1 /*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "SkLatticeIter.h"
9 #include "SkRect.h"
10
11 /**
12 * Divs must be in increasing order with no duplicates.
13 */
valid_divs(const int * divs,int count,int start,int end)14 static bool valid_divs(const int* divs, int count, int start, int end) {
15 int prev = start - 1;
16 for (int i = 0; i < count; i++) {
17 if (prev >= divs[i] || divs[i] >= end) {
18 return false;
19 }
20 prev = divs[i];
21 }
22
23 return true;
24 }
25
Valid(int width,int height,const SkCanvas::Lattice & lattice)26 bool SkLatticeIter::Valid(int width, int height, const SkCanvas::Lattice& lattice) {
27 SkIRect totalBounds = SkIRect::MakeWH(width, height);
28 SkASSERT(lattice.fBounds);
29 const SkIRect latticeBounds = *lattice.fBounds;
30 if (!totalBounds.contains(latticeBounds)) {
31 return false;
32 }
33
34 bool zeroXDivs = lattice.fXCount <= 0 || (1 == lattice.fXCount &&
35 latticeBounds.fLeft == lattice.fXDivs[0]);
36 bool zeroYDivs = lattice.fYCount <= 0 || (1 == lattice.fYCount &&
37 latticeBounds.fTop == lattice.fYDivs[0]);
38 if (zeroXDivs && zeroYDivs) {
39 return false;
40 }
41
42 return valid_divs(lattice.fXDivs, lattice.fXCount, latticeBounds.fLeft, latticeBounds.fRight)
43 && valid_divs(lattice.fYDivs, lattice.fYCount, latticeBounds.fTop, latticeBounds.fBottom);
44 }
45
46 /**
47 * Count the number of pixels that are in "scalable" patches.
48 */
count_scalable_pixels(const int32_t * divs,int numDivs,bool firstIsScalable,int start,int end)49 static int count_scalable_pixels(const int32_t* divs, int numDivs, bool firstIsScalable,
50 int start, int end) {
51 if (0 == numDivs) {
52 return firstIsScalable ? end - start : 0;
53 }
54
55 int i;
56 int count;
57 if (firstIsScalable) {
58 count = divs[0] - start;
59 i = 1;
60 } else {
61 count = 0;
62 i = 0;
63 }
64
65 for (; i < numDivs; i += 2) {
66 // Alternatively, we could use |top| and |bottom| as variable names, instead of
67 // |left| and |right|.
68 int left = divs[i];
69 int right = (i + 1 < numDivs) ? divs[i + 1] : end;
70 count += right - left;
71 }
72
73 return count;
74 }
75
76 /**
77 * Set points for the src and dst rects on subsequent draw calls.
78 */
set_points(float * dst,int * src,const int * divs,int divCount,int srcFixed,int srcScalable,int srcStart,int srcEnd,float dstStart,float dstEnd,bool isScalable)79 static void set_points(float* dst, int* src, const int* divs, int divCount, int srcFixed,
80 int srcScalable, int srcStart, int srcEnd, float dstStart, float dstEnd,
81 bool isScalable) {
82 float dstLen = dstEnd - dstStart;
83 float scale;
84 if (srcFixed <= dstLen) {
85 // This is the "normal" case, where we scale the "scalable" patches and leave
86 // the other patches fixed.
87 scale = (dstLen - ((float) srcFixed)) / ((float) srcScalable);
88 } else {
89 // In this case, we eliminate the "scalable" patches and scale the "fixed" patches.
90 scale = dstLen / ((float) srcFixed);
91 }
92
93 src[0] = srcStart;
94 dst[0] = dstStart;
95 for (int i = 0; i < divCount; i++) {
96 src[i + 1] = divs[i];
97 int srcDelta = src[i + 1] - src[i];
98 float dstDelta;
99 if (srcFixed <= dstLen) {
100 dstDelta = isScalable ? scale * srcDelta : srcDelta;
101 } else {
102 dstDelta = isScalable ? 0.0f : scale * srcDelta;
103 }
104 dst[i + 1] = dst[i] + dstDelta;
105
106 // Alternate between "scalable" and "fixed" patches.
