1 /*
2  * Mesa 3-D graphics library
3  *
4  * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included
14  * in all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  */
24 
25 
26 #include "c99_math.h"
27 #include "main/glheader.h"
28 #include "main/imports.h"
29 #include "main/macros.h"
30 #include "main/mtypes.h"
31 #include "main/teximage.h"
32 #include "swrast/s_aaline.h"
33 #include "swrast/s_context.h"
34 #include "swrast/s_span.h"
35 #include "swrast/swrast.h"
36 
37 
38 #define SUB_PIXEL 4
39 
40 
41 /*
42  * Info about the AA line we're rendering
43  */
44 struct LineInfo
45 {
46    GLfloat x0, y0;        /* start */
47    GLfloat x1, y1;        /* end */
48    GLfloat dx, dy;        /* direction vector */
49    GLfloat len;           /* length */
50    GLfloat halfWidth;     /* half of line width */
51    GLfloat xAdj, yAdj;    /* X and Y adjustment for quad corners around line */
52    /* for coverage computation */
53    GLfloat qx0, qy0;      /* quad vertices */
54    GLfloat qx1, qy1;
55    GLfloat qx2, qy2;
56    GLfloat qx3, qy3;
57    GLfloat ex0, ey0;      /* quad edge vectors */
58    GLfloat ex1, ey1;
59    GLfloat ex2, ey2;
60    GLfloat ex3, ey3;
61 
62    /* DO_Z */
63    GLfloat zPlane[4];
64    /* DO_RGBA - always enabled */
65    GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4];
66    /* DO_ATTRIBS */
67    GLfloat wPlane[4];
68    GLfloat attrPlane[VARYING_SLOT_MAX][4][4];
69    GLfloat lambda[VARYING_SLOT_MAX];
70    GLfloat texWidth[VARYING_SLOT_MAX];
71    GLfloat texHeight[VARYING_SLOT_MAX];
72 
73    SWspan span;
74 };
75 
76 
77 
78 /*
79  * Compute the equation of a plane used to interpolate line fragment data
80  * such as color, Z, texture coords, etc.
81  * Input: (x0, y0) and (x1,y1) are the endpoints of the line.
82  *        z0, and z1 are the end point values to interpolate.
83  * Output:  plane - the plane equation.
84  *
85  * Note: we don't really have enough parameters to specify a plane.
86  * We take the endpoints of the line and compute a plane such that
87  * the cross product of the line vector and the plane normal is
88  * parallel to the projection plane.
89  */
90 static void
compute_plane(GLfloat x0,GLfloat y0,GLfloat x1,GLfloat y1,GLfloat z0,GLfloat z1,GLfloat plane[4])91 compute_plane(GLfloat x0, GLfloat y0, GLfloat x1, GLfloat y1,
92               GLfloat z0, GLfloat z1, GLfloat plane[4])
93 {
94 #if 0
95    /* original */
96    const GLfloat px = x1 - x0;
97    const GLfloat py = y1 - y0;
98    const GLfloat pz = z1 - z0;
99    const GLfloat qx = -py;
100    const GLfloat qy = px;
101    const GLfloat qz = 0;
102    const GLfloat a = py * qz - pz * qy;
103    const GLfloat b = pz * qx - px * qz;
104    const GLfloat c = px * qy - py * qx;
105    const GLfloat d = -(a * x0 + b * y0 + c * z0);
106    plane[0] = a;
107    plane[1] = b;
108    plane[2] = c;
109    plane[3] = d;
110 #else
111    /* simplified */
112    const GLfloat px = x1 - x0;
113    const GLfloat py = y1 - y0;
114    const GLfloat pz = z0 - z1;
115    const GLfloat a = pz * px;
116    const GLfloat b = pz * py;
117    const GLfloat c = px * px + py * py;
118    const GLfloat d = -(a * x0 + b * y0 + c * z0);
119    if (a == 0.0F && b == 0.0F && c == 0.0F && d == 0.0F) {
120       plane[0] = 0.0F;
121       plane[1] = 0.0F;
122       plane[2] = 1.0F;
123       plane[3] = 0.0F;
124    }
125    else {
126       plane[0] = a;
127       plane[1] = b;
128       plane[2] = c;
129       plane[3] = d;
130    }
131 #endif
132 }
133 
134 
135 static inline void
constant_plane(GLfloat value,GLfloat plane[4])136 constant_plane(GLfloat value, GLfloat plane[4])
137 {
138    plane[0] = 0.0F;
139    plane[1] = 0.0F;
140    plane[2] = -1.0F;
141    plane[3] = value;
142 }
143 
144 
145 static inline GLfloat
solve_plane(GLfloat x,GLfloat y,const GLfloat plane[4])146 solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4])
147 {
148    const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
149    return z;
150 }
151 
152 #define SOLVE_PLANE(X, Y, PLANE) \
153    ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2])
154 
155 
156 /*
157  * Return 1 / solve_plane().
