1.. _tut-brieftourtwo:
2
3**********************************************
4Brief Tour of the Standard Library --- Part II
5**********************************************
6
7This second tour covers more advanced modules that support professional
8programming needs.  These modules rarely occur in small scripts.
9
10
11.. _tut-output-formatting:
12
13Output Formatting
14=================
15
16The :mod:`repr` module provides a version of :func:`repr` customized for
17abbreviated displays of large or deeply nested containers::
18
19   >>> import repr
20   >>> repr.repr(set('supercalifragilisticexpialidocious'))
21   "set(['a', 'c', 'd', 'e', 'f', 'g', ...])"
22
23The :mod:`pprint` module offers more sophisticated control over printing both
24built-in and user defined objects in a way that is readable by the interpreter.
25When the result is longer than one line, the "pretty printer" adds line breaks
26and indentation to more clearly reveal data structure::
27
28   >>> import pprint
29   >>> t = [[[['black', 'cyan'], 'white', ['green', 'red']], [['magenta',
30   ...     'yellow'], 'blue']]]
31   ...
32   >>> pprint.pprint(t, width=30)
33   [[[['black', 'cyan'],
34      'white',
35      ['green', 'red']],
36     [['magenta', 'yellow'],
37      'blue']]]
38
39The :mod:`textwrap` module formats paragraphs of text to fit a given screen
40width::
41
42   >>> import textwrap
43   >>> doc = """The wrap() method is just like fill() except that it returns
44   ... a list of strings instead of one big string with newlines to separate
45   ... the wrapped lines."""
46   ...
47   >>> print textwrap.fill(doc, width=40)
48   The wrap() method is just like fill()
49   except that it returns a list of strings
50   instead of one big string with newlines
51   to separate the wrapped lines.
52
53The :mod:`locale` module accesses a database of culture specific data formats.
54The grouping attribute of locale's format function provides a direct way of
55formatting numbers with group separators::
56
57   >>> import locale
58   >>> locale.setlocale(locale.LC_ALL, 'English_United States.1252')
59   'English_United States.1252'
60   >>> conv = locale.localeconv()          # get a mapping of conventions
61   >>> x = 1234567.8
62   >>> locale.format("%d", x, grouping=True)
63   '1,234,567'
64   >>> locale.format_string("%s%.*f", (conv['currency_symbol'],
65   ...                      conv['frac_digits'], x), grouping=True)
66   '$1,234,567.80'
67
68
69.. _tut-templating:
70
71Templating
72==========
73
74The :mod:`string` module includes a versatile :class:`~string.Template` class
75with a simplified syntax suitable for editing by end-users.  This allows users
76to customize their applications without having to alter the application.
77
78The format uses placeholder names formed by ``$`` with valid Python identifiers
79(alphanumeric characters and underscores).  Surrounding the placeholder with
80braces allows it to be followed by more alphanumeric letters with no intervening
81spaces.  Writing ``$$`` creates a single escaped ``$``::
82
83   >>> from string import Template
84   >>> t = Template('${village}folk send $$10 to $cause.')
85   >>> t.substitute(village='Nottingham', cause='the ditch fund')
86   'Nottinghamfolk send $10 to the ditch fund.'
87
88The :meth:`~string.Template.substitute` method raises a :exc:`KeyError` when a
89placeholder is not supplied in a dictionary or a keyword argument.  For
90mail-merge style applications, user supplied data may be incomplete and the
91:meth:`~string.Template.safe_substitute` method may be more appropriate ---
92it will leave placeholders unchanged if data is missing::
93
94   >>> t = Template('Return the $item to $owner.')
95   >>> d = dict(item='unladen swallow')
96   >>> t.substitute(d)
97   Traceback (most recent call last):
98     ...
99   KeyError: 'owner'
100   >>> t.safe_substitute(d)
101   'Return the unladen swallow to $owner.'
102
103Template subclasses can specify a custom delimiter.  For example, a batch
104renaming utility for a photo browser may elect to use percent signs for
105placeholders such as the current date, image sequence number, or file format::
106
107   >>> import time, os.path
108   >>> photofiles = ['img_1074.jpg', 'img_1076.jpg', 'img_1077.jpg']
109   >>> class BatchRename(Template):
110   ...     delimiter = '%'
111   >>> fmt = raw_input('Enter rename style (%d-date %n-seqnum %f-format):  ')
112   Enter rename style (%d-date %n-seqnum %f-format):  Ashley_%n%f
113
114   >>> t = BatchRename(fmt)
115   >>> date = time.strftime('%d%b%y')
116   >>> for i, filename in enumerate(photofiles):
117   ...     base, ext = os.path.splitext(filename)
118   ...     newname = t.substitute(d=date, n=i, f=ext)
119   ...     print '{0} --> {1}'.format(filename, newname)
120
121   img_1074.jpg --> Ashley_0.jpg
122   img_1076.jpg --> Ashley_1.jpg
123   img_1077.jpg --> Ashley_2.jpg
124
125Another application for templating is separating program logic from the details
126of multiple output formats.  This makes it possible to substitute custom
127templates for XML files, plain text reports, and HTML web reports.
