1 /*
2  * Copyright 2016 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "SkNormalMapSource.h"
9 
10 #include "SkArenaAlloc.h"
11 #include "SkLightingShader.h"
12 #include "SkMatrix.h"
13 #include "SkNormalSource.h"
14 #include "SkReadBuffer.h"
15 #include "SkWriteBuffer.h"
16 
17 #if SK_SUPPORT_GPU
18 #include "GrCoordTransform.h"
19 #include "glsl/GrGLSLFragmentProcessor.h"
20 #include "glsl/GrGLSLFragmentShaderBuilder.h"
21 #include "SkGr.h"
22 
23 class NormalMapFP : public GrFragmentProcessor {
24 public:
Make(std::unique_ptr<GrFragmentProcessor> mapFP,const SkMatrix & invCTM)25     static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> mapFP,
26                                                      const SkMatrix& invCTM) {
27         return std::unique_ptr<GrFragmentProcessor>(new NormalMapFP(std::move(mapFP), invCTM));
28     }
29 
name() const30     const char* name() const override { return "NormalMapFP"; }
31 
invCTM() const32     const SkMatrix& invCTM() const { return fInvCTM; }
33 
clone() const34     std::unique_ptr<GrFragmentProcessor> clone() const override {
35         return Make(this->childProcessor(0).clone(), fInvCTM);
36     }
37 
38 private:
39     class GLSLNormalMapFP : public GrGLSLFragmentProcessor {
40     public:
GLSLNormalMapFP()41         GLSLNormalMapFP() : fColumnMajorInvCTM22{0.0f} {}
42 
emitCode(EmitArgs & args)43         void emitCode(EmitArgs& args) override {
44             GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
45             GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
46 
47             // add uniform
48             const char* xformUniName = nullptr;
49             fXformUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kFloat2x2_GrSLType,
50                                                    "Xform", &xformUniName);
51 
52             SkString dstNormalColorName("dstNormalColor");
53             this->emitChild(0, &dstNormalColorName, args);
54             fragBuilder->codeAppendf("float3 normal = normalize(%s.rgb - float3(0.5));",
55                                      dstNormalColorName.c_str());
56 
57             // If there's no x & y components, return (0, 0, +/- 1) instead to avoid division by 0
58             fragBuilder->codeAppend( "if (abs(normal.z) > 0.999) {");
59             fragBuilder->codeAppendf("    %s = normalize(half4(0.0, 0.0, half(normal.z), 0.0));",
60                     args.fOutputColor);
61             // Else, Normalizing the transformed X and Y, while keeping constant both Z and the
62             // vector's angle in the XY plane. This maintains the "slope" for the surface while
63             // appropriately rotating the normal regardless of any anisotropic scaling that occurs.
64             // Here, we call 'scaling factor' the number that must divide the transformed X and Y so
65             // that the normal's length remains equal to 1.
66             fragBuilder->codeAppend( "} else {");
67             fragBuilder->codeAppendf("    float2 transformed = %s * normal.xy;",
68                     xformUniName);
69             fragBuilder->codeAppend( "    float scalingFactorSquared = "
70                                                  "( (transformed.x * transformed.x) "
71                                                    "+ (transformed.y * transformed.y) )"
72                                                  "/(1.0 - (normal.z * normal.z));");
73             fragBuilder->codeAppendf("    %s = half4(half2(transformed * "
74                                                           "inversesqrt(scalingFactorSquared)),"
75                                                     "half(normal.z), 0.0);",
76                     args.fOutputColor);
77             fragBuilder->codeAppend( "}");
78         }
79 
GenKey(const GrProcessor &,const GrShaderCaps &,GrProcessorKeyBuilder * b)80         static void GenKey(const GrProcessor&, const GrShaderCaps&, GrProcessorKeyBuilder* b) {
81             b->add32(0x0);
82         }
83 
84     private:
