1:mod:`typing` --- Support for type hints
2========================================
3
4.. module:: typing
5   :synopsis: Support for type hints (see PEP 484).
6
7.. versionadded:: 3.5
8
9**Source code:** :source:`Lib/typing.py`
10
11.. note::
12
13   The typing module has been included in the standard library on a
14   :term:`provisional basis <provisional api>`. New features might
15   be added and API may change even between minor releases if deemed
16   necessary by the core developers.
17
18--------------
19
20This module supports type hints as specified by :pep:`484` and :pep:`526`.
21The most fundamental support consists of the types :data:`Any`, :data:`Union`,
22:data:`Tuple`, :data:`Callable`, :class:`TypeVar`, and
23:class:`Generic`.  For full specification please see :pep:`484`.  For
24a simplified introduction to type hints see :pep:`483`.
25
26
27The function below takes and returns a string and is annotated as follows::
28
29   def greeting(name: str) -> str:
30       return 'Hello ' + name
31
32In the function ``greeting``, the argument ``name`` is expected to be of type
33:class:`str` and the return type :class:`str`. Subtypes are accepted as
34arguments.
35
36Type aliases
37------------
38
39A type alias is defined by assigning the type to the alias. In this example,
40``Vector`` and ``List[float]`` will be treated as interchangeable synonyms::
41
42   from typing import List
43   Vector = List[float]
44
45   def scale(scalar: float, vector: Vector) -> Vector:
46       return [scalar * num for num in vector]
47
48   # typechecks; a list of floats qualifies as a Vector.
49   new_vector = scale(2.0, [1.0, -4.2, 5.4])
50
51Type aliases are useful for simplifying complex type signatures. For example::
52
53   from typing import Dict, Tuple, Sequence
54
55   ConnectionOptions = Dict[str, str]
56   Address = Tuple[str, int]
57   Server = Tuple[Address, ConnectionOptions]
58
59   def broadcast_message(message: str, servers: Sequence[Server]) -> None:
60       ...
61
62   # The static type checker will treat the previous type signature as
63   # being exactly equivalent to this one.
64   def broadcast_message(
65           message: str,
66           servers: Sequence[Tuple[Tuple[str, int], Dict[str, str]]]) -> None:
67       ...
68
69Note that ``None`` as a type hint is a special case and is replaced by
70``type(None)``.
71
72.. _distinct:
73
74NewType
75-------
76
77Use the :func:`NewType` helper function to create distinct types::
78
79   from typing import NewType
80
81   UserId = NewType('UserId', int)
82   some_id = UserId(524313)
83
84The static type checker will treat the new type as if it were a subclass
85of the original type. This is useful in helping catch logical errors::
86
87   def get_user_name(user_id: UserId) -> str:
88       ...
89
90   # typechecks
91   user_a = get_user_name(UserId(42351))
92
93   # does not typecheck; an int is not a UserId
94   user_b = get_user_name(-1)
95
96You may still perform all ``int`` operations on a variable of type ``UserId``,
97but the result will always be of type ``int``. This lets you pass in a
98``UserId`` wherever an ``int`` might be expected, but will prevent you from
99accidentally creating a ``UserId`` in an invalid way::
100
101   # 'output' is of type 'int', not 'UserId'
102   output = UserId(23413) + UserId(54341)
103
104Note that these checks are enforced only by the static type checker. At runtime
105the statement ``Derived = NewType('Derived', Base)`` will make ``Derived`` a
106function that immediately returns whatever parameter you pass it. That means
107the expression ``Derived(some_value)`` does not create a new class or introduce
108any overhead beyond that of a regular function call.
109
110More precisely, the expression ``some_value is Derived(some_value)`` is always
111true at runtime.
112
113This also means that it is not possible to create a subtype of ``Derived``
114since it is an identity function at runtime, not an actual type::
115
116   from typing import NewType
117
118   UserId = NewType('UserId', int)
119
120   # Fails at runtime and does not typecheck
121   class AdminUserId(UserId): pass
122
123However, it is possible to create a :func:`NewType` based on a 'derived' ``NewType``::
124
125   from typing import NewType
126
127   UserId = NewType('UserId', int)
128
129   ProUserId = NewType('ProUserId', UserId)
130
131and typechecking for ``ProUserId`` will work as expected.
132
133See :pep:`484` for more details.
134
135.. note::
136
137   Recall that the use of a type alias declares two types to be *equivalent* to
138   one another. Doing ``Alias = Original`` will make the static type checker
139   treat ``Alias`` as being *exactly equivalent* to ``Original`` in all cases.
