1 /*
2 * Copyright 2010 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "GrRenderTargetOpList.h"
9 #include "GrAuditTrail.h"
10 #include "GrCaps.h"
11 #include "GrGpu.h"
12 #include "GrGpuCommandBuffer.h"
13 #include "GrMemoryPool.h"
14 #include "GrRecordingContext.h"
15 #include "GrRecordingContextPriv.h"
16 #include "GrRect.h"
17 #include "GrRenderTargetContext.h"
18 #include "GrResourceAllocator.h"
19 #include "SkExchange.h"
20 #include "SkRectPriv.h"
21 #include "SkTraceEvent.h"
22 #include "ops/GrClearOp.h"
23 #include "ops/GrCopySurfaceOp.h"
24
25 ////////////////////////////////////////////////////////////////////////////////
26
27 // Experimentally we have found that most combining occurs within the first 10 comparisons.
28 static const int kMaxOpMergeDistance = 10;
29 static const int kMaxOpChainDistance = 10;
30
31 ////////////////////////////////////////////////////////////////////////////////
32
33 using DstProxy = GrXferProcessor::DstProxy;
34
35 ////////////////////////////////////////////////////////////////////////////////
36
can_reorder(const SkRect & a,const SkRect & b)37 static inline bool can_reorder(const SkRect& a, const SkRect& b) { return !GrRectsOverlap(a, b); }
38
39 ////////////////////////////////////////////////////////////////////////////////
40
List(std::unique_ptr<GrOp> op)41 inline GrRenderTargetOpList::OpChain::List::List(std::unique_ptr<GrOp> op)
42 : fHead(std::move(op)), fTail(fHead.get()) {
43 this->validate();
44 }
45
List(List && that)46 inline GrRenderTargetOpList::OpChain::List::List(List&& that) { *this = std::move(that); }
47
operator =(List && that)48 inline GrRenderTargetOpList::OpChain::List& GrRenderTargetOpList::OpChain::List::operator=(
49 List&& that) {
50 fHead = std::move(that.fHead);
51 fTail = that.fTail;
52 that.fTail = nullptr;
53 this->validate();
54 return *this;
55 }
56
popHead()57 inline std::unique_ptr<GrOp> GrRenderTargetOpList::OpChain::List::popHead() {
58 SkASSERT(fHead);
59 auto temp = fHead->cutChain();
60 std::swap(temp, fHead);
61 if (!fHead) {
62 SkASSERT(fTail == temp.get());
63 fTail = nullptr;
64 }
65 return temp;
66 }
67
removeOp(GrOp * op)68 inline std::unique_ptr<GrOp> GrRenderTargetOpList::OpChain::List::removeOp(GrOp* op) {
69 #ifdef SK_DEBUG
70 auto head = op;
71 while (head->prevInChain()) { head = head->prevInChain(); }
72 SkASSERT(head == fHead.get());
73 #endif
74 auto prev = op->prevInChain();
75 if (!prev) {
76 SkASSERT(op == fHead.get());
77 return this->popHead();
78 }
79 auto temp = prev->cutChain();
80 if (auto next = temp->cutChain()) {
81 prev->chainConcat(std::move(next));
82 } else {
83 SkASSERT(fTail == op);
84 fTail = prev;
85 }
86 this->validate();
87 return temp;
88 }
89
pushHead(std::unique_ptr<GrOp> op)90 inline void GrRenderTargetOpList::OpChain::List::pushHead(std::unique_ptr<GrOp> op) {
91 SkASSERT(op);
92 SkASSERT(op->isChainHead());
93 SkASSERT(op->isChainTail());
94 if (fHead) {
95 op->chainConcat(std::move(fHead));
96 fHead = std::move(op);
97 } else {
98 fHead = std::move(op);
99 fTail = fHead.get();
100 }
101 }
102
pushTail(std::unique_ptr<GrOp> op)103 inline void GrRenderTargetOpList::OpChain::List::pushTail(std::unique_ptr<GrOp> op) {
104 SkASSERT(op->isChainTail());
105 fTail->chainConcat(std::move(op));
106 fTail = fTail->nextInChain();
107 }
108
validate() const109 inline void GrRenderTargetOpList::OpChain::List::validate() const {
110 #ifdef SK_DEBUG
111 if (fHead) {
112 SkASSERT(fTail);
113 fHead->validateChain(fTail);
114 }
115 #endif
116 }
117
118 ////////////////////////////////////////////////////////////////////////////////
119
OpChain(std::unique_ptr<GrOp> op,GrProcessorSet::Analysis processorAnalysis,GrAppliedClip * appliedClip,const DstProxy * dstProxy)120 GrRenderTargetOpList::OpChain::OpChain(std::unique_ptr<GrOp> op,
