
7221 			if (divisor_is_fetched) {
7222 				divisor = buffer_load_const(ctx, instance_divisor_constbuf,
7223 							    LLVMConstInt(ctx->i32, i * 4, 0));
7224 				divisor = ac_to_integer(&ctx->ac, divisor);
7225 			}
7226 
7227 			/* InstanceID / Divisor + StartInstance */
7228 			index = get_instance_index_for_fetch(ctx,
7229 							     user_sgpr_base +
7230 							     SI_SGPR_START_INSTANCE,
7231 							     divisor);
7232 		} else {
7233 			/* VertexID + BaseVertex */
7234 			index = LLVMBuildAdd(ctx->ac.builder,
7235 					     ctx->abi.vertex_id,
7236 					     LLVMGetParam(func, user_sgpr_base +
7237 								SI_SGPR_BASE_VERTEX), "");
7238 		}
7239 
7240 		index = ac_to_float(&ctx->ac, index);
7241 		ret = LLVMBuildInsertValue(ctx->ac.builder, ret, index,
7242 					   fninfo.num_params + i, "");
7243 	}
7244 
7245 	si_llvm_build_ret(ctx, ret);
7246 }
7247 
si_get_vs_prolog(struct si_screen * sscreen,LLVMTargetMachineRef tm,struct si_shader * shader,struct pipe_debug_callback * debug,struct si_shader * main_part,const struct si_vs_prolog_bits * key)7248 static bool si_get_vs_prolog(struct si_screen *sscreen,
7249 			     LLVMTargetMachineRef tm,
7250 			     struct si_shader *shader,
7251 			     struct pipe_debug_callback *debug,
7252 			     struct si_shader *main_part,
7253 			     const struct si_vs_prolog_bits *key)
7254 {
7255 	struct si_shader_selector *vs = main_part->selector;
7256 
7257 	if (!si_vs_needs_prolog(vs, key))
7258 		return true;
7259 
7260 	/* Get the prolog. */
7261 	union si_shader_part_key prolog_key;
7262 	si_get_vs_prolog_key(&vs->info, main_part->info.num_input_sgprs,
7263 			     key, shader, &prolog_key);
7264 
7265 	shader->prolog =
7266 		si_get_shader_part(sscreen, &sscreen->vs_prologs,
7267 				   PIPE_SHADER_VERTEX, true, &prolog_key, tm,
7268 				   debug, si_build_vs_prolog_function,
7269 				   "Vertex Shader Prolog");
7270 	return shader->prolog != NULL;
7271 }
7272 
7273 /**
7274  * Select and compile (or reuse) vertex shader parts (prolog & epilog).
7275  */
si_shader_select_vs_parts(struct si_screen * sscreen,LLVMTargetMachineRef tm,struct si_shader * shader,struct pipe_debug_callback * debug)7276 static bool si_shader_select_vs_parts(struct si_screen *sscreen,
7277 				      LLVMTargetMachineRef tm,
7278 				      struct si_shader *shader,
7279 				      struct pipe_debug_callback *debug)
7280 {
7281 	return si_get_vs_prolog(sscreen, tm, shader, debug, shader,
7282 				&shader->key.part.vs.prolog);
7283 }
7284 
7285 /**
7286  * Compile the TCS epilog function. This writes tesselation factors to memory
7287  * based on the output primitive type of the tesselator (determined by TES).
7288  */
si_build_tcs_epilog_function(struct si_shader_context * ctx,union si_shader_part_key * key)7289 static void si_build_tcs_epilog_function(struct si_shader_context *ctx,
7290 					 union si_shader_part_key *key)
7291 {
7292 	struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
7293 	struct si_function_info fninfo;
7294 	LLVMValueRef func;
7295 
7296 	si_init_function_info(&fninfo);
7297 
7298 	if (ctx->screen->info.chip_class >= GFX9) {
7299 		add_arg(&fninfo, ARG_SGPR, ctx->i64);
7300 		ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7301 		add_arg(&fninfo, ARG_SGPR, ctx->i32); /* wave info */
7302 		ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7303 		add_arg(&fninfo, ARG_SGPR, ctx->i32);
7304 		add_arg(&fninfo, ARG_SGPR, ctx->i32);
7305 		add_arg(&fninfo, ARG_SGPR, ctx->i32);
7306 		add_arg(&fninfo, ARG_SGPR, ctx->i64);
7307 		add_arg(&fninfo, ARG_SGPR, ctx->i64);
7308 		add_arg(&fninfo, ARG_SGPR, ctx->i64);
7309 		add_arg(&fninfo, ARG_SGPR, ctx->i64);
7310 		add_arg(&fninfo, ARG_SGPR, ctx->i64);
7311 		add_arg(&fninfo, ARG_SGPR, ctx->i32);
7312 		add_arg(&fninfo, ARG_SGPR, ctx->i32);
7313 		add_arg(&fninfo, ARG_SGPR, ctx->i32);
7314 		add_arg(&fninfo, ARG_SGPR, ctx->i32);
7315 		ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7316 		add_arg(&fninfo, ARG_SGPR, ctx->i32);
7317 		add_arg(&fninfo, ARG_SGPR, ctx->i32);
7318 		ctx->param_tcs_offchip_addr_base64k = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7319 		ctx->param_tcs_factor_addr_base64k = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7320 	} else {
7321 		add_arg(&fninfo, ARG_SGPR, ctx->i64);
7322 		add_arg(&fninfo, ARG_SGPR, ctx->i64);
7323 		add_arg(&fninfo, ARG_SGPR, ctx->i64);
7324 		add_arg(&fninfo, ARG_SGPR, ctx->i64);
7325 		ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7326 		add_arg(&fninfo, ARG_SGPR, ctx->i32);
7327 		add_arg(&fninfo, ARG_SGPR, ctx->i32);
7328 		add_arg(&fninfo, ARG_SGPR, ctx->i32);
