1 /*
2  * Mesa 3-D graphics library
3  *
4  * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included
14  * in all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  */
24 
25 /*
26  * Triangle Rasterizer Template
27  *
28  * This file is #include'd to generate custom triangle rasterizers.
29  *
30  * The following macros may be defined to indicate what auxillary information
31  * must be interpolated across the triangle:
32  *    INTERP_Z        - if defined, interpolate integer Z values
33  *    INTERP_RGB      - if defined, interpolate integer RGB values
34  *    INTERP_ALPHA    - if defined, interpolate integer Alpha values
35  *    INTERP_INT_TEX  - if defined, interpolate integer ST texcoords
36  *                         (fast, simple 2-D texture mapping, without
37  *                         perspective correction)
38  *    INTERP_ATTRIBS  - if defined, interpolate arbitrary attribs (texcoords,
39  *                         varying vars, etc)  This also causes W to be
40  *                         computed for perspective correction).
41  *
42  * When one can directly address pixels in the color buffer the following
43  * macros can be defined and used to compute pixel addresses during
44  * rasterization (see pRow):
45  *    PIXEL_TYPE          - the datatype of a pixel (GLubyte, GLushort, GLuint)
46  *    BYTES_PER_ROW       - number of bytes per row in the color buffer
47  *    PIXEL_ADDRESS(X,Y)  - returns the address of pixel at (X,Y) where
48  *                          Y==0 at bottom of screen and increases upward.
49  *
50  * Similarly, for direct depth buffer access, this type is used for depth
51  * buffer addressing (see zRow):
52  *    DEPTH_TYPE          - either GLushort or GLuint
53  *
54  * Optionally, one may provide one-time setup code per triangle:
55  *    SETUP_CODE    - code which is to be executed once per triangle
56  *
57  * The following macro MUST be defined:
58  *    RENDER_SPAN(span) - code to write a span of pixels.
59  *
60  * This code was designed for the origin to be in the lower-left corner.
61  *
62  * Inspired by triangle rasterizer code written by Allen Akin.  Thanks Allen!
63  *
64  *
65  * Some notes on rasterization accuracy:
66  *
67  * This code uses fixed point arithmetic (the GLfixed type) to iterate
68  * over the triangle edges and interpolate ancillary data (such as Z,
69  * color, secondary color, etc).  The number of fractional bits in
70  * GLfixed and the value of SUB_PIXEL_BITS has a direct bearing on the
71  * accuracy of rasterization.
72  *
73  * If SUB_PIXEL_BITS=4 then we'll snap the vertices to the nearest
74  * 1/16 of a pixel.  If we're walking up a long, nearly vertical edge
75  * (dx=1/16, dy=1024) we'll need 4 + 10 = 14 fractional bits in
76  * GLfixed to walk the edge without error.  If the maximum viewport
77  * height is 4K pixels, then we'll need 4 + 12 = 16 fractional bits.
78  *
79  * Historically, Mesa has used 11 fractional bits in GLfixed, snaps
80  * vertices to 1/16 pixel and allowed a maximum viewport height of 2K
81  * pixels.  11 fractional bits is actually insufficient for accurately
82  * rasterizing some triangles.  More recently, the maximum viewport
83  * height was increased to 4K pixels.  Thus, Mesa should be using 16
84  * fractional bits in GLfixed.  Unfortunately, there may be some issues
85  * with setting FIXED_FRAC_BITS=16, such as multiplication overflow.
86  * This will have to be examined in some detail...
87  *
88  * For now, if you find rasterization errors, particularly with tall,
89  * sliver triangles, try increasing FIXED_FRAC_BITS and/or decreasing
90  * SUB_PIXEL_BITS.
91  */
92 
93 
94 #ifndef MAX_GLUINT
95 #define MAX_GLUINT	0xffffffffu
96 #endif
97 
98 
99 /*
100  * Some code we unfortunately need to prevent negative interpolated colors.
101  */
102 #ifndef CLAMP_INTERPOLANT
103 #define CLAMP_INTERPOLANT(CHANNEL, CHANNELSTEP, LEN)		\
104 do {								\
105    GLfixed endVal = span.CHANNEL + (LEN) * span.CHANNELSTEP;	\
106    if (endVal < 0) {						\
107       span.CHANNEL -= endVal;					\
108    }								\
109    if (span.CHANNEL < 0) {					\
110       span.CHANNEL = 0;						\
111    }								\
112 } while (0)
113 #endif
114 
115 
NAME(struct gl_context * ctx,const SWvertex * v0,const SWvertex * v1,const SWvertex * v2)116 static void NAME(struct gl_context *ctx, const SWvertex *v0,
117                                  const SWvertex *v1,
118                                  const SWvertex *v2 )
119 {
120    typedef struct {
121       const SWvertex *v0, *v1;   /* Y(v0) < Y(v1) */
122       GLfloat dx;	/* X(v1) - X(v0) */
123       GLfloat dy;	/* Y(v1) - Y(v0) */
124       GLfloat dxdy;	/* dx/dy */
125       GLfixed fdxdy;	/* dx/dy in fixed-point */
126       GLfloat adjy;	/* adjust from v[0]->fy to fsy, scaled */
127       GLfixed fsx;	/* first sample point x coord */
128       GLfixed fsy;
129       GLfixed fx0;	/* fixed pt X of lower endpoint */
130       GLint lines;	/* number of lines to be sampled on this edge */