158  */
159 static inline GLfloat
solve_plane_recip(GLfloat x,GLfloat y,const GLfloat plane[4])160 solve_plane_recip(GLfloat x, GLfloat y, const GLfloat plane[4])
161 {
162    const GLfloat denom = plane[3] + plane[0] * x + plane[1] * y;
163    if (denom == 0.0F)
164       return 0.0F;
165    else
166       return -plane[2] / denom;
167 }
168 
169 
170 /*
171  * Solve plane and return clamped GLchan value.
172  */
173 static inline GLchan
solve_plane_chan(GLfloat x,GLfloat y,const GLfloat plane[4])174 solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4])
175 {
176    const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
177 #if CHAN_TYPE == GL_FLOAT
178    return CLAMP(z, 0.0F, CHAN_MAXF);
179 #else
180    if (z < 0)
181       return 0;
182    else if (z > CHAN_MAX)
183       return CHAN_MAX;
184    return (GLchan) IROUND_POS(z);
185 #endif
186 }
187 
188 
189 /*
190  * Compute mipmap level of detail.
191  */
192 static inline GLfloat
compute_lambda(const GLfloat sPlane[4],const GLfloat tPlane[4],GLfloat invQ,GLfloat width,GLfloat height)193 compute_lambda(const GLfloat sPlane[4], const GLfloat tPlane[4],
194                GLfloat invQ, GLfloat width, GLfloat height)
195 {
196    GLfloat dudx = sPlane[0] / sPlane[2] * invQ * width;
197    GLfloat dudy = sPlane[1] / sPlane[2] * invQ * width;
198    GLfloat dvdx = tPlane[0] / tPlane[2] * invQ * height;
199    GLfloat dvdy = tPlane[1] / tPlane[2] * invQ * height;
200    GLfloat r1 = dudx * dudx + dudy * dudy;
201    GLfloat r2 = dvdx * dvdx + dvdy * dvdy;
202    GLfloat rho2 = r1 + r2;
203    /* return log base 2 of rho */
204    if (rho2 == 0.0F)
205       return 0.0;
206    else
207       return logf(rho2) * 1.442695f * 0.5f;/* 1.442695 = 1/log(2) */
208 }
209 
210 
211 
212 
213 /*
214  * Fill in the samples[] array with the (x,y) subpixel positions of
215  * xSamples * ySamples sample positions.
216  * Note that the four corner samples are put into the first four
217  * positions of the array.  This allows us to optimize for the common
218  * case of all samples being inside the polygon.
219  */
220 static void
make_sample_table(GLint xSamples,GLint ySamples,GLfloat samples[][2])221 make_sample_table(GLint xSamples, GLint ySamples, GLfloat samples[][2])
222 {
223    const GLfloat dx = 1.0F / (GLfloat) xSamples;
224    const GLfloat dy = 1.0F / (GLfloat) ySamples;
225    GLint x, y;
226    GLint i;
227 
228    i = 4;
229    for (x = 0; x < xSamples; x++) {
230       for (y = 0; y < ySamples; y++) {
231          GLint j;
232          if (x == 0 && y == 0) {
233             /* lower left */
234             j = 0;
235          }
236          else if (x == xSamples - 1 && y == 0) {
237             /* lower right */
238             j = 1;
239          }
240          else if (x == 0 && y == ySamples - 1) {
241             /* upper left */
242             j = 2;
243          }
244          else if (x == xSamples - 1 && y == ySamples - 1) {
245             /* upper right */
246             j = 3;
247          }
248          else {
249             j = i++;
250          }
251          samples[j][0] = x * dx + 0.5F * dx;
252          samples[j][1] = y * dy + 0.5F * dy;
253       }
254    }
255 }
256 
257 
258 
259 /*
260  * Compute how much of the given pixel's area is inside the rectangle
261  * defined by vertices v0, v1, v2, v3.
262  * Vertices MUST be specified in counter-clockwise order.
263  * Return:  coverage in [0, 1].
