1 /*
2  * Copyright © 2013 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 /**
25  * \file brw_vec4_gs_visitor.cpp
26  *
27  * Geometry-shader-specific code derived from the vec4_visitor class.
28  */
29 
30 #include "brw_vec4_gs_visitor.h"
31 #include "gen6_gs_visitor.h"
32 #include "brw_cfg.h"
33 #include "brw_fs.h"
34 #include "brw_nir.h"
35 #include "common/gen_debug.h"
36 
37 namespace brw {
38 
vec4_gs_visitor(const struct brw_compiler * compiler,void * log_data,struct brw_gs_compile * c,struct brw_gs_prog_data * prog_data,const nir_shader * shader,void * mem_ctx,bool no_spills,int shader_time_index)39 vec4_gs_visitor::vec4_gs_visitor(const struct brw_compiler *compiler,
40                                  void *log_data,
41                                  struct brw_gs_compile *c,
42                                  struct brw_gs_prog_data *prog_data,
43                                  const nir_shader *shader,
44                                  void *mem_ctx,
45                                  bool no_spills,
46                                  int shader_time_index)
47    : vec4_visitor(compiler, log_data, &c->key.tex,
48                   &prog_data->base, shader,  mem_ctx,
49                   no_spills, shader_time_index),
50      c(c),
51      gs_prog_data(prog_data)
52 {
53 }
54 
55 
56 static inline struct brw_reg
attribute_to_hw_reg(int attr,brw_reg_type type,bool interleaved)57 attribute_to_hw_reg(int attr, brw_reg_type type, bool interleaved)
58 {
59    struct brw_reg reg;
60 
61    unsigned width = REG_SIZE / 2 / MAX2(4, type_sz(type));
62    if (interleaved) {
63       reg = stride(brw_vecn_grf(width, attr / 2, (attr % 2) * 4), 0, width, 1);
64    } else {
65       reg = brw_vecn_grf(width, attr, 0);
66    }
67 
68    reg.type = type;
69    return reg;
70 }
71 
72 /**
73  * Replace each register of type ATTR in this->instructions with a reference
74  * to a fixed HW register.
75  *
76  * If interleaved is true, then each attribute takes up half a register, with
77  * register N containing attribute 2*N in its first half and attribute 2*N+1
78  * in its second half (this corresponds to the payload setup used by geometry
79  * shaders in "single" or "dual instanced" dispatch mode).  If interleaved is
80  * false, then each attribute takes up a whole register, with register N
81  * containing attribute N (this corresponds to the payload setup used by
82  * vertex shaders, and by geometry shaders in "dual object" dispatch mode).
83  */
84 int
setup_varying_inputs(int payload_reg,int attributes_per_reg)85 vec4_gs_visitor::setup_varying_inputs(int payload_reg,
86                                       int attributes_per_reg)
87 {
88    /* For geometry shaders there are N copies of the input attributes, where N
89     * is the number of input vertices.  attribute_map[BRW_VARYING_SLOT_COUNT *
90     * i + j] represents attribute j for vertex i.
91     *
92     * Note that GS inputs are read from the VUE 256 bits (2 vec4's) at a time,
93     * so the total number of input slots that will be delivered to the GS (and
94     * thus the stride of the input arrays) is urb_read_length * 2.
95     */
96    const unsigned num_input_vertices = nir->info.gs.vertices_in;
97    assert(num_input_vertices <= MAX_GS_INPUT_VERTICES);
98    unsigned input_array_stride = prog_data->urb_read_length * 2;
99 
100    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
101       for (int i = 0; i < 3; i++) {
102          if (inst->src[i].file != ATTR)
103             continue;
104 
105          assert(inst->src[i].offset % REG_SIZE == 0);
106          int grf = payload_reg * attributes_per_reg +
107                    inst->src[i].nr + inst->src[i].offset / REG_SIZE;
108 
109          struct brw_reg reg =
110             attribute_to_hw_reg(grf, inst->src[i].type, attributes_per_reg > 1);
111          reg.swizzle = inst->src[i].swizzle;
112          if (inst->src[i].abs)
113             reg = brw_abs(reg);
114          if (inst->src[i].negate)
115             reg = negate(reg);
116 
117          inst->src[i] = reg;
118       }
119    }
120 
121    int regs_used = ALIGN(input_array_stride * num_input_vertices,
122                          attributes_per_reg) / attributes_per_reg;
123    return payload_reg + regs_used;
124 }
125 
126 void
setup_payload()127 vec4_gs_visitor::setup_payload()
128 {
129    /* If we are in dual instanced or single mode, then attributes are going
130     * to be interleaved, so one register contains two attribute slots.
131     */
132    int attributes_per_reg =
133       prog_data->dispatch_mode == DISPATCH_MODE_4X2_DUAL_OBJECT ? 1 : 2;
134 
135    int reg = 0;
136 
137    /* The payload always contains important data in r0, which contains
138     * the URB handles that are passed on to the URB write at the end
139     * of the thread.