131    } EdgeT;
132 
133    const SWcontext *swrast = SWRAST_CONTEXT(ctx);
134 #ifdef INTERP_Z
135    const GLint depthBits = ctx->DrawBuffer->Visual.depthBits;
136    const GLint fixedToDepthShift = depthBits <= 16 ? FIXED_SHIFT : 0;
137    const GLfloat maxDepth = ctx->DrawBuffer->_DepthMaxF;
138 #define FixedToDepth(F)  ((F) >> fixedToDepthShift)
139 #endif
140    EdgeT eMaj, eTop, eBot;
141    GLfloat oneOverArea;
142    const SWvertex *vMin, *vMid, *vMax;  /* Y(vMin)<=Y(vMid)<=Y(vMax) */
143    GLfloat bf = SWRAST_CONTEXT(ctx)->_BackfaceSign;
144    const GLint snapMask = ~((FIXED_ONE / (1 << SUB_PIXEL_BITS)) - 1); /* for x/y coord snapping */
145    GLfixed vMin_fx, vMin_fy, vMid_fx, vMid_fy, vMax_fx, vMax_fy;
146 
147    SWspan span;
148 
149    (void) swrast;
150 
151    INIT_SPAN(span, GL_POLYGON);
152    span.y = 0; /* silence warnings */
153 
154 #ifdef INTERP_Z
155    (void) fixedToDepthShift;
156 #endif
157 
158    /*
159    printf("%s()\n", __func__);
160    printf("  %g, %g, %g\n",
161           v0->attrib[VARYING_SLOT_POS][0],
162           v0->attrib[VARYING_SLOT_POS][1],
163           v0->attrib[VARYING_SLOT_POS][2]);
164    printf("  %g, %g, %g\n",
165           v1->attrib[VARYING_SLOT_POS][0],
166           v1->attrib[VARYING_SLOT_POS][1],
167           v1->attrib[VARYING_SLOT_POS][2]);
168    printf("  %g, %g, %g\n",
169           v2->attrib[VARYING_SLOT_POS][0],
170           v2->attrib[VARYING_SLOT_POS][1],
171           v2->attrib[VARYING_SLOT_POS][2]);
172    */
173 
174    /* Compute fixed point x,y coords w/ half-pixel offsets and snapping.
175     * And find the order of the 3 vertices along the Y axis.
176     */
177    {
178       const GLfixed fy0 = FloatToFixed(v0->attrib[VARYING_SLOT_POS][1] - 0.5F) & snapMask;
179       const GLfixed fy1 = FloatToFixed(v1->attrib[VARYING_SLOT_POS][1] - 0.5F) & snapMask;
180       const GLfixed fy2 = FloatToFixed(v2->attrib[VARYING_SLOT_POS][1] - 0.5F) & snapMask;
181       if (fy0 <= fy1) {
182          if (fy1 <= fy2) {
183             /* y0 <= y1 <= y2 */
184             vMin = v0;   vMid = v1;   vMax = v2;
185             vMin_fy = fy0;  vMid_fy = fy1;  vMax_fy = fy2;
186          }
187          else if (fy2 <= fy0) {
188             /* y2 <= y0 <= y1 */
189             vMin = v2;   vMid = v0;   vMax = v1;
190             vMin_fy = fy2;  vMid_fy = fy0;  vMax_fy = fy1;
191          }
192          else {
193             /* y0 <= y2 <= y1 */
194             vMin = v0;   vMid = v2;   vMax = v1;
195             vMin_fy = fy0;  vMid_fy = fy2;  vMax_fy = fy1;
196             bf = -bf;
197          }
198       }
199       else {
200          if (fy0 <= fy2) {
201             /* y1 <= y0 <= y2 */
202             vMin = v1;   vMid = v0;   vMax = v2;
203             vMin_fy = fy1;  vMid_fy = fy0;  vMax_fy = fy2;
204             bf = -bf;
205          }
206          else if (fy2 <= fy1) {
207             /* y2 <= y1 <= y0 */
208             vMin = v2;   vMid = v1;   vMax = v0;
209             vMin_fy = fy2;  vMid_fy = fy1;  vMax_fy = fy0;
210             bf = -bf;
211          }
212          else {
213             /* y1 <= y2 <= y0 */
214             vMin = v1;   vMid = v2;   vMax = v0;
215             vMin_fy = fy1;  vMid_fy = fy2;  vMax_fy = fy0;
216          }
217       }
218 
219       /* fixed point X coords */
220       vMin_fx = FloatToFixed(vMin->attrib[VARYING_SLOT_POS][0] + 0.5F) & snapMask;
221       vMid_fx = FloatToFixed(vMid->attrib[VARYING_SLOT_POS][0] + 0.5F) & snapMask;
222       vMax_fx = FloatToFixed(vMax->attrib[VARYING_SLOT_POS][0] + 0.5F) & snapMask;
223    }
224 
225    /* vertex/edge relationship */
226    eMaj.v0 = vMin;   eMaj.v1 = vMax;   /*TODO: .v1's not needed */
227    eTop.v0 = vMid;   eTop.v1 = vMax;
228    eBot.v0 = vMin;   eBot.v1 = vMid;
229 
230    /* compute deltas for each edge:  vertex[upper] - vertex[lower] */
231    eMaj.dx = FixedToFloat(vMax_fx - vMin_fx);
232    eMaj.dy = FixedToFloat(vMax_fy - vMin_fy);
233    eTop.dx = FixedToFloat(vMax_fx - vMid_fx);
234    eTop.dy = FixedToFloat(vMax_fy - vMid_fy);
235    eBot.dx = FixedToFloat(vMid_fx - vMin_fx);
236    eBot.dy = FixedToFloat(vMid_fy - vMin_fy);
237 
238    /* compute area, oneOverArea and perform backface culling */
239    {
240       const GLfloat area = eMaj.dx * eBot.dy - eBot.dx * eMaj.dy;
241 
242       if (IS_INF_OR_NAN(area) || area == 0.0F)
243          return;
244 
245       if (area * bf * swrast->_BackfaceCullSign < 0.0F)
246          return;
247 
248       oneOverArea = 1.0F / area;
249 
250       /* 0 = front, 1 = back */
251       span.facing = oneOverArea * bf > 0.0F;
252    }
253 
254    /* Edge setup.  For a triangle strip these could be reused... */
255    {
256       eMaj.fsy = FixedCeil(vMin_fy);
257       eMaj.lines = FixedToInt(FixedCeil(vMax_fy - eMaj.fsy));
258       if (eMaj.lines > 0) {
259          eMaj.dxdy = eMaj.dx / eMaj.dy;
260          eMaj.fdxdy = SignedFloatToFixed(eMaj.dxdy);
261          eMaj.adjy = (GLfloat) (eMaj.fsy - vMin_fy);  /* SCALED! */