140   This is useful when you want to simplify complex type signatures.
141
142   In contrast, ``NewType`` declares one type to be a *subtype* of another.
143   Doing ``Derived = NewType('Derived', Original)`` will make the static type
144   checker treat ``Derived`` as a *subclass* of ``Original``, which means a
145   value of type ``Original`` cannot be used in places where a value of type
146   ``Derived`` is expected. This is useful when you want to prevent logic
147   errors with minimal runtime cost.
148
149.. versionadded:: 3.5.2
150
151Callable
152--------
153
154Frameworks expecting callback functions of specific signatures might be
155type hinted using ``Callable[[Arg1Type, Arg2Type], ReturnType]``.
156
157For example::
158
159   from typing import Callable
160
161   def feeder(get_next_item: Callable[[], str]) -> None:
162       # Body
163
164   def async_query(on_success: Callable[[int], None],
165                   on_error: Callable[[int, Exception], None]) -> None:
166       # Body
167
168It is possible to declare the return type of a callable without specifying
169the call signature by substituting a literal ellipsis
170for the list of arguments in the type hint: ``Callable[..., ReturnType]``.
171
172.. _generics:
173
174Generics
175--------
176
177Since type information about objects kept in containers cannot be statically
178inferred in a generic way, abstract base classes have been extended to support
179subscription to denote expected types for container elements.
180
181::
182
183   from typing import Mapping, Sequence
184
185   def notify_by_email(employees: Sequence[Employee],
186                       overrides: Mapping[str, str]) -> None: ...
187
188Generics can be parameterized by using a new factory available in typing
189called :class:`TypeVar`.
190
191::
192
193   from typing import Sequence, TypeVar
194
195   T = TypeVar('T')      # Declare type variable
196
197   def first(l: Sequence[T]) -> T:   # Generic function
198       return l[0]
199
200
201User-defined generic types
202--------------------------
203
204A user-defined class can be defined as a generic class.
205
206::
207
208   from typing import TypeVar, Generic
209   from logging import Logger
210
211   T = TypeVar('T')
212
213   class LoggedVar(Generic[T]):
214       def __init__(self, value: T, name: str, logger: Logger) -> None:
215           self.name = name
216           self.logger = logger
217           self.value = value
218
219       def set(self, new: T) -> None:
220           self.log('Set ' + repr(self.value))
221           self.value = new
222
223       def get(self) -> T:
224           self.log('Get ' + repr(self.value))
225           return self.value
226
227       def log(self, message: str) -> None:
228           self.logger.info('%s: %s', self.name, message)
229
230``Generic[T]`` as a base class defines that the class ``LoggedVar`` takes a
231single type parameter ``T`` . This also makes ``T`` valid as a type within the
232class body.
233
234The :class:`Generic` base class uses a metaclass that defines
235:meth:`__getitem__` so that ``LoggedVar[t]`` is valid as a type::
236
237   from typing import Iterable
238
239   def zero_all_vars(vars: Iterable[LoggedVar[int]]) -> None:
240       for var in vars:
241           var.set(0)
242
243A generic type can have any number of type variables, and type variables may
244be constrained::
245
246   from typing import TypeVar, Generic
247   ...
248
249   T = TypeVar('T')
250   S = TypeVar('S', int, str)
251
252   class StrangePair(Generic[T, S]):
253       ...
254
255Each type variable argument to :class:`Generic` must be distinct.
256This is thus invalid::
257
258   from typing import TypeVar, Generic
259   ...
260
261   T = TypeVar('T')
262
263   class Pair(Generic[T, T]):   # INVALID
264       ...
265
266You can use multiple inheritance with :class:`Generic`::
267
268   from typing import TypeVar, Generic, Sized
269
270   T = TypeVar('T')
271
272   class LinkedList(Sized, Generic[T]):
273       ...
274
275When inheriting from generic classes, some type variables could be fixed::
276
277    from typing import TypeVar, Mapping
278
279    T = TypeVar('T')
280
281    class MyDict(Mapping[str, T]):
282        ...
283
284In this case ``MyDict`` has a single parameter, ``T``.
285
286Using a generic class without specifying type parameters assumes
287:data:`Any` for each position. In the following example, ``MyIterable`` is
288not generic but implicitly inherits from ``Iterable[Any]``::
289
290   from typing import Iterable
291
292   class MyIterable(Iterable): # Same as Iterable[Any]
293
294User defined generic type aliases are also supported. Examples::
295
296   from typing import TypeVar, Iterable, Tuple, Union
297   S = TypeVar('S')
298   Response = Union[Iterable[S], int]
299
300   # Return type here is same as Union[Iterable[str], int]
301   def response(query: str) -> Response[str]:
302       ...
