1 // Copyright (C) 2018 The Android Open Source Project
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include <gtest/gtest.h>
16 #include <random>
17
18 #include "benchmark/benchmark.h"
19 #include "perfetto/base/time.h"
20 #include "perfetto/traced/traced.h"
21 #include "perfetto/tracing/core/trace_config.h"
22 #include "perfetto/tracing/core/trace_packet.h"
23 #include "src/base/test/test_task_runner.h"
24 #include "test/task_runner_thread.h"
25 #include "test/task_runner_thread_delegates.h"
26 #include "test/test_helper.h"
27
28 #include "perfetto/trace/trace_packet.pb.h"
29 #include "perfetto/trace/trace_packet.pbzero.h"
30
31 namespace perfetto {
32
33 namespace {
34
IsBenchmarkFunctionalOnly()35 bool IsBenchmarkFunctionalOnly() {
36 return getenv("BENCHMARK_FUNCTIONAL_TEST_ONLY") != nullptr;
37 }
38
BenchmarkProducer(benchmark::State & state)39 void BenchmarkProducer(benchmark::State& state) {
40 base::TestTaskRunner task_runner;
41
42 TestHelper helper(&task_runner);
43 helper.StartServiceIfRequired();
44
45 FakeProducer* producer = helper.ConnectFakeProducer();
46 helper.ConnectConsumer();
47 helper.WaitForConsumerConnect();
48
49 TraceConfig trace_config;
50 trace_config.add_buffers()->set_size_kb(512);
51
52 auto* ds_config = trace_config.add_data_sources()->mutable_config();
53 ds_config->set_name("android.perfetto.FakeProducer");
54 ds_config->set_target_buffer(0);
55
56 static constexpr uint32_t kRandomSeed = 42;
57 uint32_t message_count = static_cast<uint32_t>(state.range(0));
58 uint32_t message_bytes = static_cast<uint32_t>(state.range(1));
59 uint32_t mb_per_s = static_cast<uint32_t>(state.range(2));
60
61 uint32_t messages_per_s = mb_per_s * 1024 * 1024 / message_bytes;
62 uint32_t time_for_messages_ms =
63 10000 + (messages_per_s == 0 ? 0 : message_count * 1000 / messages_per_s);
64
65 ds_config->mutable_for_testing()->set_seed(kRandomSeed);
66 ds_config->mutable_for_testing()->set_message_count(message_count);
67 ds_config->mutable_for_testing()->set_message_size(message_bytes);
68 ds_config->mutable_for_testing()->set_max_messages_per_second(messages_per_s);
69
70 helper.StartTracing(trace_config);
71 helper.WaitForProducerEnabled();
72
73 uint64_t wall_start_ns = static_cast<uint64_t>(base::GetWallTimeNs().count());
74 uint64_t service_start_ns = helper.service_thread()->GetThreadCPUTimeNs();
75 uint64_t producer_start_ns = helper.producer_thread()->GetThreadCPUTimeNs();
76 uint32_t iterations = 0;
77 for (auto _ : state) {
78 auto cname = "produced.and.committed." + std::to_string(iterations++);
79 auto on_produced_and_committed = task_runner.CreateCheckpoint(cname);
80 producer->ProduceEventBatch(helper.WrapTask(on_produced_and_committed));
81 task_runner.RunUntilCheckpoint(cname, time_for_messages_ms);
82 }
83 uint64_t service_ns =
84 helper.service_thread()->GetThreadCPUTimeNs() - service_start_ns;
85 uint64_t producer_ns =
86 helper.producer_thread()->GetThreadCPUTimeNs() - producer_start_ns;
87 uint64_t wall_ns =
88 static_cast<uint64_t>(base::GetWallTimeNs().count()) - wall_start_ns;
89
90 state.counters["Ser CPU"] = benchmark::Counter(100.0 * service_ns / wall_ns);
91 state.counters["Ser ns/m"] =
92 benchmark::Counter(1.0 * service_ns / message_count);
93 state.counters["Pro CPU"] = benchmark::Counter(100.0 * producer_ns / wall_ns);
94 state.SetBytesProcessed(iterations * message_bytes * message_count);
95
96 // Read back the buffer just to check correctness.