262          eMaj.fx0 = vMin_fx;
263          eMaj.fsx = eMaj.fx0 + (GLfixed) (eMaj.adjy * eMaj.dxdy);
264       }
265       else {
266          return;  /*CULLED*/
267       }
268 
269       eTop.fsy = FixedCeil(vMid_fy);
270       eTop.lines = FixedToInt(FixedCeil(vMax_fy - eTop.fsy));
271       if (eTop.lines > 0) {
272          eTop.dxdy = eTop.dx / eTop.dy;
273          eTop.fdxdy = SignedFloatToFixed(eTop.dxdy);
274          eTop.adjy = (GLfloat) (eTop.fsy - vMid_fy); /* SCALED! */
275          eTop.fx0 = vMid_fx;
276          eTop.fsx = eTop.fx0 + (GLfixed) (eTop.adjy * eTop.dxdy);
277       }
278 
279       eBot.fsy = FixedCeil(vMin_fy);
280       eBot.lines = FixedToInt(FixedCeil(vMid_fy - eBot.fsy));
281       if (eBot.lines > 0) {
282          eBot.dxdy = eBot.dx / eBot.dy;
283          eBot.fdxdy = SignedFloatToFixed(eBot.dxdy);
284          eBot.adjy = (GLfloat) (eBot.fsy - vMin_fy);  /* SCALED! */
285          eBot.fx0 = vMin_fx;
286          eBot.fsx = eBot.fx0 + (GLfixed) (eBot.adjy * eBot.dxdy);
287       }
288    }
289 
290    /*
291     * Conceptually, we view a triangle as two subtriangles
292     * separated by a perfectly horizontal line.  The edge that is
293     * intersected by this line is one with maximal absolute dy; we
294     * call it a ``major'' edge.  The other two edges are the
295     * ``top'' edge (for the upper subtriangle) and the ``bottom''
296     * edge (for the lower subtriangle).  If either of these two
297     * edges is horizontal or very close to horizontal, the
298     * corresponding subtriangle might cover zero sample points;
299     * we take care to handle such cases, for performance as well
300     * as correctness.
301     *
302     * By stepping rasterization parameters along the major edge,
303     * we can avoid recomputing them at the discontinuity where
304     * the top and bottom edges meet.  However, this forces us to
305     * be able to scan both left-to-right and right-to-left.
306     * Also, we must determine whether the major edge is at the
307     * left or right side of the triangle.  We do this by
308     * computing the magnitude of the cross-product of the major
309     * and top edges.  Since this magnitude depends on the sine of
310     * the angle between the two edges, its sign tells us whether
311     * we turn to the left or to the right when travelling along
312     * the major edge to the top edge, and from this we infer
313     * whether the major edge is on the left or the right.
314     *
315     * Serendipitously, this cross-product magnitude is also a
316     * value we need to compute the iteration parameter
317     * derivatives for the triangle, and it can be used to perform
318     * backface culling because its sign tells us whether the
319     * triangle is clockwise or counterclockwise.  In this code we
320     * refer to it as ``area'' because it's also proportional to
321     * the pixel area of the triangle.
322     */
323 
324    {
325       GLint scan_from_left_to_right;  /* true if scanning left-to-right */
326 
327       /*
328        * Execute user-supplied setup code
329        */
330 #ifdef SETUP_CODE
331       SETUP_CODE
332 #endif
333 
334       scan_from_left_to_right = (oneOverArea < 0.0F);
335 
336 
337       /* compute d?/dx and d?/dy derivatives */
338 #ifdef INTERP_Z
339       span.interpMask |= SPAN_Z;
340       {
341          GLfloat eMaj_dz = vMax->attrib[VARYING_SLOT_POS][2] - vMin->attrib[VARYING_SLOT_POS][2];
342          GLfloat eBot_dz = vMid->attrib[VARYING_SLOT_POS][2] - vMin->attrib[VARYING_SLOT_POS][2];
343          span.attrStepX[VARYING_SLOT_POS][2] = oneOverArea * (eMaj_dz * eBot.dy - eMaj.dy * eBot_dz);
344          if (span.attrStepX[VARYING_SLOT_POS][2] > maxDepth ||
345              span.attrStepX[VARYING_SLOT_POS][2] < -maxDepth) {
346             /* probably a sliver triangle */
347             span.attrStepX[VARYING_SLOT_POS][2] = 0.0;
348             span.attrStepY[VARYING_SLOT_POS][2] = 0.0;
349          }
350          else {
351             span.attrStepY[VARYING_SLOT_POS][2] = oneOverArea * (eMaj.dx * eBot_dz - eMaj_dz * eBot.dx);
352          }
353          if (depthBits <= 16)
354             span.zStep = SignedFloatToFixed(span.attrStepX[VARYING_SLOT_POS][2]);
355          else
356             span.zStep = (GLint) span.attrStepX[VARYING_SLOT_POS][2];
357       }
358 #endif
359 #ifdef INTERP_RGB
360       span.interpMask |= SPAN_RGBA;
361       if (ctx->Light.ShadeModel == GL_SMOOTH) {
362          GLfloat eMaj_dr = (GLfloat) (vMax->color[RCOMP] - vMin->color[RCOMP]);
363          GLfloat eBot_dr = (GLfloat) (vMid->color[RCOMP] - vMin->color[RCOMP]);
364          GLfloat eMaj_dg = (GLfloat) (vMax->color[GCOMP] - vMin->color[GCOMP]);
365          GLfloat eBot_dg = (GLfloat) (vMid->color[GCOMP] - vMin->color[GCOMP]);
366          GLfloat eMaj_db = (GLfloat) (vMax->color[BCOMP] - vMin->color[BCOMP]);
367          GLfloat eBot_db = (GLfloat) (vMid->color[BCOMP] - vMin->color[BCOMP]);
368 #  ifdef INTERP_ALPHA
