1 /**************************************************************************
2  *
3  * Copyright 2007 VMware, Inc.
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 /**
29  * \brief  Primitive rasterization/rendering (points, lines, triangles)
30  *
31  * \author  Keith Whitwell <keithw@vmware.com>
32  * \author  Brian Paul
33  */
34 
35 #include "sp_context.h"
36 #include "sp_quad.h"
37 #include "sp_quad_pipe.h"
38 #include "sp_setup.h"
39 #include "sp_state.h"
40 #include "draw/draw_context.h"
41 #include "pipe/p_shader_tokens.h"
42 #include "util/u_math.h"
43 #include "util/u_memory.h"
44 
45 
46 #define DEBUG_VERTS 0
47 #define DEBUG_FRAGS 0
48 
49 
50 /**
51  * Triangle edge info
52  */
53 struct edge {
54    float dx;		/**< X(v1) - X(v0), used only during setup */
55    float dy;		/**< Y(v1) - Y(v0), used only during setup */
56    float dxdy;		/**< dx/dy */
57    float sx, sy;	/**< first sample point coord */
58    int lines;		/**< number of lines on this edge */
59 };
60 
61 
62 /**
63  * Max number of quads (2x2 pixel blocks) to process per batch.
64  * This can't be arbitrarily increased since we depend on some 32-bit
65  * bitmasks (two bits per quad).
66  */
67 #define MAX_QUADS 16
68 
69 
70 /**
71  * Triangle setup info.
72  * Also used for line drawing (taking some liberties).
73  */
74 struct setup_context {
75    struct softpipe_context *softpipe;
76 
77    /* Vertices are just an array of floats making up each attribute in
78     * turn.  Currently fixed at 4 floats, but should change in time.
79     * Codegen will help cope with this.
80     */
81    const float (*vmax)[4];
82    const float (*vmid)[4];
83    const float (*vmin)[4];
84    const float (*vprovoke)[4];
85 
86    struct edge ebot;
87    struct edge etop;
88    struct edge emaj;
89 
90    float oneoverarea;
91    int facing;
92 
93    float pixel_offset;
94    unsigned max_layer;
95 
96    struct quad_header quad[MAX_QUADS];
97    struct quad_header *quad_ptrs[MAX_QUADS];
98    unsigned count;
99 
100    struct tgsi_interp_coef coef[PIPE_MAX_SHADER_INPUTS];
101    struct tgsi_interp_coef posCoef;  /* For Z, W */
102 
103    struct {
104       int left[2];   /**< [0] = row0, [1] = row1 */
105       int right[2];
106       int y;
107    } span;
108 
109 #if DEBUG_FRAGS
110    uint numFragsEmitted;  /**< per primitive */
111    uint numFragsWritten;  /**< per primitive */
112 #endif
113 
114    unsigned cull_face;		/* which faces cull */
115    unsigned nr_vertex_attrs;
116 };
117 
118 
119 
120 
121 
122 
123 
124 /**
125  * Clip setup->quad against the scissor/surface bounds.
126  */
127 static inline void
quad_clip(struct setup_context * setup,struct quad_header * quad)128 quad_clip(struct setup_context *setup, struct quad_header *quad)
129 {
130    unsigned viewport_index = quad[0].input.viewport_index;
131    const struct pipe_scissor_state *cliprect = &setup->softpipe->cliprect[viewport_index];
132    const int minx = (int) cliprect->minx;
133    const int maxx = (int) cliprect->maxx;
134    const int miny = (int) cliprect->miny;
135    const int maxy = (int) cliprect->maxy;
136 
137    if (quad->input.x0 >= maxx ||
138        quad->input.y0 >= maxy ||
139        quad->input.x0 + 1 < minx ||
140        quad->input.y0 + 1 < miny) {
141       /* totally clipped */
142       quad->inout.mask = 0x0;
143       return;
144    }
145    if (quad->input.x0 < minx)
146       quad->inout.mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
147    if (quad->input.y0 < miny)
148       quad->inout.mask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
149    if (quad->input.x0 == maxx - 1)
150       quad->inout.mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
151    if (quad->input.y0 == maxy - 1)
152       quad->inout.mask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
153 }
154 
155 
156 /**
157  * Emit a quad (pass to next stage) with clipping.
158  */
159 static inline void
clip_emit_quad(struct setup_context * setup,struct quad_header * quad)160 clip_emit_quad(struct setup_context *setup, struct quad_header *quad)
161 {
162    quad_clip(setup, quad);
163 
164    if (quad->inout.mask) {
165       struct softpipe_context *sp = setup->softpipe;
166 
167 #if DEBUG_FRAGS
168       setup->numFragsEmitted += util_bitcount(quad->inout.mask);
169 #endif
170 
171       sp->quad.first->run( sp->quad.first, &quad, 1 );
172    }
173 }
174 
175 
176 
177 /**
178  * Given an X or Y coordinate, return the block/quad coordinate that it
179  * belongs to.
180  */
181 static inline int
block(int x)182 block(int x)
183 {
184    return x & ~(2-1);
185 }
186 
187 
188 static inline int
block_x(int x)189 block_x(int x)
190 {
191    return x & ~(16-1);
192 }
193 
194 
195 /**
196  * Render a horizontal span of quads
197  */
198 static void
flush_spans(struct setup_context * setup)199 flush_spans(struct setup_context *setup)
200 {
201    const int step = MAX_QUADS;
202    const int xleft0 = setup->span.left[0];
203    const int xleft1 = setup->span.left[1];
204    const int xright0 = setup->span.right[0];
205    const int xright1 = setup->span.right[1];
206    struct quad_stage *pipe = setup->softpipe->quad.first;
207 
208    const int minleft = block_x(MIN2(xleft0, xleft1));
209    const int maxright = MAX2(xright0, xright1);
210    int x;
211 
212    /* process quads in horizontal chunks of 16 */
213    for (x = minleft; x < maxright; x += step) {
214       unsigned skip_left0 = CLAMP(xleft0 - x, 0, step);
215       unsigned skip_left1 = CLAMP(xleft1 - x, 0, step);
216       unsigned skip_right0 = CLAMP(x + step - xright0, 0, step);
217       unsigned skip_right1 = CLAMP(x + step - xright1, 0, step);
218       unsigned lx = x;
219       unsigned q = 0;
220 
221       unsigned skipmask_left0 = (1U << skip_left0) - 1U;
222       unsigned skipmask_left1 = (1U << skip_left1) - 1U;
223 
224       /* These calculations fail when step == 32 and skip_right == 0.
