1 /*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #ifndef SkRefCnt_DEFINED
9 #define SkRefCnt_DEFINED
10
11 #include "SkTypes.h"
12
13 #include <atomic>
14 #include <cstddef>
15 #include <functional>
16 #include <memory>
17 #include <ostream>
18 #include <type_traits>
19 #include <utility>
20
21 /** \class SkRefCntBase
22
23 SkRefCntBase is the base class for objects that may be shared by multiple
24 objects. When an existing owner wants to share a reference, it calls ref().
25 When an owner wants to release its reference, it calls unref(). When the
26 shared object's reference count goes to zero as the result of an unref()
27 call, its (virtual) destructor is called. It is an error for the
28 destructor to be called explicitly (or via the object going out of scope on
29 the stack or calling delete) if getRefCnt() > 1.
30 */
31 class SK_API SkRefCntBase {
32 public:
33 /** Default construct, initializing the reference count to 1.
34 */
SkRefCntBase()35 SkRefCntBase() : fRefCnt(1) {}
36
37 /** Destruct, asserting that the reference count is 1.
38 */
~SkRefCntBase()39 virtual ~SkRefCntBase() {
40 #ifdef SK_DEBUG
41 SkASSERTF(this->getRefCnt() == 1, "fRefCnt was %d", this->getRefCnt());
42 // illegal value, to catch us if we reuse after delete
43 fRefCnt.store(0, std::memory_order_relaxed);
44 #endif
45 }
46
47 /** May return true if the caller is the only owner.
48 * Ensures that all previous owner's actions are complete.
49 */
unique()50 bool unique() const {
51 if (1 == fRefCnt.load(std::memory_order_acquire)) {
52 // The acquire barrier is only really needed if we return true. It
53 // prevents code conditioned on the result of unique() from running
54 // until previous owners are all totally done calling unref().
55 return true;
56 }
57 return false;
58 }
59
60 /** Increment the reference count. Must be balanced by a call to unref().
61 */
ref()62 void ref() const {
63 SkASSERT(this->getRefCnt() > 0);
64 // No barrier required.
65 (void)fRefCnt.fetch_add(+1, std::memory_order_relaxed);
66 }
67
68 /** Decrement the reference count. If the reference count is 1 before the
69 decrement, then delete the object. Note that if this is the case, then
70 the object needs to have been allocated via new, and not on the stack.
71 */
unref()72 void unref() const {
73 SkASSERT(this->getRefCnt() > 0);
74 // A release here acts in place of all releases we "should" have been doing in ref().
75 if (1 == fRefCnt.fetch_add(-1, std::memory_order_acq_rel)) {
76 // Like unique(), the acquire is only needed on success, to make sure
77 // code in internal_dispose() doesn't happen before the decrement.
78 this->internal_dispose();
79 }
80 }
81
82 private:
83
84 #ifdef SK_DEBUG
85 /** Return the reference count. Use only for debugging. */
getRefCnt()86 int32_t getRefCnt() const {
87 return fRefCnt.load(std::memory_order_relaxed);
88 }
89 #endif
90
91 /**
92 * Called when the ref count goes to 0.
93 */
internal_dispose()94 virtual void internal_dispose() const {
95 #ifdef SK_DEBUG
96 SkASSERT(0 == this->getRefCnt());
97 fRefCnt.store(1, std::memory_order_relaxed);
98 #endif
99 delete this;
100 }
101
102 // The following friends are those which override internal_dispose()
103 // and conditionally call SkRefCnt::internal_dispose().
104 friend class SkWeakRefCnt;
105
106 mutable std::atomic<int32_t> fRefCnt;
107
108 SkRefCntBase(SkRefCntBase&&) = delete;
109 SkRefCntBase(const SkRefCntBase&) = delete;
110 SkRefCntBase& operator=(SkRefCntBase&&) = delete;
111 SkRefCntBase& operator=(const SkRefCntBase&) = delete;
112 };
113
114 #ifdef SK_REF_CNT_MIXIN_INCLUDE
115 // It is the responsibility of the following include to define the type SkRefCnt.
116 // This SkRefCnt should normally derive from SkRefCntBase.