264  */
265 static GLfloat
compute_coveragef(const struct LineInfo * info,GLint winx,GLint winy)266 compute_coveragef(const struct LineInfo *info,
267                   GLint winx, GLint winy)
268 {
269    static GLfloat samples[SUB_PIXEL * SUB_PIXEL][2];
270    static GLboolean haveSamples = GL_FALSE;
271    const GLfloat x = (GLfloat) winx;
272    const GLfloat y = (GLfloat) winy;
273    GLint stop = 4, i;
274    GLfloat insideCount = SUB_PIXEL * SUB_PIXEL;
275 
276    if (!haveSamples) {
277       make_sample_table(SUB_PIXEL, SUB_PIXEL, samples);
278       haveSamples = GL_TRUE;
279    }
280 
281 #if 0 /*DEBUG*/
282    {
283       const GLfloat area = dx0 * dy1 - dx1 * dy0;
284       assert(area >= 0.0);
285    }
286 #endif
287 
288    for (i = 0; i < stop; i++) {
289       const GLfloat sx = x + samples[i][0];
290       const GLfloat sy = y + samples[i][1];
291       const GLfloat fx0 = sx - info->qx0;
292       const GLfloat fy0 = sy - info->qy0;
293       const GLfloat fx1 = sx - info->qx1;
294       const GLfloat fy1 = sy - info->qy1;
295       const GLfloat fx2 = sx - info->qx2;
296       const GLfloat fy2 = sy - info->qy2;
297       const GLfloat fx3 = sx - info->qx3;
298       const GLfloat fy3 = sy - info->qy3;
299       /* cross product determines if sample is inside or outside each edge */
300       GLfloat cross0 = (info->ex0 * fy0 - info->ey0 * fx0);
301       GLfloat cross1 = (info->ex1 * fy1 - info->ey1 * fx1);
302       GLfloat cross2 = (info->ex2 * fy2 - info->ey2 * fx2);
303       GLfloat cross3 = (info->ex3 * fy3 - info->ey3 * fx3);
304       /* Check if the sample is exactly on an edge.  If so, let cross be a
305        * positive or negative value depending on the direction of the edge.
306        */
307       if (cross0 == 0.0F)
308          cross0 = info->ex0 + info->ey0;
309       if (cross1 == 0.0F)
310          cross1 = info->ex1 + info->ey1;
311       if (cross2 == 0.0F)
312          cross2 = info->ex2 + info->ey2;
313       if (cross3 == 0.0F)
314          cross3 = info->ex3 + info->ey3;
315       if (cross0 < 0.0F || cross1 < 0.0F || cross2 < 0.0F || cross3 < 0.0F) {
316          /* point is outside quadrilateral */
317          insideCount -= 1.0F;
318          stop = SUB_PIXEL * SUB_PIXEL;
319       }
320    }
321    if (stop == 4)
322       return 1.0F;
323    else
324       return insideCount * (1.0F / (SUB_PIXEL * SUB_PIXEL));
325 }
326 
327 
328 typedef void (*plot_func)(struct gl_context *ctx, struct LineInfo *line,
329                           int ix, int iy);
330 
331 
332 
333 /*
334  * Draw an AA line segment (called many times per line when stippling)
335  */
336 static void
segment(struct gl_context * ctx,struct LineInfo * line,plot_func plot,GLfloat t0,GLfloat t1)337 segment(struct gl_context *ctx,
338         struct LineInfo *line,
339         plot_func plot,
340         GLfloat t0, GLfloat t1)
341 {
342    const GLfloat absDx = (line->dx < 0.0F) ? -line->dx : line->dx;
343    const GLfloat absDy = (line->dy < 0.0F) ? -line->dy : line->dy;
344    /* compute the actual segment's endpoints */
345    const GLfloat x0 = line->x0 + t0 * line->dx;
346    const GLfloat y0 = line->y0 + t0 * line->dy;
347    const GLfloat x1 = line->x0 + t1 * line->dx;
348    const GLfloat y1 = line->y0 + t1 * line->dy;
349 
350    /* compute vertices of the line-aligned quadrilateral */
351    line->qx0 = x0 - line->yAdj;
352    line->qy0 = y0 + line->xAdj;
353    line->qx1 = x0 + line->yAdj;
354    line->qy1 = y0 - line->xAdj;
355    line->qx2 = x1 + line->yAdj;
356    line->qy2 = y1 - line->xAdj;
357    line->qx3 = x1 - line->yAdj;
358    line->qy3 = y1 + line->xAdj;
359    /* compute the quad's edge vectors (for coverage calc) */
360    line->ex0 = line->qx1 - line->qx0;
361    line->ey0 = line->qy1 - line->qy0;
362    line->ex1 = line->qx2 - line->qx1;
363    line->ey1 = line->qy2 - line->qy1;
364    line->ex2 = line->qx3 - line->qx2;
365    line->ey2 = line->qy3 - line->qy2;
366    line->ex3 = line->qx0 - line->qx3;