225        */
226       unsigned skipmask_right0 = ~0U << (unsigned)(step - skip_right0);
227       unsigned skipmask_right1 = ~0U << (unsigned)(step - skip_right1);
228 
229       unsigned mask0 = ~skipmask_left0 & ~skipmask_right0;
230       unsigned mask1 = ~skipmask_left1 & ~skipmask_right1;
231 
232       if (mask0 | mask1) {
233          do {
234             unsigned quadmask = (mask0 & 3) | ((mask1 & 3) << 2);
235             if (quadmask) {
236                setup->quad[q].input.x0 = lx;
237                setup->quad[q].input.y0 = setup->span.y;
238                setup->quad[q].input.facing = setup->facing;
239                setup->quad[q].inout.mask = quadmask;
240                setup->quad_ptrs[q] = &setup->quad[q];
241                q++;
242 #if DEBUG_FRAGS
243                setup->numFragsEmitted += util_bitcount(quadmask);
244 #endif
245             }
246             mask0 >>= 2;
247             mask1 >>= 2;
248             lx += 2;
249          } while (mask0 | mask1);
250 
251          pipe->run( pipe, setup->quad_ptrs, q );
252       }
253    }
254 
255 
256    setup->span.y = 0;
257    setup->span.right[0] = 0;
258    setup->span.right[1] = 0;
259    setup->span.left[0] = 1000000;     /* greater than right[0] */
260    setup->span.left[1] = 1000000;     /* greater than right[1] */
261 }
262 
263 
264 #if DEBUG_VERTS
265 static void
print_vertex(const struct setup_context * setup,const float (* v)[4])266 print_vertex(const struct setup_context *setup,
267              const float (*v)[4])
268 {
269    int i;
270    debug_printf("   Vertex: (%p)\n", (void *) v);
271    for (i = 0; i < setup->nr_vertex_attrs; i++) {
272       debug_printf("     %d: %f %f %f %f\n",  i,
273               v[i][0], v[i][1], v[i][2], v[i][3]);
274       if (util_is_inf_or_nan(v[i][0])) {
275          debug_printf("   NaN!\n");
276       }
277    }
278 }
279 #endif
280 
281 
282 /**
283  * Sort the vertices from top to bottom order, setting up the triangle
284  * edge fields (ebot, emaj, etop).
285  * \return FALSE if coords are inf/nan (cull the tri), TRUE otherwise
286  */
287 static boolean
setup_sort_vertices(struct setup_context * setup,float det,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])288 setup_sort_vertices(struct setup_context *setup,
289                     float det,
290                     const float (*v0)[4],
291                     const float (*v1)[4],
292                     const float (*v2)[4])
293 {
294    if (setup->softpipe->rasterizer->flatshade_first)
295       setup->vprovoke = v0;
296    else
297       setup->vprovoke = v2;
298 
299    /* determine bottom to top order of vertices */
300    {
301       float y0 = v0[0][1];
302       float y1 = v1[0][1];
303       float y2 = v2[0][1];
304       if (y0 <= y1) {
305 	 if (y1 <= y2) {
306 	    /* y0<=y1<=y2 */
307 	    setup->vmin = v0;
308 	    setup->vmid = v1;
309 	    setup->vmax = v2;
310 	 }
311 	 else if (y2 <= y0) {
312 	    /* y2<=y0<=y1 */
313 	    setup->vmin = v2;
314 	    setup->vmid = v0;
315 	    setup->vmax = v1;
316 	 }
317 	 else {
318 	    /* y0<=y2<=y1 */
319 	    setup->vmin = v0;
320 	    setup->vmid = v2;
321 	    setup->vmax = v1;
322 	 }
323       }
324       else {
325 	 if (y0 <= y2) {
326 	    /* y1<=y0<=y2 */
327 	    setup->vmin = v1;
328 	    setup->vmid = v0;
329 	    setup->vmax = v2;
330 	 }
331 	 else if (y2 <= y1) {
332 	    /* y2<=y1<=y0 */
333 	    setup->vmin = v2;
334 	    setup->vmid = v1;
335 	    setup->vmax = v0;
336 	 }
337 	 else {
338 	    /* y1<=y2<=y0 */
339 	    setup->vmin = v1;
340 	    setup->vmid = v2;
341 	    setup->vmax = v0;
342 	 }
343       }
344    }
345 
346    setup->ebot.dx = setup->vmid[0][0] - setup->vmin[0][0];
347    setup->ebot.dy = setup->vmid[0][1] - setup->vmin[0][1];
348    setup->emaj.dx = setup->vmax[0][0] - setup->vmin[0][0];
349    setup->emaj.dy = setup->vmax[0][1] - setup->vmin[0][1];
350    setup->etop.dx = setup->vmax[0][0] - setup->vmid[0][0];
351    setup->etop.dy = setup->vmax[0][1] - setup->vmid[0][1];
352 
353    /*
354     * Compute triangle's area.  Use 1/area to compute partial
355     * derivatives of attributes later.
356     *
357     * The area will be the same as prim->det, but the sign may be
358     * different depending on how the vertices get sorted above.
359     *
360     * To determine whether the primitive is front or back facing we
361     * use the prim->det value because its sign is correct.
362     */
363    {
364       const float area = (setup->emaj.dx * setup->ebot.dy -
365 			    setup->ebot.dx * setup->emaj.dy);
366 
367       setup->oneoverarea = 1.0f / area;
368 
369       /*
370       debug_printf("%s one-over-area %f  area %f  det %f\n",
371                    __FUNCTION__, setup->oneoverarea, area, det );
372       */
373       if (util_is_inf_or_nan(setup->oneoverarea))
374          return FALSE;
375    }
376 
377    /* We need to know if this is a front or back-facing triangle for:
378     *  - the GLSL gl_FrontFacing fragment attribute (bool)
379     *  - two-sided stencil test
380     * 0 = front-facing, 1 = back-facing
381     */
382    setup->facing =
383       ((det < 0.0) ^
384        (setup->softpipe->rasterizer->front_ccw));
385 
386    {
387       unsigned face = setup->facing == 0 ? PIPE_FACE_FRONT : PIPE_FACE_BACK;
388 
389       if (face & setup->cull_face)
390 	 return FALSE;
391    }
392 
393 
394    /* Prepare pixel offset for rasterisation:
395     *  - pixel center (0.5, 0.5) for GL, or
396     *  - assume (0.0, 0.0) for other APIs.
397     */
398    if (setup->softpipe->rasterizer->half_pixel_center) {
399       setup->pixel_offset = 0.5f;
400    } else {
401       setup->pixel_offset = 0.0f;
402    }
403 
404    return TRUE;
405 }
406 
407 
408 /* Apply cylindrical wrapping to v0, v1, v2 coordinates, if enabled.
409  * Input coordinates must be in [0, 1] range, otherwise results are undefined.
410  * Some combinations of coordinates produce invalid results,
411  * but this behaviour is acceptable.
412  */
413 static void
tri_apply_cylindrical_wrap(float v0,float v1,float v2,uint cylindrical_wrap,float output[3])414 tri_apply_cylindrical_wrap(float v0,
415                            float v1,
416                            float v2,
417                            uint cylindrical_wrap,
418                            float output[3])
419 {
420    if (cylindrical_wrap) {
421       float delta;
422 
423       delta = v1 - v0;
424       if (delta > 0.5f) {
425          v0 += 1.0f;
426       }
427       else if (delta < -0.5f) {
428          v1 += 1.0f;
429       }
430 
431       delta = v2 - v1;
432       if (delta > 0.5f) {
433          v1 += 1.0f;
434       }
435       else if (delta < -0.5f) {
436          v2 += 1.0f;
437       }
438 
439       delta = v0 - v2;
440       if (delta > 0.5f) {
441          v2 += 1.0f;
442       }
443       else if (delta < -0.5f) {
444          v0 += 1.0f;
445       }
446    }
447 
448    output[0] = v0;
449    output[1] = v1;
450    output[2] = v2;
451 }
452 
453 
454 /**
455  * Compute a0 for a constant-valued coefficient (GL_FLAT shading).