7329 		ctx->param_tcs_offchip_addr_base64k = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7330 		ctx->param_tcs_factor_addr_base64k = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7331 		ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7332 		ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7333 	}
7334 
7335 	add_arg(&fninfo, ARG_VGPR, ctx->i32); /* VGPR gap */
7336 	add_arg(&fninfo, ARG_VGPR, ctx->i32); /* VGPR gap */
7337 	unsigned tess_factors_idx =
7338 		add_arg(&fninfo, ARG_VGPR, ctx->i32); /* patch index within the wave (REL_PATCH_ID) */
7339 	add_arg(&fninfo, ARG_VGPR, ctx->i32); /* invocation ID within the patch */
7340 	add_arg(&fninfo, ARG_VGPR, ctx->i32); /* LDS offset where tess factors should be loaded from */
7341 
7342 	for (unsigned i = 0; i < 6; i++)
7343 		add_arg(&fninfo, ARG_VGPR, ctx->i32); /* tess factors */
7344 
7345 	/* Create the function. */
7346 	si_create_function(ctx, "tcs_epilog", NULL, 0, &fninfo,
7347 			   ctx->screen->info.chip_class >= CIK ? 128 : 64);
7348 	ac_declare_lds_as_pointer(&ctx->ac);
7349 	func = ctx->main_fn;
7350 
7351 	LLVMValueRef invoc0_tess_factors[6];
7352 	for (unsigned i = 0; i < 6; i++)
7353 		invoc0_tess_factors[i] = LLVMGetParam(func, tess_factors_idx + 3 + i);
7354 
7355 	si_write_tess_factors(bld_base,
7356 			      LLVMGetParam(func, tess_factors_idx),
7357 			      LLVMGetParam(func, tess_factors_idx + 1),
7358 			      LLVMGetParam(func, tess_factors_idx + 2),
7359 			      invoc0_tess_factors, invoc0_tess_factors + 4);
7360 
7361 	LLVMBuildRetVoid(ctx->ac.builder);
7362 }
7363 
7364 /**
7365  * Select and compile (or reuse) TCS parts (epilog).
7366  */
si_shader_select_tcs_parts(struct si_screen * sscreen,LLVMTargetMachineRef tm,struct si_shader * shader,struct pipe_debug_callback * debug)7367 static bool si_shader_select_tcs_parts(struct si_screen *sscreen,
7368 				       LLVMTargetMachineRef tm,
7369 				       struct si_shader *shader,
7370 				       struct pipe_debug_callback *debug)
7371 {
7372 	if (sscreen->info.chip_class >= GFX9) {
7373 		struct si_shader *ls_main_part =
7374 			shader->key.part.tcs.ls->main_shader_part_ls;
7375 
7376 		if (!si_get_vs_prolog(sscreen, tm, shader, debug, ls_main_part,
7377 				      &shader->key.part.tcs.ls_prolog))
7378 			return false;
7379 
7380 		shader->previous_stage = ls_main_part;
7381 	}
7382 
7383 	/* Get the epilog. */
7384 	union si_shader_part_key epilog_key;
7385 	memset(&epilog_key, 0, sizeof(epilog_key));
7386 	epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
7387 
7388 	shader->epilog = si_get_shader_part(sscreen, &sscreen->tcs_epilogs,
7389 					    PIPE_SHADER_TESS_CTRL, false,
7390 					    &epilog_key, tm, debug,
7391 					    si_build_tcs_epilog_function,
7392 					    "Tessellation Control Shader Epilog");
7393 	return shader->epilog != NULL;
7394 }
7395 
7396 /**
7397  * Select and compile (or reuse) GS parts (prolog).
7398  */
si_shader_select_gs_parts(struct si_screen * sscreen,LLVMTargetMachineRef tm,struct si_shader * shader,struct pipe_debug_callback * debug)7399 static bool si_shader_select_gs_parts(struct si_screen *sscreen,
7400 				      LLVMTargetMachineRef tm,
7401 				      struct si_shader *shader,
7402 				      struct pipe_debug_callback *debug)
7403 {
7404 	if (sscreen->info.chip_class >= GFX9) {
7405 		struct si_shader *es_main_part =
7406 			shader->key.part.gs.es->main_shader_part_es;
7407 
7408 		if (shader->key.part.gs.es->type == PIPE_SHADER_VERTEX &&
7409 		    !si_get_vs_prolog(sscreen, tm, shader, debug, es_main_part,
7410 				      &shader->key.part.gs.vs_prolog))
7411 			return false;
7412 
7413 		shader->previous_stage = es_main_part;
7414 	}
7415 
7416 	if (!shader->key.part.gs.prolog.tri_strip_adj_fix)
7417 		return true;
7418 
7419 	union si_shader_part_key prolog_key;
7420 	memset(&prolog_key, 0, sizeof(prolog_key));
7421 	prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
7422 
7423 	shader->prolog2 = si_get_shader_part(sscreen, &sscreen->gs_prologs,
7424 					    PIPE_SHADER_GEOMETRY, true,
7425 					    &prolog_key, tm, debug,
7426 					    si_build_gs_prolog_function,
7427 					    "Geometry Shader Prolog");
7428 	return shader->prolog2 != NULL;
7429 }
7430 
7431 /**
7432  * Build the pixel shader prolog function. This handles:
7433  * - two-side color selection and interpolation
7434  * - overriding interpolation parameters for the API PS
7435  * - polygon stippling
7436  *
7437  * All preloaded SGPRs and VGPRs are passed through unmodified unless they are
7438  * overriden by other states. (e.g. per-sample interpolation)
7439  * Interpolated colors are stored after the preloaded VGPRs.