121 GrProcessorSet::Analysis processorAnalysis,
122 GrAppliedClip* appliedClip, const DstProxy* dstProxy)
123 : fList{std::move(op)}
124 , fProcessorAnalysis(processorAnalysis)
125 , fAppliedClip(appliedClip) {
126 if (fProcessorAnalysis.requiresDstTexture()) {
127 SkASSERT(dstProxy && dstProxy->proxy());
128 fDstProxy = *dstProxy;
129 }
130 fBounds = fList.head()->bounds();
131 }
132
visitProxies(const GrOp::VisitProxyFunc & func,GrOp::VisitorType visitor) const133 void GrRenderTargetOpList::OpChain::visitProxies(const GrOp::VisitProxyFunc& func,
134 GrOp::VisitorType visitor) const {
135 if (fList.empty()) {
136 return;
137 }
138 for (const auto& op : GrOp::ChainRange<>(fList.head())) {
139 op.visitProxies(func, visitor);
140 }
141 if (fDstProxy.proxy()) {
142 func(fDstProxy.proxy());
143 }
144 if (fAppliedClip) {
145 fAppliedClip->visitProxies(func);
146 }
147 }
148
deleteOps(GrOpMemoryPool * pool)149 void GrRenderTargetOpList::OpChain::deleteOps(GrOpMemoryPool* pool) {
150 while (!fList.empty()) {
151 pool->release(fList.popHead());
152 }
153 }
154
155 // Concatenates two op chains and attempts to merge ops across the chains. Assumes that we know that
156 // the two chains are chainable. Returns the new chain.
DoConcat(List chainA,List chainB,const GrCaps & caps,GrOpMemoryPool * pool,GrAuditTrail * auditTrail)157 GrRenderTargetOpList::OpChain::List GrRenderTargetOpList::OpChain::DoConcat(
158 List chainA, List chainB, const GrCaps& caps, GrOpMemoryPool* pool,
159 GrAuditTrail* auditTrail) {
160 // We process ops in chain b from head to tail. We attempt to merge with nodes in a, starting
161 // at chain a's tail and working toward the head. We produce one of the following outcomes:
162 // 1) b's head is merged into an op in a.
163 // 2) An op from chain a is merged into b's head. (In this case b's head gets processed again.)
164 // 3) b's head is popped from chain a and added at the tail of a.
165 // After result 3 we don't want to attempt to merge the next head of b with the new tail of a,
166 // as we assume merges were already attempted when chain b was created. So we keep track of the
167 // original tail of a and start our iteration of a there. We also track the bounds of the nodes
168 // appended to chain a that will be skipped for bounds testing. If the original tail of a is
169 // merged into an op in b (case 2) then we advance the "original tail" towards the head of a.
170 GrOp* origATail = chainA.tail();
171 SkRect skipBounds = SkRectPriv::MakeLargestInverted();
172 do {
173 int numMergeChecks = 0;
174 bool merged = false;
175 bool noSkip = (origATail == chainA.tail());
176 SkASSERT(noSkip == (skipBounds == SkRectPriv::MakeLargestInverted()));
177 bool canBackwardMerge = noSkip || can_reorder(chainB.head()->bounds(), skipBounds);
178 SkRect forwardMergeBounds = skipBounds;
179 GrOp* a = origATail;
180 while (a) {
181 bool canForwardMerge =
182 (a == chainA.tail()) || can_reorder(a->bounds(), forwardMergeBounds);
183 if (canForwardMerge || canBackwardMerge) {
184 auto result = a->combineIfPossible(chainB.head(), caps);
185 SkASSERT(result != GrOp::CombineResult::kCannotCombine);
186 merged = (result == GrOp::CombineResult::kMerged);
187 GrOP_INFO("\t\t: (%s opID: %u) -> Combining with (%s, opID: %u)\n",
188 chainB.head()->name(), chainB.head()->uniqueID(), a->name(),
189 a->uniqueID());
190 }
191 if (merged) {
192 GR_AUDIT_TRAIL_OPS_RESULT_COMBINED(auditTrail, a, chainB.head());
193 if (canBackwardMerge) {
194 pool->release(chainB.popHead());
195 } else {
196 // We merged the contents of b's head into a. We will replace b's head with a in
197 // chain b.