456  * The value value comes from vertex[slot][i].
457  * The result will be put into setup->coef[slot].a0[i].
458  * \param slot  which attribute slot
459  * \param i  which component of the slot (0..3)
460  */
461 static void
const_coeff(struct setup_context * setup,struct tgsi_interp_coef * coef,uint vertSlot,uint i)462 const_coeff(struct setup_context *setup,
463             struct tgsi_interp_coef *coef,
464             uint vertSlot, uint i)
465 {
466    assert(i <= 3);
467 
468    coef->dadx[i] = 0;
469    coef->dady[i] = 0;
470 
471    /* need provoking vertex info!
472     */
473    coef->a0[i] = setup->vprovoke[vertSlot][i];
474 }
475 
476 
477 /**
478  * Compute a0, dadx and dady for a linearly interpolated coefficient,
479  * for a triangle.
480  * v[0], v[1] and v[2] are vmin, vmid and vmax, respectively.
481  */
482 static void
tri_linear_coeff(struct setup_context * setup,struct tgsi_interp_coef * coef,uint i,const float v[3])483 tri_linear_coeff(struct setup_context *setup,
484                  struct tgsi_interp_coef *coef,
485                  uint i,
486                  const float v[3])
487 {
488    float botda = v[1] - v[0];
489    float majda = v[2] - v[0];
490    float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
491    float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
492    float dadx = a * setup->oneoverarea;
493    float dady = b * setup->oneoverarea;
494 
495    assert(i <= 3);
496 
497    coef->dadx[i] = dadx;
498    coef->dady[i] = dady;
499 
500    /* calculate a0 as the value which would be sampled for the
501     * fragment at (0,0), taking into account that we want to sample at
502     * pixel centers, in other words (pixel_offset, pixel_offset).
503     *
504     * this is neat but unfortunately not a good way to do things for
505     * triangles with very large values of dadx or dady as it will
506     * result in the subtraction and re-addition from a0 of a very
507     * large number, which means we'll end up loosing a lot of the
508     * fractional bits and precision from a0.  the way to fix this is
509     * to define a0 as the sample at a pixel center somewhere near vmin
510     * instead - i'll switch to this later.
511     */
512    coef->a0[i] = (v[0] -
513                   (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
514                    dady * (setup->vmin[0][1] - setup->pixel_offset)));
515 }
516 
517 
518 /**
519  * Compute a0, dadx and dady for a perspective-corrected interpolant,
520  * for a triangle.
521  * We basically multiply the vertex value by 1/w before computing
522  * the plane coefficients (a0, dadx, dady).
523  * Later, when we compute the value at a particular fragment position we'll
524  * divide the interpolated value by the interpolated W at that fragment.
525  * v[0], v[1] and v[2] are vmin, vmid and vmax, respectively.
526  */
527 static void
tri_persp_coeff(struct setup_context * setup,struct tgsi_interp_coef * coef,uint i,const float v[3])528 tri_persp_coeff(struct setup_context *setup,
529                 struct tgsi_interp_coef *coef,
530                 uint i,
531                 const float v[3])
532 {
533    /* premultiply by 1/w  (v[0][3] is always W):
534     */
535    float mina = v[0] * setup->vmin[0][3];
536    float mida = v[1] * setup->vmid[0][3];
537    float maxa = v[2] * setup->vmax[0][3];
538    float botda = mida - mina;
539    float majda = maxa - mina;
540    float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
541    float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
542    float dadx = a * setup->oneoverarea;
543    float dady = b * setup->oneoverarea;
544 
545    assert(i <= 3);
546 
547    coef->dadx[i] = dadx;
548    coef->dady[i] = dady;
549    coef->a0[i] = (mina -
550                   (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
551                    dady * (setup->vmin[0][1] - setup->pixel_offset)));
552 }
553 
554 
555 /**
556  * Special coefficient setup for gl_FragCoord.
557  * X and Y are trivial, though Y may have to be inverted for OpenGL.
558  * Z and W are copied from posCoef which should have already been computed.
559  * We could do a bit less work if we'd examine gl_FragCoord's swizzle mask.
560  */
561 static void
setup_fragcoord_coeff(struct setup_context * setup,uint slot)562 setup_fragcoord_coeff(struct setup_context *setup, uint slot)
563 {
564    const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
565    boolean origin_lower_left =
566          fsInfo->properties[TGSI_PROPERTY_FS_COORD_ORIGIN];
567    boolean pixel_center_integer =
568          fsInfo->properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER];
569 
570    /*X*/
571    setup->coef[slot].a0[0] = pixel_center_integer ? 0.0f : 0.5f;
572    setup->coef[slot].dadx[0] = 1.0f;
573    setup->coef[slot].dady[0] = 0.0f;
574    /*Y*/
575    setup->coef[slot].a0[1] =
576 		   (origin_lower_left ? setup->softpipe->framebuffer.height-1 : 0)
577 		   + (pixel_center_integer ? 0.0f : 0.5f);
578    setup->coef[slot].dadx[1] = 0.0f;
579    setup->coef[slot].dady[1] = origin_lower_left ? -1.0f : 1.0f;
580    /*Z*/
581    setup->coef[slot].a0[2] = setup->posCoef.a0[2];
582    setup->coef[slot].dadx[2] = setup->posCoef.dadx[2];
583    setup->coef[slot].dady[2] = setup->posCoef.dady[2];
584    /*W*/
585    setup->coef[slot].a0[3] = setup->posCoef.a0[3];
586    setup->coef[slot].dadx[3] = setup->posCoef.dadx[3];
587    setup->coef[slot].dady[3] = setup->posCoef.dady[3];
588 }
589 
590 
591 
592 /**
593  * Compute the setup->coef[] array dadx, dady, a0 values.
594  * Must be called after setup->vmin,vmid,vmax,vprovoke are initialized.