303
304   T = TypeVar('T', int, float, complex)
305   Vec = Iterable[Tuple[T, T]]
306
307   def inproduct(v: Vec[T]) -> T: # Same as Iterable[Tuple[T, T]]
308       return sum(x*y for x, y in v)
309
310The metaclass used by :class:`Generic` is a subclass of :class:`abc.ABCMeta`.
311A generic class can be an ABC by including abstract methods or properties,
312and generic classes can also have ABCs as base classes without a metaclass
313conflict. Generic metaclasses are not supported. The outcome of parameterizing
314generics is cached, and most types in the typing module are hashable and
315comparable for equality.
316
317
318The :data:`Any` type
319--------------------
320
321A special kind of type is :data:`Any`. A static type checker will treat
322every type as being compatible with :data:`Any` and :data:`Any` as being
323compatible with every type.
324
325This means that it is possible to perform any operation or method call on a
326value of type on :data:`Any` and assign it to any variable::
327
328   from typing import Any
329
330   a = None    # type: Any
331   a = []      # OK
332   a = 2       # OK
333
334   s = ''      # type: str
335   s = a       # OK
336
337   def foo(item: Any) -> int:
338       # Typechecks; 'item' could be any type,
339       # and that type might have a 'bar' method
340       item.bar()
341       ...
342
343Notice that no typechecking is performed when assigning a value of type
344:data:`Any` to a more precise type. For example, the static type checker did
345not report an error when assigning ``a`` to ``s`` even though ``s`` was
346declared to be of type :class:`str` and receives an :class:`int` value at
347runtime!
348
349Furthermore, all functions without a return type or parameter types will
350implicitly default to using :data:`Any`::
351
352   def legacy_parser(text):
353       ...
354       return data
355
356   # A static type checker will treat the above
357   # as having the same signature as:
358   def legacy_parser(text: Any) -> Any:
359       ...
360       return data
361
362This behavior allows :data:`Any` to be used as an *escape hatch* when you
363need to mix dynamically and statically typed code.
364
365Contrast the behavior of :data:`Any` with the behavior of :class:`object`.
366Similar to :data:`Any`, every type is a subtype of :class:`object`. However,
367unlike :data:`Any`, the reverse is not true: :class:`object` is *not* a
368subtype of every other type.
369
370That means when the type of a value is :class:`object`, a type checker will
371reject almost all operations on it, and assigning it to a variable (or using
372it as a return value) of a more specialized type is a type error. For example::
373
374   def hash_a(item: object) -> int:
375       # Fails; an object does not have a 'magic' method.
376       item.magic()
377       ...
378
379   def hash_b(item: Any) -> int:
380       # Typechecks
381       item.magic()
382       ...
383
384   # Typechecks, since ints and strs are subclasses of object
385   hash_a(42)
386   hash_a("foo")
387
388   # Typechecks, since Any is compatible with all types
389   hash_b(42)
390   hash_b("foo")
391
392Use :class:`object` to indicate that a value could be any type in a typesafe
393manner. Use :data:`Any` to indicate that a value is dynamically typed.
394
395Classes, functions, and decorators
396----------------------------------
397
398The module defines the following classes, functions and decorators:
399
400.. class:: TypeVar
401
402    Type variable.
403
404    Usage::
405
406      T = TypeVar('T')  # Can be anything
407      A = TypeVar('A', str, bytes)  # Must be str or bytes
408
409    Type variables exist primarily for the benefit of static type
410    checkers.  They serve as the parameters for generic types as well
411    as for generic function definitions.  See class Generic for more
412    information on generic types.  Generic functions work as follows::
413
414       def repeat(x: T, n: int) -> Sequence[T]:
415           """Return a list containing n references to x."""
416           return [x]*n
417
418       def longest(x: A, y: A) -> A:
419           """Return the longest of two strings."""
420           return x if len(x) >= len(y) else y
421
422    The latter example's signature is essentially the overloading
423    of ``(str, str) -> str`` and ``(bytes, bytes) -> bytes``.  Also note
424    that if the arguments are instances of some subclass of :class:`str`,
425    the return type is still plain :class:`str`.
426
427    At runtime, ``isinstance(x, T)`` will raise :exc:`TypeError`.  In general,
428    :func:`isinstance` and :func:`issubclass` should not be used with types.
429
430    Type variables may be marked covariant or contravariant by passing
431    ``covariant=True`` or ``contravariant=True``.  See :pep:`484` for more
432    details.  By default type variables are invariant.  Alternatively,
433    a type variable may specify an upper bound using ``bound=<type>``.
