1 /*
2  * Copyright 2015 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "SkLatticeIter.h"
9 #include "SkRect.h"
10 
11 /**
12  *  Divs must be in increasing order with no duplicates.
13  */
valid_divs(const int * divs,int count,int start,int end)14 static bool valid_divs(const int* divs, int count, int start, int end) {
15     int prev = start - 1;
16     for (int i = 0; i < count; i++) {
17         if (prev >= divs[i] || divs[i] >= end) {
18             return false;
19         }
20         prev = divs[i];
21     }
22 
23     return true;
24 }
25 
Valid(int width,int height,const SkCanvas::Lattice & lattice)26 bool SkLatticeIter::Valid(int width, int height, const SkCanvas::Lattice& lattice) {
27     SkIRect totalBounds = SkIRect::MakeWH(width, height);
28     SkASSERT(lattice.fBounds);
29     const SkIRect latticeBounds = *lattice.fBounds;
30     if (!totalBounds.contains(latticeBounds)) {
31         return false;
32     }
33 
34     bool zeroXDivs = lattice.fXCount <= 0 || (1 == lattice.fXCount &&
35                                               latticeBounds.fLeft == lattice.fXDivs[0]);
36     bool zeroYDivs = lattice.fYCount <= 0 || (1 == lattice.fYCount &&
37                                               latticeBounds.fTop == lattice.fYDivs[0]);
38     if (zeroXDivs && zeroYDivs) {
39         return false;
40     }
41 
42     return valid_divs(lattice.fXDivs, lattice.fXCount, latticeBounds.fLeft, latticeBounds.fRight)
43         && valid_divs(lattice.fYDivs, lattice.fYCount, latticeBounds.fTop, latticeBounds.fBottom);
44 }
45 
46 /**
47  *  Count the number of pixels that are in "scalable" patches.
48  */
count_scalable_pixels(const int32_t * divs,int numDivs,bool firstIsScalable,int start,int end)49 static int count_scalable_pixels(const int32_t* divs, int numDivs, bool firstIsScalable,
50                                  int start, int end) {
51     if (0 == numDivs) {
52         return firstIsScalable ? end - start : 0;
53     }
54 
55     int i;
56     int count;
57     if (firstIsScalable) {
58         count = divs[0] - start;
59         i = 1;
60     } else {
61         count = 0;
62         i = 0;
63     }
64 
65     for (; i < numDivs; i += 2) {
66         // Alternatively, we could use |top| and |bottom| as variable names, instead of
67         // |left| and |right|.
68         int left = divs[i];
69         int right = (i + 1 < numDivs) ? divs[i + 1] : end;
70         count += right - left;
71     }
72 
73     return count;
74 }
75 
76 /**
77  *  Set points for the src and dst rects on subsequent draw calls.
78  */
set_points(float * dst,int * src,const int * divs,int divCount,int srcFixed,int srcScalable,int srcStart,int srcEnd,float dstStart,float dstEnd,bool isScalable)79 static void set_points(float* dst, int* src, const int* divs, int divCount, int srcFixed,
80                        int srcScalable, int srcStart, int srcEnd, float dstStart, float dstEnd,
81                        bool isScalable) {
82     float dstLen = dstEnd - dstStart;
83     float scale;
84     if (srcFixed <= dstLen) {
85         // This is the "normal" case, where we scale the "scalable" patches and leave
86         // the other patches fixed.
87         scale = (dstLen - ((float) srcFixed)) / ((float) srcScalable);
88     } else {
89         // In this case, we eliminate the "scalable" patches and scale the "fixed" patches.
90         scale = dstLen / ((float) srcFixed);
91     }
92 
93     src[0] = srcStart;
94     dst[0] = dstStart;
95     for (int i = 0; i < divCount; i++) {
96         src[i + 1] = divs[i];
97         int srcDelta = src[i + 1] - src[i];
98         float dstDelta;
99         if (srcFixed <= dstLen) {
100             dstDelta = isScalable ? scale * srcDelta : srcDelta;
101         } else {
102             dstDelta = isScalable ? 0.0f : scale * srcDelta;
103         }
104         dst[i + 1] = dst[i] + dstDelta;
105 
106         // Alternate between "scalable" and "fixed" patches.