140     */
141    reg++;
142 
143    /* If the shader uses gl_PrimitiveIDIn, that goes in r1. */
144    if (gs_prog_data->include_primitive_id)
145       reg++;
146 
147    reg = setup_uniforms(reg);
148 
149    reg = setup_varying_inputs(reg, attributes_per_reg);
150 
151    this->first_non_payload_grf = reg;
152 }
153 
154 
155 void
emit_prolog()156 vec4_gs_visitor::emit_prolog()
157 {
158    /* In vertex shaders, r0.2 is guaranteed to be initialized to zero.  In
159     * geometry shaders, it isn't (it contains a bunch of information we don't
160     * need, like the input primitive type).  We need r0.2 to be zero in order
161     * to build scratch read/write messages correctly (otherwise this value
162     * will be interpreted as a global offset, causing us to do our scratch
163     * reads/writes to garbage memory).  So just set it to zero at the top of
164     * the shader.
165     */
166    this->current_annotation = "clear r0.2";
167    dst_reg r0(retype(brw_vec4_grf(0, 0), BRW_REGISTER_TYPE_UD));
168    vec4_instruction *inst = emit(GS_OPCODE_SET_DWORD_2, r0, brw_imm_ud(0u));
169    inst->force_writemask_all = true;
170 
171    /* Create a virtual register to hold the vertex count */
172    this->vertex_count = src_reg(this, glsl_type::uint_type);
173 
174    /* Initialize the vertex_count register to 0 */
175    this->current_annotation = "initialize vertex_count";
176    inst = emit(MOV(dst_reg(this->vertex_count), brw_imm_ud(0u)));
177    inst->force_writemask_all = true;
178 
179    if (c->control_data_header_size_bits > 0) {
180       /* Create a virtual register to hold the current set of control data
181        * bits.
182        */
183       this->control_data_bits = src_reg(this, glsl_type::uint_type);
184 
185       /* If we're outputting more than 32 control data bits, then EmitVertex()
186        * will set control_data_bits to 0 after emitting the first vertex.
187        * Otherwise, we need to initialize it to 0 here.
188        */
189       if (c->control_data_header_size_bits <= 32) {
190          this->current_annotation = "initialize control data bits";
191          inst = emit(MOV(dst_reg(this->control_data_bits), brw_imm_ud(0u)));
192          inst->force_writemask_all = true;
193       }
194    }
195 
196    this->current_annotation = NULL;
197 }
198 
199 void
emit_thread_end()200 vec4_gs_visitor::emit_thread_end()
201 {
202    if (c->control_data_header_size_bits > 0) {
203       /* During shader execution, we only ever call emit_control_data_bits()
204        * just prior to outputting a vertex.  Therefore, the control data bits
205        * corresponding to the most recently output vertex still need to be
206        * emitted.
207        */
208       current_annotation = "thread end: emit control data bits";
209       emit_control_data_bits();
210    }
211 
212    /* MRF 0 is reserved for the debugger, so start with message header
213     * in MRF 1.
214     */
215    int base_mrf = 1;
216 
217    bool static_vertex_count = gs_prog_data->static_vertex_count != -1;
218 
219    /* If the previous instruction was a URB write, we don't need to issue
220     * a second one - we can just set the EOT bit on the previous write.
221     *
222     * Skip this on Gen8+ unless there's a static vertex count, as we also
223     * need to write the vertex count out, and combining the two may not be
224     * possible (or at least not straightforward).
225     */
226    vec4_instruction *last = (vec4_instruction *) instructions.get_tail();
227    if (last && last->opcode == GS_OPCODE_URB_WRITE &&
228        !(INTEL_DEBUG & DEBUG_SHADER_TIME) &&
229        devinfo->gen >= 8 && static_vertex_count) {
230       last->urb_write_flags = BRW_URB_WRITE_EOT | last->urb_write_flags;
231       return;
232    }
233 
234    current_annotation = "thread end";
235    dst_reg mrf_reg(MRF, base_mrf);
236    src_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
237    vec4_instruction *inst = emit(MOV(mrf_reg, r0));
238    inst->force_writemask_all = true;
239    if (devinfo->gen < 8 || !static_vertex_count)
240       emit(GS_OPCODE_SET_VERTEX_COUNT, mrf_reg, this->vertex_count);
241    if (INTEL_DEBUG & DEBUG_SHADER_TIME)
242       emit_shader_time_end();
243    inst = emit(GS_OPCODE_THREAD_END);
244    inst->base_mrf = base_mrf;
245    inst->mlen = devinfo->gen >= 8 && !static_vertex_count ? 2 : 1;
246 }
247 
248 
249 void
emit_urb_write_header(int mrf)250 vec4_gs_visitor::emit_urb_write_header(int mrf)
251 {
252    /* The SEND instruction that writes the vertex data to the VUE will use
253     * per_slot_offset=true, which means that DWORDs 3 and 4 of the message
254     * header specify an offset (in multiples of 256 bits) into the URB entry
255     * at which the write should take place.
256     *
257     * So we have to prepare a message header with the appropriate offset
258     * values.
259     */
260    dst_reg mrf_reg(MRF, mrf);
261    src_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
262    this->current_annotation = "URB write header";
263    vec4_instruction *inst = emit(MOV(mrf_reg, r0));
264    inst->force_writemask_all = true;
265    emit(GS_OPCODE_SET_WRITE_OFFSET, mrf_reg, this->vertex_count,
266         brw_imm_ud(gs_prog_data->output_vertex_size_hwords));
267 }
268 
269 
270 vec4_instruction *
emit_urb_write_opcode(bool complete)271 vec4_gs_visitor::emit_urb_write_opcode(bool complete)
272 {
273    /* We don't care whether the vertex is complete, because in general
274     * geometry shaders output multiple vertices, and we don't terminate the
275     * thread until all vertices are complete.