434    This means that an actual type substituted (explicitly or implicitly)
435    for the type variable must be a subclass of the boundary type,
436    see :pep:`484`.
437
438.. class:: Generic
439
440   Abstract base class for generic types.
441
442   A generic type is typically declared by inheriting from an
443   instantiation of this class with one or more type variables.
444   For example, a generic mapping type might be defined as::
445
446      class Mapping(Generic[KT, VT]):
447          def __getitem__(self, key: KT) -> VT:
448              ...
449              # Etc.
450
451   This class can then be used as follows::
452
453      X = TypeVar('X')
454      Y = TypeVar('Y')
455
456      def lookup_name(mapping: Mapping[X, Y], key: X, default: Y) -> Y:
457          try:
458              return mapping[key]
459          except KeyError:
460              return default
461
462.. class:: Type(Generic[CT_co])
463
464   A variable annotated with ``C`` may accept a value of type ``C``. In
465   contrast, a variable annotated with ``Type[C]`` may accept values that are
466   classes themselves -- specifically, it will accept the *class object* of
467   ``C``. For example::
468
469      a = 3         # Has type 'int'
470      b = int       # Has type 'Type[int]'
471      c = type(a)   # Also has type 'Type[int]'
472
473   Note that ``Type[C]`` is covariant::
474
475      class User: ...
476      class BasicUser(User): ...
477      class ProUser(User): ...
478      class TeamUser(User): ...
479
480      # Accepts User, BasicUser, ProUser, TeamUser, ...
481      def make_new_user(user_class: Type[User]) -> User:
482          # ...
483          return user_class()
484
485   The fact that ``Type[C]`` is covariant implies that all subclasses of
486   ``C`` should implement the same constructor signature and class method
487   signatures as ``C``. The type checker should flag violations of this,
488   but should also allow constructor calls in subclasses that match the
489   constructor calls in the indicated base class. How the type checker is
490   required to handle this particular case may change in future revisions of
491   :pep:`484`.
492
493   The only legal parameters for :class:`Type` are classes, :data:`Any`,
494   :ref:`type variables <generics>`, and unions of any of these types.
495   For example::
496
497      def new_non_team_user(user_class: Type[Union[BaseUser, ProUser]]): ...
498
499   ``Type[Any]`` is equivalent to ``Type`` which in turn is equivalent
500   to ``type``, which is the root of Python's metaclass hierarchy.
501
502   .. versionadded:: 3.5.2
503
504.. class:: Iterable(Generic[T_co])
505
506    A generic version of :class:`collections.abc.Iterable`.
507
508.. class:: Iterator(Iterable[T_co])
509
510    A generic version of :class:`collections.abc.Iterator`.
511
512.. class:: Reversible(Iterable[T_co])
513
514    A generic version of :class:`collections.abc.Reversible`.
515
516.. class:: SupportsInt
517
518    An ABC with one abstract method ``__int__``.
519
520.. class:: SupportsFloat
521
522    An ABC with one abstract method ``__float__``.
523
524.. class:: SupportsComplex
525
526    An ABC with one abstract method ``__complex__``.
527
528.. class:: SupportsBytes
529
530    An ABC with one abstract method ``__bytes__``.
531
532.. class:: SupportsAbs
533
534    An ABC with one abstract method ``__abs__`` that is covariant
535    in its return type.
536
537.. class:: SupportsRound
538
539    An ABC with one abstract method ``__round__``
540    that is covariant in its return type.
541
542.. class:: Container(Generic[T_co])
543
544    A generic version of :class:`collections.abc.Container`.
545
546.. class:: Hashable
547
548   An alias to :class:`collections.abc.Hashable`
549
550.. class:: Sized
551
552   An alias to :class:`collections.abc.Sized`
553
554.. class:: Collection(Sized, Iterable[T_co], Container[T_co])
555
556   A generic version of :class:`collections.abc.Collection`
557
558   .. versionadded:: 3.6
559
560.. class:: AbstractSet(Sized, Collection[T_co])
561
562    A generic version of :class:`collections.abc.Set`.
563
564.. class:: MutableSet(AbstractSet[T])
565
566    A generic version of :class:`collections.abc.MutableSet`.
567
568.. class:: Mapping(Sized, Collection[KT], Generic[VT_co])
569
570    A generic version of :class:`collections.abc.Mapping`.
571    This type can be used as follows::
572
573      def get_position_in_index(word_list: Mapping[str, int], word: str) -> int:
574          return word_list[word]
575
576.. class:: MutableMapping(Mapping[KT, VT])
577
578    A generic version of :class:`collections.abc.MutableMapping`.
579
580.. class:: Sequence(Reversible[T_co], Collection[T_co])
581
582    A generic version of :class:`collections.abc.Sequence`.
583
584.. class:: MutableSequence(Sequence[T])
585
586   A generic version of :class:`collections.abc.MutableSequence`.
587
588.. class:: ByteString(Sequence[int])
589
590   A generic version of :class:`collections.abc.ByteString`.
591
592   This type represents the types :class:`bytes`, :class:`bytearray`,
593   and :class:`memoryview`.