198 SkASSERT(canForwardMerge);
199 if (a == origATail) {
200 origATail = a->prevInChain();
201 }
202 std::unique_ptr<GrOp> detachedA = chainA.removeOp(a);
203 pool->release(chainB.popHead());
204 chainB.pushHead(std::move(detachedA));
205 if (chainA.empty()) {
206 // We merged all the nodes in chain a to chain b.
207 return chainB;
208 }
209 }
210 break;
211 } else {
212 if (++numMergeChecks == kMaxOpMergeDistance) {
213 break;
214 }
215 forwardMergeBounds.joinNonEmptyArg(a->bounds());
216 canBackwardMerge =
217 canBackwardMerge && can_reorder(chainB.head()->bounds(), a->bounds());
218 a = a->prevInChain();
219 }
220 }
221 // If we weren't able to merge b's head then pop b's head from chain b and make it the new
222 // tail of a.
223 if (!merged) {
224 chainA.pushTail(chainB.popHead());
225 skipBounds.joinNonEmptyArg(chainA.tail()->bounds());
226 }
227 } while (!chainB.empty());
228 return chainA;
229 }
230
231 // Attempts to concatenate the given chain onto our own and merge ops across the chains. Returns
232 // whether the operation succeeded. On success, the provided list will be returned empty.
tryConcat(List * list,GrProcessorSet::Analysis processorAnalysis,const DstProxy & dstProxy,const GrAppliedClip * appliedClip,const SkRect & bounds,const GrCaps & caps,GrOpMemoryPool * pool,GrAuditTrail * auditTrail)233 bool GrRenderTargetOpList::OpChain::tryConcat(
234 List* list, GrProcessorSet::Analysis processorAnalysis, const DstProxy& dstProxy,
235 const GrAppliedClip* appliedClip, const SkRect& bounds, const GrCaps& caps,
236 GrOpMemoryPool* pool, GrAuditTrail* auditTrail) {
237 SkASSERT(!fList.empty());
238 SkASSERT(!list->empty());
239 SkASSERT(fProcessorAnalysis.requiresDstTexture() == SkToBool(fDstProxy.proxy()));
240 SkASSERT(processorAnalysis.requiresDstTexture() == SkToBool(dstProxy.proxy()));
241 // All returns use explicit tuple constructor rather than {a, b} to work around old GCC bug.
242 if (fList.head()->classID() != list->head()->classID() ||
243 SkToBool(fAppliedClip) != SkToBool(appliedClip) ||
244 (fAppliedClip && *fAppliedClip != *appliedClip) ||
245 (fProcessorAnalysis.requiresNonOverlappingDraws() !=
246 processorAnalysis.requiresNonOverlappingDraws()) ||
247 (fProcessorAnalysis.requiresNonOverlappingDraws() &&
248 // Non-overlaping draws are only required when Ganesh will either insert a barrier,
249 // or read back a new dst texture between draws. In either case, we can neither
250 // chain nor combine overlapping Ops.
251 GrRectsTouchOrOverlap(fBounds, bounds)) ||
252 (fProcessorAnalysis.requiresDstTexture() != processorAnalysis.requiresDstTexture()) ||
253 (fProcessorAnalysis.requiresDstTexture() && fDstProxy != dstProxy)) {
254 return false;
255 }
256
257 SkDEBUGCODE(bool first = true;)
258 do {
259 switch (fList.tail()->combineIfPossible(list->head(), caps)) {
260 case GrOp::CombineResult::kCannotCombine:
261 // If an op supports chaining then it is required that chaining is transitive and
262 // that if any two ops in two different chains can merge then the two chains
263 // may also be chained together. Thus, we should only hit this on the first
264 // iteration.
265 SkASSERT(first);
266 return false;
267 case GrOp::CombineResult::kMayChain:
268 fList = DoConcat(std::move(fList), skstd::exchange(*list, List()), caps, pool,
269 auditTrail);
270 // The above exchange cleared out 'list'. The list needs to be empty now for the
271 // loop to terminate.
272 SkASSERT(list->empty());
273 break;
274 case GrOp::CombineResult::kMerged: {
275 GrOP_INFO("\t\t: (%s opID: %u) -> Combining with (%s, opID: %u)\n",
276 list->tail()->name(), list->tail()->uniqueID(), list->head()->name(),
277 list->head()->uniqueID());
278 GR_AUDIT_TRAIL_OPS_RESULT_COMBINED(auditTrail, fList.tail(), list->head());
279 pool->release(list->popHead());
280 break;
281 }
282 }
283 SkDEBUGCODE(first = false);
284 } while (!list->empty());
285
286 // The new ops were successfully merged and/or chained onto our own.