117 #include SK_REF_CNT_MIXIN_INCLUDE
118 #else
119 class SK_API SkRefCnt : public SkRefCntBase {
120 // "#include SK_REF_CNT_MIXIN_INCLUDE" doesn't work with this build system.
121 #if defined(SK_BUILD_FOR_GOOGLE3)
122 public:
deref()123 void deref() const { this->unref(); }
124 #endif
125 };
126 #endif
127
128 ///////////////////////////////////////////////////////////////////////////////
129
130 /** Call obj->ref() and return obj. The obj must not be nullptr.
131 */
SkRef(T * obj)132 template <typename T> static inline T* SkRef(T* obj) {
133 SkASSERT(obj);
134 obj->ref();
135 return obj;
136 }
137
138 /** Check if the argument is non-null, and if so, call obj->ref() and return obj.
139 */
SkSafeRef(T * obj)140 template <typename T> static inline T* SkSafeRef(T* obj) {
141 if (obj) {
142 obj->ref();
143 }
144 return obj;
145 }
146
147 /** Check if the argument is non-null, and if so, call obj->unref()
148 */
SkSafeUnref(T * obj)149 template <typename T> static inline void SkSafeUnref(T* obj) {
150 if (obj) {
151 obj->unref();
152 }
153 }
154
155 ///////////////////////////////////////////////////////////////////////////////
156
157 // This is a variant of SkRefCnt that's Not Virtual, so weighs 4 bytes instead of 8 or 16.
158 // There's only benefit to using this if the deriving class does not otherwise need a vtable.
159 template <typename Derived>
160 class SkNVRefCnt {
161 public:
SkNVRefCnt()162 SkNVRefCnt() : fRefCnt(1) {}
~SkNVRefCnt()163 ~SkNVRefCnt() {
164 #ifdef SK_DEBUG
165 int rc = fRefCnt.load(std::memory_order_relaxed);
166 SkASSERTF(rc == 1, "NVRefCnt was %d", rc);
167 #endif
168 }
169
170 // Implementation is pretty much the same as SkRefCntBase. All required barriers are the same:
171 // - unique() needs acquire when it returns true, and no barrier if it returns false;
172 // - ref() doesn't need any barrier;
173 // - unref() needs a release barrier, and an acquire if it's going to call delete.
174
unique()175 bool unique() const { return 1 == fRefCnt.load(std::memory_order_acquire); }
ref()176 void ref() const { (void)fRefCnt.fetch_add(+1, std::memory_order_relaxed); }
unref()177 void unref() const {
178 if (1 == fRefCnt.fetch_add(-1, std::memory_order_acq_rel)) {
179 // restore the 1 for our destructor's assert
180 SkDEBUGCODE(fRefCnt.store(1, std::memory_order_relaxed));
181 delete (const Derived*)this;
182 }
183 }
deref()184 void deref() const { this->unref(); }
185
186 private:
187 mutable std::atomic<int32_t> fRefCnt;
188
189 SkNVRefCnt(SkNVRefCnt&&) = delete;
190 SkNVRefCnt(const SkNVRefCnt&) = delete;
191 SkNVRefCnt& operator=(SkNVRefCnt&&) = delete;
192 SkNVRefCnt& operator=(const SkNVRefCnt&) = delete;
193 };
194
195 ///////////////////////////////////////////////////////////////////////////////////////////////////
196
197 /**
198 * Shared pointer class to wrap classes that support a ref()/unref() interface.
199 *
200 * This can be used for classes inheriting from SkRefCnt, but it also works for other
201 * classes that match the interface, but have different internal choices: e.g. the hosted class
202 * may have its ref/unref be thread-safe, but that is not assumed/imposed by sk_sp.
203 */
204 template <typename T> class sk_sp {
205 public:
206 using element_type = T;
207
sk_sp()208 constexpr sk_sp() : fPtr(nullptr) {}
sk_sp(std::nullptr_t)209 constexpr sk_sp(std::nullptr_t) : fPtr(nullptr) {}
210
211 /**
212 * Shares the underlying object by calling ref(), so that both the argument and the newly
213 * created sk_sp both have a reference to it.
