1<html><body> 2<style> 3 4body, h1, h2, h3, div, span, p, pre, a { 5 margin: 0; 6 padding: 0; 7 border: 0; 8 font-weight: inherit; 9 font-style: inherit; 10 font-size: 100%; 11 font-family: inherit; 12 vertical-align: baseline; 13} 14 15body { 16 font-size: 13px; 17 padding: 1em; 18} 19 20h1 { 21 font-size: 26px; 22 margin-bottom: 1em; 23} 24 25h2 { 26 font-size: 24px; 27 margin-bottom: 1em; 28} 29 30h3 { 31 font-size: 20px; 32 margin-bottom: 1em; 33 margin-top: 1em; 34} 35 36pre, code { 37 line-height: 1.5; 38 font-family: Monaco, 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', 'Lucida Console', monospace; 39} 40 41pre { 42 margin-top: 0.5em; 43} 44 45h1, h2, h3, p { 46 font-family: Arial, sans serif; 47} 48 49h1, h2, h3 { 50 border-bottom: solid #CCC 1px; 51} 52 53.toc_element { 54 margin-top: 0.5em; 55} 56 57.firstline { 58 margin-left: 2 em; 59} 60 61.method { 62 margin-top: 1em; 63 border: solid 1px #CCC; 64 padding: 1em; 65 background: #EEE; 66} 67 68.details { 69 font-weight: bold; 70 font-size: 14px; 71} 72 73</style> 74 75<h1><a href="ml_v1beta1.html">Google Cloud Machine Learning Engine</a> . <a href="ml_v1beta1.projects.html">projects</a></h1> 76<h2>Instance Methods</h2> 77<p class="toc_element"> 78 <code><a href="ml_v1beta1.projects.jobs.html">jobs()</a></code> 79</p> 80<p class="firstline">Returns the jobs Resource.</p> 81 82<p class="toc_element"> 83 <code><a href="ml_v1beta1.projects.models.html">models()</a></code> 84</p> 85<p class="firstline">Returns the models Resource.</p> 86 87<p class="toc_element"> 88 <code><a href="ml_v1beta1.projects.operations.html">operations()</a></code> 89</p> 90<p class="firstline">Returns the operations Resource.</p> 91 92<p class="toc_element"> 93 <code><a href="#getConfig">getConfig(name, x__xgafv=None)</a></code></p> 94<p class="firstline">Get the service account information associated with your project. You need</p> 95<p class="toc_element"> 96 <code><a href="#predict">predict(name, body, x__xgafv=None)</a></code></p> 97<p class="firstline">Performs prediction on the data in the request.</p> 98<h3>Method Details</h3> 99<div class="method"> 100 <code class="details" id="getConfig">getConfig(name, x__xgafv=None)</code> 101 <pre>Get the service account information associated with your project. You need 102this information in order to grant the service account persmissions for 103the Google Cloud Storage location where you put your model training code 104for training the model with Google Cloud Machine Learning. 105 106Args: 107 name: string, Required. The project name. 108 109Authorization: requires `Viewer` role on the specified project. (required) 110 x__xgafv: string, V1 error format. 111 Allowed values 112 1 - v1 error format 113 2 - v2 error format 114 115Returns: 116 An object of the form: 117 118 { # Returns service account information associated with a project. 119 "serviceAccountProject": "A String", # The project number for `service_account`. 120 "serviceAccount": "A String", # The service account Cloud ML uses to access resources in the project. 121 }</pre> 122</div> 123 124<div class="method"> 125 <code class="details" id="predict">predict(name, body, x__xgafv=None)</code> 126 <pre>Performs prediction on the data in the request. 127 128**** REMOVE FROM GENERATED DOCUMENTATION 129 130Args: 131 name: string, Required. The resource name of a model or a version. 132 133Authorization: requires `Viewer` role on the parent project. (required) 134 body: object, The request body. (required) 135 The object takes the form of: 136 137{ # Request for predictions to be issued against a trained model. 138 # 139 # The body of the request is a single JSON object with a single top-level 140 # field: 141 # 142 # <dl> 143 # <dt>instances</dt> 144 # <dd>A JSON array containing values representing the instances to use for 145 # prediction.</dd> 146 # </dl> 147 # 148 # The structure of each element of the instances list is determined by your 149 # model's input definition. Instances can include named inputs or can contain 150 # only unlabeled values. 