7440  */
si_build_ps_prolog_function(struct si_shader_context * ctx,union si_shader_part_key * key)7441 static void si_build_ps_prolog_function(struct si_shader_context *ctx,
7442 					union si_shader_part_key *key)
7443 {
7444 	struct si_function_info fninfo;
7445 	LLVMValueRef ret, func;
7446 	int num_returns, i, num_color_channels;
7447 
7448 	assert(si_need_ps_prolog(key));
7449 
7450 	si_init_function_info(&fninfo);
7451 
7452 	/* Declare inputs. */
7453 	for (i = 0; i < key->ps_prolog.num_input_sgprs; i++)
7454 		add_arg(&fninfo, ARG_SGPR, ctx->i32);
7455 
7456 	for (i = 0; i < key->ps_prolog.num_input_vgprs; i++)
7457 		add_arg(&fninfo, ARG_VGPR, ctx->f32);
7458 
7459 	/* Declare outputs (same as inputs + add colors if needed) */
7460 	num_returns = fninfo.num_params;
7461 	num_color_channels = util_bitcount(key->ps_prolog.colors_read);
7462 	for (i = 0; i < num_color_channels; i++)
7463 		fninfo.types[num_returns++] = ctx->f32;
7464 
7465 	/* Create the function. */
7466 	si_create_function(ctx, "ps_prolog", fninfo.types, num_returns,
7467 			   &fninfo, 0);
7468 	func = ctx->main_fn;
7469 
7470 	/* Copy inputs to outputs. This should be no-op, as the registers match,
7471 	 * but it will prevent the compiler from overwriting them unintentionally.
7472 	 */
7473 	ret = ctx->return_value;
7474 	for (i = 0; i < fninfo.num_params; i++) {
7475 		LLVMValueRef p = LLVMGetParam(func, i);
7476 		ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p, i, "");
7477 	}
7478 
7479 	/* Polygon stippling. */
7480 	if (key->ps_prolog.states.poly_stipple) {
7481 		/* POS_FIXED_PT is always last. */
7482 		unsigned pos = key->ps_prolog.num_input_sgprs +
7483 			       key->ps_prolog.num_input_vgprs - 1;
7484 		LLVMValueRef list = si_prolog_get_rw_buffers(ctx);
7485 
7486 		si_llvm_emit_polygon_stipple(ctx, list, pos);
7487 	}
7488 
7489 	if (key->ps_prolog.states.bc_optimize_for_persp ||
7490 	    key->ps_prolog.states.bc_optimize_for_linear) {
7491 		unsigned i, base = key->ps_prolog.num_input_sgprs;
7492 		LLVMValueRef center[2], centroid[2], tmp, bc_optimize;
7493 
7494 		/* The shader should do: if (PRIM_MASK[31]) CENTROID = CENTER;
7495 		 * The hw doesn't compute CENTROID if the whole wave only
7496 		 * contains fully-covered quads.
7497 		 *
7498 		 * PRIM_MASK is after user SGPRs.