276     */
277    (void) complete;
278 
279    vec4_instruction *inst = emit(GS_OPCODE_URB_WRITE);
280    inst->offset = gs_prog_data->control_data_header_size_hwords;
281 
282    /* We need to increment Global Offset by 1 to make room for Broadwell's
283     * extra "Vertex Count" payload at the beginning of the URB entry.
284     */
285    if (devinfo->gen >= 8 && gs_prog_data->static_vertex_count == -1)
286       inst->offset++;
287 
288    inst->urb_write_flags = BRW_URB_WRITE_PER_SLOT_OFFSET;
289    return inst;
290 }
291 
292 
293 /**
294  * Write out a batch of 32 control data bits from the control_data_bits
295  * register to the URB.
296  *
297  * The current value of the vertex_count register determines which DWORD in
298  * the URB receives the control data bits.  The control_data_bits register is
299  * assumed to contain the correct data for the vertex that was most recently
300  * output, and all previous vertices that share the same DWORD.
301  *
302  * This function takes care of ensuring that if no vertices have been output
303  * yet, no control bits are emitted.
304  */
305 void
emit_control_data_bits()306 vec4_gs_visitor::emit_control_data_bits()
307 {
308    assert(c->control_data_bits_per_vertex != 0);
309 
310    /* Since the URB_WRITE_OWORD message operates with 128-bit (vec4 sized)
311     * granularity, we need to use two tricks to ensure that the batch of 32
312     * control data bits is written to the appropriate DWORD in the URB.  To
313     * select which vec4 we are writing to, we use the "slot {0,1} offset"
314     * fields of the message header.  To select which DWORD in the vec4 we are
315     * writing to, we use the channel mask fields of the message header.  To
316     * avoid penalizing geometry shaders that emit a small number of vertices
317     * with extra bookkeeping, we only do each of these tricks when
318     * c->prog_data.control_data_header_size_bits is large enough to make it
319     * necessary.
320     *
321     * Note: this means that if we're outputting just a single DWORD of control
322     * data bits, we'll actually replicate it four times since we won't do any
323     * channel masking.  But that's not a problem since in this case the
324     * hardware only pays attention to the first DWORD.
325     */
326    enum brw_urb_write_flags urb_write_flags = BRW_URB_WRITE_OWORD;
327    if (c->control_data_header_size_bits > 32)
328       urb_write_flags = urb_write_flags | BRW_URB_WRITE_USE_CHANNEL_MASKS;
329    if (c->control_data_header_size_bits > 128)
330       urb_write_flags = urb_write_flags | BRW_URB_WRITE_PER_SLOT_OFFSET;
331 
332    /* If we are using either channel masks or a per-slot offset, then we
333     * need to figure out which DWORD we are trying to write to, using the
334     * formula:
335     *
336     *     dword_index = (vertex_count - 1) * bits_per_vertex / 32
337     *
338     * Since bits_per_vertex is a power of two, and is known at compile
339     * time, this can be optimized to:
340     *
341     *     dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
342     */
343    src_reg dword_index(this, glsl_type::uint_type);
344    if (urb_write_flags) {
345       src_reg prev_count(this, glsl_type::uint_type);
346       emit(ADD(dst_reg(prev_count), this->vertex_count,
347                brw_imm_ud(0xffffffffu)));
348       unsigned log2_bits_per_vertex =
349          util_last_bit(c->control_data_bits_per_vertex);
350       emit(SHR(dst_reg(dword_index), prev_count,
351                brw_imm_ud(6 - log2_bits_per_vertex)));
352    }
353 
354    /* Start building the URB write message.  The first MRF gets a copy of
355     * R0.
356     */
357    int base_mrf = 1;
358    dst_reg mrf_reg(MRF, base_mrf);
359    src_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
360    vec4_instruction *inst = emit(MOV(mrf_reg, r0));
361    inst->force_writemask_all = true;
362 
363    if (urb_write_flags & BRW_URB_WRITE_PER_SLOT_OFFSET) {
364       /* Set the per-slot offset to dword_index / 4, to that we'll write to
365        * the appropriate OWORD within the control data header.
366        */
367       src_reg per_slot_offset(this, glsl_type::uint_type);
368       emit(SHR(dst_reg(per_slot_offset), dword_index, brw_imm_ud(2u)));
369       emit(GS_OPCODE_SET_WRITE_OFFSET, mrf_reg, per_slot_offset,
370            brw_imm_ud(1u));
371    }
372 
373    if (urb_write_flags & BRW_URB_WRITE_USE_CHANNEL_MASKS) {
374       /* Set the channel masks to 1 << (dword_index % 4), so that we'll
375        * write to the appropriate DWORD within the OWORD.  We need to do
376        * this computation with force_writemask_all, otherwise garbage data
377        * from invocation 0 might clobber the mask for invocation 1 when
378        * GS_OPCODE_PREPARE_CHANNEL_MASKS tries to OR the two masks
379        * together.
