1 /*
2 * Copyright 2017 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "GrCCCoverageProcessor.h"
9
10 #include "GrGpuCommandBuffer.h"
11 #include "GrOpFlushState.h"
12 #include "SkMakeUnique.h"
13 #include "ccpr/GrCCConicShader.h"
14 #include "ccpr/GrCCCubicShader.h"
15 #include "ccpr/GrCCQuadraticShader.h"
16 #include "glsl/GrGLSLVertexGeoBuilder.h"
17 #include "glsl/GrGLSLFragmentShaderBuilder.h"
18 #include "glsl/GrGLSLVertexGeoBuilder.h"
19
20 class GrCCCoverageProcessor::TriangleShader : public GrCCCoverageProcessor::Shader {
onEmitVaryings(GrGLSLVaryingHandler * varyingHandler,GrGLSLVarying::Scope scope,SkString * code,const char * position,const char * coverage,const char * cornerCoverage)21 void onEmitVaryings(GrGLSLVaryingHandler* varyingHandler, GrGLSLVarying::Scope scope,
22 SkString* code, const char* position, const char* coverage,
23 const char* cornerCoverage) override {
24 if (!cornerCoverage) {
25 fCoverages.reset(kHalf_GrSLType, scope);
26 varyingHandler->addVarying("coverage", &fCoverages);
27 code->appendf("%s = %s;", OutName(fCoverages), coverage);
28 } else {
29 fCoverages.reset(kHalf3_GrSLType, scope);
30 varyingHandler->addVarying("coverages", &fCoverages);
31 code->appendf("%s = half3(%s, %s);", OutName(fCoverages), coverage, cornerCoverage);
32 }
33 }
34
onEmitFragmentCode(GrGLSLFPFragmentBuilder * f,const char * outputCoverage) const35 void onEmitFragmentCode(GrGLSLFPFragmentBuilder* f, const char* outputCoverage) const override {
36 if (kHalf_GrSLType == fCoverages.type()) {
37 f->codeAppendf("%s = %s;", outputCoverage, fCoverages.fsIn());
38 } else {
39 f->codeAppendf("%s = %s.z * %s.y + %s.x;",
40 outputCoverage, fCoverages.fsIn(), fCoverages.fsIn(), fCoverages.fsIn());
41 }
42 }
43
44 GrGLSLVarying fCoverages;
45 };
46
CalcWind(const GrCCCoverageProcessor & proc,GrGLSLVertexGeoBuilder * s,const char * pts,const char * outputWind)47 void GrCCCoverageProcessor::Shader::CalcWind(const GrCCCoverageProcessor& proc,
48 GrGLSLVertexGeoBuilder* s, const char* pts,
49 const char* outputWind) {
50 if (3 == proc.numInputPoints()) {
51 s->codeAppendf("float2 a = %s[0] - %s[1], "
52 "b = %s[0] - %s[2];", pts, pts, pts, pts);
53 } else {
54 // All inputs are convex, so it's sufficient to just average the middle two input points.
55 SkASSERT(4 == proc.numInputPoints());
56 s->codeAppendf("float2 p12 = (%s[1] + %s[2]) * .5;", pts, pts);
57 s->codeAppendf("float2 a = %s[0] - p12, "
58 "b = %s[0] - %s[3];", pts, pts, pts);
59 }
60
61 s->codeAppend ("float area_x2 = determinant(float2x2(a, b));");
62 if (proc.isTriangles()) {
63 // We cull extremely thin triangles by zeroing wind. When a triangle gets too thin it's
64 // possible for FP round-off error to actually give us the wrong winding direction, causing
65 // rendering artifacts. The criteria we choose is "height <~ 1/1024". So we drop a triangle
66 // if the max effect it can have on any single pixel is <~ 1/1024, or 1/4 of a bit in 8888.
67 s->codeAppend ("float2 bbox_size = max(abs(a), abs(b));");
68 s->codeAppend ("float basewidth = max(bbox_size.x + bbox_size.y, 1);");
69 s->codeAppendf("%s = (abs(area_x2 * 1024) > basewidth) ? sign(half(area_x2)) : 0;",
70 outputWind);
71 } else {
72 // We already converted nearly-flat curves to lines on the CPU, so no need to worry about
73 // thin curve hulls at this point.