onSetData(const GrGLSLProgramDataManager & pdman,const GrFragmentProcessor & proc)85         void onSetData(const GrGLSLProgramDataManager& pdman,
86                        const GrFragmentProcessor& proc) override {
87             const NormalMapFP& normalMapFP = proc.cast<NormalMapFP>();
88 
89             const SkMatrix& invCTM = normalMapFP.invCTM();
90             fColumnMajorInvCTM22[0] = invCTM.get(SkMatrix::kMScaleX);
91             fColumnMajorInvCTM22[1] = invCTM.get(SkMatrix::kMSkewY);
92             fColumnMajorInvCTM22[2] = invCTM.get(SkMatrix::kMSkewX);
93             fColumnMajorInvCTM22[3] = invCTM.get(SkMatrix::kMScaleY);
94             pdman.setMatrix2f(fXformUni, fColumnMajorInvCTM22);
95         }
96 
97     private:
98         // Upper-right 2x2 corner of the inverse of the CTM in column-major form
99         float fColumnMajorInvCTM22[4];
100         GrGLSLProgramDataManager::UniformHandle fXformUni;
101     };
102 
onGetGLSLProcessorKey(const GrShaderCaps & caps,GrProcessorKeyBuilder * b) const103     void onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override {
104         GLSLNormalMapFP::GenKey(*this, caps, b);
105     }
NormalMapFP(std::unique_ptr<GrFragmentProcessor> mapFP,const SkMatrix & invCTM)106     NormalMapFP(std::unique_ptr<GrFragmentProcessor> mapFP, const SkMatrix& invCTM)
107             : INHERITED(kMappedNormalsFP_ClassID, kNone_OptimizationFlags)
108             , fInvCTM(invCTM) {
109         this->registerChildProcessor(std::move(mapFP));
110     }
111 
onCreateGLSLInstance() const112     GrGLSLFragmentProcessor* onCreateGLSLInstance() const override { return new GLSLNormalMapFP; }
113 
onIsEqual(const GrFragmentProcessor & proc) const114     bool onIsEqual(const GrFragmentProcessor& proc) const override {
115         const NormalMapFP& normalMapFP = proc.cast<NormalMapFP>();
116         return fInvCTM == normalMapFP.fInvCTM;
117     }
118 
119     SkMatrix fInvCTM;
120 
121     typedef GrFragmentProcessor INHERITED;
122 };
123 
asFragmentProcessor(const GrFPArgs & args) const124 std::unique_ptr<GrFragmentProcessor> SkNormalMapSourceImpl::asFragmentProcessor(
125                                                                        const GrFPArgs& args) const {
126     std::unique_ptr<GrFragmentProcessor> mapFP = as_SB(fMapShader)->asFragmentProcessor(args);
127     if (!mapFP) {
128         return nullptr;
129     }
130 
131     return NormalMapFP::Make(std::move(mapFP), fInvCTM);
132 }
133 
134 #endif // SK_SUPPORT_GPU
135 
136 ////////////////////////////////////////////////////////////////////////////
137 
Provider(const SkNormalMapSourceImpl & source,SkShaderBase::Context * mapContext)138 SkNormalMapSourceImpl::Provider::Provider(const SkNormalMapSourceImpl& source,
139                                           SkShaderBase::Context* mapContext)
140     : fSource(source)
141     , fMapContext(mapContext) {}
142 
asProvider(const SkShaderBase::ContextRec & rec,SkArenaAlloc * alloc) const143 SkNormalSource::Provider* SkNormalMapSourceImpl::asProvider(const SkShaderBase::ContextRec &rec,
144                                                             SkArenaAlloc* alloc) const {
145     SkMatrix normTotalInv;
146     if (!this->computeNormTotalInverse(rec, &normTotalInv)) {
147         return nullptr;
148     }
149 
150     // Normals really aren't colors, so to ensure we can always make the context, we ignore
151     // the rec's colorspace
152     SkColorSpace* dstColorSpace = nullptr;
153 
154     // Overriding paint's alpha because we need the normal map's RGB channels to be unpremul'd
155     SkPaint overridePaint {*(rec.fPaint)};
156     overridePaint.setAlpha(0xFF);
157     SkShaderBase::ContextRec overrideRec(overridePaint, *(rec.fMatrix), rec.fLocalMatrix,
158                                          rec.fDstColorType, dstColorSpace);
159 
160     auto* context = as_SB(fMapShader)->makeContext(overrideRec, alloc);
161     if (!context) {
162         return nullptr;
163     }
164 