380        */
381       src_reg channel(this, glsl_type::uint_type);
382       inst = emit(AND(dst_reg(channel), dword_index, brw_imm_ud(3u)));
383       inst->force_writemask_all = true;
384       src_reg one(this, glsl_type::uint_type);
385       inst = emit(MOV(dst_reg(one), brw_imm_ud(1u)));
386       inst->force_writemask_all = true;
387       src_reg channel_mask(this, glsl_type::uint_type);
388       inst = emit(SHL(dst_reg(channel_mask), one, channel));
389       inst->force_writemask_all = true;
390       emit(GS_OPCODE_PREPARE_CHANNEL_MASKS, dst_reg(channel_mask),
391                                             channel_mask);
392       emit(GS_OPCODE_SET_CHANNEL_MASKS, mrf_reg, channel_mask);
393    }
394 
395    /* Store the control data bits in the message payload and send it. */
396    dst_reg mrf_reg2(MRF, base_mrf + 1);
397    inst = emit(MOV(mrf_reg2, this->control_data_bits));
398    inst->force_writemask_all = true;
399    inst = emit(GS_OPCODE_URB_WRITE);
400    inst->urb_write_flags = urb_write_flags;
401    /* We need to increment Global Offset by 256-bits to make room for
402     * Broadwell's extra "Vertex Count" payload at the beginning of the
403     * URB entry.  Since this is an OWord message, Global Offset is counted
404     * in 128-bit units, so we must set it to 2.
405     */
406    if (devinfo->gen >= 8 && gs_prog_data->static_vertex_count == -1)
407       inst->offset = 2;
408    inst->base_mrf = base_mrf;
409    inst->mlen = 2;
410 }
411 
412 void
set_stream_control_data_bits(unsigned stream_id)413 vec4_gs_visitor::set_stream_control_data_bits(unsigned stream_id)
414 {
415    /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
416 
417    /* Note: we are calling this *before* increasing vertex_count, so
418     * this->vertex_count == vertex_count - 1 in the formula above.
419     */
420 
421    /* Stream mode uses 2 bits per vertex */
422    assert(c->control_data_bits_per_vertex == 2);
423 
424    /* Must be a valid stream */
425    assert(stream_id < MAX_VERTEX_STREAMS);
426 
427    /* Control data bits are initialized to 0 so we don't have to set any
428     * bits when sending vertices to stream 0.
429     */
430    if (stream_id == 0)
431       return;
432 
433    /* reg::sid = stream_id */
434    src_reg sid(this, glsl_type::uint_type);
435    emit(MOV(dst_reg(sid), brw_imm_ud(stream_id)));
436 
437    /* reg:shift_count = 2 * (vertex_count - 1) */
438    src_reg shift_count(this, glsl_type::uint_type);
439    emit(SHL(dst_reg(shift_count), this->vertex_count, brw_imm_ud(1u)));
440 
441    /* Note: we're relying on the fact that the GEN SHL instruction only pays
442     * attention to the lower 5 bits of its second source argument, so on this
443     * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
444     * stream_id << ((2 * (vertex_count - 1)) % 32).
445     */
446    src_reg mask(this, glsl_type::uint_type);
447    emit(SHL(dst_reg(mask), sid, shift_count));
448    emit(OR(dst_reg(this->control_data_bits), this->control_data_bits, mask));
449 }
450 
451 void
gs_emit_vertex(int stream_id)452 vec4_gs_visitor::gs_emit_vertex(int stream_id)
453 {
454    this->current_annotation = "emit vertex: safety check";
455 
456    /* Haswell and later hardware ignores the "Render Stream Select" bits
457     * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
458     * and instead sends all primitives down the pipeline for rasterization.
459     * If the SOL stage is enabled, "Render Stream Select" is honored and
460     * primitives bound to non-zero streams are discarded after stream output.
461     *
462     * Since the only purpose of primives sent to non-zero streams is to
463     * be recorded by transform feedback, we can simply discard all geometry
464     * bound to these streams when transform feedback is disabled.
465     */
466    if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
467       return;
468 
469    /* If we're outputting 32 control data bits or less, then we can wait
470     * until the shader is over to output them all.  Otherwise we need to
471     * output them as we go.  Now is the time to do it, since we're about to
472     * output the vertex_count'th vertex, so it's guaranteed that the
473     * control data bits associated with the (vertex_count - 1)th vertex are
474     * correct.
475     */
476    if (c->control_data_header_size_bits > 32) {
477       this->current_annotation = "emit vertex: emit control data bits";
478       /* Only emit control data bits if we've finished accumulating a batch
479        * of 32 bits.  This is the case when:
480        *
481        *     (vertex_count * bits_per_vertex) % 32 == 0
482        *
483        * (in other words, when the last 5 bits of vertex_count *
484        * bits_per_vertex are 0).  Assuming bits_per_vertex == 2^n for some
485        * integer n (which is always the case, since bits_per_vertex is
486        * always 1 or 2), this is equivalent to requiring that the last 5-n
487        * bits of vertex_count are 0:
488        *
489        *     vertex_count & (2^(5-n) - 1) == 0
490        *
491        * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
492        * equivalent to:
493        *
494        *     vertex_count & (32 / bits_per_vertex - 1) == 0
495        */
496       vec4_instruction *inst =
497          emit(AND(dst_null_ud(), this->vertex_count,
498                   brw_imm_ud(32 / c->control_data_bits_per_vertex - 1)));
499       inst->conditional_mod = BRW_CONDITIONAL_Z;
500 
501       emit(IF(BRW_PREDICATE_NORMAL));
502       {
503          /* If vertex_count is 0, then no control data bits have been
504           * accumulated yet, so we skip emitting them.