7499 		 */
7500 		bc_optimize = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);
7501 		bc_optimize = LLVMBuildLShr(ctx->ac.builder, bc_optimize,
7502 					    LLVMConstInt(ctx->i32, 31, 0), "");
7503 		bc_optimize = LLVMBuildTrunc(ctx->ac.builder, bc_optimize,
7504 					     ctx->i1, "");
7505 
7506 		if (key->ps_prolog.states.bc_optimize_for_persp) {
7507 			/* Read PERSP_CENTER. */
7508 			for (i = 0; i < 2; i++)
7509 				center[i] = LLVMGetParam(func, base + 2 + i);
7510 			/* Read PERSP_CENTROID. */
7511 			for (i = 0; i < 2; i++)
7512 				centroid[i] = LLVMGetParam(func, base + 4 + i);
7513 			/* Select PERSP_CENTROID. */
7514 			for (i = 0; i < 2; i++) {
7515 				tmp = LLVMBuildSelect(ctx->ac.builder, bc_optimize,
7516 						      center[i], centroid[i], "");
7517 				ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7518 							   tmp, base + 4 + i, "");
7519 			}
7520 		}
7521 		if (key->ps_prolog.states.bc_optimize_for_linear) {
7522 			/* Read LINEAR_CENTER. */
7523 			for (i = 0; i < 2; i++)
7524 				center[i] = LLVMGetParam(func, base + 8 + i);
7525 			/* Read LINEAR_CENTROID. */
7526 			for (i = 0; i < 2; i++)
7527 				centroid[i] = LLVMGetParam(func, base + 10 + i);
7528 			/* Select LINEAR_CENTROID. */
7529 			for (i = 0; i < 2; i++) {
7530 				tmp = LLVMBuildSelect(ctx->ac.builder, bc_optimize,
7531 						      center[i], centroid[i], "");
7532 				ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7533 							   tmp, base + 10 + i, "");
7534 			}
7535 		}
7536 	}
7537 
7538 	/* Force per-sample interpolation. */
7539 	if (key->ps_prolog.states.force_persp_sample_interp) {
7540 		unsigned i, base = key->ps_prolog.num_input_sgprs;
7541 		LLVMValueRef persp_sample[2];
7542 
7543 		/* Read PERSP_SAMPLE. */
7544 		for (i = 0; i < 2; i++)
7545 			persp_sample[i] = LLVMGetParam(func, base + i);
7546 		/* Overwrite PERSP_CENTER. */
7547 		for (i = 0; i < 2; i++)
7548 			ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7549 						   persp_sample[i], base + 2 + i, "");
7550 		/* Overwrite PERSP_CENTROID. */
7551 		for (i = 0; i < 2; i++)
7552 			ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7553 						   persp_sample[i], base + 4 + i, "");
7554 	}
7555 	if (key->ps_prolog.states.force_linear_sample_interp) {
7556 		unsigned i, base = key->ps_prolog.num_input_sgprs;
7557 		LLVMValueRef linear_sample[2];
7558 
7559 		/* Read LINEAR_SAMPLE. */
7560 		for (i = 0; i < 2; i++)
7561 			linear_sample[i] = LLVMGetParam(func, base + 6 + i);
7562 		/* Overwrite LINEAR_CENTER. */
7563 		for (i = 0; i < 2; i++)
7564 			ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7565 						   linear_sample[i], base + 8 + i, "");
7566 		/* Overwrite LINEAR_CENTROID. */
7567 		for (i = 0; i < 2; i++)
7568 			ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7569 						   linear_sample[i], base + 10 + i, "");
7570 	}
7571 
7572 	/* Force center interpolation. */
7573 	if (key->ps_prolog.states.force_persp_center_interp) {
7574 		unsigned i, base = key->ps_prolog.num_input_sgprs;
7575 		LLVMValueRef persp_center[2];
7576 
7577 		/* Read PERSP_CENTER. */
7578 		for (i = 0; i < 2; i++)
7579 			persp_center[i] = LLVMGetParam(func, base + 2 + i);
7580 		/* Overwrite PERSP_SAMPLE. */
7581 		for (i = 0; i < 2; i++)
7582 			ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7583 						   persp_center[i], base + i, "");
7584 		/* Overwrite PERSP_CENTROID. */
7585 		for (i = 0; i < 2; i++)
7586 			ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7587 						   persp_center[i], base + 4 + i, "");
7588 	}
7589 	if (key->ps_prolog.states.force_linear_center_interp) {
7590 		unsigned i, base = key->ps_prolog.num_input_sgprs;
7591 		LLVMValueRef linear_center[2];
7592 
7593 		/* Read LINEAR_CENTER. */
7594 		for (i = 0; i < 2; i++)
7595 			linear_center[i] = LLVMGetParam(func, base + 8 + i);
7596 		/* Overwrite LINEAR_SAMPLE. */
7597 		for (i = 0; i < 2; i++)
7598 			ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7599 						   linear_center[i], base + 6 + i, "");
7600 		/* Overwrite LINEAR_CENTROID. */
7601 		for (i = 0; i < 2; i++)
7602 			ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7603 						   linear_center[i], base + 10 + i, "");
7604 	}
7605 
7606 	/* Interpolate colors. */
7607 	unsigned color_out_idx = 0;
7608 	for (i = 0; i < 2; i++) {
7609 		unsigned writemask = (key->ps_prolog.colors_read >> (i * 4)) & 0xf;
7610 		unsigned face_vgpr = key->ps_prolog.num_input_sgprs +
7611 				     key->ps_prolog.face_vgpr_index;
7612 		LLVMValueRef interp[2], color[4];
7613 		LLVMValueRef interp_ij = NULL, prim_mask = NULL, face = NULL;
7614 
7615 		if (!writemask)
7616 			continue;
7617 
7618 		/* If the interpolation qualifier is not CONSTANT (-1). */
7619 		if (key->ps_prolog.color_interp_vgpr_index[i] != -1) {
7620 			unsigned interp_vgpr = key->ps_prolog.num_input_sgprs +
7621 					       key->ps_prolog.color_interp_vgpr_index[i];
7622 
7623 			/* Get the (i,j) updated by bc_optimize handling. */
7624 			interp[0] = LLVMBuildExtractValue(ctx->ac.builder, ret,
7625 							  interp_vgpr, "");
7626 			interp[1] = LLVMBuildExtractValue(ctx->ac.builder, ret,
7627 							  interp_vgpr + 1, "");
7628 			interp_ij = lp_build_gather_values(&ctx->gallivm, interp, 2);
7629 		}
7630 
7631 		/* Use the absolute location of the input. */
7632 		prim_mask = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);
7633 
7634 		if (key->ps_prolog.states.color_two_side) {
7635 			face = LLVMGetParam(func, face_vgpr);
7636 			face = ac_to_integer(&ctx->ac, face);
7637 		}
7638 
7639 		interp_fs_input(ctx,
7640 				key->ps_prolog.color_attr_index[i],
7641 				TGSI_SEMANTIC_COLOR, i,
7642 				key->ps_prolog.num_interp_inputs,
7643 				key->ps_prolog.colors_read, interp_ij,
7644 				prim_mask, face, color);
7645 
7646 		while (writemask) {
7647 			unsigned chan = u_bit_scan(&writemask);
7648 			ret = LLVMBuildInsertValue(ctx->ac.builder, ret, color[chan],
7649 						   fninfo.num_params + color_out_idx++, "");
7650 		}
7651 	}
7652 
7653 	/* Section 15.2.2 (Shader Inputs) of the OpenGL 4.5 (Core Profile) spec
7654 	 * says:
7655 	 *
7656 	 *    "When per-sample shading is active due to the use of a fragment
7657 	 *     input qualified by sample or due to the use of the gl_SampleID
7658 	 *     or gl_SamplePosition variables, only the bit for the current
7659 	 *     sample is set in gl_SampleMaskIn. When state specifies multiple
7660 	 *     fragment shader invocations for a given fragment, the sample
7661 	 *     mask for any single fragment shader invocation may specify a
7662 	 *     subset of the covered samples for the fragment. In this case,
7663 	 *     the bit corresponding to each covered sample will be set in
7664 	 *     exactly one fragment shader invocation."