128
129
130.. _tut-binary-formats:
131
132Working with Binary Data Record Layouts
133=======================================
134
135The :mod:`struct` module provides :func:`~struct.pack` and
136:func:`~struct.unpack` functions for working with variable length binary
137record formats.  The following example shows
138how to loop through header information in a ZIP file without using the
139:mod:`zipfile` module.  Pack codes ``"H"`` and ``"I"`` represent two and four
140byte unsigned numbers respectively.  The ``"<"`` indicates that they are
141standard size and in little-endian byte order::
142
143   import struct
144
145   data = open('myfile.zip', 'rb').read()
146   start = 0
147   for i in range(3):                      # show the first 3 file headers
148       start += 14
149       fields = struct.unpack('<IIIHH', data[start:start+16])
150       crc32, comp_size, uncomp_size, filenamesize, extra_size = fields
151
152       start += 16
153       filename = data[start:start+filenamesize]
154       start += filenamesize
155       extra = data[start:start+extra_size]
156       print filename, hex(crc32), comp_size, uncomp_size
157
158       start += extra_size + comp_size     # skip to the next header
159
160
161.. _tut-multi-threading:
162
163Multi-threading
164===============
165
166Threading is a technique for decoupling tasks which are not sequentially
167dependent.  Threads can be used to improve the responsiveness of applications
168that accept user input while other tasks run in the background.  A related use
169case is running I/O in parallel with computations in another thread.
170
171The following code shows how the high level :mod:`threading` module can run
172tasks in background while the main program continues to run::
173
174   import threading, zipfile
175
176   class AsyncZip(threading.Thread):
177       def __init__(self, infile, outfile):
178           threading.Thread.__init__(self)
179           self.infile = infile
180           self.outfile = outfile
181
182       def run(self):
183           f = zipfile.ZipFile(self.outfile, 'w', zipfile.ZIP_DEFLATED)
184           f.write(self.infile)
185           f.close()
186           print 'Finished background zip of: ', self.infile
187
188   background = AsyncZip('mydata.txt', 'myarchive.zip')
189   background.start()
190   print 'The main program continues to run in foreground.'
191
192   background.join()    # Wait for the background task to finish
193   print 'Main program waited until background was done.'
194
195The principal challenge of multi-threaded applications is coordinating threads
196that share data or other resources.  To that end, the threading module provides
197a number of synchronization primitives including locks, events, condition
198variables, and semaphores.
199
200While those tools are powerful, minor design errors can result in problems that
201are difficult to reproduce.  So, the preferred approach to task coordination is
202to concentrate all access to a resource in a single thread and then use the
203:mod:`Queue` module to feed that thread with requests from other threads.
204Applications using :class:`Queue.Queue` objects for inter-thread communication
205and coordination are easier to design, more readable, and more reliable.
206
207
208.. _tut-logging:
209
210Logging
211=======
212
213The :mod:`logging` module offers a full featured and flexible logging system.
214At its simplest, log messages are sent to a file or to ``sys.stderr``::
215
216   import logging
217   logging.debug('Debugging information')
218   logging.info('Informational message')
219   logging.warning('Warning:config file %s not found', 'server.conf')
220   logging.error('Error occurred')
221   logging.critical('Critical error -- shutting down')
222
223This produces the following output:
224
225.. code-block:: none
226
227   WARNING:root:Warning:config file server.conf not found
228   ERROR:root:Error occurred
229   CRITICAL:root:Critical error -- shutting down
230
231By default, informational and debugging messages are suppressed and the output
232is sent to standard error.  Other output options include routing messages
233through email, datagrams, sockets, or to an HTTP Server.  New filters can select
234different routing based on message priority: :const:`~logging.DEBUG`,
235:const:`~logging.INFO`, :const:`~logging.WARNING`, :const:`~logging.ERROR`,
236and :const:`~logging.CRITICAL`.
237
238The logging system can be configured directly from Python or can be loaded from
239a user editable configuration file for customized logging without altering the
240application.
241
242
243.. _tut-weak-references:
244
245Weak References
246===============
247
248Python does automatic memory management (reference counting for most objects and
249:term:`garbage collection` to eliminate cycles).  The memory is freed shortly
250after the last reference to it has been eliminated.
251
252This approach works fine for most applications but occasionally there is a need
253to track objects only as long as they are being used by something else.
254Unfortunately, just tracking them creates a reference that makes them permanent.
255The :mod:`weakref` module provides tools for tracking objects without creating a
256reference.  When the object is no longer needed, it is automatically removed
257from a weakref table and a callback is triggered for weakref objects.  Typical
258applications include caching objects that are expensive to create::
259
260   >>> import weakref, gc
261   >>> class A:
262   ...     def __init__(self, value):
263   ...         self.value = value
264   ...     def __repr__(self):
265   ...         return str(self.value)
266   ...