594
595   As a shorthand for this type, :class:`bytes` can be used to
596   annotate arguments of any of the types mentioned above.
597
598.. class:: Deque(deque, MutableSequence[T])
599
600   A generic version of :class:`collections.deque`.
601
602   .. versionadded:: 3.6.1
603
604.. class:: List(list, MutableSequence[T])
605
606   Generic version of :class:`list`.
607   Useful for annotating return types. To annotate arguments it is preferred
608   to use an abstract collection type such as :class:`Sequence` or
609   :class:`Iterable`.
610
611   This type may be used as follows::
612
613      T = TypeVar('T', int, float)
614
615      def vec2(x: T, y: T) -> List[T]:
616          return [x, y]
617
618      def keep_positives(vector: Sequence[T]) -> List[T]:
619          return [item for item in vector if item > 0]
620
621.. class:: Set(set, MutableSet[T])
622
623   A generic version of :class:`builtins.set <set>`.
624   Useful for annotating return types. To annotate arguments it is preferred
625   to use an abstract collection type such as :class:`AbstractSet`.
626
627.. class:: FrozenSet(frozenset, AbstractSet[T_co])
628
629   A generic version of :class:`builtins.frozenset <frozenset>`.
630
631.. class:: MappingView(Sized, Iterable[T_co])
632
633   A generic version of :class:`collections.abc.MappingView`.
634
635.. class:: KeysView(MappingView[KT_co], AbstractSet[KT_co])
636
637   A generic version of :class:`collections.abc.KeysView`.
638
639.. class:: ItemsView(MappingView, Generic[KT_co, VT_co])
640
641   A generic version of :class:`collections.abc.ItemsView`.
642
643.. class:: ValuesView(MappingView[VT_co])
644
645   A generic version of :class:`collections.abc.ValuesView`.
646
647.. class:: Awaitable(Generic[T_co])
648
649   A generic version of :class:`collections.abc.Awaitable`.
650
651.. class:: Coroutine(Awaitable[V_co], Generic[T_co T_contra, V_co])
652
653   A generic version of :class:`collections.abc.Coroutine`.
654   The variance and order of type variables
655   correspond to those of :class:`Generator`, for example::
656
657      from typing import List, Coroutine
658      c = None # type: Coroutine[List[str], str, int]
659      ...
660      x = c.send('hi') # type: List[str]
661      async def bar() -> None:
662          x = await c # type: int
663
664.. class:: AsyncIterable(Generic[T_co])
665
666   A generic version of :class:`collections.abc.AsyncIterable`.
667
668.. class:: AsyncIterator(AsyncIterable[T_co])
669
670   A generic version of :class:`collections.abc.AsyncIterator`.
671
672.. class:: ContextManager(Generic[T_co])
673
674   A generic version of :class:`contextlib.AbstractContextManager`.
675
676   .. versionadded:: 3.6
677
678.. class:: AsyncContextManager(Generic[T_co])
679
680   A generic version of :class:`contextlib.AbstractAsyncContextManager`.
681
682   .. versionadded:: 3.6
683
684.. class:: Dict(dict, MutableMapping[KT, VT])
685
686   A generic version of :class:`dict`.
687   Useful for annotating return types. To annotate arguments it is preferred
688   to use an abstract collection type such as :class:`Mapping`.
689
690   This type can be used as follows::
691
692      def count_words(text: str) -> Dict[str, int]:
693          ...