369          GLfloat eMaj_da = (GLfloat) (vMax->color[ACOMP] - vMin->color[ACOMP]);
370          GLfloat eBot_da = (GLfloat) (vMid->color[ACOMP] - vMin->color[ACOMP]);
371 #  endif
372          span.attrStepX[VARYING_SLOT_COL0][0] = oneOverArea * (eMaj_dr * eBot.dy - eMaj.dy * eBot_dr);
373          span.attrStepY[VARYING_SLOT_COL0][0] = oneOverArea * (eMaj.dx * eBot_dr - eMaj_dr * eBot.dx);
374          span.attrStepX[VARYING_SLOT_COL0][1] = oneOverArea * (eMaj_dg * eBot.dy - eMaj.dy * eBot_dg);
375          span.attrStepY[VARYING_SLOT_COL0][1] = oneOverArea * (eMaj.dx * eBot_dg - eMaj_dg * eBot.dx);
376          span.attrStepX[VARYING_SLOT_COL0][2] = oneOverArea * (eMaj_db * eBot.dy - eMaj.dy * eBot_db);
377          span.attrStepY[VARYING_SLOT_COL0][2] = oneOverArea * (eMaj.dx * eBot_db - eMaj_db * eBot.dx);
378          span.redStep   = SignedFloatToFixed(span.attrStepX[VARYING_SLOT_COL0][0]);
379          span.greenStep = SignedFloatToFixed(span.attrStepX[VARYING_SLOT_COL0][1]);
380          span.blueStep  = SignedFloatToFixed(span.attrStepX[VARYING_SLOT_COL0][2]);
381 #  ifdef INTERP_ALPHA
382          span.attrStepX[VARYING_SLOT_COL0][3] = oneOverArea * (eMaj_da * eBot.dy - eMaj.dy * eBot_da);
383          span.attrStepY[VARYING_SLOT_COL0][3] = oneOverArea * (eMaj.dx * eBot_da - eMaj_da * eBot.dx);
384          span.alphaStep = SignedFloatToFixed(span.attrStepX[VARYING_SLOT_COL0][3]);
385 #  endif /* INTERP_ALPHA */
386       }
387       else {
388          assert(ctx->Light.ShadeModel == GL_FLAT);
389          span.interpMask |= SPAN_FLAT;
390          span.attrStepX[VARYING_SLOT_COL0][0] = span.attrStepY[VARYING_SLOT_COL0][0] = 0.0F;
391          span.attrStepX[VARYING_SLOT_COL0][1] = span.attrStepY[VARYING_SLOT_COL0][1] = 0.0F;
392          span.attrStepX[VARYING_SLOT_COL0][2] = span.attrStepY[VARYING_SLOT_COL0][2] = 0.0F;
393 	 span.redStep   = 0;
394 	 span.greenStep = 0;
395 	 span.blueStep  = 0;
396 #  ifdef INTERP_ALPHA
397          span.attrStepX[VARYING_SLOT_COL0][3] = span.attrStepY[VARYING_SLOT_COL0][3] = 0.0F;
398 	 span.alphaStep = 0;
399 #  endif
400       }
401 #endif /* INTERP_RGB */
402 #ifdef INTERP_INT_TEX
403       {
404          GLfloat eMaj_ds = (vMax->attrib[VARYING_SLOT_TEX0][0] - vMin->attrib[VARYING_SLOT_TEX0][0]) * S_SCALE;
405          GLfloat eBot_ds = (vMid->attrib[VARYING_SLOT_TEX0][0] - vMin->attrib[VARYING_SLOT_TEX0][0]) * S_SCALE;
406          GLfloat eMaj_dt = (vMax->attrib[VARYING_SLOT_TEX0][1] - vMin->attrib[VARYING_SLOT_TEX0][1]) * T_SCALE;
407          GLfloat eBot_dt = (vMid->attrib[VARYING_SLOT_TEX0][1] - vMin->attrib[VARYING_SLOT_TEX0][1]) * T_SCALE;
408          span.attrStepX[VARYING_SLOT_TEX0][0] = oneOverArea * (eMaj_ds * eBot.dy - eMaj.dy * eBot_ds);
409          span.attrStepY[VARYING_SLOT_TEX0][0] = oneOverArea * (eMaj.dx * eBot_ds - eMaj_ds * eBot.dx);
410          span.attrStepX[VARYING_SLOT_TEX0][1] = oneOverArea * (eMaj_dt * eBot.dy - eMaj.dy * eBot_dt);
411          span.attrStepY[VARYING_SLOT_TEX0][1] = oneOverArea * (eMaj.dx * eBot_dt - eMaj_dt * eBot.dx);
412          span.intTexStep[0] = SignedFloatToFixed(span.attrStepX[VARYING_SLOT_TEX0][0]);
413          span.intTexStep[1] = SignedFloatToFixed(span.attrStepX[VARYING_SLOT_TEX0][1]);
414       }
415 #endif
416 #ifdef INTERP_ATTRIBS
417       {
418          /* attrib[VARYING_SLOT_POS][3] is 1/W */
419          const GLfloat wMax = vMax->attrib[VARYING_SLOT_POS][3];
420          const GLfloat wMin = vMin->attrib[VARYING_SLOT_POS][3];
421          const GLfloat wMid = vMid->attrib[VARYING_SLOT_POS][3];
422          {
423             const GLfloat eMaj_dw = wMax - wMin;
424             const GLfloat eBot_dw = wMid - wMin;
425             span.attrStepX[VARYING_SLOT_POS][3] = oneOverArea * (eMaj_dw * eBot.dy - eMaj.dy * eBot_dw);
426             span.attrStepY[VARYING_SLOT_POS][3] = oneOverArea * (eMaj.dx * eBot_dw - eMaj_dw * eBot.dx);
427          }
428          ATTRIB_LOOP_BEGIN
429             if (swrast->_InterpMode[attr] == GL_FLAT) {
430                ASSIGN_4V(span.attrStepX[attr], 0.0, 0.0, 0.0, 0.0);
431                ASSIGN_4V(span.attrStepY[attr], 0.0, 0.0, 0.0, 0.0);
432             }
433             else {
434                GLuint c;
435                for (c = 0; c < 4; c++) {
436                   GLfloat eMaj_da = vMax->attrib[attr][c] * wMax - vMin->attrib[attr][c] * wMin;
437                   GLfloat eBot_da = vMid->attrib[attr][c] * wMid - vMin->attrib[attr][c] * wMin;
438                   span.attrStepX[attr][c] = oneOverArea * (eMaj_da * eBot.dy - eMaj.dy * eBot_da);
439                   span.attrStepY[attr][c] = oneOverArea * (eMaj.dx * eBot_da - eMaj_da * eBot.dx);
440                }
441             }
442          ATTRIB_LOOP_END
443       }
444 #endif
445 
446       /*
447        * We always sample at pixel centers.  However, we avoid
448        * explicit half-pixel offsets in this code by incorporating
449        * the proper offset in each of x and y during the
450        * transformation to window coordinates.