505           */
506          emit(CMP(dst_null_ud(), this->vertex_count, brw_imm_ud(0u),
507                   BRW_CONDITIONAL_NEQ));
508          emit(IF(BRW_PREDICATE_NORMAL));
509          emit_control_data_bits();
510          emit(BRW_OPCODE_ENDIF);
511 
512          /* Reset control_data_bits to 0 so we can start accumulating a new
513           * batch.
514           *
515           * Note: in the case where vertex_count == 0, this neutralizes the
516           * effect of any call to EndPrimitive() that the shader may have
517           * made before outputting its first vertex.
518           */
519          inst = emit(MOV(dst_reg(this->control_data_bits), brw_imm_ud(0u)));
520          inst->force_writemask_all = true;
521       }
522       emit(BRW_OPCODE_ENDIF);
523    }
524 
525    this->current_annotation = "emit vertex: vertex data";
526    emit_vertex();
527 
528    /* In stream mode we have to set control data bits for all vertices
529     * unless we have disabled control data bits completely (which we do
530     * do for GL_POINTS outputs that don't use streams).
531     */
532    if (c->control_data_header_size_bits > 0 &&
533        gs_prog_data->control_data_format ==
534           GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
535        this->current_annotation = "emit vertex: Stream control data bits";
536        set_stream_control_data_bits(stream_id);
537    }
538 
539    this->current_annotation = NULL;
540 }
541 
542 void
gs_end_primitive()543 vec4_gs_visitor::gs_end_primitive()
544 {
545    /* We can only do EndPrimitive() functionality when the control data
546     * consists of cut bits.  Fortunately, the only time it isn't is when the
547     * output type is points, in which case EndPrimitive() is a no-op.
548     */
549    if (gs_prog_data->control_data_format !=
550        GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
551       return;
552    }
553 
554    if (c->control_data_header_size_bits == 0)
555       return;
556 
557    /* Cut bits use one bit per vertex. */
558    assert(c->control_data_bits_per_vertex == 1);
559 
560    /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
561     * vertex n, 0 otherwise.  So all we need to do here is mark bit
562     * (vertex_count - 1) % 32 in the cut_bits register to indicate that
563     * EndPrimitive() was called after emitting vertex (vertex_count - 1);
564     * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
565     *
566     * Note that if EndPrimitve() is called before emitting any vertices, this
567     * will cause us to set bit 31 of the control_data_bits register to 1.
568     * That's fine because:
569     *
570     * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
571     *   output, so the hardware will ignore cut bit 31.
572     *
573     * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
574     *   last vertex, so setting cut bit 31 has no effect (since the primitive
575     *   is automatically ended when the GS terminates).
576     *
577     * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
578     *   control_data_bits register to 0 when the first vertex is emitted.
579     */
580 
581    /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
582    src_reg one(this, glsl_type::uint_type);
583    emit(MOV(dst_reg(one), brw_imm_ud(1u)));
584    src_reg prev_count(this, glsl_type::uint_type);
585    emit(ADD(dst_reg(prev_count), this->vertex_count, brw_imm_ud(0xffffffffu)));
586    src_reg mask(this, glsl_type::uint_type);
587    /* Note: we're relying on the fact that the GEN SHL instruction only pays
588     * attention to the lower 5 bits of its second source argument, so on this
589     * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
590     * ((vertex_count - 1) % 32).
591     */
592    emit(SHL(dst_reg(mask), one, prev_count));
593    emit(OR(dst_reg(this->control_data_bits), this->control_data_bits, mask));
594 }
595 
596 static const GLuint gl_prim_to_hw_prim[GL_TRIANGLE_STRIP_ADJACENCY+1] = {
597    [GL_POINTS] =_3DPRIM_POINTLIST,
598    [GL_LINES] = _3DPRIM_LINELIST,
599    [GL_LINE_LOOP] = _3DPRIM_LINELOOP,
600    [GL_LINE_STRIP] = _3DPRIM_LINESTRIP,
601    [GL_TRIANGLES] = _3DPRIM_TRILIST,
602    [GL_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
603    [GL_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
604    [GL_QUADS] = _3DPRIM_QUADLIST,
605    [GL_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
606    [GL_POLYGON] = _3DPRIM_POLYGON,
607    [GL_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
608    [GL_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
609    [GL_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
610    [GL_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
611 };
612 
613 extern "C" const unsigned *
brw_compile_gs(const struct brw_compiler * compiler,void * log_data,void * mem_ctx,const struct brw_gs_prog_key * key,struct brw_gs_prog_data * prog_data,const nir_shader * src_shader,struct gl_program * prog,int shader_time_index,char ** error_str)614 brw_compile_gs(const struct brw_compiler *compiler, void *log_data,
615                void *mem_ctx,
616                const struct brw_gs_prog_key *key,
617                struct brw_gs_prog_data *prog_data,
618                const nir_shader *src_shader,
619                struct gl_program *prog,
620                int shader_time_index,
621                char **error_str)
622 {
623    struct brw_gs_compile c;
624    memset(&c, 0, sizeof(c));
625    c.key = *key;
626 
627    const bool is_scalar = compiler->scalar_stage[MESA_SHADER_GEOMETRY];
628    nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
629 
630    /* The GLSL linker will have already matched up GS inputs and the outputs
631     * of prior stages.  The driver does extend VS outputs in some cases, but
632     * only for legacy OpenGL or Gen4-5 hardware, neither of which offer
633     * geometry shader support.  So we can safely ignore that.