267   >>> a = A(10)                   # create a reference
268   >>> d = weakref.WeakValueDictionary()
269   >>> d['primary'] = a            # does not create a reference
270   >>> d['primary']                # fetch the object if it is still alive
271   10
272   >>> del a                       # remove the one reference
273   >>> gc.collect()                # run garbage collection right away
274   0
275   >>> d['primary']                # entry was automatically removed
276   Traceback (most recent call last):
277     File "<stdin>", line 1, in <module>
278       d['primary']                # entry was automatically removed
279     File "C:/python26/lib/weakref.py", line 46, in __getitem__
280       o = self.data[key]()
281   KeyError: 'primary'
282
283
284.. _tut-list-tools:
285
286Tools for Working with Lists
287============================
288
289Many data structure needs can be met with the built-in list type. However,
290sometimes there is a need for alternative implementations with different
291performance trade-offs.
292
293The :mod:`array` module provides an :class:`~array.array()` object that is like
294a list that stores only homogeneous data and stores it more compactly.  The
295following example shows an array of numbers stored as two byte unsigned binary
296numbers (typecode ``"H"``) rather than the usual 16 bytes per entry for regular
297lists of Python int objects::
298
299   >>> from array import array
300   >>> a = array('H', [4000, 10, 700, 22222])
301   >>> sum(a)
302   26932
303   >>> a[1:3]
304   array('H', [10, 700])
305
306The :mod:`collections` module provides a :class:`~collections.deque()` object
307that is like a list with faster appends and pops from the left side but slower
308lookups in the middle. These objects are well suited for implementing queues
309and breadth first tree searches::
310
311   >>> from collections import deque
312   >>> d = deque(["task1", "task2", "task3"])
313   >>> d.append("task4")
314   >>> print "Handling", d.popleft()
315   Handling task1
316
317::
318
319   unsearched = deque([starting_node])
320   def breadth_first_search(unsearched):
321       node = unsearched.popleft()
322       for m in gen_moves(node):
323           if is_goal(m):
324               return m
325           unsearched.append(m)
326
327In addition to alternative list implementations, the library also offers other
328tools such as the :mod:`bisect` module with functions for manipulating sorted
329lists::
330
331   >>> import bisect
332   >>> scores = [(100, 'perl'), (200, 'tcl'), (400, 'lua'), (500, 'python')]
333   >>> bisect.insort(scores, (300, 'ruby'))
334   >>> scores
335   [(100, 'perl'), (200, 'tcl'), (300, 'ruby'), (400, 'lua'), (500, 'python')]
336
337The :mod:`heapq` module provides functions for implementing heaps based on
338regular lists.  The lowest valued entry is always kept at position zero.  This
339is useful for applications which repeatedly access the smallest element but do
340not want to run a full list sort::
341
342   >>> from heapq import heapify, heappop, heappush
343   >>> data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
344   >>> heapify(data)                      # rearrange the list into heap order
345   >>> heappush(data, -5)                 # add a new entry
346   >>> [heappop(data) for i in range(3)]  # fetch the three smallest entries
347   [-5, 0, 1]
348
349
350.. _tut-decimal-fp:
351
352Decimal Floating Point Arithmetic
353=================================
354
355The :mod:`decimal` module offers a :class:`~decimal.Decimal` datatype for
356decimal floating point arithmetic.  Compared to the built-in :class:`float`
357implementation of binary floating point, the class is especially helpful for
358
359* financial applications and other uses which require exact decimal
360  representation,
361* control over precision,
362* control over rounding to meet legal or regulatory requirements,
363* tracking of significant decimal places, or
364* applications where the user expects the results to match calculations done by
365  hand.
366
367For example, calculating a 5% tax on a 70 cent phone charge gives different
368results in decimal floating point and binary floating point. The difference
369becomes significant if the results are rounded to the nearest cent::
370
371   >>> from decimal import *
372   >>> x = Decimal('0.70') * Decimal('1.05')
373   >>> x
374   Decimal('0.7350')
375   >>> x.quantize(Decimal('0.01'))  # round to nearest cent
376   Decimal('0.74')
377   >>> round(.70 * 1.05, 2)         # same calculation with floats
378   0.73
379
380The :class:`~decimal.Decimal` result keeps a trailing zero, automatically
381inferring four place significance from multiplicands with two place
382significance.  Decimal reproduces mathematics as done by hand and avoids
383issues that can arise when binary floating point cannot exactly represent
384decimal quantities.
385
386Exact representation enables the :class:`~decimal.Decimal` class to perform
387modulo calculations and equality tests that are unsuitable for binary floating
388point::
389
390   >>> Decimal('1.00') % Decimal('.10')
391   Decimal('0.00')
392   >>> 1.00 % 0.10
393   0.09999999999999995
394
395   >>> sum([Decimal('0.1')]*10) == Decimal('1.0')
396   True
397   >>> sum([0.1]*10) == 1.0
398   False
399
400The :mod:`decimal` module provides arithmetic with as much precision as needed::
401
402   >>> getcontext().prec = 36
403   >>> Decimal(1) / Decimal(7)
404   Decimal('0.142857142857142857142857142857142857')
405
406
407