1 /*
2 * Copyright 2014 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #ifndef GrFragmentProcessor_DEFINED
9 #define GrFragmentProcessor_DEFINED
10
11 #include "GrProcessor.h"
12 #include "GrProxyRef.h"
13
14 class GrCoordTransform;
15 class GrGLSLFragmentProcessor;
16 class GrPaint;
17 class GrPipeline;
18 class GrProcessorKeyBuilder;
19 class GrShaderCaps;
20 class GrSwizzle;
21
22 /** Provides custom fragment shader code. Fragment processors receive an input color (half4) and
23 produce an output color. They may reference textures and uniforms. They may use
24 GrCoordTransforms to receive a transformation of the local coordinates that map from local space
25 to the fragment being processed.
26 */
27 class GrFragmentProcessor : public GrProcessor {
28 public:
29 class TextureSampler;
30
31 /**
32 * In many instances (e.g. SkShader::asFragmentProcessor() implementations) it is desirable to
33 * only consider the input color's alpha. However, there is a competing desire to have reusable
34 * GrFragmentProcessor subclasses that can be used in other scenarios where the entire input
35 * color is considered. This function exists to filter the input color and pass it to a FP. It
36 * does so by returning a parent FP that multiplies the passed in FPs output by the parent's
37 * input alpha. The passed in FP will not receive an input color.
38 */
39 static std::unique_ptr<GrFragmentProcessor> MulChildByInputAlpha(
40 std::unique_ptr<GrFragmentProcessor> child);
41
42 /**
43 * Like MulChildByInputAlpha(), but reverses the sense of src and dst. In this case, return
44 * the input modulated by the child's alpha. The passed in FP will not receive an input color.
45 *
46 * output = input * child.a
47 */
48 static std::unique_ptr<GrFragmentProcessor> MulInputByChildAlpha(
49 std::unique_ptr<GrFragmentProcessor> child);
50
51 /**
52 * This assumes that the input color to the returned processor will be unpremul and that the
53 * passed processor (which becomes the returned processor's child) produces a premul output.
54 * The result of the returned processor is a premul of its input color modulated by the child
55 * processor's premul output.
56 */
57 static std::unique_ptr<GrFragmentProcessor> MakeInputPremulAndMulByOutput(
58 std::unique_ptr<GrFragmentProcessor>);
59
60 /**
61 * Returns a parent fragment processor that adopts the passed fragment processor as a child.
62 * The parent will ignore its input color and instead feed the passed in color as input to the
63 * child.
64 */
65 static std::unique_ptr<GrFragmentProcessor> OverrideInput(std::unique_ptr<GrFragmentProcessor>,
66 const SkPMColor4f&,
67 bool useUniform = true);
68
69 /**
70 * Returns a fragment processor that premuls the input before calling the passed in fragment
71 * processor.
72 */
73 static std::unique_ptr<GrFragmentProcessor> PremulInput(std::unique_ptr<GrFragmentProcessor>);
74
75 /**
76 * Returns a fragment processor that calls the passed in fragment processor, and then swizzles
77 * the output.
78 */
79 static std::unique_ptr<GrFragmentProcessor> SwizzleOutput(std::unique_ptr<GrFragmentProcessor>,
80 const GrSwizzle&);
81
82 /**
83 * Returns a fragment processor that runs the passed in array of fragment processors in a
84 * series. The original input is passed to the first, the first's output is passed to the
85 * second, etc. The output of the returned processor is the output of the last processor of the
86 * series.
87 *
88 * The array elements with be moved.
89 */
90 static std::unique_ptr<GrFragmentProcessor> RunInSeries(std::unique_ptr<GrFragmentProcessor>*,
91 int cnt);
92
93 /**
94 * Makes a copy of this fragment processor that draws equivalently to the original.
95 * If the processor has child processors they are cloned as well.
