1 /*
2  * Copyright (c) 2008-2016 Stefan Krah. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 
29 #include "mpdecimal.h"
30 #include <stdio.h>
31 #include <stdlib.h>
32 #include <assert.h>
33 #include "bits.h"
34 #include "difradix2.h"
35 #include "numbertheory.h"
36 #include "transpose.h"
37 #include "umodarith.h"
38 #include "sixstep.h"
39 
40 
41 /* Bignum: Cache efficient Matrix Fourier Transform for arrays of the
42    form 2**n (See literature/six-step.txt). */
43 
44 
45 /* forward transform with sign = -1 */
46 int
six_step_fnt(mpd_uint_t * a,mpd_size_t n,int modnum)47 six_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum)
48 {
49     struct fnt_params *tparams;
50     mpd_size_t log2n, C, R;
51     mpd_uint_t kernel;
52     mpd_uint_t umod;
53 #ifdef PPRO
54     double dmod;
55     uint32_t dinvmod[3];
56 #endif
57     mpd_uint_t *x, w0, w1, wstep;
58     mpd_size_t i, k;
59 
60 
61     assert(ispower2(n));
62     assert(n >= 16);
63     assert(n <= MPD_MAXTRANSFORM_2N);
64 
65     log2n = mpd_bsr(n);
66     C = ((mpd_size_t)1) << (log2n / 2);  /* number of columns */
67     R = ((mpd_size_t)1) << (log2n - (log2n / 2)); /* number of rows */
68 
69 
70     /* Transpose the matrix. */
71     if (!transpose_pow2(a, R, C)) {
72         return 0;
73     }
74 
75     /* Length R transform on the rows. */
76     if ((tparams = _mpd_init_fnt_params(R, -1, modnum)) == NULL) {
77         return 0;
78     }
79     for (x = a; x < a+n; x += R) {
80         fnt_dif2(x, R, tparams);
81     }
82 
83     /* Transpose the matrix. */
84     if (!transpose_pow2(a, C, R)) {
85         mpd_free(tparams);
86         return 0;
87     }
88 
89     /* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */
90     SETMODULUS(modnum);
91     kernel = _mpd_getkernel(n, -1, modnum);
92     for (i = 1; i < R; i++) {
93         w0 = 1;                  /* r**(i*0): initial value for k=0 */
94         w1 = POWMOD(kernel, i);  /* r**(i*1): initial value for k=1 */
95         wstep = MULMOD(w1, w1);  /* r**(2*i) */
96         for (k = 0; k < C; k += 2) {
97             mpd_uint_t x0 = a[i*C+k];
98             mpd_uint_t x1 = a[i*C+k+1];
99             MULMOD2(&x0, w0, &x1, w1);
100             MULMOD2C(&w0, &w1, wstep);  /* r**(i*(k+2)) = r**(i*k) * r**(2*i) */
101             a[i*C+k] = x0;
102             a[i*C+k+1] = x1;
103         }
104     }
105 
106     /* Length C transform on the rows. */
107     if (C != R) {
108         mpd_free(tparams);
109         if ((tparams = _mpd_init_fnt_params(C, -1, modnum)) == NULL) {
110             return 0;
111         }
112     }
113     for (x = a; x < a+n; x += C) {
114         fnt_dif2(x, C, tparams);
115     }
116     mpd_free(tparams);
117 
118 #if 0
119     /* An unordered transform is sufficient for convolution. */
120     /* Transpose the matrix. */
121     if (!transpose_pow2(a, R, C)) {
122         return 0;
123     }
124 #endif
125 
126     return 1;
127 }
128 
129 
130 /* reverse transform, sign = 1 */
131 int
inv_six_step_fnt(mpd_uint_t * a,mpd_size_t n,int modnum)132 inv_six_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum)
133 {
134     struct fnt_params *tparams;
135     mpd_size_t log2n, C, R;
136     mpd_uint_t kernel;
137     mpd_uint_t umod;
138 #ifdef PPRO
139     double dmod;
140     uint32_t dinvmod[3];
141 #endif
142     mpd_uint_t *x, w0, w1, wstep;
143     mpd_size_t i, k;
144 
145 
146     assert(ispower2(n));
147     assert(n >= 16);
148     assert(n <= MPD_MAXTRANSFORM_2N);
149 
150     log2n = mpd_bsr(n);
151     C = ((mpd_size_t)1) << (log2n / 2); /* number of columns */
152     R = ((mpd_size_t)1) << (log2n - (log2n / 2)); /* number of rows */
153 
154 
155 #if 0
156     /* An unordered transform is sufficient for convolution. */
157     /* Transpose the matrix, producing an R*C matrix. */
158     if (!transpose_pow2(a, C, R)) {
159         return 0;
160     }
161 #endif
162 
163     /* Length C transform on the rows. */
164     if ((tparams = _mpd_init_fnt_params(C, 1, modnum)) == NULL) {
165         return 0;
166     }
167     for (x = a; x < a+n; x += C) {
168         fnt_dif2(x, C, tparams);
169     }
170 
171     /* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */
172     SETMODULUS(modnum);
173     kernel = _mpd_getkernel(n, 1, modnum);
174     for (i = 1; i < R; i++) {
175         w0 = 1;
176         w1 = POWMOD(kernel, i);
177         wstep = MULMOD(w1, w1);
178         for (k = 0; k < C; k += 2) {
179             mpd_uint_t x0 = a[i*C+k];
180             mpd_uint_t x1 = a[i*C+k+1];
181             MULMOD2(&x0, w0, &x1, w1);
182             MULMOD2C(&w0, &w1, wstep);
183             a[i*C+k] = x0;
184             a[i*C+k+1] = x1;
185         }
186     }
187 
188     /* Transpose the matrix. */
189     if (!transpose_pow2(a, R, C)) {
190         mpd_free(tparams);
191         return 0;
192     }
193 
194     /* Length R transform on the rows. */
195     if (R != C) {
196         mpd_free(tparams);
197         if ((tparams = _mpd_init_fnt_params(R, 1, modnum)) == NULL) {
198             return 0;
199         }
200     }
201     for (x = a; x < a+n; x += R) {
202         fnt_dif2(x, R, tparams);
203     }
204     mpd_free(tparams);
205 
206     /* Transpose the matrix. */
207     if (!transpose_pow2(a, C, R)) {
208         return 0;
209     }
210 
211     return 1;
212 }
213 
214 
215