151 # 152 # Not all data includes named inputs. Some instances will be simple 153 # JSON values (boolean, number, or string). However, instances are often lists 154 # of simple values, or complex nested lists. Here are some examples of request 155 # bodies: 156 # 157 # CSV data with each row encoded as a string value: 158 # <pre> 159 # {"instances": ["1.0,true,\\"x\\"", "-2.0,false,\\"y\\""]} 160 # </pre> 161 # Plain text: 162 # <pre> 163 # {"instances": ["the quick brown fox", "la bruja le dio"]} 164 # </pre> 165 # Sentences encoded as lists of words (vectors of strings): 166 # <pre> 167 # { 168 # "instances": [ 169 # ["the","quick","brown"], 170 # ["la","bruja","le"], 171 # ... 172 # ] 173 # } 174 # </pre> 175 # Floating point scalar values: 176 # <pre> 177 # {"instances": [0.0, 1.1, 2.2]} 178 # </pre> 179 # Vectors of integers: 180 # <pre> 181 # { 182 # "instances": [ 183 # [0, 1, 2], 184 # [3, 4, 5], 185 # ... 186 # ] 187 # } 188 # </pre> 189 # Tensors (in this case, two-dimensional tensors): 190 # <pre> 191 # { 192 # "instances": [ 193 # [ 194 # [0, 1, 2], 195 # [3, 4, 5] 196 # ], 197 # ... 198 # ] 199 # } 200 # </pre> 201 # Images can be represented different ways. In this encoding scheme the first 202 # two dimensions represent the rows and columns of the image, and the third 203 # contains lists (vectors) of the R, G, and B values for each pixel. 204 # <pre> 205 # { 206 # "instances": [ 207 # [ 208 # [ 209 # [138, 30, 66], 210 # [130, 20, 56], 211 # ... 212 # ], 213 # [ 214 # [126, 38, 61], 215 # [122, 24, 57], 216 # ... 217 # ], 218 # ... 219 # ], 220 # ... 221 # ] 222 # } 223 # </pre> 224 # JSON strings must be encoded as UTF-8. To send binary data, you must 225 # base64-encode the data and mark it as binary. To mark a JSON string 226 # as binary, replace it with a JSON object with a single attribute named `b64`: 227 # <pre>{"b64": "..."} </pre> 228 # For example: 229 # 230 # Two Serialized tf.Examples (fake data, for illustrative purposes only): 231 # <pre> 232 # {"instances": [{"b64": "X5ad6u"}, {"b64": "IA9j4nx"}]} 233 # </pre> 234 # Two JPEG image byte strings (fake data, for illustrative purposes only): 235 # <pre> 236 # {"instances": [{"b64": "ASa8asdf"}, {"b64": "JLK7ljk3"}]} 237 # </pre> 238 # If your data includes named references, format each instance as a JSON object 239 # with the named references as the keys: 240 # 241 # JSON input data to be preprocessed: 242 # <pre> 243 # { 244 # "instances": [ 245 # { 246 # "a": 1.0, 247 # "b": true, 248 # "c": "x" 249 # }, 250 # { 251 # "a": -2.0, 252 # "b": false, 253 # "c": "y" 254 # } 255 # ] 256 # } 257 # </pre> 258 # Some models have an underlying TensorFlow graph that accepts multiple input 259 # tensors. In this case, you should use the names of JSON name/value pairs to 260 # identify the input tensors, as shown in the following exmaples: 261 # 262 # For a graph with input tensor aliases "tag" (string) and "image" 263 # (base64-encoded string): 264 # <pre> 265 # { 266 # "instances": [ 267 # { 268 # "tag": "beach", 269 # "image": {"b64": "ASa8asdf"} 270 # }, 271 # { 272 # "tag": "car", 273 # "image": {"b64": "JLK7ljk3"} 274 # } 275 # ] 276 # } 277 # </pre> 278 # For a graph with input tensor aliases "tag" (string) and "image" 279 # (3-dimensional array of 8-bit ints): 280 # <pre> 281 # { 282 # "instances": [ 283 # { 284 # "tag": "beach", 285 # "image": [ 286 # [ 287 # [138, 30, 66], 288 # [130, 20, 56], 289 # ... 290 # ], 291 # [ 292 # [126, 38, 61], 293 # [122, 24, 57], 294 # ... 295 # ], 296 # ... 297 # ] 298 # }, 299 # { 300 # "tag": "car", 301 # "image": [ 302 # [ 303 # [255, 0, 102], 304 # [255, 0, 97], 305 # ... 306 # ], 307 # [ 308 # [254, 1, 101], 309 # [254, 2, 93], 310 # ... 311 # ], 312 # ... 313 # ] 314 # }, 315 # ... 