595  */
596 static void
setup_tri_coefficients(struct setup_context * setup)597 setup_tri_coefficients(struct setup_context *setup)
598 {
599    struct softpipe_context *softpipe = setup->softpipe;
600    const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
601    const struct sp_setup_info *sinfo = &softpipe->setup_info;
602    uint fragSlot;
603    float v[3];
604 
605    assert(sinfo->valid);
606 
607    /* z and w are done by linear interpolation:
608     */
609    v[0] = setup->vmin[0][2];
610    v[1] = setup->vmid[0][2];
611    v[2] = setup->vmax[0][2];
612    tri_linear_coeff(setup, &setup->posCoef, 2, v);
613 
614    v[0] = setup->vmin[0][3];
615    v[1] = setup->vmid[0][3];
616    v[2] = setup->vmax[0][3];
617    tri_linear_coeff(setup, &setup->posCoef, 3, v);
618 
619    /* setup interpolation for all the remaining attributes:
620     */
621    for (fragSlot = 0; fragSlot < fsInfo->num_inputs; fragSlot++) {
622       const uint vertSlot = sinfo->attrib[fragSlot].src_index;
623       uint j;
624 
625       switch (sinfo->attrib[fragSlot].interp) {
626       case SP_INTERP_CONSTANT:
627          for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
628             const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
629          }
630          break;
631       case SP_INTERP_LINEAR:
632          for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
633             tri_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
634                                        setup->vmid[vertSlot][j],
635                                        setup->vmax[vertSlot][j],
636                                        fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j),
637                                        v);
638             tri_linear_coeff(setup, &setup->coef[fragSlot], j, v);
639          }
640          break;
641       case SP_INTERP_PERSPECTIVE:
642          for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
643             tri_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
644                                        setup->vmid[vertSlot][j],
645                                        setup->vmax[vertSlot][j],
646                                        fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j),
647                                        v);
648             tri_persp_coeff(setup, &setup->coef[fragSlot], j, v);
649          }
650          break;
651       case SP_INTERP_POS:
652          setup_fragcoord_coeff(setup, fragSlot);
653          break;
654       default:
655          assert(0);
656       }
657 
658       if (fsInfo->input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
659          /* convert 0 to 1.0 and 1 to -1.0 */
660          setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f;
661          setup->coef[fragSlot].dadx[0] = 0.0;
662          setup->coef[fragSlot].dady[0] = 0.0;
663       }
664 
665       if (0) {
666          for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
667             debug_printf("attr[%d].%c: a0:%f dx:%f dy:%f\n",
668                          fragSlot, "xyzw"[j],
669                          setup->coef[fragSlot].a0[j],
670                          setup->coef[fragSlot].dadx[j],
671                          setup->coef[fragSlot].dady[j]);
672          }
673       }
674    }
675 }
676 
677 
678 static void
setup_tri_edges(struct setup_context * setup)679 setup_tri_edges(struct setup_context *setup)
680 {
681    float vmin_x = setup->vmin[0][0] + setup->pixel_offset;
682    float vmid_x = setup->vmid[0][0] + setup->pixel_offset;
683 
684    float vmin_y = setup->vmin[0][1] - setup->pixel_offset;
685    float vmid_y = setup->vmid[0][1] - setup->pixel_offset;
686    float vmax_y = setup->vmax[0][1] - setup->pixel_offset;
687 
688    setup->emaj.sy = ceilf(vmin_y);
689    setup->emaj.lines = (int) ceilf(vmax_y - setup->emaj.sy);
690    setup->emaj.dxdy = setup->emaj.dy ? setup->emaj.dx / setup->emaj.dy : .0f;
691    setup->emaj.sx = vmin_x + (setup->emaj.sy - vmin_y) * setup->emaj.dxdy;
692 
693    setup->etop.sy = ceilf(vmid_y);
694    setup->etop.lines = (int) ceilf(vmax_y - setup->etop.sy);
695    setup->etop.dxdy = setup->etop.dy ? setup->etop.dx / setup->etop.dy : .0f;
696    setup->etop.sx = vmid_x + (setup->etop.sy - vmid_y) * setup->etop.dxdy;
697 
698    setup->ebot.sy = ceilf(vmin_y);
699    setup->ebot.lines = (int) ceilf(vmid_y - setup->ebot.sy);
700    setup->ebot.dxdy = setup->ebot.dy ? setup->ebot.dx / setup->ebot.dy : .0f;
701    setup->ebot.sx = vmin_x + (setup->ebot.sy - vmin_y) * setup->ebot.dxdy;
702 }
703 
704 
705 /**
706  * Render the upper or lower half of a triangle.
707  * Scissoring/cliprect is applied here too.
708  */
709 static void
subtriangle(struct setup_context * setup,struct edge * eleft,struct edge * eright,int lines,unsigned viewport_index)710 subtriangle(struct setup_context *setup,
711             struct edge *eleft,
712             struct edge *eright,
713             int lines,
714             unsigned viewport_index)
715 {
716    const struct pipe_scissor_state *cliprect = &setup->softpipe->cliprect[viewport_index];
717    const int minx = (int) cliprect->minx;
718    const int maxx = (int) cliprect->maxx;
719    const int miny = (int) cliprect->miny;
720    const int maxy = (int) cliprect->maxy;
721    int y, start_y, finish_y;
722    int sy = (int)eleft->sy;
723 
724    assert((int)eleft->sy == (int) eright->sy);
725    assert(lines >= 0);
726 
727    /* clip top/bottom */
728    start_y = sy;
729    if (start_y < miny)
730       start_y = miny;
731 
732    finish_y = sy + lines;
733    if (finish_y > maxy)
734       finish_y = maxy;
735 
736    start_y -= sy;
737    finish_y -= sy;
738 
739    /*
740    debug_printf("%s %d %d\n", __FUNCTION__, start_y, finish_y);
741    */
742 
743    for (y = start_y; y < finish_y; y++) {
744 
745       /* avoid accumulating adds as floats don't have the precision to
746        * accurately iterate large triangle edges that way.  luckily we
747        * can just multiply these days.
748        *
749        * this is all drowned out by the attribute interpolation anyway.
750        */
751       int left = (int)(eleft->sx + y * eleft->dxdy);
752       int right = (int)(eright->sx + y * eright->dxdy);
753 
754       /* clip left/right */
755       if (left < minx)
756          left = minx;
757       if (right > maxx)
758          right = maxx;
759 
760       if (left < right) {
761          int _y = sy + y;
762          if (block(_y) != setup->span.y) {
763             flush_spans(setup);
764             setup->span.y = block(_y);
765          }
766 
767          setup->span.left[_y&1] = left;
768          setup->span.right[_y&1] = right;
769       }
770    }
771 
772 
773    /* save the values so that emaj can be restarted:
774     */
775    eleft->sx += lines * eleft->dxdy;
776    eright->sx += lines * eright->dxdy;
777    eleft->sy += lines;
778    eright->sy += lines;
779 }
780 
781 
782 /**
783  * Recalculate prim's determinant.  This is needed as we don't have
784  * get this information through the vbuf_render interface & we must
785  * calculate it here.
786  */
787 static float
calc_det(const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])788 calc_det(const float (*v0)[4],
789          const float (*v1)[4],
790          const float (*v2)[4])
791 {
792    /* edge vectors e = v0 - v2, f = v1 - v2 */
793    const float ex = v0[0][0] - v2[0][0];
794    const float ey = v0[0][1] - v2[0][1];
795    const float fx = v1[0][0] - v2[0][0];
796    const float fy = v1[0][1] - v2[0][1];
797 
798    /* det = cross(e,f).z */
799    return ex * fy - ey * fx;
800 }
801 
802 
803 /**
804  * Do setup for triangle rasterization, then render the triangle.