634     *
635     * For SSO pipelines, we use a fixed VUE map layout based on variable
636     * locations, so we can rely on rendezvous-by-location making this work.
637     */
638    GLbitfield64 inputs_read = shader->info.inputs_read;
639    brw_compute_vue_map(compiler->devinfo,
640                        &c.input_vue_map, inputs_read,
641                        shader->info.separate_shader);
642 
643    shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, is_scalar);
644    brw_nir_lower_vue_inputs(shader, &c.input_vue_map);
645    brw_nir_lower_vue_outputs(shader, is_scalar);
646    shader = brw_postprocess_nir(shader, compiler, is_scalar);
647 
648    prog_data->base.clip_distance_mask =
649       ((1 << shader->info.clip_distance_array_size) - 1);
650    prog_data->base.cull_distance_mask =
651       ((1 << shader->info.cull_distance_array_size) - 1) <<
652       shader->info.clip_distance_array_size;
653 
654    prog_data->include_primitive_id =
655       (shader->info.system_values_read & (1 << SYSTEM_VALUE_PRIMITIVE_ID)) != 0;
656 
657    prog_data->invocations = shader->info.gs.invocations;
658 
659    if (compiler->devinfo->gen >= 8)
660       prog_data->static_vertex_count = nir_gs_count_vertices(shader);
661 
662    if (compiler->devinfo->gen >= 7) {
663       if (shader->info.gs.output_primitive == GL_POINTS) {
664          /* When the output type is points, the geometry shader may output data
665           * to multiple streams, and EndPrimitive() has no effect.  So we
666           * configure the hardware to interpret the control data as stream ID.
667           */
668          prog_data->control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID;
669 
670          /* We only have to emit control bits if we are using streams */
671          if (prog && prog->info.gs.uses_streams)
672             c.control_data_bits_per_vertex = 2;
673          else
674             c.control_data_bits_per_vertex = 0;
675       } else {
676          /* When the output type is triangle_strip or line_strip, EndPrimitive()
677           * may be used to terminate the current strip and start a new one
678           * (similar to primitive restart), and outputting data to multiple
679           * streams is not supported.  So we configure the hardware to interpret
680           * the control data as EndPrimitive information (a.k.a. "cut bits").
681           */
682          prog_data->control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT;
683 
684          /* We only need to output control data if the shader actually calls
685           * EndPrimitive().
686           */
687          c.control_data_bits_per_vertex =
688             shader->info.gs.uses_end_primitive ? 1 : 0;
689       }
690    } else {
691       /* There are no control data bits in gen6. */
692       c.control_data_bits_per_vertex = 0;
693    }
694    c.control_data_header_size_bits =
695       shader->info.gs.vertices_out * c.control_data_bits_per_vertex;
696 
697    /* 1 HWORD = 32 bytes = 256 bits */
698    prog_data->control_data_header_size_hwords =
699       ALIGN(c.control_data_header_size_bits, 256) / 256;
700 
701    /* Compute the output vertex size.
702     *
703     * From the Ivy Bridge PRM, Vol2 Part1 7.2.1.1 STATE_GS - Output Vertex
704     * Size (p168):
705     *
706     *     [0,62] indicating [1,63] 16B units
707     *
708     *     Specifies the size of each vertex stored in the GS output entry
709     *     (following any Control Header data) as a number of 128-bit units
710     *     (minus one).
711     *
712     *     Programming Restrictions: The vertex size must be programmed as a
713     *     multiple of 32B units with the following exception: Rendering is
714     *     disabled (as per SOL stage state) and the vertex size output by the
715     *     GS thread is 16B.
716     *
717     *     If rendering is enabled (as per SOL state) the vertex size must be
718     *     programmed as a multiple of 32B units. In other words, the only time
719     *     software can program a vertex size with an odd number of 16B units
720     *     is when rendering is disabled.
721     *
722     * Note: B=bytes in the above text.
723     *
724     * It doesn't seem worth the extra trouble to optimize the case where the
725     * vertex size is 16B (especially since this would require special-casing
726     * the GEN assembly that writes to the URB).  So we just set the vertex
727     * size to a multiple of 32B (2 vec4's) in all cases.
728     *
729     * The maximum output vertex size is 62*16 = 992 bytes (31 hwords).  We
730     * budget that as follows:
731     *
732     *   512 bytes for varyings (a varying component is 4 bytes and
733     *             gl_MaxGeometryOutputComponents = 128)
734     *    16 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
735     *             bytes)
736     *    16 bytes overhead for gl_Position (we allocate it a slot in the VUE
737     *             even if it's not used)
738     *    32 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
739     *             whenever clip planes are enabled, even if the shader doesn't
740     *             write to gl_ClipDistance)
741     *    16 bytes overhead since the VUE size must be a multiple of 32 bytes
742     *             (see below)--this causes up to 1 VUE slot to be wasted
743     *   400 bytes available for varying packing overhead
744     *
745     * Worst-case varying packing overhead is 3/4 of a varying slot (12 bytes)
746     * per interpolation type, so this is plenty.