107 isScalable = !isScalable;
108 }
109
110 src[divCount + 1] = srcEnd;
111 dst[divCount + 1] = dstEnd;
112 }
113
SkLatticeIter(const SkCanvas::Lattice & lattice,const SkRect & dst)114 SkLatticeIter::SkLatticeIter(const SkCanvas::Lattice& lattice, const SkRect& dst) {
115 const int* xDivs = lattice.fXDivs;
116 const int origXCount = lattice.fXCount;
117 const int* yDivs = lattice.fYDivs;
118 const int origYCount = lattice.fYCount;
119 SkASSERT(lattice.fBounds);
120 const SkIRect src = *lattice.fBounds;
121
122 // In the x-dimension, the first rectangle always starts at x = 0 and is "scalable".
123 // If xDiv[0] is 0, it indicates that the first rectangle is degenerate, so the
124 // first real rectangle "scalable" in the x-direction.
125 //
126 // The same interpretation applies to the y-dimension.
127 //
128 // As we move left to right across the image, alternating patches will be "fixed" or
129 // "scalable" in the x-direction. Similarly, as move top to bottom, alternating
130 // patches will be "fixed" or "scalable" in the y-direction.
131 int xCount = origXCount;
132 int yCount = origYCount;
133 bool xIsScalable = (xCount > 0 && src.fLeft == xDivs[0]);
134 if (xIsScalable) {
135 // Once we've decided that the first patch is "scalable", we don't need the
136 // xDiv. It is always implied that we start at the edge of the bounds.
137 xDivs++;
138 xCount--;
139 }
140 bool yIsScalable = (yCount > 0 && src.fTop == yDivs[0]);
141 if (yIsScalable) {
142 // Once we've decided that the first patch is "scalable", we don't need the
143 // yDiv. It is always implied that we start at the edge of the bounds.
144 yDivs++;
145 yCount--;
146 }
147
148 // Count "scalable" and "fixed" pixels in each dimension.
149 int xCountScalable = count_scalable_pixels(xDivs, xCount, xIsScalable, src.fLeft, src.fRight);
150 int xCountFixed = src.width() - xCountScalable;
151 int yCountScalable = count_scalable_pixels(yDivs, yCount, yIsScalable, src.fTop, src.fBottom);
152 int yCountFixed = src.height() - yCountScalable;
153
154 fSrcX.reset(xCount + 2);
155 fDstX.reset(xCount + 2);
156 set_points(fDstX.begin(), fSrcX.begin(), xDivs, xCount, xCountFixed, xCountScalable,
157 src.fLeft, src.fRight, dst.fLeft, dst.fRight, xIsScalable);
158
159 fSrcY.reset(yCount + 2);
160 fDstY.reset(yCount + 2);
161 set_points(fDstY.begin(), fSrcY.begin(), yDivs, yCount, yCountFixed, yCountScalable,
162 src.fTop, src.fBottom, dst.fTop, dst.fBottom, yIsScalable);
163
164 fCurrX = fCurrY = 0;
165 fNumRectsInLattice = (xCount + 1) * (yCount + 1);
166 fNumRectsToDraw = fNumRectsInLattice;
167
168 if (lattice.fRectTypes) {
169 fRectTypes.push_back_n(fNumRectsInLattice);
170 fColors.push_back_n(fNumRectsInLattice);
171
172 const SkCanvas::Lattice::RectType* flags = lattice.fRectTypes;
173 const SkColor* colors = lattice.fColors;
174
175 bool hasPadRow = (yCount != origYCount);
176 bool hasPadCol = (xCount != origXCount);
177 if (hasPadRow) {
178 // The first row of rects are all empty, skip the first row of flags.
179 flags += origXCount + 1;
180 colors += origXCount + 1;
181 }
182
183 int i = 0;
184 for (int y = 0; y < yCount + 1; y++) {
185 for (int x = 0; x < origXCount + 1; x++) {
186 if (0 == x && hasPadCol) {
187 // The first column of rects are all empty. Skip a rect.