316 # ] 317 # } 318 # </pre> 319 # If the call is successful, the response body will contain one prediction 320 # entry per instance in the request body. If prediction fails for any 321 # instance, the response body will contain no predictions and will contian 322 # a single error entry instead. 323 "httpBody": { # Message that represents an arbitrary HTTP body. It should only be used for # 324 # Required. The prediction request body. 325 # payload formats that can't be represented as JSON, such as raw binary or 326 # an HTML page. 327 # 328 # 329 # This message can be used both in streaming and non-streaming API methods in 330 # the request as well as the response. 331 # 332 # It can be used as a top-level request field, which is convenient if one 333 # wants to extract parameters from either the URL or HTTP template into the 334 # request fields and also want access to the raw HTTP body. 335 # 336 # Example: 337 # 338 # message GetResourceRequest { 339 # // A unique request id. 340 # string request_id = 1; 341 # 342 # // The raw HTTP body is bound to this field. 343 # google.api.HttpBody http_body = 2; 344 # } 345 # 346 # service ResourceService { 347 # rpc GetResource(GetResourceRequest) returns (google.api.HttpBody); 348 # rpc UpdateResource(google.api.HttpBody) returns (google.protobuf.Empty); 349 # } 350 # 351 # Example with streaming methods: 352 # 353 # service CaldavService { 354 # rpc GetCalendar(stream google.api.HttpBody) 355 # returns (stream google.api.HttpBody); 356 # rpc UpdateCalendar(stream google.api.HttpBody) 357 # returns (stream google.api.HttpBody); 358 # } 359 # 360 # Use of this type only changes how the request and response bodies are 361 # handled, all other features will continue to work unchanged. 362 "contentType": "A String", # The HTTP Content-Type string representing the content type of the body. 363 "data": "A String", # HTTP body binary data. 364 "extensions": [ # Application specific response metadata. Must be set in the first response 365 # for streaming APIs. 366 { 367 "a_key": "", # Properties of the object. Contains field @type with type URL. 368 }, 369 ], 370 }, 371 } 372 373 x__xgafv: string, V1 error format. 374 Allowed values 375 1 - v1 error format 376 2 - v2 error format 377 378Returns: 379 An object of the form: 380 381 { # Message that represents an arbitrary HTTP body. It should only be used for 382 # payload formats that can't be represented as JSON, such as raw binary or 383 # an HTML page. 384 # 385 # 386 # This message can be used both in streaming and non-streaming API methods in 387 # the request as well as the response. 388 # 389 # It can be used as a top-level request field, which is convenient if one 390 # wants to extract parameters from either the URL or HTTP template into the 391 # request fields and also want access to the raw HTTP body. 392 # 393 # Example: 394 # 395 # message GetResourceRequest { 396 # // A unique request id. 397 # string request_id = 1; 398 # 399 # // The raw HTTP body is bound to this field. 400 # google.api.HttpBody http_body = 2; 401 # } 402 # 403 # service ResourceService { 404 # rpc GetResource(GetResourceRequest) returns (google.api.HttpBody); 405 # rpc UpdateResource(google.api.HttpBody) returns (google.protobuf.Empty); 406 # } 407 # 408 # Example with streaming methods: 409 # 410 # service CaldavService { 411 # rpc GetCalendar(stream google.api.HttpBody) 412 # returns (stream google.api.HttpBody); 413 # rpc UpdateCalendar(stream google.api.HttpBody) 414 # returns (stream google.api.HttpBody); 415 # } 416 # 417 # Use of this type only changes how the request and response bodies are 418 # handled, all other features will continue to work unchanged. 419 "contentType": "A String", # The HTTP Content-Type string representing the content type of the body. 420 "data": "A String", # HTTP body binary data. 421 "extensions": [ # Application specific response metadata. Must be set in the first response 422 # for streaming APIs. 423 { 424 "a_key": "", # Properties of the object. Contains field @type with type URL. 425 }, 426 ], 427 }</pre> 428</div> 429 430</body></html>