7665 	 *
7666 	 * The samplemask loaded by hardware is always the coverage of the
7667 	 * entire pixel/fragment, so mask bits out based on the sample ID.
7668 	 */
7669 	if (key->ps_prolog.states.samplemask_log_ps_iter) {
7670 		/* The bit pattern matches that used by fixed function fragment
7671 		 * processing. */
7672 		static const uint16_t ps_iter_masks[] = {
7673 			0xffff, /* not used */
7674 			0x5555,
7675 			0x1111,
7676 			0x0101,
7677 			0x0001,
7678 		};
7679 		assert(key->ps_prolog.states.samplemask_log_ps_iter < ARRAY_SIZE(ps_iter_masks));
7680 
7681 		uint32_t ps_iter_mask = ps_iter_masks[key->ps_prolog.states.samplemask_log_ps_iter];
7682 		unsigned ancillary_vgpr = key->ps_prolog.num_input_sgprs +
7683 					  key->ps_prolog.ancillary_vgpr_index;
7684 		LLVMValueRef sampleid = unpack_param(ctx, ancillary_vgpr, 8, 4);
7685 		LLVMValueRef samplemask = LLVMGetParam(func, ancillary_vgpr + 1);
7686 
7687 		samplemask = ac_to_integer(&ctx->ac, samplemask);
7688 		samplemask = LLVMBuildAnd(
7689 			ctx->ac.builder,
7690 			samplemask,
7691 			LLVMBuildShl(ctx->ac.builder,
7692 				     LLVMConstInt(ctx->i32, ps_iter_mask, false),
7693 				     sampleid, ""),
7694 			"");
7695 		samplemask = ac_to_float(&ctx->ac, samplemask);
7696 
7697 		ret = LLVMBuildInsertValue(ctx->ac.builder, ret, samplemask,
7698 					   ancillary_vgpr + 1, "");
7699 	}
7700 
7701 	/* Tell LLVM to insert WQM instruction sequence when needed. */
7702 	if (key->ps_prolog.wqm) {
7703 		LLVMAddTargetDependentFunctionAttr(func,
7704 						   "amdgpu-ps-wqm-outputs", "");
7705 	}
7706 
7707 	si_llvm_build_ret(ctx, ret);
7708 }
7709 
7710 /**
7711  * Build the pixel shader epilog function. This handles everything that must be
7712  * emulated for pixel shader exports. (alpha-test, format conversions, etc)
7713  */
si_build_ps_epilog_function(struct si_shader_context * ctx,union si_shader_part_key * key)7714 static void si_build_ps_epilog_function(struct si_shader_context *ctx,
7715 					union si_shader_part_key *key)
7716 {
7717 	struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
7718 	struct si_function_info fninfo;
7719 	LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
7720 	int i;
7721 	struct si_ps_exports exp = {};
7722 
7723 	si_init_function_info(&fninfo);
7724 
7725 	/* Declare input SGPRs. */
7726 	ctx->param_rw_buffers = add_arg(&fninfo, ARG_SGPR, ctx->i64);
7727 	ctx->param_bindless_samplers_and_images = add_arg(&fninfo, ARG_SGPR, ctx->i64);
7728 	ctx->param_const_and_shader_buffers = add_arg(&fninfo, ARG_SGPR, ctx->i64);
7729 	ctx->param_samplers_and_images = add_arg(&fninfo, ARG_SGPR, ctx->i64);
7730 	add_arg_checked(&fninfo, ARG_SGPR, ctx->f32, SI_PARAM_ALPHA_REF);
7731 
7732 	/* Declare input VGPRs. */
7733 	unsigned required_num_params =
7734 		     fninfo.num_sgpr_params +
7735 		     util_bitcount(key->ps_epilog.colors_written) * 4 +
7736 		     key->ps_epilog.writes_z +
7737 		     key->ps_epilog.writes_stencil +
7738 		     key->ps_epilog.writes_samplemask;
7739 
7740 	required_num_params = MAX2(required_num_params,
7741 				   fninfo.num_sgpr_params + PS_EPILOG_SAMPLEMASK_MIN_LOC + 1);
7742 
7743 	while (fninfo.num_params < required_num_params)
7744 		add_arg(&fninfo, ARG_VGPR, ctx->f32);
7745 
7746 	/* Create the function. */
7747 	si_create_function(ctx, "ps_epilog", NULL, 0, &fninfo, 0);
7748 	/* Disable elimination of unused inputs. */
7749 	si_llvm_add_attribute(ctx->main_fn,
7750 				  "InitialPSInputAddr", 0xffffff);
7751 
7752 	/* Process colors. */
7753 	unsigned vgpr = fninfo.num_sgpr_params;
7754 	unsigned colors_written = key->ps_epilog.colors_written;
7755 	int last_color_export = -1;
7756 
7757 	/* Find the last color export. */
7758 	if (!key->ps_epilog.writes_z &&
7759 	    !key->ps_epilog.writes_stencil &&
7760 	    !key->ps_epilog.writes_samplemask) {
7761 		unsigned spi_format = key->ps_epilog.states.spi_shader_col_format;
7762 
7763 		/* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
7764 		if (colors_written == 0x1 && key->ps_epilog.states.last_cbuf > 0) {