214 */
sk_sp(const sk_sp<T> & that)215 sk_sp(const sk_sp<T>& that) : fPtr(SkSafeRef(that.get())) {}
216 template <typename U,
217 typename = typename std::enable_if<std::is_convertible<U*, T*>::value>::type>
sk_sp(const sk_sp<U> & that)218 sk_sp(const sk_sp<U>& that) : fPtr(SkSafeRef(that.get())) {}
219
220 /**
221 * Move the underlying object from the argument to the newly created sk_sp. Afterwards only
222 * the new sk_sp will have a reference to the object, and the argument will point to null.
223 * No call to ref() or unref() will be made.
224 */
sk_sp(sk_sp<T> && that)225 sk_sp(sk_sp<T>&& that) : fPtr(that.release()) {}
226 template <typename U,
227 typename = typename std::enable_if<std::is_convertible<U*, T*>::value>::type>
sk_sp(sk_sp<U> && that)228 sk_sp(sk_sp<U>&& that) : fPtr(that.release()) {}
229
230 /**
231 * Adopt the bare pointer into the newly created sk_sp.
232 * No call to ref() or unref() will be made.
233 */
sk_sp(T * obj)234 explicit sk_sp(T* obj) : fPtr(obj) {}
235
236 /**
237 * Calls unref() on the underlying object pointer.
238 */
~sk_sp()239 ~sk_sp() {
240 SkSafeUnref(fPtr);
241 SkDEBUGCODE(fPtr = nullptr);
242 }
243
244 sk_sp<T>& operator=(std::nullptr_t) { this->reset(); return *this; }
245
246 /**
247 * Shares the underlying object referenced by the argument by calling ref() on it. If this
248 * sk_sp previously had a reference to an object (i.e. not null) it will call unref() on that
249 * object.
250 */
251 sk_sp<T>& operator=(const sk_sp<T>& that) {
252 if (this != &that) {
253 this->reset(SkSafeRef(that.get()));
254 }
255 return *this;
256 }
257 template <typename U,
258 typename = typename std::enable_if<std::is_convertible<U*, T*>::value>::type>
259 sk_sp<T>& operator=(const sk_sp<U>& that) {
260 this->reset(SkSafeRef(that.get()));
261 return *this;
262 }
263
264 /**
265 * Move the underlying object from the argument to the sk_sp. If the sk_sp previously held
266 * a reference to another object, unref() will be called on that object. No call to ref()
267 * will be made.
268 */
269 sk_sp<T>& operator=(sk_sp<T>&& that) {
270 this->reset(that.release());
271 return *this;
272 }
273 template <typename U,
274 typename = typename std::enable_if<std::is_convertible<U*, T*>::value>::type>
275 sk_sp<T>& operator=(sk_sp<U>&& that) {
276 this->reset(that.release());
277 return *this;
278 }
279
280 T& operator*() const {
281 SkASSERT(this->get() != nullptr);
282 return *this->get();
283 }
284
285 explicit operator bool() const { return this->get() != nullptr; }
286
get()287 T* get() const { return fPtr; }
288 T* operator->() const { return fPtr; }
289
290 /**
291 * Adopt the new bare pointer, and call unref() on any previously held object (if not null).
292 * No call to ref() will be made.
293 */
294 void reset(T* ptr = nullptr) {
295 // Calling fPtr->unref() may call this->~() or this->reset(T*).
296 // http://wg21.cmeerw.net/lwg/issue998
297 // http://wg21.cmeerw.net/lwg/issue2262
298 T* oldPtr = fPtr;
299 fPtr = ptr;
300 SkSafeUnref(oldPtr);
301 }
302
303 /**
304 * Return the bare pointer, and set the internal object pointer to nullptr.
305 * The caller must assume ownership of the object, and manage its reference count directly.
306 * No call to unref() will be made.