747     *
748     */
749    unsigned output_vertex_size_bytes = prog_data->base.vue_map.num_slots * 16;
750    assert(compiler->devinfo->gen == 6 ||
751           output_vertex_size_bytes <= GEN7_MAX_GS_OUTPUT_VERTEX_SIZE_BYTES);
752    prog_data->output_vertex_size_hwords =
753       ALIGN(output_vertex_size_bytes, 32) / 32;
754 
755    /* Compute URB entry size.  The maximum allowed URB entry size is 32k.
756     * That divides up as follows:
757     *
758     *     64 bytes for the control data header (cut indices or StreamID bits)
759     *   4096 bytes for varyings (a varying component is 4 bytes and
760     *              gl_MaxGeometryTotalOutputComponents = 1024)
761     *   4096 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
762     *              bytes/vertex and gl_MaxGeometryOutputVertices is 256)
763     *   4096 bytes overhead for gl_Position (we allocate it a slot in the VUE
764     *              even if it's not used)
765     *   8192 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
766     *              whenever clip planes are enabled, even if the shader doesn't
767     *              write to gl_ClipDistance)
768     *   4096 bytes overhead since the VUE size must be a multiple of 32
769     *              bytes (see above)--this causes up to 1 VUE slot to be wasted
770     *   8128 bytes available for varying packing overhead
771     *
772     * Worst-case varying packing overhead is 3/4 of a varying slot per
773     * interpolation type, which works out to 3072 bytes, so this would allow
774     * us to accommodate 2 interpolation types without any danger of running
775     * out of URB space.
776     *
777     * In practice, the risk of running out of URB space is very small, since
778     * the above figures are all worst-case, and most of them scale with the
779     * number of output vertices.  So we'll just calculate the amount of space
780     * we need, and if it's too large, fail to compile.
781     *
782     * The above is for gen7+ where we have a single URB entry that will hold
783     * all the output. In gen6, we will have to allocate URB entries for every
784     * vertex we emit, so our URB entries only need to be large enough to hold
785     * a single vertex. Also, gen6 does not have a control data header.
786     */
787    unsigned output_size_bytes;
788    if (compiler->devinfo->gen >= 7) {
789       output_size_bytes =
790          prog_data->output_vertex_size_hwords * 32 * shader->info.gs.vertices_out;
791       output_size_bytes += 32 * prog_data->control_data_header_size_hwords;
792    } else {
793       output_size_bytes = prog_data->output_vertex_size_hwords * 32;
794    }
795 
796    /* Broadwell stores "Vertex Count" as a full 8 DWord (32 byte) URB output,
797     * which comes before the control header.
798     */
799    if (compiler->devinfo->gen >= 8)
800       output_size_bytes += 32;
801 
802    /* Shaders can technically set max_vertices = 0, at which point we
803     * may have a URB size of 0 bytes.  Nothing good can come from that,
804     * so enforce a minimum size.
805     */
806    if (output_size_bytes == 0)
807       output_size_bytes = 1;
808 
809    unsigned max_output_size_bytes = GEN7_MAX_GS_URB_ENTRY_SIZE_BYTES;
810    if (compiler->devinfo->gen == 6)
811       max_output_size_bytes = GEN6_MAX_GS_URB_ENTRY_SIZE_BYTES;
812    if (output_size_bytes > max_output_size_bytes)
813       return NULL;
814 
815 
816    /* URB entry sizes are stored as a multiple of 64 bytes in gen7+ and
817     * a multiple of 128 bytes in gen6.
818     */
819    if (compiler->devinfo->gen >= 7) {
820       prog_data->base.urb_entry_size = ALIGN(output_size_bytes, 64) / 64;
821       /* On Cannonlake software shall not program an allocation size that
822        * specifies a size that is a multiple of 3 64B (512-bit) cachelines.
823        */
824       if (compiler->devinfo->gen == 10 &&
825           prog_data->base.urb_entry_size % 3 == 0)
826          prog_data->base.urb_entry_size++;
827    } else {
828       prog_data->base.urb_entry_size = ALIGN(output_size_bytes, 128) / 128;
829    }
830 
831    assert(shader->info.gs.output_primitive < ARRAY_SIZE(gl_prim_to_hw_prim));
832    prog_data->output_topology =
833       gl_prim_to_hw_prim[shader->info.gs.output_primitive];
834 
835    prog_data->vertices_in = shader->info.gs.vertices_in;
836 
837    /* GS inputs are read from the VUE 256 bits (2 vec4's) at a time, so we
838     * need to program a URB read length of ceiling(num_slots / 2).
839     */
840    prog_data->base.urb_read_length = (c.input_vue_map.num_slots + 1) / 2;
841 
842    /* Now that prog_data setup is done, we are ready to actually compile the
843     * program.