7765 			/* Just set this if any of the colorbuffers are enabled. */
7766 			if (spi_format &
7767 			    ((1ull << (4 * (key->ps_epilog.states.last_cbuf + 1))) - 1))
7768 				last_color_export = 0;
7769 		} else {
7770 			for (i = 0; i < 8; i++)
7771 				if (colors_written & (1 << i) &&
7772 				    (spi_format >> (i * 4)) & 0xf)
7773 					last_color_export = i;
7774 		}
7775 	}
7776 
7777 	while (colors_written) {
7778 		LLVMValueRef color[4];
7779 		int mrt = u_bit_scan(&colors_written);
7780 
7781 		for (i = 0; i < 4; i++)
7782 			color[i] = LLVMGetParam(ctx->main_fn, vgpr++);
7783 
7784 		si_export_mrt_color(bld_base, color, mrt,
7785 				    fninfo.num_params - 1,
7786 				    mrt == last_color_export, &exp);
7787 	}
7788 
7789 	/* Process depth, stencil, samplemask. */
7790 	if (key->ps_epilog.writes_z)
7791 		depth = LLVMGetParam(ctx->main_fn, vgpr++);
7792 	if (key->ps_epilog.writes_stencil)
7793 		stencil = LLVMGetParam(ctx->main_fn, vgpr++);
7794 	if (key->ps_epilog.writes_samplemask)
7795 		samplemask = LLVMGetParam(ctx->main_fn, vgpr++);
7796 
7797 	if (depth || stencil || samplemask)
7798 		si_export_mrt_z(bld_base, depth, stencil, samplemask, &exp);
7799 	else if (last_color_export == -1)
7800 		si_export_null(bld_base);
7801 
7802 	if (exp.num)
7803 		si_emit_ps_exports(ctx, &exp);
7804 
7805 	/* Compile. */
7806 	LLVMBuildRetVoid(ctx->ac.builder);
7807 }
7808 
7809 /**
7810  * Select and compile (or reuse) pixel shader parts (prolog & epilog).
7811  */
si_shader_select_ps_parts(struct si_screen * sscreen,LLVMTargetMachineRef tm,struct si_shader * shader,struct pipe_debug_callback * debug)7812 static bool si_shader_select_ps_parts(struct si_screen *sscreen,
7813 				      LLVMTargetMachineRef tm,
7814 				      struct si_shader *shader,
7815 				      struct pipe_debug_callback *debug)
7816 {
7817 	union si_shader_part_key prolog_key;
7818 	union si_shader_part_key epilog_key;
7819 
7820 	/* Get the prolog. */
7821 	si_get_ps_prolog_key(shader, &prolog_key, true);
7822 
7823 	/* The prolog is a no-op if these aren't set. */
7824 	if (si_need_ps_prolog(&prolog_key)) {
7825 		shader->prolog =
7826 			si_get_shader_part(sscreen, &sscreen->ps_prologs,
7827 					   PIPE_SHADER_FRAGMENT, true,
7828 					   &prolog_key, tm, debug,
7829 					   si_build_ps_prolog_function,
7830 					   "Fragment Shader Prolog");
7831 		if (!shader->prolog)
7832 			return false;
7833 	}
7834 
7835 	/* Get the epilog. */
7836 	si_get_ps_epilog_key(shader, &epilog_key);
7837 
7838 	shader->epilog =
7839 		si_get_shader_part(sscreen, &sscreen->ps_epilogs,
7840 				   PIPE_SHADER_FRAGMENT, false,
7841 				   &epilog_key, tm, debug,
7842 				   si_build_ps_epilog_function,
7843 				   "Fragment Shader Epilog");
7844 	if (!shader->epilog)
7845 		return false;
7846 
7847 	/* Enable POS_FIXED_PT if polygon stippling is enabled. */
7848 	if (shader->key.part.ps.prolog.poly_stipple) {
7849 		shader->config.spi_ps_input_ena |= S_0286CC_POS_FIXED_PT_ENA(1);
7850 		assert(G_0286CC_POS_FIXED_PT_ENA(shader->config.spi_ps_input_addr));
7851 	}
7852 
7853 	/* Set up the enable bits for per-sample shading if needed. */
7854 	if (shader->key.part.ps.prolog.force_persp_sample_interp &&
7855 	    (G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_ena) ||
7856 	     G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
7857 		shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTER_ENA;
7858 		shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
7859 		shader->config.spi_ps_input_ena |= S_0286CC_PERSP_SAMPLE_ENA(1);
7860 	}
7861 	if (shader->key.part.ps.prolog.force_linear_sample_interp &&
7862 	    (G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_ena) ||
7863 	     G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
7864 		shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTER_ENA;
7865 		shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
7866 		shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_SAMPLE_ENA(1);
7867 	}
7868 	if (shader->key.part.ps.prolog.force_persp_center_interp &&