451        *
452        * We also apply the usual rasterization rules to prevent
453        * cracks and overlaps.  A pixel is considered inside a
454        * subtriangle if it meets all of four conditions: it is on or
455        * to the right of the left edge, strictly to the left of the
456        * right edge, on or below the top edge, and strictly above
457        * the bottom edge.  (Some edges may be degenerate.)
458        *
459        * The following discussion assumes left-to-right scanning
460        * (that is, the major edge is on the left); the right-to-left
461        * case is a straightforward variation.
462        *
463        * We start by finding the half-integral y coordinate that is
464        * at or below the top of the triangle.  This gives us the
465        * first scan line that could possibly contain pixels that are
466        * inside the triangle.
467        *
468        * Next we creep down the major edge until we reach that y,
469        * and compute the corresponding x coordinate on the edge.
470        * Then we find the half-integral x that lies on or just
471        * inside the edge.  This is the first pixel that might lie in
472        * the interior of the triangle.  (We won't know for sure
473        * until we check the other edges.)
474        *
475        * As we rasterize the triangle, we'll step down the major
476        * edge.  For each step in y, we'll move an integer number
477        * of steps in x.  There are two possible x step sizes, which
478        * we'll call the ``inner'' step (guaranteed to land on the
479        * edge or inside it) and the ``outer'' step (guaranteed to
480        * land on the edge or outside it).  The inner and outer steps
481        * differ by one.  During rasterization we maintain an error
482        * term that indicates our distance from the true edge, and
483        * select either the inner step or the outer step, whichever
484        * gets us to the first pixel that falls inside the triangle.
485        *
486        * All parameters (z, red, etc.) as well as the buffer
487        * addresses for color and z have inner and outer step values,
488        * so that we can increment them appropriately.  This method
489        * eliminates the need to adjust parameters by creeping a
490        * sub-pixel amount into the triangle at each scanline.
491        */
492 
493       {
494          GLint subTriangle;
495          GLfixed fxLeftEdge = 0, fxRightEdge = 0;
496          GLfixed fdxLeftEdge = 0, fdxRightEdge = 0;
497          GLfixed fError = 0, fdError = 0;
498 #ifdef PIXEL_ADDRESS
499          PIXEL_TYPE *pRow = NULL;
500          GLint dPRowOuter = 0, dPRowInner;  /* offset in bytes */
501 #endif
502 #ifdef INTERP_Z
503 #  ifdef DEPTH_TYPE
504          struct gl_renderbuffer *zrb
505             = ctx->DrawBuffer->Attachment[BUFFER_DEPTH].Renderbuffer;
506          DEPTH_TYPE *zRow = NULL;
507          GLint dZRowOuter = 0, dZRowInner;  /* offset in bytes */
508 #  endif
509          GLuint zLeft = 0;
510          GLfixed fdzOuter = 0, fdzInner;
511 #endif
512 #ifdef INTERP_RGB
513          GLint rLeft = 0, fdrOuter = 0, fdrInner;
514          GLint gLeft = 0, fdgOuter = 0, fdgInner;
515          GLint bLeft = 0, fdbOuter = 0, fdbInner;
516 #endif
517 #ifdef INTERP_ALPHA
518          GLint aLeft = 0, fdaOuter = 0, fdaInner;
519 #endif
520 #ifdef INTERP_INT_TEX
521          GLfixed sLeft=0, dsOuter=0, dsInner;
522          GLfixed tLeft=0, dtOuter=0, dtInner;
523 #endif
524 #ifdef INTERP_ATTRIBS
525          GLfloat wLeft = 0, dwOuter = 0, dwInner;
526          GLfloat attrLeft[VARYING_SLOT_MAX][4];
527          GLfloat daOuter[VARYING_SLOT_MAX][4], daInner[VARYING_SLOT_MAX][4];
528 #endif
529 
530          for (subTriangle=0; subTriangle<=1; subTriangle++) {
531             EdgeT *eLeft, *eRight;
532             int setupLeft, setupRight;
533             int lines;
534 
535             if (subTriangle==0) {
536                /* bottom half */
537                if (scan_from_left_to_right) {
538                   eLeft = &eMaj;
539                   eRight = &eBot;
540                   lines = eRight->lines;
541                   setupLeft = 1;
542                   setupRight = 1;
543                }
544                else {
545                   eLeft = &eBot;
546                   eRight = &eMaj;
547                   lines = eLeft->lines;
548                   setupLeft = 1;
549                   setupRight = 1;
550                }
551             }
552             else {
553                /* top half */
554                if (scan_from_left_to_right) {
555                   eLeft = &eMaj;
556                   eRight = &eTop;
557                   lines = eRight->lines;
558                   setupLeft = 0;
559                   setupRight = 1;
560                }
561                else {
562                   eLeft = &eTop;
563                   eRight = &eMaj;
564                   lines = eLeft->lines;
565                   setupLeft = 1;
566                   setupRight = 0;
567                }
568                if (lines == 0)
569                   return;
570             }
571 
572             if (setupLeft && eLeft->lines > 0) {
573                const SWvertex *vLower = eLeft->v0;
574                const GLfixed fsy = eLeft->fsy;
575                const GLfixed fsx = eLeft->fsx;  /* no fractional part */
576                const GLfixed fx = FixedCeil(fsx);  /* no fractional part */
577                const GLfixed adjx = (GLfixed) (fx - eLeft->fx0); /* SCALED! */