367    line->ey3 = line->qy0 - line->qy3;
368 
369    if (absDx > absDy) {
370       /* X-major line */
371       GLfloat dydx = line->dy / line->dx;
372       GLfloat xLeft, xRight, yBot, yTop;
373       GLint ix, ixRight;
374       if (x0 < x1) {
375          xLeft = x0 - line->halfWidth;
376          xRight = x1 + line->halfWidth;
377          if (line->dy >= 0.0F) {
378             yBot = y0 - 3.0F * line->halfWidth;
379             yTop = y0 + line->halfWidth;
380          }
381          else {
382             yBot = y0 - line->halfWidth;
383             yTop = y0 + 3.0F * line->halfWidth;
384          }
385       }
386       else {
387          xLeft = x1 - line->halfWidth;
388          xRight = x0 + line->halfWidth;
389          if (line->dy <= 0.0F) {
390             yBot = y1 - 3.0F * line->halfWidth;
391             yTop = y1 + line->halfWidth;
392          }
393          else {
394             yBot = y1 - line->halfWidth;
395             yTop = y1 + 3.0F * line->halfWidth;
396          }
397       }
398 
399       /* scan along the line, left-to-right */
400       ixRight = (GLint) (xRight + 1.0F);
401 
402       /*printf("avg span height: %g\n", yTop - yBot);*/
403       for (ix = (GLint) xLeft; ix < ixRight; ix++) {
404          const GLint iyBot = (GLint) yBot;
405          const GLint iyTop = (GLint) (yTop + 1.0F);
406          GLint iy;
407          /* scan across the line, bottom-to-top */
408          for (iy = iyBot; iy < iyTop; iy++) {
409             (*plot)(ctx, line, ix, iy);
410          }
411          yBot += dydx;
412          yTop += dydx;
413       }
414    }
415    else {
416       /* Y-major line */
417       GLfloat dxdy = line->dx / line->dy;
418       GLfloat yBot, yTop, xLeft, xRight;
419       GLint iy, iyTop;
420       if (y0 < y1) {
421          yBot = y0 - line->halfWidth;
422          yTop = y1 + line->halfWidth;
423          if (line->dx >= 0.0F) {
424             xLeft = x0 - 3.0F * line->halfWidth;
425             xRight = x0 + line->halfWidth;
426          }
427          else {
428             xLeft = x0 - line->halfWidth;
429             xRight = x0 + 3.0F * line->halfWidth;
430          }
431       }
432       else {
433          yBot = y1 - line->halfWidth;
434          yTop = y0 + line->halfWidth;
435          if (line->dx <= 0.0F) {
436             xLeft = x1 - 3.0F * line->halfWidth;
437             xRight = x1 + line->halfWidth;
438          }
439          else {
440             xLeft = x1 - line->halfWidth;
441             xRight = x1 + 3.0F * line->halfWidth;
442          }
443       }
444 
445       /* scan along the line, bottom-to-top */
446       iyTop = (GLint) (yTop + 1.0F);
447 
448       /*printf("avg span width: %g\n", xRight - xLeft);*/
449       for (iy = (GLint) yBot; iy < iyTop; iy++) {
450          const GLint ixLeft = (GLint) xLeft;
451          const GLint ixRight = (GLint) (xRight + 1.0F);
452          GLint ix;
453          /* scan across the line, left-to-right */
454          for (ix = ixLeft; ix < ixRight; ix++) {
455             (*plot)(ctx, line, ix, iy);
456          }
457          xLeft += dxdy;
458          xRight += dxdy;
459       }
460    }
461 }
462 
463 
464 #define NAME(x) aa_rgba_##x
465 #define DO_Z
466 #include "s_aalinetemp.h"
467 
468 
469 #define NAME(x)  aa_general_rgba_##x
470 #define DO_Z
471 #define DO_ATTRIBS
472 #include "s_aalinetemp.h"
473 
474 
475 
476 void
_swrast_choose_aa_line_function(struct gl_context * ctx)477 _swrast_choose_aa_line_function(struct gl_context *ctx)
478 {
479    SWcontext *swrast = SWRAST_CONTEXT(ctx);
480 
481    assert(ctx->Line.SmoothFlag);
482 
483    if (ctx->Texture._EnabledCoordUnits != 0
484        || _swrast_use_fragment_program(ctx)
485        || (ctx->Light.Enabled &&
486            ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)
487        || ctx->Fog.ColorSumEnabled
488        || swrast->_FogEnabled) {
489       swrast->Line = aa_general_rgba_line;
490    }
491    else {
492       swrast->Line = aa_rgba_line;
493    }
494 }
495