7869 	    (G_0286CC_PERSP_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
7870 	     G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
7871 		shader->config.spi_ps_input_ena &= C_0286CC_PERSP_SAMPLE_ENA;
7872 		shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
7873 		shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
7874 	}
7875 	if (shader->key.part.ps.prolog.force_linear_center_interp &&
7876 	    (G_0286CC_LINEAR_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
7877 	     G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
7878 		shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_SAMPLE_ENA;
7879 		shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
7880 		shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
7881 	}
7882 
7883 	/* POW_W_FLOAT requires that one of the perspective weights is enabled. */
7884 	if (G_0286CC_POS_W_FLOAT_ENA(shader->config.spi_ps_input_ena) &&
7885 	    !(shader->config.spi_ps_input_ena & 0xf)) {
7886 		shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
7887 		assert(G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_addr));
7888 	}
7889 
7890 	/* At least one pair of interpolation weights must be enabled. */
7891 	if (!(shader->config.spi_ps_input_ena & 0x7f)) {
7892 		shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
7893 		assert(G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_addr));
7894 	}
7895 
7896 	/* Samplemask fixup requires the sample ID. */
7897 	if (shader->key.part.ps.prolog.samplemask_log_ps_iter) {
7898 		shader->config.spi_ps_input_ena |= S_0286CC_ANCILLARY_ENA(1);
7899 		assert(G_0286CC_ANCILLARY_ENA(shader->config.spi_ps_input_addr));
7900 	}
7901 
7902 	/* The sample mask input is always enabled, because the API shader always
7903 	 * passes it through to the epilog. Disable it here if it's unused.
7904 	 */
7905 	if (!shader->key.part.ps.epilog.poly_line_smoothing &&
7906 	    !shader->selector->info.reads_samplemask)
7907 		shader->config.spi_ps_input_ena &= C_0286CC_SAMPLE_COVERAGE_ENA;
7908 
7909 	return true;
7910 }
7911 
si_multiwave_lds_size_workaround(struct si_screen * sscreen,unsigned * lds_size)7912 void si_multiwave_lds_size_workaround(struct si_screen *sscreen,
7913 				      unsigned *lds_size)
7914 {
7915 	/* SPI barrier management bug:
7916 	 *   Make sure we have at least 4k of LDS in use to avoid the bug.
7917 	 *   It applies to workgroup sizes of more than one wavefront.
7918 	 */
7919 	if (sscreen->info.family == CHIP_BONAIRE ||
7920 	    sscreen->info.family == CHIP_KABINI ||
7921 	    sscreen->info.family == CHIP_MULLINS)
7922 		*lds_size = MAX2(*lds_size, 8);
7923 }
7924 
si_fix_resource_usage(struct si_screen * sscreen,struct si_shader * shader)7925 static void si_fix_resource_usage(struct si_screen *sscreen,
7926 				  struct si_shader *shader)
7927 {
7928 	unsigned min_sgprs = shader->info.num_input_sgprs + 2; /* VCC */
7929 
7930 	shader->config.num_sgprs = MAX2(shader->config.num_sgprs, min_sgprs);
7931 
7932 	if (shader->selector->type == PIPE_SHADER_COMPUTE &&
7933 	    si_get_max_workgroup_size(shader) > 64) {
7934 		si_multiwave_lds_size_workaround(sscreen,
7935 						 &shader->config.lds_size);
7936 	}
7937 }
7938 
si_shader_create(struct si_screen * sscreen,LLVMTargetMachineRef tm,struct si_shader * shader,struct pipe_debug_callback * debug)7939 int si_shader_create(struct si_screen *sscreen, LLVMTargetMachineRef tm,
7940 		     struct si_shader *shader,
7941 		     struct pipe_debug_callback *debug)
7942 {
7943 	struct si_shader_selector *sel = shader->selector;
7944 	struct si_shader *mainp = *si_get_main_shader_part(sel, &shader->key);
7945 	int r;
7946 
7947 	/* LS, ES, VS are compiled on demand if the main part hasn't been
7948 	 * compiled for that stage.
7949 	 *
7950 	 * Vertex shaders are compiled on demand when a vertex fetch
7951 	 * workaround must be applied.
7952 	 */
7953 	if (shader->is_monolithic) {
7954 		/* Monolithic shader (compiled as a whole, has many variants,
7955 		 * may take a long time to compile).