578                const GLfixed adjy = (GLfixed) eLeft->adjy;      /* SCALED! */
579                GLint idxOuter;
580                GLfloat dxOuter;
581                GLfixed fdxOuter;
582 
583                fError = fx - fsx - FIXED_ONE;
584                fxLeftEdge = fsx - FIXED_EPSILON;
585                fdxLeftEdge = eLeft->fdxdy;
586                fdxOuter = FixedFloor(fdxLeftEdge - FIXED_EPSILON);
587                fdError = fdxOuter - fdxLeftEdge + FIXED_ONE;
588                idxOuter = FixedToInt(fdxOuter);
589                dxOuter = (GLfloat) idxOuter;
590                span.y = FixedToInt(fsy);
591 
592                /* silence warnings on some compilers */
593                (void) dxOuter;
594                (void) adjx;
595                (void) adjy;
596                (void) vLower;
597 
598 #ifdef PIXEL_ADDRESS
599                {
600                   pRow = (PIXEL_TYPE *) PIXEL_ADDRESS(FixedToInt(fxLeftEdge), span.y);
601                   dPRowOuter = -((int)BYTES_PER_ROW) + idxOuter * sizeof(PIXEL_TYPE);
602                   /* negative because Y=0 at bottom and increases upward */
603                }
604 #endif
605                /*
606                 * Now we need the set of parameter (z, color, etc.) values at
607                 * the point (fx, fsy).  This gives us properly-sampled parameter
608                 * values that we can step from pixel to pixel.  Furthermore,
609                 * although we might have intermediate results that overflow
610                 * the normal parameter range when we step temporarily outside
611                 * the triangle, we shouldn't overflow or underflow for any
612                 * pixel that's actually inside the triangle.
613                 */
614 
615 #ifdef INTERP_Z
616                {
617                   GLfloat z0 = vLower->attrib[VARYING_SLOT_POS][2];
618                   if (depthBits <= 16) {
619                      /* interpolate fixed-pt values */
620                      GLfloat tmp = (z0 * FIXED_SCALE
621                                     + span.attrStepX[VARYING_SLOT_POS][2] * adjx
622                                     + span.attrStepY[VARYING_SLOT_POS][2] * adjy) + FIXED_HALF;
623                      if (tmp < MAX_GLUINT / 2)
624                         zLeft = (GLfixed) tmp;
625                      else
626                         zLeft = MAX_GLUINT / 2;
627                      fdzOuter = SignedFloatToFixed(span.attrStepY[VARYING_SLOT_POS][2] +
628                                                    dxOuter * span.attrStepX[VARYING_SLOT_POS][2]);
629                   }
630                   else {
631                      /* interpolate depth values w/out scaling */
632                      zLeft = (GLuint) (z0 + span.attrStepX[VARYING_SLOT_POS][2] * FixedToFloat(adjx)
633                                           + span.attrStepY[VARYING_SLOT_POS][2] * FixedToFloat(adjy));
634                      fdzOuter = (GLint) (span.attrStepY[VARYING_SLOT_POS][2] +
635                                          dxOuter * span.attrStepX[VARYING_SLOT_POS][2]);
636                   }
637 #  ifdef DEPTH_TYPE
638                   zRow = (DEPTH_TYPE *)
639                     _swrast_pixel_address(zrb, FixedToInt(fxLeftEdge), span.y);
640                   dZRowOuter = (ctx->DrawBuffer->Width + idxOuter) * sizeof(DEPTH_TYPE);
641 #  endif
642                }
643 #endif
644 #ifdef INTERP_RGB
645                if (ctx->Light.ShadeModel == GL_SMOOTH) {
646                   rLeft = (GLint)(ChanToFixed(vLower->color[RCOMP])
647                                   + span.attrStepX[VARYING_SLOT_COL0][0] * adjx
648                                   + span.attrStepY[VARYING_SLOT_COL0][0] * adjy) + FIXED_HALF;
649                   gLeft = (GLint)(ChanToFixed(vLower->color[GCOMP])
650                                   + span.attrStepX[VARYING_SLOT_COL0][1] * adjx
651                                   + span.attrStepY[VARYING_SLOT_COL0][1] * adjy) + FIXED_HALF;
652                   bLeft = (GLint)(ChanToFixed(vLower->color[BCOMP])
653                                   + span.attrStepX[VARYING_SLOT_COL0][2] * adjx
654                                   + span.attrStepY[VARYING_SLOT_COL0][2] * adjy) + FIXED_HALF;
655                   fdrOuter = SignedFloatToFixed(span.attrStepY[VARYING_SLOT_COL0][0]
656                                                 + dxOuter * span.attrStepX[VARYING_SLOT_COL0][0]);
657                   fdgOuter = SignedFloatToFixed(span.attrStepY[VARYING_SLOT_COL0][1]
658                                                 + dxOuter * span.attrStepX[VARYING_SLOT_COL0][1]);
659                   fdbOuter = SignedFloatToFixed(span.attrStepY[VARYING_SLOT_COL0][2]
660                                                 + dxOuter * span.attrStepX[VARYING_SLOT_COL0][2]);
661 #  ifdef INTERP_ALPHA
662                   aLeft = (GLint)(ChanToFixed(vLower->color[ACOMP])
663                                   + span.attrStepX[VARYING_SLOT_COL0][3] * adjx
664                                   + span.attrStepY[VARYING_SLOT_COL0][3] * adjy) + FIXED_HALF;
665                   fdaOuter = SignedFloatToFixed(span.attrStepY[VARYING_SLOT_COL0][3]
666                                                 + dxOuter * span.attrStepX[VARYING_SLOT_COL0][3]);
667 #  endif
668                }
669                else {
670                   assert(ctx->Light.ShadeModel == GL_FLAT);
671                   rLeft = ChanToFixed(v2->color[RCOMP]);
672                   gLeft = ChanToFixed(v2->color[GCOMP]);
673                   bLeft = ChanToFixed(v2->color[BCOMP]);