694
695.. class:: DefaultDict(collections.defaultdict, MutableMapping[KT, VT])
696
697   A generic version of :class:`collections.defaultdict`.
698
699   .. versionadded:: 3.5.2
700
701.. class:: OrderedDict(collections.OrderedDict, MutableMapping[KT, VT])
702
703   A generic version of :class:`collections.OrderedDict`.
704
705   .. versionadded:: 3.7.2
706
707.. class:: Counter(collections.Counter, Dict[T, int])
708
709   A generic version of :class:`collections.Counter`.
710
711   .. versionadded:: 3.6.1
712
713.. class:: ChainMap(collections.ChainMap, MutableMapping[KT, VT])
714
715   A generic version of :class:`collections.ChainMap`.
716
717   .. versionadded:: 3.6.1
718
719.. class:: Generator(Iterator[T_co], Generic[T_co, T_contra, V_co])
720
721   A generator can be annotated by the generic type
722   ``Generator[YieldType, SendType, ReturnType]``. For example::
723
724      def echo_round() -> Generator[int, float, str]:
725          sent = yield 0
726          while sent >= 0:
727              sent = yield round(sent)
728          return 'Done'
729
730   Note that unlike many other generics in the typing module, the ``SendType``
731   of :class:`Generator` behaves contravariantly, not covariantly or
732   invariantly.
733
734   If your generator will only yield values, set the ``SendType`` and
735   ``ReturnType`` to ``None``::
736
737      def infinite_stream(start: int) -> Generator[int, None, None]:
738          while True:
739              yield start
740              start += 1
741
742   Alternatively, annotate your generator as having a return type of
743   either ``Iterable[YieldType]`` or ``Iterator[YieldType]``::
744
745      def infinite_stream(start: int) -> Iterator[int]:
746          while True:
747              yield start
748              start += 1
749
750.. class:: AsyncGenerator(AsyncIterator[T_co], Generic[T_co, T_contra])
751
752   An async generator can be annotated by the generic type
753   ``AsyncGenerator[YieldType, SendType]``. For example::
754
755      async def echo_round() -> AsyncGenerator[int, float]:
756          sent = yield 0
757          while sent >= 0.0:
758              rounded = await round(sent)
759              sent = yield rounded
760
761   Unlike normal generators, async generators cannot return a value, so there
762   is no ``ReturnType`` type parameter. As with :class:`Generator`, the
763   ``SendType`` behaves contravariantly.
764
765   If your generator will only yield values, set the ``SendType`` to
766   ``None``::
767
768      async def infinite_stream(start: int) -> AsyncGenerator[int, None]:
769          while True:
770              yield start
771              start = await increment(start)
772
773   Alternatively, annotate your generator as having a return type of
774   either ``AsyncIterable[YieldType]`` or ``AsyncIterator[YieldType]``::
775
776      async def infinite_stream(start: int) -> AsyncIterator[int]:
777          while True:
778              yield start
779              start = await increment(start)
780
781   .. versionadded:: 3.5.4
782
783.. class:: Text
784
785   ``Text`` is an alias for ``str``. It is provided to supply a forward
786   compatible path for Python 2 code: in Python 2, ``Text`` is an alias for
787   ``unicode``.
788
789   Use ``Text`` to indicate that a value must contain a unicode string in
790   a manner that is compatible with both Python 2 and Python 3::
791
792       def add_unicode_checkmark(text: Text) -> Text:
793           return text + u' \u2713'
794
795   .. versionadded:: 3.5.2
796
797.. class:: IO
798           TextIO
799           BinaryIO
800
801   Generic type ``IO[AnyStr]`` and its subclasses ``TextIO(IO[str])``
802   and ``BinaryIO(IO[bytes])``
803   represent the types of I/O streams such as returned by
804   :func:`open`.
805
806.. class:: Pattern
807           Match
808
809   These type aliases
810   correspond to the return types from :func:`re.compile` and
811   :func:`re.match`.  These types (and the corresponding functions)
812   are generic in ``AnyStr`` and can be made specific by writing
813   ``Pattern[str]``, ``Pattern[bytes]``, ``Match[str]``, or
814   ``Match[bytes]``.
815
816.. class:: NamedTuple
817
818   Typed version of namedtuple.
819
820   Usage::
821
822       class Employee(NamedTuple):
823           name: str
824           id: int
825
826   This is equivalent to::
827
828       Employee = collections.namedtuple('Employee', ['name', 'id'])
829
830   To give a field a default value, you can assign to it in the class body::
831
832      class Employee(NamedTuple):
833          name: str
834          id: int = 3
835
836      employee = Employee('Guido')
837      assert employee.id == 3
838
839   Fields with a default value must come after any fields without a default.
840
841   The resulting class has two extra attributes: ``_field_types``,
842   giving a dict mapping field names to types, and ``_field_defaults``, a dict
843   mapping field names to default values.  (The field names are in the
844   ``_fields`` attribute, which is part of the namedtuple API.)
845
846   ``NamedTuple`` subclasses can also have docstrings and methods::
847
848      class Employee(NamedTuple):
849          """Represents an employee."""