287 fBounds.joinPossiblyEmptyRect(bounds);
288 return true;
289 }
290
prependChain(OpChain * that,const GrCaps & caps,GrOpMemoryPool * pool,GrAuditTrail * auditTrail)291 bool GrRenderTargetOpList::OpChain::prependChain(OpChain* that, const GrCaps& caps,
292 GrOpMemoryPool* pool, GrAuditTrail* auditTrail) {
293 if (!that->tryConcat(
294 &fList, fProcessorAnalysis, fDstProxy, fAppliedClip, fBounds, caps, pool, auditTrail)) {
295 this->validate();
296 // append failed
297 return false;
298 }
299
300 // 'that' owns the combined chain. Move it into 'this'.
301 SkASSERT(fList.empty());
302 fList = std::move(that->fList);
303 fBounds = that->fBounds;
304
305 that->fDstProxy.setProxy(nullptr);
306 if (that->fAppliedClip) {
307 for (int i = 0; i < that->fAppliedClip->numClipCoverageFragmentProcessors(); ++i) {
308 that->fAppliedClip->detachClipCoverageFragmentProcessor(i);
309 }
310 }
311 this->validate();
312 return true;
313 }
314
appendOp(std::unique_ptr<GrOp> op,GrProcessorSet::Analysis processorAnalysis,const DstProxy * dstProxy,const GrAppliedClip * appliedClip,const GrCaps & caps,GrOpMemoryPool * pool,GrAuditTrail * auditTrail)315 std::unique_ptr<GrOp> GrRenderTargetOpList::OpChain::appendOp(
316 std::unique_ptr<GrOp> op, GrProcessorSet::Analysis processorAnalysis,
317 const DstProxy* dstProxy, const GrAppliedClip* appliedClip, const GrCaps& caps,
318 GrOpMemoryPool* pool, GrAuditTrail* auditTrail) {
319 const GrXferProcessor::DstProxy noDstProxy;
320 if (!dstProxy) {
321 dstProxy = &noDstProxy;
322 }
323 SkASSERT(op->isChainHead() && op->isChainTail());
324 SkRect opBounds = op->bounds();
325 List chain(std::move(op));
326 if (!this->tryConcat(
327 &chain, processorAnalysis, *dstProxy, appliedClip, opBounds, caps, pool, auditTrail)) {
328 // append failed, give the op back to the caller.
329 this->validate();
330 return chain.popHead();
331 }
332
333 SkASSERT(chain.empty());
334 this->validate();
335 return nullptr;
336 }
337
validate() const338 inline void GrRenderTargetOpList::OpChain::validate() const {
339 #ifdef SK_DEBUG
340 fList.validate();
341 for (const auto& op : GrOp::ChainRange<>(fList.head())) {
342 // Not using SkRect::contains because we allow empty rects.
343 SkASSERT(fBounds.fLeft <= op.bounds().fLeft && fBounds.fTop <= op.bounds().fTop &&
344 fBounds.fRight >= op.bounds().fRight && fBounds.fBottom >= op.bounds().fBottom);
345 }
346 #endif
347 }
348
349 ////////////////////////////////////////////////////////////////////////////////
350
GrRenderTargetOpList(GrResourceProvider * resourceProvider,sk_sp<GrOpMemoryPool> opMemoryPool,GrRenderTargetProxy * proxy,GrAuditTrail * auditTrail)351 GrRenderTargetOpList::GrRenderTargetOpList(GrResourceProvider* resourceProvider,
352 sk_sp<GrOpMemoryPool> opMemoryPool,
353 GrRenderTargetProxy* proxy,
354 GrAuditTrail* auditTrail)
355 : INHERITED(resourceProvider, std::move(opMemoryPool), proxy, auditTrail)
356 , fLastClipStackGenID(SK_InvalidUniqueID)
357 SkDEBUGCODE(, fNumClips(0)) {
358 }
359
deleteOps()360 void GrRenderTargetOpList::deleteOps() {
361 for (auto& chain : fOpChains) {
362 chain.deleteOps(fOpMemoryPool.get());
363 }
364 fOpChains.reset();
365 }
366
~GrRenderTargetOpList()367 GrRenderTargetOpList::~GrRenderTargetOpList() {
368 this->deleteOps();
369 }
370
371 ////////////////////////////////////////////////////////////////////////////////
372
373 #ifdef SK_DEBUG
dump(bool printDependencies) const374 void GrRenderTargetOpList::dump(bool printDependencies) const {
375 INHERITED::dump(printDependencies);
376
377 SkDebugf("ops (%d):\n", fOpChains.count());
378 for (int i = 0; i < fOpChains.count(); ++i) {
379 SkDebugf("*******************************\n");
380 if (!fOpChains[i].head()) {