674                   fdrOuter = fdgOuter = fdbOuter = 0;
675 #  ifdef INTERP_ALPHA
676                   aLeft = ChanToFixed(v2->color[ACOMP]);
677                   fdaOuter = 0;
678 #  endif
679                }
680 #endif /* INTERP_RGB */
681 
682 
683 #ifdef INTERP_INT_TEX
684                {
685                   GLfloat s0, t0;
686                   s0 = vLower->attrib[VARYING_SLOT_TEX0][0] * S_SCALE;
687                   sLeft = (GLfixed)(s0 * FIXED_SCALE + span.attrStepX[VARYING_SLOT_TEX0][0] * adjx
688                                  + span.attrStepY[VARYING_SLOT_TEX0][0] * adjy) + FIXED_HALF;
689                   dsOuter = SignedFloatToFixed(span.attrStepY[VARYING_SLOT_TEX0][0]
690                                                + dxOuter * span.attrStepX[VARYING_SLOT_TEX0][0]);
691 
692                   t0 = vLower->attrib[VARYING_SLOT_TEX0][1] * T_SCALE;
693                   tLeft = (GLfixed)(t0 * FIXED_SCALE + span.attrStepX[VARYING_SLOT_TEX0][1] * adjx
694                                  + span.attrStepY[VARYING_SLOT_TEX0][1] * adjy) + FIXED_HALF;
695                   dtOuter = SignedFloatToFixed(span.attrStepY[VARYING_SLOT_TEX0][1]
696                                                + dxOuter * span.attrStepX[VARYING_SLOT_TEX0][1]);
697                }
698 #endif
699 #ifdef INTERP_ATTRIBS
700                {
701                   const GLuint attr = VARYING_SLOT_POS;
702                   wLeft = vLower->attrib[VARYING_SLOT_POS][3]
703                         + (span.attrStepX[attr][3] * adjx
704                            + span.attrStepY[attr][3] * adjy) * (1.0F/FIXED_SCALE);
705                   dwOuter = span.attrStepY[attr][3] + dxOuter * span.attrStepX[attr][3];
706                }
707                ATTRIB_LOOP_BEGIN
708                   const GLfloat invW = vLower->attrib[VARYING_SLOT_POS][3];
709                   if (swrast->_InterpMode[attr] == GL_FLAT) {
710                      GLuint c;
711                      for (c = 0; c < 4; c++) {
712                         attrLeft[attr][c] = v2->attrib[attr][c] * invW;
713                         daOuter[attr][c] = 0.0;
714                      }
715                   }
716                   else {
717                      GLuint c;
718                      for (c = 0; c < 4; c++) {
719                         const GLfloat a = vLower->attrib[attr][c] * invW;
720                         attrLeft[attr][c] = a + (  span.attrStepX[attr][c] * adjx
721                                                  + span.attrStepY[attr][c] * adjy) * (1.0F/FIXED_SCALE);
722                         daOuter[attr][c] = span.attrStepY[attr][c] + dxOuter * span.attrStepX[attr][c];
723                      }
724                   }
725                ATTRIB_LOOP_END
726 #endif
727             } /*if setupLeft*/
728 
729 
730             if (setupRight && eRight->lines>0) {
731                fxRightEdge = eRight->fsx - FIXED_EPSILON;
732                fdxRightEdge = eRight->fdxdy;
733             }
734 
735             if (lines==0) {
736                continue;
737             }
738 
739 
740             /* Rasterize setup */
741 #ifdef PIXEL_ADDRESS
742             dPRowInner = dPRowOuter + sizeof(PIXEL_TYPE);
743 #endif
744 #ifdef INTERP_Z
745 #  ifdef DEPTH_TYPE
746             dZRowInner = dZRowOuter + sizeof(DEPTH_TYPE);
747 #  endif
748             fdzInner = fdzOuter + span.zStep;
749 #endif
750 #ifdef INTERP_RGB
751             fdrInner = fdrOuter + span.redStep;
752             fdgInner = fdgOuter + span.greenStep;
753             fdbInner = fdbOuter + span.blueStep;
754 #endif
755 #ifdef INTERP_ALPHA
756             fdaInner = fdaOuter + span.alphaStep;
757 #endif
758 #ifdef INTERP_INT_TEX
759             dsInner = dsOuter + span.intTexStep[0];
760             dtInner = dtOuter + span.intTexStep[1];
761 #endif
762 #ifdef INTERP_ATTRIBS
763             dwInner = dwOuter + span.attrStepX[VARYING_SLOT_POS][3];
764             ATTRIB_LOOP_BEGIN
765                GLuint c;
766                for (c = 0; c < 4; c++) {
767                   daInner[attr][c] = daOuter[attr][c] + span.attrStepX[attr][c];
768                }
769             ATTRIB_LOOP_END
770 #endif
771 
772             while (lines > 0) {
773                /* initialize the span interpolants to the leftmost value */
774                /* ff = fixed-pt fragment */
775                const GLint right = FixedToInt(fxRightEdge);
776                span.x = FixedToInt(fxLeftEdge);
777                if (right <= span.x)
778                   span.end = 0;
779                else
780                   span.end = right - span.x;
781 
782 #ifdef INTERP_Z
783                span.z = zLeft;
784 #endif
785 #ifdef INTERP_RGB
786                span.red = rLeft;
787                span.green = gLeft;
788                span.blue = bLeft;
789 #endif
790 #ifdef INTERP_ALPHA
791                span.alpha = aLeft;
792 #endif
793 #ifdef INTERP_INT_TEX
794                span.intTex[0] = sLeft;
795                span.intTex[1] = tLeft;
796 #endif
797 
798 #ifdef INTERP_ATTRIBS
799                span.attrStart[VARYING_SLOT_POS][3] = wLeft;
800                ATTRIB_LOOP_BEGIN
801                   GLuint c;
802                   for (c = 0; c < 4; c++) {
803                      span.attrStart[attr][c] = attrLeft[attr][c];
804                   }
805                ATTRIB_LOOP_END
806 #endif
807 
808                /* This is where we actually generate fragments */
809                /* XXX the test for span.y > 0 _shouldn't_ be needed but
810                 * it fixes a problem on 64-bit Opterons (bug 4842).