850          name: str
851          id: int = 3
852
853          def __repr__(self) -> str:
854              return f'<Employee {self.name}, id={self.id}>'
855
856   Backward-compatible usage::
857
858       Employee = NamedTuple('Employee', [('name', str), ('id', int)])
859
860   .. versionchanged:: 3.6
861      Added support for :pep:`526` variable annotation syntax.
862
863   .. versionchanged:: 3.6.1
864      Added support for default values, methods, and docstrings.
865
866.. function:: NewType(typ)
867
868   A helper function to indicate a distinct types to a typechecker,
869   see :ref:`distinct`. At runtime it returns a function that returns
870   its argument. Usage::
871
872      UserId = NewType('UserId', int)
873      first_user = UserId(1)
874
875   .. versionadded:: 3.5.2
876
877.. function:: cast(typ, val)
878
879   Cast a value to a type.
880
881   This returns the value unchanged.  To the type checker this
882   signals that the return value has the designated type, but at
883   runtime we intentionally don't check anything (we want this
884   to be as fast as possible).
885
886.. function:: get_type_hints(obj[, globals[, locals]])
887
888   Return a dictionary containing type hints for a function, method, module
889   or class object.
890
891   This is often the same as ``obj.__annotations__``. In addition,
892   forward references encoded as string literals are handled by evaluating
893   them in ``globals`` and ``locals`` namespaces. If necessary,
894   ``Optional[t]`` is added for function and method annotations if a default
895   value equal to ``None`` is set. For a class ``C``, return
896   a dictionary constructed by merging all the ``__annotations__`` along
897   ``C.__mro__`` in reverse order.
898
899.. decorator:: overload
900
901   The ``@overload`` decorator allows describing functions and methods
902   that support multiple different combinations of argument types. A series
903   of ``@overload``-decorated definitions must be followed by exactly one
904   non-``@overload``-decorated definition (for the same function/method).
905   The ``@overload``-decorated definitions are for the benefit of the
906   type checker only, since they will be overwritten by the
907   non-``@overload``-decorated definition, while the latter is used at
908   runtime but should be ignored by a type checker.  At runtime, calling
909   a ``@overload``-decorated function directly will raise
910   :exc:`NotImplementedError`. An example of overload that gives a more
911   precise type than can be expressed using a union or a type variable::
912
913      @overload
914      def process(response: None) -> None:
915          ...
916      @overload
917      def process(response: int) -> Tuple[int, str]:
918          ...
919      @overload
920      def process(response: bytes) -> str:
921          ...
922      def process(response):
923          <actual implementation>
924
925   See :pep:`484` for details and comparison with other typing semantics.
926
927.. decorator:: no_type_check
928
929   Decorator to indicate that annotations are not type hints.
930
931   This works as class or function :term:`decorator`.  With a class, it
932   applies recursively to all methods defined in that class (but not
933   to methods defined in its superclasses or subclasses).
934
935   This mutates the function(s) in place.
936
937.. decorator:: no_type_check_decorator
938
939   Decorator to give another decorator the :func:`no_type_check` effect.
940
941   This wraps the decorator with something that wraps the decorated
942   function in :func:`no_type_check`.
943
944.. data:: Any
945
946   Special type indicating an unconstrained type.
947
948   * Every type is compatible with :data:`Any`.
949   * :data:`Any` is compatible with every type.
950
951.. data:: NoReturn
952
953   Special type indicating that a function never returns.
954   For example::
955
956      from typing import NoReturn
957
958      def stop() -> NoReturn:
959          raise RuntimeError('no way')
960
961   .. versionadded:: 3.5.4
962
963.. data:: Union
964
965   Union type; ``Union[X, Y]`` means either X or Y.
966
967   To define a union, use e.g. ``Union[int, str]``.  Details:
968
969   * The arguments must be types and there must be at least one.
970
971   * Unions of unions are flattened, e.g.::
972
973       Union[Union[int, str], float] == Union[int, str, float]
974
975   * Unions of a single argument vanish, e.g.::
976
977       Union[int] == int  # The constructor actually returns int
978
979   * Redundant arguments are skipped, e.g.::
980
981       Union[int, str, int] == Union[int, str]
982
983   * When comparing unions, the argument order is ignored, e.g.::
984
985       Union[int, str] == Union[str, int]
986
987   * You cannot subclass or instantiate a union.
988
989   * You cannot write ``Union[X][Y]``.
990
991   * You can use ``Optional[X]`` as a shorthand for ``Union[X, None]``.