96 */
97 virtual std::unique_ptr<GrFragmentProcessor> clone() const = 0;
98
99 GrGLSLFragmentProcessor* createGLSLInstance() const;
100
getGLSLProcessorKey(const GrShaderCaps & caps,GrProcessorKeyBuilder * b)101 void getGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const {
102 this->onGetGLSLProcessorKey(caps, b);
103 for (int i = 0; i < fChildProcessors.count(); ++i) {
104 fChildProcessors[i]->getGLSLProcessorKey(caps, b);
105 }
106 }
107
numTextureSamplers()108 int numTextureSamplers() const { return fTextureSamplerCnt; }
109 const TextureSampler& textureSampler(int i) const;
110
numCoordTransforms()111 int numCoordTransforms() const { return fCoordTransforms.count(); }
112
113 /** Returns the coordinate transformation at index. index must be valid according to
114 numTransforms(). */
coordTransform(int index)115 const GrCoordTransform& coordTransform(int index) const { return *fCoordTransforms[index]; }
116
coordTransforms()117 const SkTArray<const GrCoordTransform*, true>& coordTransforms() const {
118 return fCoordTransforms;
119 }
120
numChildProcessors()121 int numChildProcessors() const { return fChildProcessors.count(); }
122
childProcessor(int index)123 const GrFragmentProcessor& childProcessor(int index) const { return *fChildProcessors[index]; }
124
125 bool instantiate(GrResourceProvider*) const;
126
127 void markPendingExecution() const;
128
129 /** Do any of the coordtransforms for this processor require local coords? */
usesLocalCoords()130 bool usesLocalCoords() const { return SkToBool(fFlags & kUsesLocalCoords_Flag); }
131
132 /**
133 * A GrDrawOp may premultiply its antialiasing coverage into its GrGeometryProcessor's color
134 * output under the following scenario:
135 * * all the color fragment processors report true to this query,
136 * * all the coverage fragment processors report true to this query,
137 * * the blend mode arithmetic allows for it it.
138 * To be compatible a fragment processor's output must be a modulation of its input color or
139 * alpha with a computed premultiplied color or alpha that is in 0..1 range. The computed color
140 * or alpha that is modulated against the input cannot depend on the input's alpha. The computed
141 * value cannot depend on the input's color channels unless it unpremultiplies the input color
142 * channels by the input alpha.
143 */
compatibleWithCoverageAsAlpha()144 bool compatibleWithCoverageAsAlpha() const {
145 return SkToBool(fFlags & kCompatibleWithCoverageAsAlpha_OptimizationFlag);
146 }
147
148 /**
149 * If this is true then all opaque input colors to the processor produce opaque output colors.
150 */
preservesOpaqueInput()151 bool preservesOpaqueInput() const {
152 return SkToBool(fFlags & kPreservesOpaqueInput_OptimizationFlag);
153 }
154
155 /**
156 * Tests whether given a constant input color the processor produces a constant output color
157 * (for all fragments). If true outputColor will contain the constant color produces for
158 * inputColor.
159 */
hasConstantOutputForConstantInput(SkPMColor4f inputColor,SkPMColor4f * outputColor)160 bool hasConstantOutputForConstantInput(SkPMColor4f inputColor, SkPMColor4f* outputColor) const {
161 if (fFlags & kConstantOutputForConstantInput_OptimizationFlag) {
162 *outputColor = this->constantOutputForConstantInput(inputColor);
163 return true;
164 }
165 return false;
166 }
hasConstantOutputForConstantInput()167 bool hasConstantOutputForConstantInput() const {
168 return SkToBool(fFlags & kConstantOutputForConstantInput_OptimizationFlag);
169 }
170
171 /** Returns true if this and other processor conservatively draw identically. It can only return
172 true when the two processor are of the same subclass (i.e. they return the same object from
173 from getFactory()).
174
175 A return value of true from isEqual() should not be used to test whether the processor would
176 generate the same shader code. To test for identical code generation use getGLSLProcessorKey
177 */
178 bool isEqual(const GrFragmentProcessor& that) const;
179
180 /**
181 * Pre-order traversal of a FP hierarchy, or of the forest of FPs in a GrPipeline. In the latter
182 * case the tree rooted at each FP in the GrPipeline is visited successively.
183 */
184 class Iter : public SkNoncopyable {
185 public:
Iter(const GrFragmentProcessor * fp)186 explicit Iter(const GrFragmentProcessor* fp) { fFPStack.push_back(fp); }
187 explicit Iter(const GrPipeline& pipeline);
188 explicit Iter(const GrPaint&);
189 const GrFragmentProcessor* next();
190
191 private:
192 SkSTArray<4, const GrFragmentProcessor*, true> fFPStack;
193 };
194
195 /**
196 * Iterates over all the Ts owned by a GrFragmentProcessor and its children or over all the Ts
197 * owned by the forest of GrFragmentProcessors in a GrPipeline. FPs are visited in the same
198 * order as Iter and each of an FP's Ts are visited in order.