97 helper.ReadData();
98 helper.WaitForReadData();
99
100 bool is_first_packet = true;
101 std::minstd_rand0 rnd_engine(kRandomSeed);
102 for (const auto& packet : helper.trace()) {
103 ASSERT_TRUE(packet.has_for_testing());
104 if (is_first_packet) {
105 rnd_engine = std::minstd_rand0(packet.for_testing().seq_value());
106 is_first_packet = false;
107 } else {
108 ASSERT_EQ(packet.for_testing().seq_value(), rnd_engine());
109 }
110 }
111 }
112
BenchmarkConsumer(benchmark::State & state)113 static void BenchmarkConsumer(benchmark::State& state) {
114 base::TestTaskRunner task_runner;
115
116 TestHelper helper(&task_runner);
117 helper.StartServiceIfRequired();
118
119 FakeProducer* producer = helper.ConnectFakeProducer();
120 helper.ConnectConsumer();
121 helper.WaitForConsumerConnect();
122
123 TraceConfig trace_config;
124
125 static const uint32_t kBufferSizeBytes =
126 IsBenchmarkFunctionalOnly() ? 16 * 1024 : 2 * 1024 * 1024;
127 trace_config.add_buffers()->set_size_kb(kBufferSizeBytes / 1024);
128
129 static constexpr uint32_t kRandomSeed = 42;
130 uint32_t message_bytes = static_cast<uint32_t>(state.range(0));
131 uint32_t mb_per_s = static_cast<uint32_t>(state.range(1));
132 bool is_saturated_producer = mb_per_s == 0;
133
134 uint32_t message_count = kBufferSizeBytes / message_bytes;
135 uint32_t messages_per_s = mb_per_s * 1024 * 1024 / message_bytes;
136 uint32_t number_of_batches =
137 is_saturated_producer ? 0 : std::max(1u, message_count / messages_per_s);
138
139 auto* ds_config = trace_config.add_data_sources()->mutable_config();
140 ds_config->set_name("android.perfetto.FakeProducer");
141 ds_config->set_target_buffer(0);
142 ds_config->mutable_for_testing()->set_seed(kRandomSeed);
143 ds_config->mutable_for_testing()->set_message_count(message_count);
144 ds_config->mutable_for_testing()->set_message_size(message_bytes);
145 ds_config->mutable_for_testing()->set_max_messages_per_second(messages_per_s);
146
147 helper.StartTracing(trace_config);
148 helper.WaitForProducerEnabled();
149
150 uint64_t wall_start_ns = static_cast<uint64_t>(base::GetWallTimeNs().count());
151 uint64_t service_start_ns =
152 static_cast<uint64_t>(helper.service_thread()->GetThreadCPUTimeNs());
153 uint64_t consumer_start_ns =
154 static_cast<uint64_t>(base::GetThreadCPUTimeNs().count());
155 uint64_t read_time_taken_ns = 0;
156
157 uint64_t iterations = 0;
158 uint32_t counter = 0;
159 for (auto _ : state) {
160 auto cname = "produced.and.committed." + std::to_string(iterations++);
161 auto on_produced_and_committed = task_runner.CreateCheckpoint(cname);
162 producer->ProduceEventBatch(helper.WrapTask(on_produced_and_committed));
163
164 if (is_saturated_producer) {
165 // If the producer is running in saturated mode, wait until it flushes
166 // data.
167 task_runner.RunUntilCheckpoint(cname);
168
169 // Then time how long it takes to read back the data.
170 int64_t start = base::GetWallTimeNs().count();
171 helper.ReadData(counter);
172 helper.WaitForReadData(counter++);
173 read_time_taken_ns +=
174 static_cast<uint64_t>(base::GetWallTimeNs().count() - start);
175 } else {
176 // If the producer is not running in saturated mode, every second the
177 // producer will send a batch of data over. Wait for a second before
178 // performing readback; do this for each batch the producer sends.