805  */
806 void
sp_setup_tri(struct setup_context * setup,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])807 sp_setup_tri(struct setup_context *setup,
808              const float (*v0)[4],
809              const float (*v1)[4],
810              const float (*v2)[4])
811 {
812    float det;
813    uint layer = 0;
814    unsigned viewport_index = 0;
815 #if DEBUG_VERTS
816    debug_printf("Setup triangle:\n");
817    print_vertex(setup, v0);
818    print_vertex(setup, v1);
819    print_vertex(setup, v2);
820 #endif
821 
822    if (setup->softpipe->no_rast || setup->softpipe->rasterizer->rasterizer_discard)
823       return;
824 
825    det = calc_det(v0, v1, v2);
826    /*
827    debug_printf("%s\n", __FUNCTION__ );
828    */
829 
830 #if DEBUG_FRAGS
831    setup->numFragsEmitted = 0;
832    setup->numFragsWritten = 0;
833 #endif
834 
835    if (!setup_sort_vertices( setup, det, v0, v1, v2 ))
836       return;
837 
838    setup_tri_coefficients( setup );
839    setup_tri_edges( setup );
840 
841    assert(setup->softpipe->reduced_prim == PIPE_PRIM_TRIANGLES);
842 
843    setup->span.y = 0;
844    setup->span.right[0] = 0;
845    setup->span.right[1] = 0;
846    /*   setup->span.z_mode = tri_z_mode( setup->ctx ); */
847    if (setup->softpipe->layer_slot > 0) {
848       layer = *(unsigned *)setup->vprovoke[setup->softpipe->layer_slot];
849       layer = MIN2(layer, setup->max_layer);
850    }
851    setup->quad[0].input.layer = layer;
852 
853    if (setup->softpipe->viewport_index_slot > 0) {
854       unsigned *udata = (unsigned*)v0[setup->softpipe->viewport_index_slot];
855       viewport_index = sp_clamp_viewport_idx(*udata);
856    }
857    setup->quad[0].input.viewport_index = viewport_index;
858 
859    /*   init_constant_attribs( setup ); */
860 
861    if (setup->oneoverarea < 0.0) {
862       /* emaj on left:
863        */
864       subtriangle(setup, &setup->emaj, &setup->ebot, setup->ebot.lines, viewport_index);
865       subtriangle(setup, &setup->emaj, &setup->etop, setup->etop.lines, viewport_index);
866    }
867    else {
868       /* emaj on right:
869        */
870       subtriangle(setup, &setup->ebot, &setup->emaj, setup->ebot.lines, viewport_index);
871       subtriangle(setup, &setup->etop, &setup->emaj, setup->etop.lines, viewport_index);
872    }
873 
874    flush_spans( setup );
875 
876    if (setup->softpipe->active_statistics_queries) {
877       setup->softpipe->pipeline_statistics.c_primitives++;
878    }
879 
880 #if DEBUG_FRAGS
881    printf("Tri: %u frags emitted, %u written\n",
882           setup->numFragsEmitted,
883           setup->numFragsWritten);
884 #endif
885 }
886 
887 
888 /* Apply cylindrical wrapping to v0, v1 coordinates, if enabled.
889  * Input coordinates must be in [0, 1] range, otherwise results are undefined.
890  */
891 static void
line_apply_cylindrical_wrap(float v0,float v1,uint cylindrical_wrap,float output[2])892 line_apply_cylindrical_wrap(float v0,
893                             float v1,
894                             uint cylindrical_wrap,
895                             float output[2])
896 {
897    if (cylindrical_wrap) {
898       float delta;
899 
900       delta = v1 - v0;
901       if (delta > 0.5f) {
902          v0 += 1.0f;
903       }
904       else if (delta < -0.5f) {
905          v1 += 1.0f;
906       }
907    }
908 
909    output[0] = v0;
910    output[1] = v1;
911 }
912 
913 
914 /**
915  * Compute a0, dadx and dady for a linearly interpolated coefficient,
916  * for a line.
917  * v[0] and v[1] are vmin and vmax, respectively.
918  */
919 static void
line_linear_coeff(const struct setup_context * setup,struct tgsi_interp_coef * coef,uint i,const float v[2])920 line_linear_coeff(const struct setup_context *setup,
921                   struct tgsi_interp_coef *coef,
922                   uint i,
923                   const float v[2])
924 {
925    const float da = v[1] - v[0];
926    const float dadx = da * setup->emaj.dx * setup->oneoverarea;
927    const float dady = da * setup->emaj.dy * setup->oneoverarea;
928    coef->dadx[i] = dadx;
929    coef->dady[i] = dady;
930    coef->a0[i] = (v[0] -
931                   (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
932                    dady * (setup->vmin[0][1] - setup->pixel_offset)));
933 }
934 
935 
936 /**
937  * Compute a0, dadx and dady for a perspective-corrected interpolant,
938  * for a line.
939  * v[0] and v[1] are vmin and vmax, respectively.
940  */
941 static void
line_persp_coeff(const struct setup_context * setup,struct tgsi_interp_coef * coef,uint i,const float v[2])942 line_persp_coeff(const struct setup_context *setup,
943                  struct tgsi_interp_coef *coef,
944                  uint i,
945                  const float v[2])
946 {
947    const float a0 = v[0] * setup->vmin[0][3];
948    const float a1 = v[1] * setup->vmax[0][3];
949    const float da = a1 - a0;
950    const float dadx = da * setup->emaj.dx * setup->oneoverarea;
951    const float dady = da * setup->emaj.dy * setup->oneoverarea;
952    coef->dadx[i] = dadx;
953    coef->dady[i] = dady;
954    coef->a0[i] = (a0 -
955                   (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
956                    dady * (setup->vmin[0][1] - setup->pixel_offset)));
957 }
958 
959 
960 /**
961  * Compute the setup->coef[] array dadx, dady, a0 values.
962  * Must be called after setup->vmin,vmax are initialized.