188 flags++;
189 colors++;
190 continue;
191 }
192
193 fRectTypes[i] = *flags;
194 fColors[i] = SkCanvas::Lattice::kFixedColor == *flags ? *colors : 0;
195 flags++;
196 colors++;
197 i++;
198 }
199 }
200
201 for (int j = 0; j < fRectTypes.count(); j++) {
202 if (SkCanvas::Lattice::kTransparent == fRectTypes[j]) {
203 fNumRectsToDraw--;
204 }
205 }
206 }
207 }
208
Valid(int width,int height,const SkIRect & center)209 bool SkLatticeIter::Valid(int width, int height, const SkIRect& center) {
210 return !center.isEmpty() && SkIRect::MakeWH(width, height).contains(center);
211 }
212
SkLatticeIter(int w,int h,const SkIRect & c,const SkRect & dst)213 SkLatticeIter::SkLatticeIter(int w, int h, const SkIRect& c, const SkRect& dst) {
214 SkASSERT(SkIRect::MakeWH(w, h).contains(c));
215
216 fSrcX.reset(4);
217 fSrcY.reset(4);
218 fDstX.reset(4);
219 fDstY.reset(4);
220
221 fSrcX[0] = 0;
222 fSrcX[1] = SkIntToScalar(c.fLeft);
223 fSrcX[2] = SkIntToScalar(c.fRight);
224 fSrcX[3] = SkIntToScalar(w);
225
226 fSrcY[0] = 0;
227 fSrcY[1] = SkIntToScalar(c.fTop);
228 fSrcY[2] = SkIntToScalar(c.fBottom);
229 fSrcY[3] = SkIntToScalar(h);
230
231 fDstX[0] = dst.fLeft;
232 fDstX[1] = dst.fLeft + SkIntToScalar(c.fLeft);
233 fDstX[2] = dst.fRight - SkIntToScalar(w - c.fRight);
234 fDstX[3] = dst.fRight;
235
236 fDstY[0] = dst.fTop;
237 fDstY[1] = dst.fTop + SkIntToScalar(c.fTop);
238 fDstY[2] = dst.fBottom - SkIntToScalar(h - c.fBottom);
239 fDstY[3] = dst.fBottom;
240
241 if (fDstX[1] > fDstX[2]) {
242 fDstX[1] = fDstX[0] + (fDstX[3] - fDstX[0]) * c.fLeft / (w - c.width());
243 fDstX[2] = fDstX[1];
244 }
245
246 if (fDstY[1] > fDstY[2]) {
247 fDstY[1] = fDstY[0] + (fDstY[3] - fDstY[0]) * c.fTop / (h - c.height());
248 fDstY[2] = fDstY[1];
249 }
250
251 fCurrX = fCurrY = 0;
252 fNumRectsInLattice = 9;
253 fNumRectsToDraw = 9;
254 }
255
next(SkIRect * src,SkRect * dst,bool * isFixedColor,SkColor * fixedColor)256 bool SkLatticeIter::next(SkIRect* src, SkRect* dst, bool* isFixedColor, SkColor* fixedColor) {
257 int currRect = fCurrX + fCurrY * (fSrcX.count() - 1);
258 if (currRect == fNumRectsInLattice) {
259 return false;
260 }
261
262 const int x = fCurrX;
263 const int y = fCurrY;
264 SkASSERT(x >= 0 && x < fSrcX.count() - 1);
265 SkASSERT(y >= 0 && y < fSrcY.count() - 1);
266
267 if (fSrcX.count() - 1 == ++fCurrX) {
268 fCurrX = 0;
269 fCurrY += 1;
270 }
271
272 if (fRectTypes.count() > 0
273 && SkToBool(SkCanvas::Lattice::kTransparent == fRectTypes[currRect])) {
274 return this->next(src, dst, isFixedColor, fixedColor);
275 }
276
277 src->set(fSrcX[x], fSrcY[y], fSrcX[x + 1], fSrcY[y + 1]);
278 dst->set(fDstX[x], fDstY[y], fDstX[x + 1], fDstY[y + 1]);
279 if (isFixedColor && fixedColor) {
280 *isFixedColor = fRectTypes.count() > 0
281 && SkToBool(SkCanvas::Lattice::kFixedColor == fRectTypes[currRect]);
282 if (*isFixedColor) {
283 *fixedColor = fColors[currRect];
284 }
285 }
286 return true;
287 }
288
mapDstScaleTranslate(const SkMatrix & matrix)289 void SkLatticeIter::mapDstScaleTranslate(const SkMatrix& matrix) {
290 SkASSERT(matrix.isScaleTranslate());
291 SkScalar tx = matrix.getTranslateX();
292 SkScalar sx = matrix.getScaleX();
293 for (int i = 0; i < fDstX.count(); i++) {
294 fDstX[i] = fDstX[i] * sx + tx;
295 }
296
297 SkScalar ty = matrix.getTranslateY();
298 SkScalar sy = matrix.getScaleY();
299 for (int i = 0; i < fDstY.count(); i++) {
300 fDstY[i] = fDstY[i] * sy + ty;
301 }
302 }
303