381 SkDebugf("%d: <combined forward or failed instantiation>\n", i);
382 } else {
383 SkDebugf("%d: %s\n", i, fOpChains[i].head()->name());
384 SkRect bounds = fOpChains[i].bounds();
385 SkDebugf("ClippedBounds: [L: %.2f, T: %.2f, R: %.2f, B: %.2f]\n", bounds.fLeft,
386 bounds.fTop, bounds.fRight, bounds.fBottom);
387 for (const auto& op : GrOp::ChainRange<>(fOpChains[i].head())) {
388 SkString info = SkTabString(op.dumpInfo(), 1);
389 SkDebugf("%s\n", info.c_str());
390 bounds = op.bounds();
391 SkDebugf("\tClippedBounds: [L: %.2f, T: %.2f, R: %.2f, B: %.2f]\n", bounds.fLeft,
392 bounds.fTop, bounds.fRight, bounds.fBottom);
393 }
394 }
395 }
396 }
397
visitProxies_debugOnly(const GrOp::VisitProxyFunc & func) const398 void GrRenderTargetOpList::visitProxies_debugOnly(const GrOp::VisitProxyFunc& func) const {
399 for (const OpChain& chain : fOpChains) {
400 chain.visitProxies(func, GrOp::VisitorType::kOther);
401 }
402 }
403
404 #endif
405
onPrepare(GrOpFlushState * flushState)406 void GrRenderTargetOpList::onPrepare(GrOpFlushState* flushState) {
407 SkASSERT(fTarget.get()->peekRenderTarget());
408 SkASSERT(this->isClosed());
409 #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
410 TRACE_EVENT0("skia", TRACE_FUNC);
411 #endif
412
413 // Loop over the ops that haven't yet been prepared.
414 for (const auto& chain : fOpChains) {
415 if (chain.head()) {
416 #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
417 TRACE_EVENT0("skia", chain.head()->name());
418 #endif
419 GrOpFlushState::OpArgs opArgs = {
420 chain.head(),
421 fTarget.get()->asRenderTargetProxy(),
422 chain.appliedClip(),
423 chain.dstProxy()
424 };
425 flushState->setOpArgs(&opArgs);
426 chain.head()->prepare(flushState);
427 flushState->setOpArgs(nullptr);
428 }
429 }
430 }
431
create_command_buffer(GrGpu * gpu,GrRenderTarget * rt,GrSurfaceOrigin origin,const SkRect & bounds,GrLoadOp colorLoadOp,const SkPMColor4f & loadClearColor,GrLoadOp stencilLoadOp)432 static GrGpuRTCommandBuffer* create_command_buffer(GrGpu* gpu,
433 GrRenderTarget* rt,
434 GrSurfaceOrigin origin,
435 const SkRect& bounds,
436 GrLoadOp colorLoadOp,
437 const SkPMColor4f& loadClearColor,
438 GrLoadOp stencilLoadOp) {
439 const GrGpuRTCommandBuffer::LoadAndStoreInfo kColorLoadStoreInfo {
440 colorLoadOp,
441 GrStoreOp::kStore,
442 loadClearColor
443 };
444
445 // TODO:
446 // We would like to (at this level) only ever clear & discard. We would need
447 // to stop splitting up higher level opLists for copyOps to achieve that.
448 // Note: we would still need SB loads and stores but they would happen at a
449 // lower level (inside the VK command buffer).
450 const GrGpuRTCommandBuffer::StencilLoadAndStoreInfo stencilLoadAndStoreInfo {
451 stencilLoadOp,
452 GrStoreOp::kStore,
453 };
454
455 return gpu->getCommandBuffer(rt, origin, bounds, kColorLoadStoreInfo, stencilLoadAndStoreInfo);
456 }
457
458 // TODO: this is where GrOp::renderTarget is used (which is fine since it
459 // is at flush time). However, we need to store the RenderTargetProxy in the
460 // Ops and instantiate them here.
onExecute(GrOpFlushState * flushState)461 bool GrRenderTargetOpList::onExecute(GrOpFlushState* flushState) {
462 // TODO: Forcing the execution of the discard here isn't ideal since it will cause us to do a
463 // discard and then store the data back in memory so that the load op on future draws doesn't
464 // think the memory is unitialized. Ideally we would want a system where we are tracking whether
465 // the proxy itself has valid data or not, and then use that as a signal on whether we should be
466 // loading or discarding. In that world we wouldni;t need to worry about executing oplists with
467 // no ops just to do a discard.