963  */
964 static boolean
setup_line_coefficients(struct setup_context * setup,const float (* v0)[4],const float (* v1)[4])965 setup_line_coefficients(struct setup_context *setup,
966                         const float (*v0)[4],
967                         const float (*v1)[4])
968 {
969    struct softpipe_context *softpipe = setup->softpipe;
970    const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
971    const struct sp_setup_info *sinfo = &softpipe->setup_info;
972    uint fragSlot;
973    float area;
974    float v[2];
975 
976    assert(sinfo->valid);
977 
978    /* use setup->vmin, vmax to point to vertices */
979    if (softpipe->rasterizer->flatshade_first)
980       setup->vprovoke = v0;
981    else
982       setup->vprovoke = v1;
983    setup->vmin = v0;
984    setup->vmax = v1;
985 
986    setup->emaj.dx = setup->vmax[0][0] - setup->vmin[0][0];
987    setup->emaj.dy = setup->vmax[0][1] - setup->vmin[0][1];
988 
989    /* NOTE: this is not really area but something proportional to it */
990    area = setup->emaj.dx * setup->emaj.dx + setup->emaj.dy * setup->emaj.dy;
991    if (area == 0.0f || util_is_inf_or_nan(area))
992       return FALSE;
993    setup->oneoverarea = 1.0f / area;
994 
995    /* z and w are done by linear interpolation:
996     */
997    v[0] = setup->vmin[0][2];
998    v[1] = setup->vmax[0][2];
999    line_linear_coeff(setup, &setup->posCoef, 2, v);
1000 
1001    v[0] = setup->vmin[0][3];
1002    v[1] = setup->vmax[0][3];
1003    line_linear_coeff(setup, &setup->posCoef, 3, v);
1004 
1005    /* setup interpolation for all the remaining attributes:
1006     */
1007    for (fragSlot = 0; fragSlot < fsInfo->num_inputs; fragSlot++) {
1008       const uint vertSlot = sinfo->attrib[fragSlot].src_index;
1009       uint j;
1010 
1011       switch (sinfo->attrib[fragSlot].interp) {
1012       case SP_INTERP_CONSTANT:
1013          for (j = 0; j < TGSI_NUM_CHANNELS; j++)
1014             const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
1015          break;
1016       case SP_INTERP_LINEAR:
1017          for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
1018             line_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
1019                                         setup->vmax[vertSlot][j],
1020                                         fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j),
1021                                         v);
1022             line_linear_coeff(setup, &setup->coef[fragSlot], j, v);
1023          }
1024          break;
1025       case SP_INTERP_PERSPECTIVE:
1026          for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
1027             line_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
1028                                         setup->vmax[vertSlot][j],
1029                                         fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j),
1030                                         v);
1031             line_persp_coeff(setup, &setup->coef[fragSlot], j, v);
1032          }
1033          break;
1034       case SP_INTERP_POS:
1035          setup_fragcoord_coeff(setup, fragSlot);
1036          break;
1037       default:
1038          assert(0);
1039       }
1040 
1041       if (fsInfo->input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
1042          /* convert 0 to 1.0 and 1 to -1.0 */
1043          setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f;
1044          setup->coef[fragSlot].dadx[0] = 0.0;
1045          setup->coef[fragSlot].dady[0] = 0.0;
1046       }
1047    }
1048    return TRUE;
1049 }
1050 
1051 
1052 /**
1053  * Plot a pixel in a line segment.
1054  */
1055 static inline void
plot(struct setup_context * setup,int x,int y)1056 plot(struct setup_context *setup, int x, int y)
1057 {
1058    const int iy = y & 1;
1059    const int ix = x & 1;
1060    const int quadX = x - ix;
1061    const int quadY = y - iy;
1062    const int mask = (1 << ix) << (2 * iy);
1063 
1064    if (quadX != setup->quad[0].input.x0 ||
1065        quadY != setup->quad[0].input.y0)
1066    {
1067       /* flush prev quad, start new quad */
1068 
1069       if (setup->quad[0].input.x0 != -1)
1070          clip_emit_quad(setup, &setup->quad[0]);
1071 
1072       setup->quad[0].input.x0 = quadX;
1073       setup->quad[0].input.y0 = quadY;
1074       setup->quad[0].inout.mask = 0x0;
1075    }
1076 
1077    setup->quad[0].inout.mask |= mask;
1078 }
1079 
1080 
1081 /**
1082  * Do setup for line rasterization, then render the line.
1083  * Single-pixel width, no stipple, etc.  We rely on the 'draw' module
1084  * to handle stippling and wide lines.
1085  */
1086 void
sp_setup_line(struct setup_context * setup,const float (* v0)[4],const float (* v1)[4])1087 sp_setup_line(struct setup_context *setup,
1088               const float (*v0)[4],
1089               const float (*v1)[4])
1090 {
1091    int x0 = (int) v0[0][0];
1092    int x1 = (int) v1[0][0];
1093    int y0 = (int) v0[0][1];
1094    int y1 = (int) v1[0][1];
1095    int dx = x1 - x0;
1096    int dy = y1 - y0;
1097    int xstep, ystep;
1098    uint layer = 0;
1099    unsigned viewport_index = 0;
1100 
1101 #if DEBUG_VERTS
1102    debug_printf("Setup line:\n");
1103    print_vertex(setup, v0);
1104    print_vertex(setup, v1);
1105 #endif
1106 
1107    if (setup->softpipe->no_rast || setup->softpipe->rasterizer->rasterizer_discard)
1108       return;
1109 
1110    if (dx == 0 && dy == 0)
1111       return;
1112 
1113    if (!setup_line_coefficients(setup, v0, v1))
1114       return;
1115 
1116    assert(v0[0][0] < 1.0e9);
1117    assert(v0[0][1] < 1.0e9);
1118    assert(v1[0][0] < 1.0e9);
1119    assert(v1[0][1] < 1.0e9);
1120 
1121    if (dx < 0) {
1122       dx = -dx;   /* make positive */
1123       xstep = -1;
1124    }
1125    else {
1126       xstep = 1;
1127    }
1128 
1129    if (dy < 0) {
1130       dy = -dy;   /* make positive */
1131       ystep = -1;
1132    }
1133    else {
1134       ystep = 1;
1135    }
1136 
1137    assert(dx >= 0);
1138    assert(dy >= 0);
1139    assert(setup->softpipe->reduced_prim == PIPE_PRIM_LINES);
1140 
1141    setup->quad[0].input.x0 = setup->quad[0].input.y0 = -1;
1142    setup->quad[0].inout.mask = 0x0;
1143    if (setup->softpipe->layer_slot > 0) {
1144       layer = *(unsigned *)setup->vprovoke[setup->softpipe->layer_slot];
1145       layer = MIN2(layer, setup->max_layer);
1146    }
1147    setup->quad[0].input.layer = layer;
1148 
1149    if (setup->softpipe->viewport_index_slot > 0) {
1150       unsigned *udata = (unsigned*)setup->vprovoke[setup->softpipe->viewport_index_slot];
1151       viewport_index = sp_clamp_viewport_idx(*udata);
1152    }
1153    setup->quad[0].input.viewport_index = viewport_index;
1154 
1155    /* XXX temporary: set coverage to 1.0 so the line appears
1156     * if AA mode happens to be enabled.