199 */
200 template <typename T, int (GrFragmentProcessor::*COUNT)() const,
201 const T& (GrFragmentProcessor::*GET)(int)const>
202 class FPItemIter : public SkNoncopyable {
203 public:
FPItemIter(const GrFragmentProcessor * fp)204 explicit FPItemIter(const GrFragmentProcessor* fp)
205 : fCurrFP(nullptr)
206 , fCTIdx(0)
207 , fFPIter(fp) {
208 fCurrFP = fFPIter.next();
209 }
FPItemIter(const GrPipeline & pipeline)210 explicit FPItemIter(const GrPipeline& pipeline)
211 : fCurrFP(nullptr)
212 , fCTIdx(0)
213 , fFPIter(pipeline) {
214 fCurrFP = fFPIter.next();
215 }
216
next()217 const T* next() {
218 if (!fCurrFP) {
219 return nullptr;
220 }
221 while (fCTIdx == (fCurrFP->*COUNT)()) {
222 fCTIdx = 0;
223 fCurrFP = fFPIter.next();
224 if (!fCurrFP) {
225 return nullptr;
226 }
227 }
228 return &(fCurrFP->*GET)(fCTIdx++);
229 }
230
231 private:
232 const GrFragmentProcessor* fCurrFP;
233 int fCTIdx;
234 GrFragmentProcessor::Iter fFPIter;
235 };
236
237 using CoordTransformIter = FPItemIter<GrCoordTransform,
238 &GrFragmentProcessor::numCoordTransforms,
239 &GrFragmentProcessor::coordTransform>;
240
241 using TextureAccessIter = FPItemIter<TextureSampler,
242 &GrFragmentProcessor::numTextureSamplers,
243 &GrFragmentProcessor::textureSampler>;
244
245 void visitProxies(const std::function<void(GrSurfaceProxy*)>& func);
246
247 protected:
248 enum OptimizationFlags : uint32_t {
249 kNone_OptimizationFlags,
250 kCompatibleWithCoverageAsAlpha_OptimizationFlag = 0x1,
251 kPreservesOpaqueInput_OptimizationFlag = 0x2,
252 kConstantOutputForConstantInput_OptimizationFlag = 0x4,
253 kAll_OptimizationFlags = kCompatibleWithCoverageAsAlpha_OptimizationFlag |
254 kPreservesOpaqueInput_OptimizationFlag |
255 kConstantOutputForConstantInput_OptimizationFlag
256 };
GR_DECL_BITFIELD_OPS_FRIENDS(OptimizationFlags)257 GR_DECL_BITFIELD_OPS_FRIENDS(OptimizationFlags)
258
259 /**
260 * Can be used as a helper to decide which fragment processor OptimizationFlags should be set.
261 * This assumes that the subclass output color will be a modulation of the input color with a
262 * value read from a texture of the passed config and that the texture contains premultiplied
263 * color or alpha values that are in range.
264 *
265 * Since there are multiple ways in which a sampler may have its coordinates clamped or wrapped,
266 * callers must determine on their own if the sampling uses a decal strategy in any way, in
267 * which case the texture may become transparent regardless of the pixel config.
268 */
269 static OptimizationFlags ModulateForSamplerOptFlags(GrPixelConfig config, bool samplingDecal) {
270 if (samplingDecal) {
271 return kCompatibleWithCoverageAsAlpha_OptimizationFlag;
272 } else {
273 return ModulateForClampedSamplerOptFlags(config);
274 }
275 }
276
277 // As above, but callers should somehow ensure or assert their sampler still uses clamping
ModulateForClampedSamplerOptFlags(GrPixelConfig config)278 static OptimizationFlags ModulateForClampedSamplerOptFlags(GrPixelConfig config) {
279 if (GrPixelConfigIsOpaque(config)) {
280 return kCompatibleWithCoverageAsAlpha_OptimizationFlag |
281 kPreservesOpaqueInput_OptimizationFlag;
282 } else {
283 return kCompatibleWithCoverageAsAlpha_OptimizationFlag;
284 }
285 }
286
GrFragmentProcessor(ClassID classID,OptimizationFlags optimizationFlags)287 GrFragmentProcessor(ClassID classID, OptimizationFlags optimizationFlags)
288 : INHERITED(classID)
289 , fFlags(optimizationFlags) {
290 SkASSERT((fFlags & ~kAll_OptimizationFlags) == 0);
291 }
292
optimizationFlags()293 OptimizationFlags optimizationFlags() const {
294 return static_cast<OptimizationFlags>(kAll_OptimizationFlags & fFlags);
295 }
296
297 /** Useful when you can't call fp->optimizationFlags() on a base class object from a subclass.*/
ProcessorOptimizationFlags(const GrFragmentProcessor * fp)298 static OptimizationFlags ProcessorOptimizationFlags(const GrFragmentProcessor* fp) {
299 return fp->optimizationFlags();
300 }
301
302 /**
303 * This allows one subclass to access another subclass's implementation of
304 * constantOutputForConstantInput. It must only be called when
305 * hasConstantOutputForConstantInput() is known to be true.