468 if (fOpChains.empty() && GrLoadOp::kClear != fColorLoadOp &&
469 GrLoadOp::kDiscard != fColorLoadOp) {
470 return false;
471 }
472
473 SkASSERT(fTarget.get()->peekRenderTarget());
474 TRACE_EVENT0("skia", TRACE_FUNC);
475
476 // TODO: at the very least, we want the stencil store op to always be discard (at this
477 // level). In Vulkan, sub-command buffers would still need to load & store the stencil buffer.
478
479 // Make sure load ops are not kClear if the GPU needs to use draws for clears
480 SkASSERT(fColorLoadOp != GrLoadOp::kClear ||
481 !flushState->gpu()->caps()->performColorClearsAsDraws());
482 SkASSERT(fStencilLoadOp != GrLoadOp::kClear ||
483 !flushState->gpu()->caps()->performStencilClearsAsDraws());
484 GrGpuRTCommandBuffer* commandBuffer = create_command_buffer(
485 flushState->gpu(),
486 fTarget.get()->peekRenderTarget(),
487 fTarget.get()->origin(),
488 fTarget.get()->getBoundsRect(),
489 fColorLoadOp,
490 fLoadClearColor,
491 fStencilLoadOp);
492 flushState->setCommandBuffer(commandBuffer);
493 commandBuffer->begin();
494
495 // Draw all the generated geometry.
496 for (const auto& chain : fOpChains) {
497 if (!chain.head()) {
498 continue;
499 }
500 #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
501 TRACE_EVENT0("skia", chain.head()->name());
502 #endif
503
504 GrOpFlushState::OpArgs opArgs {
505 chain.head(),
506 fTarget.get()->asRenderTargetProxy(),
507 chain.appliedClip(),
508 chain.dstProxy()
509 };
510
511 flushState->setOpArgs(&opArgs);
512 chain.head()->execute(flushState, chain.bounds());
513 flushState->setOpArgs(nullptr);
514 }
515
516 commandBuffer->end();
517 flushState->gpu()->submit(commandBuffer);
518 flushState->setCommandBuffer(nullptr);
519
520 return true;
521 }
522
endFlush()523 void GrRenderTargetOpList::endFlush() {
524 fLastClipStackGenID = SK_InvalidUniqueID;
525 this->deleteOps();
526 fClipAllocator.reset();
527 INHERITED::endFlush();
528 }
529
discard()530 void GrRenderTargetOpList::discard() {
531 // Discard calls to in-progress opLists are ignored. Calls at the start update the
532 // opLists' color & stencil load ops.
533 if (this->isEmpty()) {
534 fColorLoadOp = GrLoadOp::kDiscard;
535 fStencilLoadOp = GrLoadOp::kDiscard;
536 }
537 }
538
setStencilLoadOp(GrLoadOp op)539 void GrRenderTargetOpList::setStencilLoadOp(GrLoadOp op) {
540 fStencilLoadOp = op;
541 }
542
setColorLoadOp(GrLoadOp op,const SkPMColor4f & color)543 void GrRenderTargetOpList::setColorLoadOp(GrLoadOp op, const SkPMColor4f& color) {
544 fColorLoadOp = op;
545 fLoadClearColor = color;
546 }
547
resetForFullscreenClear()548 bool GrRenderTargetOpList::resetForFullscreenClear() {
549 // Mark the color load op as discard (this may be followed by a clearColorOnLoad call to make
550 // the load op kClear, or it may be followed by an explicit op). In the event of an absClear()
551 // after a regular clear(), we could end up with a clear load op and a real clear op in the list
552 // if the load op were not reset here.
553 fColorLoadOp = GrLoadOp::kDiscard;
554
555 // Regardless of how the clear is implemented (native clear or a fullscreen quad), all prior ops
556 // would be overwritten, so discard them entirely. The one exception is if the opList is marked
557 // as needing a stencil buffer then there may be a prior op that writes to the stencil buffer.
558 // Although the clear will ignore the stencil buffer, following draw ops may not so we can't get
559 // rid of all the preceding ops. Beware! If we ever add any ops that have a side effect beyond
560 // modifying the stencil buffer we will need a more elaborate tracking system (skbug.com/7002).