992
993   .. versionchanged:: 3.7
994      Don't remove explicit subclasses from unions at runtime.
995
996.. data:: Optional
997
998   Optional type.
999
1000   ``Optional[X]`` is equivalent to ``Union[X, None]``.
1001
1002   Note that this is not the same concept as an optional argument,
1003   which is one that has a default.  An optional argument with a
1004   default does not require the ``Optional`` qualifier on its type
1005   annotation just because it is optional. For example::
1006
1007      def foo(arg: int = 0) -> None:
1008          ...
1009
1010   On the other hand, if an explicit value of ``None`` is allowed, the
1011   use of ``Optional`` is appropriate, whether the argument is optional
1012   or not. For example::
1013
1014      def foo(arg: Optional[int] = None) -> None:
1015          ...
1016
1017.. data:: Tuple
1018
1019   Tuple type; ``Tuple[X, Y]`` is the type of a tuple of two items
1020   with the first item of type X and the second of type Y.
1021
1022   Example: ``Tuple[T1, T2]`` is a tuple of two elements corresponding
1023   to type variables T1 and T2.  ``Tuple[int, float, str]`` is a tuple
1024   of an int, a float and a string.
1025
1026   To specify a variable-length tuple of homogeneous type,
1027   use literal ellipsis, e.g. ``Tuple[int, ...]``. A plain :data:`Tuple`
1028   is equivalent to ``Tuple[Any, ...]``, and in turn to :class:`tuple`.
1029
1030.. data:: Callable
1031
1032   Callable type; ``Callable[[int], str]`` is a function of (int) -> str.
1033
1034   The subscription syntax must always be used with exactly two
1035   values: the argument list and the return type.  The argument list
1036   must be a list of types or an ellipsis; the return type must be
1037   a single type.
1038
1039   There is no syntax to indicate optional or keyword arguments;
1040   such function types are rarely used as callback types.
1041   ``Callable[..., ReturnType]`` (literal ellipsis) can be used to
1042   type hint a callable taking any number of arguments and returning
1043   ``ReturnType``.  A plain :data:`Callable` is equivalent to
1044   ``Callable[..., Any]``, and in turn to
1045   :class:`collections.abc.Callable`.
1046
1047.. data:: ClassVar
1048
1049   Special type construct to mark class variables.
1050
1051   As introduced in :pep:`526`, a variable annotation wrapped in ClassVar
1052   indicates that a given attribute is intended to be used as a class variable
1053   and should not be set on instances of that class. Usage::
1054
1055      class Starship:
1056          stats: ClassVar[Dict[str, int]] = {} # class variable
1057          damage: int = 10                     # instance variable
1058
1059   :data:`ClassVar` accepts only types and cannot be further subscribed.
1060
1061   :data:`ClassVar` is not a class itself, and should not
1062   be used with :func:`isinstance` or :func:`issubclass`.
1063   :data:`ClassVar` does not change Python runtime behavior, but
1064   it can be used by third-party type checkers. For example, a type checker
1065   might flag the following code as an error::
1066
1067      enterprise_d = Starship(3000)
1068      enterprise_d.stats = {} # Error, setting class variable on instance
1069      Starship.stats = {}     # This is OK
1070
1071   .. versionadded:: 3.5.3
1072
1073.. data:: AnyStr
1074
1075   ``AnyStr`` is a type variable defined as
1076   ``AnyStr = TypeVar('AnyStr', str, bytes)``.
1077
1078   It is meant to be used for functions that may accept any kind of string
1079   without allowing different kinds of strings to mix. For example::
1080
1081      def concat(a: AnyStr, b: AnyStr) -> AnyStr:
1082          return a + b
1083
1084      concat(u"foo", u"bar")  # Ok, output has type 'unicode'
1085      concat(b"foo", b"bar")  # Ok, output has type 'bytes'
1086      concat(u"foo", b"bar")  # Error, cannot mix unicode and bytes
1087
1088.. data:: TYPE_CHECKING
1089
1090   A special constant that is assumed to be ``True`` by 3rd party static
1091   type checkers. It is ``False`` at runtime. Usage::
1092
1093      if TYPE_CHECKING:
1094          import expensive_mod
1095
1096      def fun(arg: 'expensive_mod.SomeType') -> None:
1097          local_var: expensive_mod.AnotherType = other_fun()
1098
1099   Note that the first type annotation must be enclosed in quotes, making it a
1100   "forward reference", to hide the ``expensive_mod`` reference from the
1101   interpreter runtime.  Type annotations for local variables are not
1102   evaluated, so the second annotation does not need to be enclosed in quotes.
1103
1104   .. versionadded:: 3.5.2
1105