844     */
845    if (unlikely(INTEL_DEBUG & DEBUG_GS)) {
846       fprintf(stderr, "GS Input ");
847       brw_print_vue_map(stderr, &c.input_vue_map);
848       fprintf(stderr, "GS Output ");
849       brw_print_vue_map(stderr, &prog_data->base.vue_map);
850    }
851 
852    if (is_scalar) {
853       fs_visitor v(compiler, log_data, mem_ctx, &c, prog_data, shader,
854                    shader_time_index);
855       if (v.run_gs()) {
856          prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8;
857          prog_data->base.base.dispatch_grf_start_reg = v.payload.num_regs;
858 
859          fs_generator g(compiler, log_data, mem_ctx, &c.key,
860                         &prog_data->base.base, v.promoted_constants,
861                         false, MESA_SHADER_GEOMETRY);
862          if (unlikely(INTEL_DEBUG & DEBUG_GS)) {
863             const char *label =
864                shader->info.label ? shader->info.label : "unnamed";
865             char *name = ralloc_asprintf(mem_ctx, "%s geometry shader %s",
866                                          label, shader->info.name);
867             g.enable_debug(name);
868          }
869          g.generate_code(v.cfg, 8);
870          return  g.get_assembly(&prog_data->base.base.program_size);
871       }
872    }
873 
874    if (compiler->devinfo->gen >= 7) {
875       /* Compile the geometry shader in DUAL_OBJECT dispatch mode, if we can do
876        * so without spilling. If the GS invocations count > 1, then we can't use
877        * dual object mode.
878        */
879       if (prog_data->invocations <= 1 &&
880           likely(!(INTEL_DEBUG & DEBUG_NO_DUAL_OBJECT_GS))) {
881          prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_OBJECT;
882 
883          vec4_gs_visitor v(compiler, log_data, &c, prog_data, shader,
884                            mem_ctx, true /* no_spills */, shader_time_index);
885 
886          /* Backup 'nr_params' and 'param' as they can be modified by the
887           * the DUAL_OBJECT visitor. If it fails, we will run the fallback
888           * (DUAL_INSTANCED or SINGLE mode) and we need to restore original
889           * values.
890           */
891          const unsigned param_count = prog_data->base.base.nr_params;
892          uint32_t *param = ralloc_array(NULL, uint32_t, param_count);
893          memcpy(param, prog_data->base.base.param,
894                 sizeof(uint32_t) * param_count);
895 
896          if (v.run()) {
897             /* Success! Backup is not needed */
898             ralloc_free(param);
899             return brw_vec4_generate_assembly(compiler, log_data, mem_ctx,
900                                               shader, &prog_data->base, v.cfg,
901                                               &prog_data->base.base.
902                                                   program_size);
903          } else {
904             /* These variables could be modified by the execution of the GS
905              * visitor if it packed the uniforms in the push constant buffer.
906              * As it failed, we need restore them so we can start again with
907              * DUAL_INSTANCED or SINGLE mode.
908              *
909              * FIXME: Could more variables be modified by this execution?
910              */
911             memcpy(prog_data->base.base.param, param,
912                    sizeof(uint32_t) * param_count);
913             prog_data->base.base.nr_params = param_count;
914             prog_data->base.base.nr_pull_params = 0;
915             ralloc_free(param);
916          }
917       }
918    }
919 
920    /* Either we failed to compile in DUAL_OBJECT mode (probably because it
921     * would have required spilling) or DUAL_OBJECT mode is disabled.  So fall
922     * back to DUAL_INSTANCED or SINGLE mode, which consumes fewer registers.
923     *
924     * FIXME: Single dispatch mode requires that the driver can handle
925     * interleaving of input registers, but this is already supported (dual
926     * instance mode has the same requirement). However, to take full advantage
927     * of single dispatch mode to reduce register pressure we would also need to
928     * do interleaved outputs, but currently, the vec4 visitor and generator
929     * classes do not support this, so at the moment register pressure in
930     * single and dual instance modes is the same.
931     *
932     * From the Ivy Bridge PRM, Vol2 Part1 7.2.1.1 "3DSTATE_GS"
933     * "If InstanceCount>1, DUAL_OBJECT mode is invalid. Software will likely
934     * want to use DUAL_INSTANCE mode for higher performance, but SINGLE mode
935     * is also supported. When InstanceCount=1 (one instance per object) software
936     * can decide which dispatch mode to use. DUAL_OBJECT mode would likely be
937     * the best choice for performance, followed by SINGLE mode."
938     *
939     * So SINGLE mode is more performant when invocations == 1 and DUAL_INSTANCE
940     * mode is more performant when invocations > 1. Gen6 only supports
941     * SINGLE mode.
942     */
943    if (prog_data->invocations <= 1 || compiler->devinfo->gen < 7)
944       prog_data->base.dispatch_mode = DISPATCH_MODE_4X1_SINGLE;
945    else
946       prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_INSTANCE;
947 
948    vec4_gs_visitor *gs = NULL;
949    const unsigned *ret = NULL;
950 
951    if (compiler->devinfo->gen >= 7)
952       gs = new vec4_gs_visitor(compiler, log_data, &c, prog_data,
953                                shader, mem_ctx, false /* no_spills */,
954                                shader_time_index);
955    else
956       gs = new gen6_gs_visitor(compiler, log_data, &c, prog_data, prog,
957                                shader, mem_ctx, false /* no_spills */,
958                                shader_time_index);
959 
960    if (!gs->run()) {
961       if (error_str)
962          *error_str = ralloc_strdup(mem_ctx, gs->fail_msg);
963    } else {
964       ret = brw_vec4_generate_assembly(compiler, log_data, mem_ctx, shader,
965                                        &prog_data->base, gs->cfg,
966                                        &prog_data->base.base.program_size);
967    }
968 
969    delete gs;
970    return ret;
971 }
972 
973 
974 } /* namespace brw */
975