1157     */
1158    setup->quad[0].input.coverage[0] =
1159    setup->quad[0].input.coverage[1] =
1160    setup->quad[0].input.coverage[2] =
1161    setup->quad[0].input.coverage[3] = 1.0;
1162 
1163    if (dx > dy) {
1164       /*** X-major line ***/
1165       int i;
1166       const int errorInc = dy + dy;
1167       int error = errorInc - dx;
1168       const int errorDec = error - dx;
1169 
1170       for (i = 0; i < dx; i++) {
1171          plot(setup, x0, y0);
1172 
1173          x0 += xstep;
1174          if (error < 0) {
1175             error += errorInc;
1176          }
1177          else {
1178             error += errorDec;
1179             y0 += ystep;
1180          }
1181       }
1182    }
1183    else {
1184       /*** Y-major line ***/
1185       int i;
1186       const int errorInc = dx + dx;
1187       int error = errorInc - dy;
1188       const int errorDec = error - dy;
1189 
1190       for (i = 0; i < dy; i++) {
1191          plot(setup, x0, y0);
1192 
1193          y0 += ystep;
1194          if (error < 0) {
1195             error += errorInc;
1196          }
1197          else {
1198             error += errorDec;
1199             x0 += xstep;
1200          }
1201       }
1202    }
1203 
1204    /* draw final quad */
1205    if (setup->quad[0].inout.mask) {
1206       clip_emit_quad(setup, &setup->quad[0]);
1207    }
1208 }
1209 
1210 
1211 static void
point_persp_coeff(const struct setup_context * setup,const float (* vert)[4],struct tgsi_interp_coef * coef,uint vertSlot,uint i)1212 point_persp_coeff(const struct setup_context *setup,
1213                   const float (*vert)[4],
1214                   struct tgsi_interp_coef *coef,
1215                   uint vertSlot, uint i)
1216 {
1217    assert(i <= 3);
1218    coef->dadx[i] = 0.0F;
1219    coef->dady[i] = 0.0F;
1220    coef->a0[i] = vert[vertSlot][i] * vert[0][3];
1221 }
1222 
1223 
1224 /**
1225  * Do setup for point rasterization, then render the point.
1226  * Round or square points...
1227  * XXX could optimize a lot for 1-pixel points.
1228  */
1229 void
sp_setup_point(struct setup_context * setup,const float (* v0)[4])1230 sp_setup_point(struct setup_context *setup,
1231                const float (*v0)[4])
1232 {
1233    struct softpipe_context *softpipe = setup->softpipe;
1234    const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
1235    const int sizeAttr = setup->softpipe->psize_slot;
1236    const float size
1237       = sizeAttr > 0 ? v0[sizeAttr][0]
1238       : setup->softpipe->rasterizer->point_size;
1239    const float halfSize = 0.5F * size;
1240    const boolean round = (boolean) setup->softpipe->rasterizer->point_smooth;
1241    const float x = v0[0][0];  /* Note: data[0] is always position */
1242    const float y = v0[0][1];
1243    const struct sp_setup_info *sinfo = &softpipe->setup_info;
1244    uint fragSlot;
1245    uint layer = 0;
1246    unsigned viewport_index = 0;
1247 #if DEBUG_VERTS
1248    debug_printf("Setup point:\n");
1249    print_vertex(setup, v0);
1250 #endif
1251 
1252    assert(sinfo->valid);
1253 
1254    if (setup->softpipe->no_rast || setup->softpipe->rasterizer->rasterizer_discard)
1255       return;
1256 
1257    assert(setup->softpipe->reduced_prim == PIPE_PRIM_POINTS);
1258 
1259    if (setup->softpipe->layer_slot > 0) {
1260       layer = *(unsigned *)v0[setup->softpipe->layer_slot];
1261       layer = MIN2(layer, setup->max_layer);
1262    }
1263    setup->quad[0].input.layer = layer;
1264 
1265    if (setup->softpipe->viewport_index_slot > 0) {
1266       unsigned *udata = (unsigned*)v0[setup->softpipe->viewport_index_slot];
1267       viewport_index = sp_clamp_viewport_idx(*udata);
1268    }
1269    setup->quad[0].input.viewport_index = viewport_index;
1270 
1271    /* For points, all interpolants are constant-valued.
1272     * However, for point sprites, we'll need to setup texcoords appropriately.
1273     * XXX: which coefficients are the texcoords???
1274     * We may do point sprites as textured quads...
1275     *
1276     * KW: We don't know which coefficients are texcoords - ultimately
1277     * the choice of what interpolation mode to use for each attribute
1278     * should be determined by the fragment program, using
1279     * per-attribute declaration statements that include interpolation
1280     * mode as a parameter.  So either the fragment program will have
1281     * to be adjusted for pointsprite vs normal point behaviour, or
1282     * otherwise a special interpolation mode will have to be defined
1283     * which matches the required behaviour for point sprites.  But -
1284     * the latter is not a feature of normal hardware, and as such
1285     * probably should be ruled out on that basis.
1286     */
1287    setup->vprovoke = v0;
1288 
1289    /* setup Z, W */
1290    const_coeff(setup, &setup->posCoef, 0, 2);
1291    const_coeff(setup, &setup->posCoef, 0, 3);
1292 
1293    for (fragSlot = 0; fragSlot < fsInfo->num_inputs; fragSlot++) {
1294       const uint vertSlot = sinfo->attrib[fragSlot].src_index;
1295       uint j;
1296 
1297       switch (sinfo->attrib[fragSlot].interp) {
1298       case SP_INTERP_CONSTANT:
1299          /* fall-through */
1300       case SP_INTERP_LINEAR:
1301          for (j = 0; j < TGSI_NUM_CHANNELS; j++)
1302             const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
1303          break;
1304       case SP_INTERP_PERSPECTIVE:
1305          for (j = 0; j < TGSI_NUM_CHANNELS; j++)
1306             point_persp_coeff(setup, setup->vprovoke,
1307                               &setup->coef[fragSlot], vertSlot, j);
1308          break;
1309       case SP_INTERP_POS:
1310          setup_fragcoord_coeff(setup, fragSlot);
1311          break;
1312       default:
1313          assert(0);
1314       }
1315 
1316       if (fsInfo->input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
1317          /* convert 0 to 1.0 and 1 to -1.0 */
1318          setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f;
1319          setup->coef[fragSlot].dadx[0] = 0.0;
1320          setup->coef[fragSlot].dady[0] = 0.0;
1321       }
1322    }
1323 
1324 
1325    if (halfSize <= 0.5 && !round) {
1326       /* special case for 1-pixel points */
1327       const int ix = ((int) x) & 1;
1328       const int iy = ((int) y) & 1;
1329       setup->quad[0].input.x0 = (int) x - ix;
1330       setup->quad[0].input.y0 = (int) y - iy;
1331       setup->quad[0].inout.mask = (1 << ix) << (2 * iy);
1332       clip_emit_quad(setup, &setup->quad[0]);
1333    }
1334    else {
1335       if (round) {
1336          /* rounded points */
1337          const int ixmin = block((int) (x - halfSize));
1338          const int ixmax = block((int) (x + halfSize));
1339          const int iymin = block((int) (y - halfSize));
1340          const int iymax = block((int) (y + halfSize));
1341          const float rmin = halfSize - 0.7071F;  /* 0.7071 = sqrt(2)/2 */
1342          const float rmax = halfSize + 0.7071F;