307 */
release()308 T* SK_WARN_UNUSED_RESULT release() {
309 T* ptr = fPtr;
310 fPtr = nullptr;
311 return ptr;
312 }
313
swap(sk_sp<T> & that)314 void swap(sk_sp<T>& that) /*noexcept*/ {
315 using std::swap;
316 swap(fPtr, that.fPtr);
317 }
318
319 private:
320 T* fPtr;
321 };
322
swap(sk_sp<T> & a,sk_sp<T> & b)323 template <typename T> inline void swap(sk_sp<T>& a, sk_sp<T>& b) /*noexcept*/ {
324 a.swap(b);
325 }
326
327 template <typename T, typename U> inline bool operator==(const sk_sp<T>& a, const sk_sp<U>& b) {
328 return a.get() == b.get();
329 }
330 template <typename T> inline bool operator==(const sk_sp<T>& a, std::nullptr_t) /*noexcept*/ {
331 return !a;
332 }
333 template <typename T> inline bool operator==(std::nullptr_t, const sk_sp<T>& b) /*noexcept*/ {
334 return !b;
335 }
336
337 template <typename T, typename U> inline bool operator!=(const sk_sp<T>& a, const sk_sp<U>& b) {
338 return a.get() != b.get();
339 }
340 template <typename T> inline bool operator!=(const sk_sp<T>& a, std::nullptr_t) /*noexcept*/ {
341 return static_cast<bool>(a);
342 }
343 template <typename T> inline bool operator!=(std::nullptr_t, const sk_sp<T>& b) /*noexcept*/ {
344 return static_cast<bool>(b);
345 }
346
347 template <typename T, typename U> inline bool operator<(const sk_sp<T>& a, const sk_sp<U>& b) {
348 // Provide defined total order on sk_sp.
349 // http://wg21.cmeerw.net/lwg/issue1297
350 // http://wg21.cmeerw.net/lwg/issue1401 .
351 return std::less<typename std::common_type<T*, U*>::type>()(a.get(), b.get());
352 }
353 template <typename T> inline bool operator<(const sk_sp<T>& a, std::nullptr_t) {
354 return std::less<T*>()(a.get(), nullptr);
355 }
356 template <typename T> inline bool operator<(std::nullptr_t, const sk_sp<T>& b) {
357 return std::less<T*>()(nullptr, b.get());
358 }
359
360 template <typename T, typename U> inline bool operator<=(const sk_sp<T>& a, const sk_sp<U>& b) {
361 return !(b < a);
362 }
363 template <typename T> inline bool operator<=(const sk_sp<T>& a, std::nullptr_t) {
364 return !(nullptr < a);
365 }
366 template <typename T> inline bool operator<=(std::nullptr_t, const sk_sp<T>& b) {
367 return !(b < nullptr);
368 }
369
370 template <typename T, typename U> inline bool operator>(const sk_sp<T>& a, const sk_sp<U>& b) {
371 return b < a;
372 }
373 template <typename T> inline bool operator>(const sk_sp<T>& a, std::nullptr_t) {
374 return nullptr < a;
375 }
376 template <typename T> inline bool operator>(std::nullptr_t, const sk_sp<T>& b) {
377 return b < nullptr;
378 }
379
380 template <typename T, typename U> inline bool operator>=(const sk_sp<T>& a, const sk_sp<U>& b) {
381 return !(a < b);
382 }
383 template <typename T> inline bool operator>=(const sk_sp<T>& a, std::nullptr_t) {
384 return !(a < nullptr);
385 }
386 template <typename T> inline bool operator>=(std::nullptr_t, const sk_sp<T>& b) {
387 return !(nullptr < b);
388 }
389
390 template <typename C, typename CT, typename T>
391 auto operator<<(std::basic_ostream<C, CT>& os, const sk_sp<T>& sp) -> decltype(os << sp.get()) {
392 return os << sp.get();
393 }
394
395 template <typename T, typename... Args>
sk_make_sp(Args &&...args)396 sk_sp<T> sk_make_sp(Args&&... args) {
397 return sk_sp<T>(new T(std::forward<Args>(args)...));
398 }
399
400 /*
401 * Returns a sk_sp wrapping the provided ptr AND calls ref on it (if not null).
402 *
403 * This is different than the semantics of the constructor for sk_sp, which just wraps the ptr,
404 * effectively "adopting" it.
405 */
sk_ref_sp(T * obj)406 template <typename T> sk_sp<T> sk_ref_sp(T* obj) {
407 return sk_sp<T>(SkSafeRef(obj));
408 }
409
sk_ref_sp(const T * obj)410 template <typename T> sk_sp<T> sk_ref_sp(const T* obj) {
411 return sk_sp<T>(const_cast<T*>(SkSafeRef(obj)));
412 }
413
414 #endif
415