306 */
ConstantOutputForConstantInput(const GrFragmentProcessor & fp,const SkPMColor4f & input)307 static SkPMColor4f ConstantOutputForConstantInput(const GrFragmentProcessor& fp,
308 const SkPMColor4f& input) {
309 SkASSERT(fp.hasConstantOutputForConstantInput());
310 return fp.constantOutputForConstantInput(input);
311 }
312
313 /**
314 * Fragment Processor subclasses call this from their constructor to register coordinate
315 * transformations. Coord transforms provide a mechanism for a processor to receive coordinates
316 * in their FS code. The matrix expresses a transformation from local space. For a given
317 * fragment the matrix will be applied to the local coordinate that maps to the fragment.
318 *
319 * When the transformation has perspective, the transformed coordinates will have
320 * 3 components. Otherwise they'll have 2.
321 *
322 * This must only be called from the constructor because GrProcessors are immutable. The
323 * processor subclass manages the lifetime of the transformations (this function only stores a
324 * pointer). The GrCoordTransform is typically a member field of the GrProcessor subclass.
325 *
326 * A processor subclass that has multiple methods of construction should always add its coord
327 * transforms in a consistent order. The non-virtual implementation of isEqual() automatically
328 * compares transforms and will assume they line up across the two processor instances.
329 */
330 void addCoordTransform(const GrCoordTransform*);
331
332 /**
333 * FragmentProcessor subclasses call this from their constructor to register any child
334 * FragmentProcessors they have. This must be called AFTER all texture accesses and coord
335 * transforms have been added.
336 * This is for processors whose shader code will be composed of nested processors whose output
337 * colors will be combined somehow to produce its output color. Registering these child
338 * processors will allow the ProgramBuilder to automatically handle their transformed coords and
339 * texture accesses and mangle their uniform and output color names.
340 */
341 int registerChildProcessor(std::unique_ptr<GrFragmentProcessor> child);
342
setTextureSamplerCnt(int cnt)343 void setTextureSamplerCnt(int cnt) {
344 SkASSERT(cnt >= 0);
345 fTextureSamplerCnt = cnt;
346 }
347
348 /**
349 * Helper for implementing onTextureSampler(). E.g.:
350 * return IthTexureSampler(i, fMyFirstSampler, fMySecondSampler, fMyThirdSampler);
351 */
352 template <typename... Args>
IthTextureSampler(int i,const TextureSampler & samp0,const Args &...samps)353 static const TextureSampler& IthTextureSampler(int i, const TextureSampler& samp0,
354 const Args&... samps) {
355 return (0 == i) ? samp0 : IthTextureSampler(i - 1, samps...);
356 }
357 inline static const TextureSampler& IthTextureSampler(int i);
358
359 private:
constantOutputForConstantInput(const SkPMColor4f &)360 virtual SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& /* inputColor */) const {
361 SK_ABORT("Subclass must override this if advertising this optimization.");
362 return SK_PMColor4fTRANSPARENT;
363 }
364
365 /** Returns a new instance of the appropriate *GL* implementation class
366 for the given GrFragmentProcessor; caller is responsible for deleting
367 the object. */
368 virtual GrGLSLFragmentProcessor* onCreateGLSLInstance() const = 0;
369
370 /** Implemented using GLFragmentProcessor::GenKey as described in this class's comment. */
371 virtual void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const = 0;
372
373 /**
374 * Subclass implements this to support isEqual(). It will only be called if it is known that
375 * the two processors are of the same subclass (i.e. they return the same object from
376 * getFactory()). The processor subclass should not compare its coord transforms as that will
377 * be performed automatically in the non-virtual isEqual().