1343          const float rmin2 = MAX2(0.0F, rmin * rmin);
1344          const float rmax2 = rmax * rmax;
1345          const float cscale = 1.0F / (rmax2 - rmin2);
1346          int ix, iy;
1347 
1348          for (iy = iymin; iy <= iymax; iy += 2) {
1349             for (ix = ixmin; ix <= ixmax; ix += 2) {
1350                float dx, dy, dist2, cover;
1351 
1352                setup->quad[0].inout.mask = 0x0;
1353 
1354                dx = (ix + 0.5f) - x;
1355                dy = (iy + 0.5f) - y;
1356                dist2 = dx * dx + dy * dy;
1357                if (dist2 <= rmax2) {
1358                   cover = 1.0F - (dist2 - rmin2) * cscale;
1359                   setup->quad[0].input.coverage[QUAD_TOP_LEFT] = MIN2(cover, 1.0f);
1360                   setup->quad[0].inout.mask |= MASK_TOP_LEFT;
1361                }
1362 
1363                dx = (ix + 1.5f) - x;
1364                dy = (iy + 0.5f) - y;
1365                dist2 = dx * dx + dy * dy;
1366                if (dist2 <= rmax2) {
1367                   cover = 1.0F - (dist2 - rmin2) * cscale;
1368                   setup->quad[0].input.coverage[QUAD_TOP_RIGHT] = MIN2(cover, 1.0f);
1369                   setup->quad[0].inout.mask |= MASK_TOP_RIGHT;
1370                }
1371 
1372                dx = (ix + 0.5f) - x;
1373                dy = (iy + 1.5f) - y;
1374                dist2 = dx * dx + dy * dy;
1375                if (dist2 <= rmax2) {
1376                   cover = 1.0F - (dist2 - rmin2) * cscale;
1377                   setup->quad[0].input.coverage[QUAD_BOTTOM_LEFT] = MIN2(cover, 1.0f);
1378                   setup->quad[0].inout.mask |= MASK_BOTTOM_LEFT;
1379                }
1380 
1381                dx = (ix + 1.5f) - x;
1382                dy = (iy + 1.5f) - y;
1383                dist2 = dx * dx + dy * dy;
1384                if (dist2 <= rmax2) {
1385                   cover = 1.0F - (dist2 - rmin2) * cscale;
1386                   setup->quad[0].input.coverage[QUAD_BOTTOM_RIGHT] = MIN2(cover, 1.0f);
1387                   setup->quad[0].inout.mask |= MASK_BOTTOM_RIGHT;
1388                }
1389 
1390                if (setup->quad[0].inout.mask) {
1391                   setup->quad[0].input.x0 = ix;
1392                   setup->quad[0].input.y0 = iy;
1393                   clip_emit_quad(setup, &setup->quad[0]);
1394                }
1395             }
1396          }
1397       }
1398       else {
1399          /* square points */
1400          const int xmin = (int) (x + 0.75 - halfSize);
1401          const int ymin = (int) (y + 0.25 - halfSize);
1402          const int xmax = xmin + (int) size;
1403          const int ymax = ymin + (int) size;
1404          /* XXX could apply scissor to xmin,ymin,xmax,ymax now */
1405          const int ixmin = block(xmin);
1406          const int ixmax = block(xmax - 1);
1407          const int iymin = block(ymin);
1408          const int iymax = block(ymax - 1);
1409          int ix, iy;
1410 
1411          /*
1412          debug_printf("(%f, %f) -> X:%d..%d Y:%d..%d\n", x, y, xmin, xmax,ymin,ymax);
1413          */
1414          for (iy = iymin; iy <= iymax; iy += 2) {
1415             uint rowMask = 0xf;
1416             if (iy < ymin) {
1417                /* above the top edge */
1418                rowMask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
1419             }
1420             if (iy + 1 >= ymax) {
1421                /* below the bottom edge */
1422                rowMask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
1423             }
1424 
1425             for (ix = ixmin; ix <= ixmax; ix += 2) {
1426                uint mask = rowMask;
1427 
1428                if (ix < xmin) {
1429                   /* fragment is past left edge of point, turn off left bits */
1430                   mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
1431                }
1432                if (ix + 1 >= xmax) {
1433                   /* past the right edge */
1434                   mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
1435                }
1436 
1437                setup->quad[0].inout.mask = mask;
1438                setup->quad[0].input.x0 = ix;
1439                setup->quad[0].input.y0 = iy;
1440                clip_emit_quad(setup, &setup->quad[0]);
1441             }
1442          }
1443       }
1444    }
1445 }
1446 
1447 
1448 /**
1449  * Called by vbuf code just before we start buffering primitives.
1450  */
1451 void
sp_setup_prepare(struct setup_context * setup)1452 sp_setup_prepare(struct setup_context *setup)
1453 {
1454    struct softpipe_context *sp = setup->softpipe;
1455    int i;
1456    unsigned max_layer = ~0;
1457    if (sp->dirty) {
1458       softpipe_update_derived(sp, sp->reduced_api_prim);
1459    }
1460 
1461    /* Note: nr_attrs is only used for debugging (vertex printing) */
1462    setup->nr_vertex_attrs = draw_num_shader_outputs(sp->draw);
1463 
1464    /*
1465     * Determine how many layers the fb has (used for clamping layer value).
1466     * OpenGL (but not d3d10) permits different amount of layers per rt, however
1467     * results are undefined if layer exceeds the amount of layers of ANY
1468     * attachment hence don't need separate per cbuf and zsbuf max.
1469     */
1470    for (i = 0; i < setup->softpipe->framebuffer.nr_cbufs; i++) {
1471       struct pipe_surface *cbuf = setup->softpipe->framebuffer.cbufs[i];
1472       if (cbuf) {
1473          max_layer = MIN2(max_layer,
1474                           cbuf->u.tex.last_layer - cbuf->u.tex.first_layer);
1475 
1476       }
1477    }
1478 
1479    setup->max_layer = max_layer;
1480 
1481    sp->quad.first->begin( sp->quad.first );
1482 
1483    if (sp->reduced_api_prim == PIPE_PRIM_TRIANGLES &&
1484        sp->rasterizer->fill_front == PIPE_POLYGON_MODE_FILL &&
1485        sp->rasterizer->fill_back == PIPE_POLYGON_MODE_FILL) {
1486       /* we'll do culling */
1487       setup->cull_face = sp->rasterizer->cull_face;
1488    }
1489    else {
1490       /* 'draw' will do culling */
1491       setup->cull_face = PIPE_FACE_NONE;
1492    }
1493 }
1494 
1495 
1496 void
sp_setup_destroy_context(struct setup_context * setup)1497 sp_setup_destroy_context(struct setup_context *setup)
1498 {
1499    FREE( setup );
1500 }
1501 
1502 
1503 /**
1504  * Create a new primitive setup/render stage.
1505  */
1506 struct setup_context *
sp_setup_create_context(struct softpipe_context * softpipe)1507 sp_setup_create_context(struct softpipe_context *softpipe)
1508 {
1509    struct setup_context *setup = CALLOC_STRUCT(setup_context);
1510    unsigned i;
1511 
1512    setup->softpipe = softpipe;
1513 
1514    for (i = 0; i < MAX_QUADS; i++) {
1515       setup->quad[i].coef = setup->coef;
1516       setup->quad[i].posCoef = &setup->posCoef;
1517    }
1518 
1519    setup->span.left[0] = 1000000;     /* greater than right[0] */
1520    setup->span.left[1] = 1000000;     /* greater than right[1] */
1521 
1522    return setup;
1523 }
1524