107         isScalable = !isScalable;
108     }
109 
110     src[divCount + 1] = srcEnd;
111     dst[divCount + 1] = dstEnd;
112 }
113 
SkLatticeIter(const SkCanvas::Lattice & lattice,const SkRect & dst)114 SkLatticeIter::SkLatticeIter(const SkCanvas::Lattice& lattice, const SkRect& dst) {
115     const int* xDivs = lattice.fXDivs;
116     const int origXCount = lattice.fXCount;
117     const int* yDivs = lattice.fYDivs;
118     const int origYCount = lattice.fYCount;
119     SkASSERT(lattice.fBounds);
120     const SkIRect src = *lattice.fBounds;
121 
122     // In the x-dimension, the first rectangle always starts at x = 0 and is "scalable".
123     // If xDiv[0] is 0, it indicates that the first rectangle is degenerate, so the
124     // first real rectangle "scalable" in the x-direction.
125     //
126     // The same interpretation applies to the y-dimension.
127     //
128     // As we move left to right across the image, alternating patches will be "fixed" or
129     // "scalable" in the x-direction.  Similarly, as move top to bottom, alternating
130     // patches will be "fixed" or "scalable" in the y-direction.
131     int xCount = origXCount;
132     int yCount = origYCount;
133     bool xIsScalable = (xCount > 0 && src.fLeft == xDivs[0]);
134     if (xIsScalable) {
135         // Once we've decided that the first patch is "scalable", we don't need the
136         // xDiv.  It is always implied that we start at the edge of the bounds.
137         xDivs++;
138         xCount--;
139     }
140     bool yIsScalable = (yCount > 0 && src.fTop == yDivs[0]);
141     if (yIsScalable) {
142         // Once we've decided that the first patch is "scalable", we don't need the
143         // yDiv.  It is always implied that we start at the edge of the bounds.
144         yDivs++;
145         yCount--;
146     }
147 
148     // Count "scalable" and "fixed" pixels in each dimension.
149     int xCountScalable = count_scalable_pixels(xDivs, xCount, xIsScalable, src.fLeft, src.fRight);
150     int xCountFixed = src.width() - xCountScalable;
151     int yCountScalable = count_scalable_pixels(yDivs, yCount, yIsScalable, src.fTop, src.fBottom);
152     int yCountFixed = src.height() - yCountScalable;
153 
154     fSrcX.reset(xCount + 2);
155     fDstX.reset(xCount + 2);
156     set_points(fDstX.begin(), fSrcX.begin(), xDivs, xCount, xCountFixed, xCountScalable,
157                src.fLeft, src.fRight, dst.fLeft, dst.fRight, xIsScalable);
158 
159     fSrcY.reset(yCount + 2);
160     fDstY.reset(yCount + 2);
161     set_points(fDstY.begin(), fSrcY.begin(), yDivs, yCount, yCountFixed, yCountScalable,
162                src.fTop, src.fBottom, dst.fTop, dst.fBottom, yIsScalable);
163 
164     fCurrX = fCurrY = 0;
165     fNumRectsInLattice = (xCount + 1) * (yCount + 1);
166     fNumRectsToDraw = fNumRectsInLattice;
167 
168     if (lattice.fRectTypes) {
169         fRectTypes.push_back_n(fNumRectsInLattice);
170         fColors.push_back_n(fNumRectsInLattice);
171 
172         const SkCanvas::Lattice::RectType* flags = lattice.fRectTypes;
173         const SkColor* colors = lattice.fColors;
174 
175         bool hasPadRow = (yCount != origYCount);
176         bool hasPadCol = (xCount != origXCount);
177         if (hasPadRow) {
178             // The first row of rects are all empty, skip the first row of flags.
179             flags += origXCount + 1;
180             colors += origXCount + 1;
181         }
182 
183         int i = 0;
184         for (int y = 0; y < yCount + 1; y++) {
185             for (int x = 0; x < origXCount + 1; x++) {
186                 if (0 == x && hasPadCol) {
187                     // The first column of rects are all empty.  Skip a rect.