378 */
379 virtual bool onIsEqual(const GrFragmentProcessor&) const = 0;
380
onTextureSampler(int)381 virtual const TextureSampler& onTextureSampler(int) const { return IthTextureSampler(0); }
382
383 bool hasSameTransforms(const GrFragmentProcessor&) const;
384
385 enum PrivateFlags {
386 kFirstPrivateFlag = kAll_OptimizationFlags + 1,
387 kUsesLocalCoords_Flag = kFirstPrivateFlag,
388 };
389
390 mutable uint32_t fFlags = 0;
391
392 int fTextureSamplerCnt = 0;
393
394 SkSTArray<4, const GrCoordTransform*, true> fCoordTransforms;
395
396 SkSTArray<1, std::unique_ptr<GrFragmentProcessor>, true> fChildProcessors;
397
398 typedef GrProcessor INHERITED;
399 };
400
401 /**
402 * Used to represent a texture that is required by a GrFragmentProcessor. It holds a GrTextureProxy
403 * along with an associated GrSamplerState. TextureSamplers don't perform any coord manipulation to
404 * account for texture origin.
405 */
406 class GrFragmentProcessor::TextureSampler {
407 public:
408 TextureSampler() = default;
409
410 /**
411 * This copy constructor is used by GrFragmentProcessor::clone() implementations. The copy
412 * always takes a new ref on the texture proxy as the new fragment processor will not yet be
413 * in pending execution state.
414 */
TextureSampler(const TextureSampler & that)415 explicit TextureSampler(const TextureSampler& that)
416 : fProxyRef(sk_ref_sp(that.fProxyRef.get()), that.fProxyRef.ioType())
417 , fSamplerState(that.fSamplerState) {}
418
419 TextureSampler(sk_sp<GrTextureProxy>, const GrSamplerState&);
420
421 explicit TextureSampler(sk_sp<GrTextureProxy>,
422 GrSamplerState::Filter = GrSamplerState::Filter::kNearest,
423 GrSamplerState::WrapMode wrapXAndY = GrSamplerState::WrapMode::kClamp);
424
425 TextureSampler& operator=(const TextureSampler&) = delete;
426
427 void reset(sk_sp<GrTextureProxy>, const GrSamplerState&);
428 void reset(sk_sp<GrTextureProxy>,
429 GrSamplerState::Filter = GrSamplerState::Filter::kNearest,
430 GrSamplerState::WrapMode wrapXAndY = GrSamplerState::WrapMode::kClamp);
431
432 bool operator==(const TextureSampler& that) const {
433 return this->proxy()->underlyingUniqueID() == that.proxy()->underlyingUniqueID() &&
434 fSamplerState == that.fSamplerState;
435 }
436
437 bool operator!=(const TextureSampler& other) const { return !(*this == other); }
438
439 // 'instantiate' should only ever be called at flush time.
instantiate(GrResourceProvider * resourceProvider)440 bool instantiate(GrResourceProvider* resourceProvider) const {
441 return SkToBool(fProxyRef.get()->instantiate(resourceProvider));
442 }
443
444 // 'peekTexture' should only ever be called after a successful 'instantiate' call
peekTexture()445 GrTexture* peekTexture() const {
446 SkASSERT(fProxyRef.get()->peekTexture());
447 return fProxyRef.get()->peekTexture();
448 }
449
proxy()450 GrTextureProxy* proxy() const { return fProxyRef.get(); }
samplerState()451 const GrSamplerState& samplerState() const { return fSamplerState; }
452
isInitialized()453 bool isInitialized() const { return SkToBool(fProxyRef.get()); }
454 /**
455 * For internal use by GrFragmentProcessor.
456 */
proxyRef()457 const GrTextureProxyRef* proxyRef() const { return &fProxyRef; }
458
459 private:
460 GrTextureProxyRef fProxyRef;
461 GrSamplerState fSamplerState;
462 };
463
464 //////////////////////////////////////////////////////////////////////////////
465
IthTextureSampler(int i)466 const GrFragmentProcessor::TextureSampler& GrFragmentProcessor::IthTextureSampler(int i) {
467 SK_ABORT("Illegal texture sampler index");
468 static const TextureSampler kBogus;
469 return kBogus;
470 }
471
472 GR_MAKE_BITFIELD_OPS(GrFragmentProcessor::OptimizationFlags)
473
474 #endif
475