561 // Additionally, if we previously recorded a wait op, we cannot delete the wait op. Until we
562 // track the wait ops separately from normal ops, we have to avoid clearing out any ops.
563 if (this->isEmpty() || (!fTarget.get()->asRenderTargetProxy()->needsStencil() && !fHasWaitOp)) {
564 this->deleteOps();
565 fDeferredProxies.reset();
566
567 // If the opList is using a render target which wraps a vulkan command buffer, we can't do a
568 // clear load since we cannot change the render pass that we are using. Thus we fall back to
569 // making a clear op in this case.
570 return !fTarget.get()->asRenderTargetProxy()->wrapsVkSecondaryCB();
571 }
572
573 // Could not empty the list, so an op must be added to handle the clear
574 return false;
575 }
576
577 ////////////////////////////////////////////////////////////////////////////////
578
579 // This closely parallels GrTextureOpList::copySurface but renderTargetOpLists
580 // also store the applied clip and dest proxy with the op
copySurface(GrRecordingContext * context,GrSurfaceProxy * dst,GrSurfaceProxy * src,const SkIRect & srcRect,const SkIPoint & dstPoint)581 bool GrRenderTargetOpList::copySurface(GrRecordingContext* context,
582 GrSurfaceProxy* dst,
583 GrSurfaceProxy* src,
584 const SkIRect& srcRect,
585 const SkIPoint& dstPoint) {
586 SkASSERT(dst->asRenderTargetProxy() == fTarget.get());
587 std::unique_ptr<GrOp> op = GrCopySurfaceOp::Make(context, dst, src, srcRect, dstPoint);
588 if (!op) {
589 return false;
590 }
591
592 this->addOp(std::move(op), *context->priv().caps());
593 return true;
594 }
595
purgeOpsWithUninstantiatedProxies()596 void GrRenderTargetOpList::purgeOpsWithUninstantiatedProxies() {
597 bool hasUninstantiatedProxy = false;
598 auto checkInstantiation = [&hasUninstantiatedProxy](GrSurfaceProxy* p) {
599 if (!p->isInstantiated()) {
600 hasUninstantiatedProxy = true;
601 }
602 };
603 for (OpChain& recordedOp : fOpChains) {
604 hasUninstantiatedProxy = false;
605 recordedOp.visitProxies(checkInstantiation, GrOp::VisitorType::kOther);
606 if (hasUninstantiatedProxy) {
607 // When instantiation of the proxy fails we drop the Op
608 recordedOp.deleteOps(fOpMemoryPool.get());
609 }
610 }
611 }
612
gatherProxyIntervals(GrResourceAllocator * alloc) const613 void GrRenderTargetOpList::gatherProxyIntervals(GrResourceAllocator* alloc) const {
614 unsigned int cur = alloc->numOps();
615
616 for (int i = 0; i < fDeferredProxies.count(); ++i) {
617 SkASSERT(!fDeferredProxies[i]->isInstantiated());
618 // We give all the deferred proxies a write usage at the very start of flushing. This
619 // locks them out of being reused for the entire flush until they are read - and then
620 // they can be recycled. This is a bit unfortunate because a flush can proceed in waves
621 // with sub-flushes. The deferred proxies only need to be pinned from the start of
622 // the sub-flush in which they appear.
623 alloc->addInterval(fDeferredProxies[i], 0, 0);
624 }
625
626 // Add the interval for all the writes to this opList's target
627 if (fOpChains.count()) {
628 alloc->addInterval(fTarget.get(), cur, cur + fOpChains.count() - 1);
629 } else {
630 // This can happen if there is a loadOp (e.g., a clear) but no other draws. In this case we
631 // still need to add an interval for the destination so we create a fake op# for
632 // the missing clear op.
633 alloc->addInterval(fTarget.get());
634 alloc->incOps();
635 }
636
637 auto gather = [ alloc SkDEBUGCODE(, this) ] (GrSurfaceProxy* p) {
638 alloc->addInterval(p SkDEBUGCODE(, fTarget.get() == p));
639 };
640 for (const OpChain& recordedOp : fOpChains) {
641 // only diff from the GrTextureOpList version
642 recordedOp.visitProxies(gather, GrOp::VisitorType::kAllocatorGather);
643
644 // Even though the op may have been moved we still need to increment the op count to
645 // keep all the math consistent.