188                     flags++;
189                     colors++;
190                     continue;
191                 }
192 
193                 fRectTypes[i] = *flags;
194                 fColors[i] = SkCanvas::Lattice::kFixedColor == *flags ? *colors : 0;
195                 flags++;
196                 colors++;
197                 i++;
198             }
199         }
200 
201         for (int j = 0; j < fRectTypes.count(); j++) {
202             if (SkCanvas::Lattice::kTransparent == fRectTypes[j]) {
203                 fNumRectsToDraw--;
204             }
205         }
206     }
207 }
208 
Valid(int width,int height,const SkIRect & center)209 bool SkLatticeIter::Valid(int width, int height, const SkIRect& center) {
210     return !center.isEmpty() && SkIRect::MakeWH(width, height).contains(center);
211 }
212 
SkLatticeIter(int w,int h,const SkIRect & c,const SkRect & dst)213 SkLatticeIter::SkLatticeIter(int w, int h, const SkIRect& c, const SkRect& dst) {
214     SkASSERT(SkIRect::MakeWH(w, h).contains(c));
215 
216     fSrcX.reset(4);
217     fSrcY.reset(4);
218     fDstX.reset(4);
219     fDstY.reset(4);
220 
221     fSrcX[0] = 0;
222     fSrcX[1] = SkIntToScalar(c.fLeft);
223     fSrcX[2] = SkIntToScalar(c.fRight);
224     fSrcX[3] = SkIntToScalar(w);
225 
226     fSrcY[0] = 0;
227     fSrcY[1] = SkIntToScalar(c.fTop);
228     fSrcY[2] = SkIntToScalar(c.fBottom);
229     fSrcY[3] = SkIntToScalar(h);
230 
231     fDstX[0] = dst.fLeft;
232     fDstX[1] = dst.fLeft + SkIntToScalar(c.fLeft);
233     fDstX[2] = dst.fRight - SkIntToScalar(w - c.fRight);
234     fDstX[3] = dst.fRight;
235 
236     fDstY[0] = dst.fTop;
237     fDstY[1] = dst.fTop + SkIntToScalar(c.fTop);
238     fDstY[2] = dst.fBottom - SkIntToScalar(h - c.fBottom);
239     fDstY[3] = dst.fBottom;
240 
241     if (fDstX[1] > fDstX[2]) {
242         fDstX[1] = fDstX[0] + (fDstX[3] - fDstX[0]) * c.fLeft / (w - c.width());
243         fDstX[2] = fDstX[1];
244     }
245 
246     if (fDstY[1] > fDstY[2]) {
247         fDstY[1] = fDstY[0] + (fDstY[3] - fDstY[0]) * c.fTop / (h - c.height());
248         fDstY[2] = fDstY[1];
249     }
250 
251     fCurrX = fCurrY = 0;
252     fNumRectsInLattice = 9;
253     fNumRectsToDraw = 9;
254 }
255 
next(SkIRect * src,SkRect * dst,bool * isFixedColor,SkColor * fixedColor)256 bool SkLatticeIter::next(SkIRect* src, SkRect* dst, bool* isFixedColor, SkColor* fixedColor) {
257     int currRect = fCurrX + fCurrY * (fSrcX.count() - 1);
258     if (currRect == fNumRectsInLattice) {
259         return false;
260     }
261 
262     const int x = fCurrX;
263     const int y = fCurrY;
264     SkASSERT(x >= 0 && x < fSrcX.count() - 1);
265     SkASSERT(y >= 0 && y < fSrcY.count() - 1);
266 
267     if (fSrcX.count() - 1 == ++fCurrX) {
268         fCurrX = 0;
269         fCurrY += 1;
270     }
271 
272     if (fRectTypes.count() > 0
273         && SkToBool(SkCanvas::Lattice::kTransparent == fRectTypes[currRect])) {
274         return this->next(src, dst, isFixedColor, fixedColor);
275     }
276 
277     src->set(fSrcX[x], fSrcY[y], fSrcX[x + 1], fSrcY[y + 1]);
278     dst->set(fDstX[x], fDstY[y], fDstX[x + 1], fDstY[y + 1]);
279     if (isFixedColor && fixedColor) {
280         *isFixedColor = fRectTypes.count() > 0
281                      && SkToBool(SkCanvas::Lattice::kFixedColor == fRectTypes[currRect]);
282         if (*isFixedColor) {
283             *fixedColor = fColors[currRect];
284         }
285     }
286     return true;
287 }
288 
mapDstScaleTranslate(const SkMatrix & matrix)289 void SkLatticeIter::mapDstScaleTranslate(const SkMatrix& matrix) {
290     SkASSERT(matrix.isScaleTranslate());
291     SkScalar tx = matrix.getTranslateX();
292     SkScalar sx = matrix.getScaleX();
293     for (int i = 0; i < fDstX.count(); i++) {
294         fDstX[i] = fDstX[i] * sx + tx;
295     }
296 
297     SkScalar ty = matrix.getTranslateY();
298     SkScalar sy = matrix.getScaleY();
299     for (int i = 0; i < fDstY.count(); i++) {
300         fDstY[i] = fDstY[i] * sy + ty;
301     }
302 }
303