811                 */
812                if (span.end > 0 && span.y >= 0) {
813                   const GLint len = span.end - 1;
814                   (void) len;
815 #ifdef INTERP_RGB
816                   CLAMP_INTERPOLANT(red, redStep, len);
817                   CLAMP_INTERPOLANT(green, greenStep, len);
818                   CLAMP_INTERPOLANT(blue, blueStep, len);
819 #endif
820 #ifdef INTERP_ALPHA
821                   CLAMP_INTERPOLANT(alpha, alphaStep, len);
822 #endif
823                   {
824                      RENDER_SPAN( span );
825                   }
826                }
827 
828                /*
829                 * Advance to the next scan line.  Compute the
830                 * new edge coordinates, and adjust the
831                 * pixel-center x coordinate so that it stays
832                 * on or inside the major edge.
833                 */
834                span.y++;
835                lines--;
836 
837                fxLeftEdge += fdxLeftEdge;
838                fxRightEdge += fdxRightEdge;
839 
840                fError += fdError;
841                if (fError >= 0) {
842                   fError -= FIXED_ONE;
843 
844 #ifdef PIXEL_ADDRESS
845                   pRow = (PIXEL_TYPE *) ((GLubyte *) pRow + dPRowOuter);
846 #endif
847 #ifdef INTERP_Z
848 #  ifdef DEPTH_TYPE
849                   zRow = (DEPTH_TYPE *) ((GLubyte *) zRow + dZRowOuter);
850 #  endif
851                   zLeft += fdzOuter;
852 #endif
853 #ifdef INTERP_RGB
854                   rLeft += fdrOuter;
855                   gLeft += fdgOuter;
856                   bLeft += fdbOuter;
857 #endif
858 #ifdef INTERP_ALPHA
859                   aLeft += fdaOuter;
860 #endif
861 #ifdef INTERP_INT_TEX
862                   sLeft += dsOuter;
863                   tLeft += dtOuter;
864 #endif
865 #ifdef INTERP_ATTRIBS
866                   wLeft += dwOuter;
867                   ATTRIB_LOOP_BEGIN
868                      GLuint c;
869                      for (c = 0; c < 4; c++) {
870                         attrLeft[attr][c] += daOuter[attr][c];
871                      }
872                   ATTRIB_LOOP_END
873 #endif
874                }
875                else {
876 #ifdef PIXEL_ADDRESS
877                   pRow = (PIXEL_TYPE *) ((GLubyte *) pRow + dPRowInner);
878 #endif
879 #ifdef INTERP_Z
880 #  ifdef DEPTH_TYPE
881                   zRow = (DEPTH_TYPE *) ((GLubyte *) zRow + dZRowInner);
882 #  endif
883                   zLeft += fdzInner;
884 #endif
885 #ifdef INTERP_RGB
886                   rLeft += fdrInner;
887                   gLeft += fdgInner;
888                   bLeft += fdbInner;
889 #endif
890 #ifdef INTERP_ALPHA
891                   aLeft += fdaInner;
892 #endif
893 #ifdef INTERP_INT_TEX
894                   sLeft += dsInner;
895                   tLeft += dtInner;
896 #endif
897 #ifdef INTERP_ATTRIBS
898                   wLeft += dwInner;
899                   ATTRIB_LOOP_BEGIN
900                      GLuint c;
901                      for (c = 0; c < 4; c++) {
902                         attrLeft[attr][c] += daInner[attr][c];
903                      }
904                   ATTRIB_LOOP_END
905 #endif
906                }
907             } /*while lines>0*/
908 
909          } /* for subTriangle */
910 
911       }
912    }
913 }
914 
915 #undef SETUP_CODE
916 #undef RENDER_SPAN
917 
918 #undef PIXEL_TYPE
919 #undef BYTES_PER_ROW
920 #undef PIXEL_ADDRESS
921 #undef DEPTH_TYPE
922 
923 #undef INTERP_Z
924 #undef INTERP_RGB
925 #undef INTERP_ALPHA
926 #undef INTERP_INT_TEX
927 #undef INTERP_ATTRIBS
928 
929 #undef S_SCALE
930 #undef T_SCALE
931 
932 #undef FixedToDepth
933 
934 #undef NAME
935