179 for (uint32_t i = 0; i < number_of_batches; i++) {
180 auto batch_cname = "batch.checkpoint." + std::to_string(counter);
181 auto batch_checkpoint = task_runner.CreateCheckpoint(batch_cname);
182 task_runner.PostDelayedTask(batch_checkpoint, 1000);
183 task_runner.RunUntilCheckpoint(batch_cname);
184
185 int64_t start = base::GetWallTimeNs().count();
186 helper.ReadData(counter);
187 helper.WaitForReadData(counter++);
188 read_time_taken_ns +=
189 static_cast<uint64_t>(base::GetWallTimeNs().count() - start);
190 }
191 }
192 }
193 uint64_t service_ns =
194 helper.service_thread()->GetThreadCPUTimeNs() - service_start_ns;
195 uint64_t consumer_ns =
196 static_cast<uint64_t>(base::GetThreadCPUTimeNs().count()) -
197 consumer_start_ns;
198 uint64_t wall_ns =
199 static_cast<uint64_t>(base::GetWallTimeNs().count()) - wall_start_ns;
200
201 state.counters["Ser CPU"] = benchmark::Counter(100.0 * service_ns / wall_ns);
202 state.counters["Ser ns/m"] =
203 benchmark::Counter(1.0 * service_ns / message_count);
204 state.counters["Con CPU"] = benchmark::Counter(100.0 * consumer_ns / wall_ns);
205 state.counters["Con Speed"] =
206 benchmark::Counter(iterations * 1000.0 * 1000 * 1000 * kBufferSizeBytes /
207 read_time_taken_ns);
208 }
209
SaturateCpuProducerArgs(benchmark::internal::Benchmark * b)210 void SaturateCpuProducerArgs(benchmark::internal::Benchmark* b) {
211 int min_message_count = 16;
212 int max_message_count = IsBenchmarkFunctionalOnly() ? 1024 : 1024 * 1024;
213 int min_payload = 8;
214 int max_payload = IsBenchmarkFunctionalOnly() ? 256 : 2048;
215 for (int count = min_message_count; count <= max_message_count; count *= 2) {
216 for (int bytes = min_payload; bytes <= max_payload; bytes *= 2) {
217 b->Args({count, bytes, 0 /* speed */});
218 }
219 }
220 }
221
ConstantRateProducerArgs(benchmark::internal::Benchmark * b)222 void ConstantRateProducerArgs(benchmark::internal::Benchmark* b) {
223 int message_count = IsBenchmarkFunctionalOnly() ? 2 * 1024 : 128 * 1024;
224 int min_speed = IsBenchmarkFunctionalOnly() ? 64 : 8;
225 int max_speed = 128;
226 for (int speed = min_speed; speed <= max_speed; speed *= 2) {
227 b->Args({message_count, 128, speed});
228 b->Args({message_count, 256, speed});
229 }
230 }
231
SaturateCpuConsumerArgs(benchmark::internal::Benchmark * b)232 void SaturateCpuConsumerArgs(benchmark::internal::Benchmark* b) {
233 int min_payload = 8;
234 int max_payload = IsBenchmarkFunctionalOnly() ? 16 : 64 * 1024;
235 for (int bytes = min_payload; bytes <= max_payload; bytes *= 2) {
236 b->Args({bytes, 0 /* speed */});
237 }
238 }
239
ConstantRateConsumerArgs(benchmark::internal::Benchmark * b)240 void ConstantRateConsumerArgs(benchmark::internal::Benchmark* b) {
241 int min_speed = IsBenchmarkFunctionalOnly() ? 128 : 1;
242 int max_speed = IsBenchmarkFunctionalOnly() ? 128 : 2;
243 for (int speed = min_speed; speed <= max_speed; speed *= 2) {
244 b->Args({2, speed});
245 b->Args({4, speed});
246 }
247 }
248
249 } // namespace
250
BM_EndToEnd_Producer_SaturateCpu(benchmark::State & state)251 static void BM_EndToEnd_Producer_SaturateCpu(benchmark::State& state) {
252 BenchmarkProducer(state);
253 }
254
255 BENCHMARK(BM_EndToEnd_Producer_SaturateCpu)
256 ->Unit(benchmark::kMicrosecond)
257 ->UseRealTime()
258 ->Apply(SaturateCpuProducerArgs);
259
BM_EndToEnd_Producer_ConstantRate(benchmark::State & state)260 static void BM_EndToEnd_Producer_ConstantRate(benchmark::State& state) {
261 BenchmarkProducer(state);
262 }
263
264 BENCHMARK(BM_EndToEnd_Producer_ConstantRate)
265 ->Unit(benchmark::kMicrosecond)
266 ->UseRealTime()
267 ->Apply(ConstantRateProducerArgs);
268
BM_EndToEnd_Consumer_SaturateCpu(benchmark::State & state)269 static void BM_EndToEnd_Consumer_SaturateCpu(benchmark::State& state) {
270 BenchmarkConsumer(state);
271 }
272
273 BENCHMARK(BM_EndToEnd_Consumer_SaturateCpu)
274 ->Unit(benchmark::kMicrosecond)
275 ->UseRealTime()
276 ->Apply(SaturateCpuConsumerArgs);
277
BM_EndToEnd_Consumer_ConstantRate(benchmark::State & state)278 static void BM_EndToEnd_Consumer_ConstantRate(benchmark::State& state) {
279 BenchmarkConsumer(state);
280 }
281
282 BENCHMARK(BM_EndToEnd_Consumer_ConstantRate)
283 ->Unit(benchmark::kMillisecond)
284 ->UseRealTime()
285 ->Apply(ConstantRateConsumerArgs);
286
287 } // namespace perfetto
288