165     return alloc->make<Provider>(*this, context);
166 }
167 
computeNormTotalInverse(const SkShaderBase::ContextRec & rec,SkMatrix * normTotalInverse) const168 bool SkNormalMapSourceImpl::computeNormTotalInverse(const SkShaderBase::ContextRec& rec,
169                                                     SkMatrix* normTotalInverse) const {
170     SkMatrix total = SkMatrix::Concat(*rec.fMatrix, fMapShader->getLocalMatrix());
171     if (rec.fLocalMatrix) {
172         total.preConcat(*rec.fLocalMatrix);
173     }
174 
175     return total.invert(normTotalInverse);
176 }
177 
178 #define BUFFER_MAX 16
fillScanLine(int x,int y,SkPoint3 output[],int count) const179 void SkNormalMapSourceImpl::Provider::fillScanLine(int x, int y, SkPoint3 output[],
180                                                    int count) const {
181     SkPMColor tmpNormalColors[BUFFER_MAX];
182 
183     do {
184         int n = SkTMin(count, BUFFER_MAX);
185 
186         fMapContext->shadeSpan(x, y, tmpNormalColors, n);
187 
188         for (int i = 0; i < n; i++) {
189             SkPoint3 tempNorm;
190 
191             tempNorm.set(SkIntToScalar(SkGetPackedR32(tmpNormalColors[i])) - 127.0f,
192                          SkIntToScalar(SkGetPackedG32(tmpNormalColors[i])) - 127.0f,
193                          SkIntToScalar(SkGetPackedB32(tmpNormalColors[i])) - 127.0f);
194 
195             tempNorm.normalize();
196 
197 
198             if (!SkScalarNearlyEqual(SkScalarAbs(tempNorm.fZ), 1.0f)) {
199                 SkVector transformed = fSource.fInvCTM.mapVector(tempNorm.fX, tempNorm.fY);
200 
201                 // Normalizing the transformed X and Y, while keeping constant both Z and the
202                 // vector's angle in the XY plane. This maintains the "slope" for the surface while
203                 // appropriately rotating the normal for any anisotropic scaling that occurs.
204                 // Here, we call scaling factor the number that must divide the transformed X and Y
205                 // so that the normal's length remains equal to 1.
206                 SkScalar scalingFactorSquared =
207                         (SkScalarSquare(transformed.fX) + SkScalarSquare(transformed.fY))
208                         / (1.0f - SkScalarSquare(tempNorm.fZ));
209                 SkScalar invScalingFactor = SkScalarInvert(SkScalarSqrt(scalingFactorSquared));
210 
211                 output[i].fX = transformed.fX * invScalingFactor;
212                 output[i].fY = transformed.fY * invScalingFactor;
213                 output[i].fZ = tempNorm.fZ;
214             } else {
215                 output[i] = {0.0f, 0.0f, tempNorm.fZ};
216                 output[i].normalize();
217             }
218 
219             SkASSERT(SkScalarNearlyEqual(output[i].length(), 1.0f));
220         }
221 
222         output += n;
223         x += n;
224         count -= n;
225     } while (count > 0);
226 }
227 
228 ////////////////////////////////////////////////////////////////////////////////
229 
CreateProc(SkReadBuffer & buf)230 sk_sp<SkFlattenable> SkNormalMapSourceImpl::CreateProc(SkReadBuffer& buf) {
231 
232     sk_sp<SkShader> mapShader = buf.readFlattenable<SkShaderBase>();
233 
234     SkMatrix invCTM;
235     buf.readMatrix(&invCTM);
236 
237     return sk_make_sp<SkNormalMapSourceImpl>(std::move(mapShader), invCTM);
238 }
239 
flatten(SkWriteBuffer & buf) const240 void SkNormalMapSourceImpl::flatten(SkWriteBuffer& buf) const {
241     this->INHERITED::flatten(buf);
242 
243     buf.writeFlattenable(fMapShader.get());
244     buf.writeMatrix(fInvCTM);
245 }
246 
247 ////////////////////////////////////////////////////////////////////////////
248 
MakeFromNormalMap(sk_sp<SkShader> map,const SkMatrix & ctm)249 sk_sp<SkNormalSource> SkNormalSource::MakeFromNormalMap(sk_sp<SkShader> map, const SkMatrix& ctm) {
250     SkMatrix invCTM;
251 
252     if (!ctm.invert(&invCTM) || !map) {
253         return nullptr;
254     }
255 
256     return sk_make_sp<SkNormalMapSourceImpl>(std::move(map), invCTM);
257 }
258