7956 		 */
7957 		r = si_compile_tgsi_shader(sscreen, tm, shader, true, debug);
7958 		if (r)
7959 			return r;
7960 	} else {
7961 		/* The shader consists of several parts:
7962 		 *
7963 		 * - the middle part is the user shader, it has 1 variant only
7964 		 *   and it was compiled during the creation of the shader
7965 		 *   selector
7966 		 * - the prolog part is inserted at the beginning
7967 		 * - the epilog part is inserted at the end
7968 		 *
7969 		 * The prolog and epilog have many (but simple) variants.
7970 		 *
7971 		 * Starting with gfx9, geometry and tessellation control
7972 		 * shaders also contain the prolog and user shader parts of
7973 		 * the previous shader stage.
7974 		 */
7975 
7976 		if (!mainp)
7977 			return -1;
7978 
7979 		/* Copy the compiled TGSI shader data over. */
7980 		shader->is_binary_shared = true;
7981 		shader->binary = mainp->binary;
7982 		shader->config = mainp->config;
7983 		shader->info.num_input_sgprs = mainp->info.num_input_sgprs;
7984 		shader->info.num_input_vgprs = mainp->info.num_input_vgprs;
7985 		shader->info.face_vgpr_index = mainp->info.face_vgpr_index;
7986 		shader->info.ancillary_vgpr_index = mainp->info.ancillary_vgpr_index;
7987 		memcpy(shader->info.vs_output_param_offset,
7988 		       mainp->info.vs_output_param_offset,
7989 		       sizeof(mainp->info.vs_output_param_offset));
7990 		shader->info.uses_instanceid = mainp->info.uses_instanceid;
7991 		shader->info.nr_pos_exports = mainp->info.nr_pos_exports;
7992 		shader->info.nr_param_exports = mainp->info.nr_param_exports;
7993 
7994 		/* Select prologs and/or epilogs. */
7995 		switch (sel->type) {
7996 		case PIPE_SHADER_VERTEX:
7997 			if (!si_shader_select_vs_parts(sscreen, tm, shader, debug))
7998 				return -1;
7999 			break;
8000 		case PIPE_SHADER_TESS_CTRL:
8001 			if (!si_shader_select_tcs_parts(sscreen, tm, shader, debug))
8002 				return -1;
8003 			break;
8004 		case PIPE_SHADER_TESS_EVAL:
8005 			break;
8006 		case PIPE_SHADER_GEOMETRY:
8007 			if (!si_shader_select_gs_parts(sscreen, tm, shader, debug))
8008 				return -1;
8009 			break;
8010 		case PIPE_SHADER_FRAGMENT:
8011 			if (!si_shader_select_ps_parts(sscreen, tm, shader, debug))
8012 				return -1;
8013 
8014 			/* Make sure we have at least as many VGPRs as there
8015 			 * are allocated inputs.
8016 			 */
8017 			shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8018 							shader->info.num_input_vgprs);
8019 			break;
8020 		}
8021 
8022 		/* Update SGPR and VGPR counts. */
8023 		if (shader->prolog) {
8024 			shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8025 							shader->prolog->config.num_sgprs);
8026 			shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8027 							shader->prolog->config.num_vgprs);
8028 		}
8029 		if (shader->previous_stage) {
8030 			shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8031 							shader->previous_stage->config.num_sgprs);
8032 			shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8033 							shader->previous_stage->config.num_vgprs);
8034 			shader->config.spilled_sgprs =
8035 				MAX2(shader->config.spilled_sgprs,
8036 				     shader->previous_stage->config.spilled_sgprs);
8037 			shader->config.spilled_vgprs =
8038 				MAX2(shader->config.spilled_vgprs,
8039 				     shader->previous_stage->config.spilled_vgprs);
8040 			shader->config.private_mem_vgprs =
8041 				MAX2(shader->config.private_mem_vgprs,
8042 				     shader->previous_stage->config.private_mem_vgprs);
8043 			shader->config.scratch_bytes_per_wave =
8044 				MAX2(shader->config.scratch_bytes_per_wave,
8045 				     shader->previous_stage->config.scratch_bytes_per_wave);
8046 			shader->info.uses_instanceid |=
8047 				shader->previous_stage->info.uses_instanceid;
8048 		}
8049 		if (shader->prolog2) {
8050 			shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8051 							shader->prolog2->config.num_sgprs);
8052 			shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8053 							shader->prolog2->config.num_vgprs);
8054 		}
8055 		if (shader->epilog) {
8056 			shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8057 							shader->epilog->config.num_sgprs);
8058 			shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8059 							shader->epilog->config.num_vgprs);
8060 		}
8061 	}
8062 
8063 	si_fix_resource_usage(sscreen, shader);
8064 	si_shader_dump(sscreen, shader, debug, sel->info.processor,
8065 		       stderr, true);
8066 
8067 	/* Upload. */
8068 	r = si_shader_binary_upload(sscreen, shader);
8069 	if (r) {
8070 		fprintf(stderr, "LLVM failed to upload shader\n");
8071 		return r;
8072 	}
8073 
8074 	return 0;
8075 }
8076 
si_shader_destroy(struct si_shader * shader)8077 void si_shader_destroy(struct si_shader *shader)
8078 {
8079 	if (shader->scratch_bo)
8080 		r600_resource_reference(&shader->scratch_bo, NULL);
8081 
8082 	r600_resource_reference(&shader->bo, NULL);
8083 
8084 	if (!shader->is_binary_shared)
8085 		ac_shader_binary_clean(&shader->binary);
8086 
8087 	free(shader->shader_log);
8088 }
8089