646 alloc->incOps();
647 }
648 }
649
recordOp(std::unique_ptr<GrOp> op,GrProcessorSet::Analysis processorAnalysis,GrAppliedClip * clip,const DstProxy * dstProxy,const GrCaps & caps)650 void GrRenderTargetOpList::recordOp(
651 std::unique_ptr<GrOp> op, GrProcessorSet::Analysis processorAnalysis, GrAppliedClip* clip,
652 const DstProxy* dstProxy, const GrCaps& caps) {
653 SkDEBUGCODE(op->validate();)
654 SkASSERT(processorAnalysis.requiresDstTexture() == (dstProxy && dstProxy->proxy()));
655 SkASSERT(fTarget.get());
656
657 // A closed GrOpList should never receive new/more ops
658 SkASSERT(!this->isClosed());
659 if (!op->bounds().isFinite()) {
660 fOpMemoryPool->release(std::move(op));
661 return;
662 }
663
664 // Check if there is an op we can combine with by linearly searching back until we either
665 // 1) check every op
666 // 2) intersect with something
667 // 3) find a 'blocker'
668 GR_AUDIT_TRAIL_ADD_OP(fAuditTrail, op.get(), fTarget.get()->uniqueID());
669 GrOP_INFO("opList: %d Recording (%s, opID: %u)\n"
670 "\tBounds [L: %.2f, T: %.2f R: %.2f B: %.2f]\n",
671 this->uniqueID(),
672 op->name(),
673 op->uniqueID(),
674 op->bounds().fLeft, op->bounds().fTop,
675 op->bounds().fRight, op->bounds().fBottom);
676 GrOP_INFO(SkTabString(op->dumpInfo(), 1).c_str());
677 GrOP_INFO("\tOutcome:\n");
678 int maxCandidates = SkTMin(kMaxOpChainDistance, fOpChains.count());
679 if (maxCandidates) {
680 int i = 0;
681 while (true) {
682 OpChain& candidate = fOpChains.fromBack(i);
683 op = candidate.appendOp(std::move(op), processorAnalysis, dstProxy, clip, caps,
684 fOpMemoryPool.get(), fAuditTrail);
685 if (!op) {
686 return;
687 }
688 // Stop going backwards if we would cause a painter's order violation.
689 if (!can_reorder(candidate.bounds(), op->bounds())) {
690 GrOP_INFO("\t\tBackward: Intersects with chain (%s, head opID: %u)\n",
691 candidate.head()->name(), candidate.head()->uniqueID());
692 break;
693 }
694 if (++i == maxCandidates) {
695 GrOP_INFO("\t\tBackward: Reached max lookback or beginning of op array %d\n", i);
696 break;
697 }
698 }
699 } else {
700 GrOP_INFO("\t\tBackward: FirstOp\n");
701 }
702 if (clip) {
703 clip = fClipAllocator.make<GrAppliedClip>(std::move(*clip));
704 SkDEBUGCODE(fNumClips++;)
705 }
706 fOpChains.emplace_back(std::move(op), processorAnalysis, clip, dstProxy);
707 }
708
forwardCombine(const GrCaps & caps)709 void GrRenderTargetOpList::forwardCombine(const GrCaps& caps) {
710 SkASSERT(!this->isClosed());
711 GrOP_INFO("opList: %d ForwardCombine %d ops:\n", this->uniqueID(), fOpChains.count());
712
713 for (int i = 0; i < fOpChains.count() - 1; ++i) {
714 OpChain& chain = fOpChains[i];
715 int maxCandidateIdx = SkTMin(i + kMaxOpChainDistance, fOpChains.count() - 1);
716 int j = i + 1;
717 while (true) {
718 OpChain& candidate = fOpChains[j];
719 if (candidate.prependChain(&chain, caps, fOpMemoryPool.get(), fAuditTrail)) {
720 break;
721 }
722 // Stop traversing if we would cause a painter's order violation.
723 if (!can_reorder(chain.bounds(), candidate.bounds())) {
724 GrOP_INFO(
725 "\t\t%d: chain (%s head opID: %u) -> "
726 "Intersects with chain (%s, head opID: %u)\n",
727 i, chain.head()->name(), chain.head()->uniqueID(), candidate.head()->name(),
728 candidate.head()->uniqueID());
729 break;
730 }
731 if (++j > maxCandidateIdx) {
732 GrOP_INFO("\t\t%d: chain (%s opID: %u) -> Reached max lookahead or end of array\n",
733 i, chain.head()->name(), chain.head()->uniqueID());
734 break;
735 }
736 }
737 }
738 }
739
740