74 s->codeAppendf("%s = sign(half(area_x2));", outputWind);
75 }
76 }
77
EmitEdgeDistanceEquation(GrGLSLVertexGeoBuilder * s,const char * leftPt,const char * rightPt,const char * outputDistanceEquation)78 void GrCCCoverageProcessor::Shader::EmitEdgeDistanceEquation(GrGLSLVertexGeoBuilder* s,
79 const char* leftPt,
80 const char* rightPt,
81 const char* outputDistanceEquation) {
82 s->codeAppendf("float2 n = float2(%s.y - %s.y, %s.x - %s.x);",
83 rightPt, leftPt, leftPt, rightPt);
84 s->codeAppend ("float nwidth = (abs(n.x) + abs(n.y)) * (bloat * 2);");
85 // When nwidth=0, wind must also be 0 (and coverage * wind = 0). So it doesn't matter what we
86 // come up with here as long as it isn't NaN or Inf.
87 s->codeAppend ("n /= (0 != nwidth) ? nwidth : 1;");
88 s->codeAppendf("%s = float3(-n, dot(n, %s) - .5);", outputDistanceEquation, leftPt);
89 }
90
CalcEdgeCoverageAtBloatVertex(GrGLSLVertexGeoBuilder * s,const char * leftPt,const char * rightPt,const char * rasterVertexDir,const char * outputCoverage)91 void GrCCCoverageProcessor::Shader::CalcEdgeCoverageAtBloatVertex(GrGLSLVertexGeoBuilder* s,
92 const char* leftPt,
93 const char* rightPt,
94 const char* rasterVertexDir,
95 const char* outputCoverage) {
96 // Here we find an edge's coverage at one corner of a conservative raster bloat box whose center
97 // falls on the edge in question. (A bloat box is axis-aligned and the size of one pixel.) We
98 // always set up coverage so it is -1 at the outermost corner, 0 at the innermost, and -.5 at
99 // the center. Interpolated, these coverage values convert jagged conservative raster edges into
100 // smooth antialiased edges.
101 //
102 // d1 == (P + sign(n) * bloat) dot n (Distance at the bloat box vertex whose
103 // == P dot n + (abs(n.x) + abs(n.y)) * bloatSize coverage=-1, where the bloat box is
104 // centered on P.)
105 //
106 // d0 == (P - sign(n) * bloat) dot n (Distance at the bloat box vertex whose
107 // == P dot n - (abs(n.x) + abs(n.y)) * bloatSize coverage=0, where the bloat box is
108 // centered on P.)
109 //
110 // d == (P + rasterVertexDir * bloatSize) dot n (Distance at the bloat box vertex whose
111 // == P dot n + (rasterVertexDir dot n) * bloatSize coverage we wish to calculate.)
112 //
113 // coverage == -(d - d0) / (d1 - d0) (coverage=-1 at d=d1; coverage=0 at d=d0)
114 //
115 // == (rasterVertexDir dot n) / (abs(n.x) + abs(n.y)) * -.5 - .5
116 //
117 s->codeAppendf("float2 n = float2(%s.y - %s.y, %s.x - %s.x);",
118 rightPt, leftPt, leftPt, rightPt);
119 s->codeAppend ("float nwidth = abs(n.x) + abs(n.y);");
120 s->codeAppendf("float t = dot(%s, n);", rasterVertexDir);
121 // The below conditional guarantees we get exactly 1 on the divide when nwidth=t (in case the
122 // GPU divides by multiplying by the reciprocal?) It also guards against NaN when nwidth=0.
123 s->codeAppendf("%s = half(abs(t) != nwidth ? t / nwidth : sign(t)) * -.5 - .5;",
124 outputCoverage);
125 }
126
CalcEdgeCoveragesAtBloatVertices(GrGLSLVertexGeoBuilder * s,const char * leftPt,const char * rightPt,const char * bloatDir1,const char * bloatDir2,const char * outputCoverages)127 void GrCCCoverageProcessor::Shader::CalcEdgeCoveragesAtBloatVertices(GrGLSLVertexGeoBuilder* s,
128 const char* leftPt,
129 const char* rightPt,
130 const char* bloatDir1,
131 const char* bloatDir2,
132 const char* outputCoverages) {
133 // See comments in CalcEdgeCoverageAtBloatVertex.
134 s->codeAppendf("float2 n = float2(%s.y - %s.y, %s.x - %s.x);",
135 rightPt, leftPt, leftPt, rightPt);
136 s->codeAppend ("float nwidth = abs(n.x) + abs(n.y);");
137 s->codeAppendf("float2 t = n * float2x2(%s, %s);", bloatDir1, bloatDir2);
138 s->codeAppendf("for (int i = 0; i < 2; ++i) {");
139 s->codeAppendf( "%s[i] = half(abs(t[i]) != nwidth ? t[i] / nwidth : sign(t[i])) * -.5 - .5;",
140 outputCoverages);
141 s->codeAppendf("}");
142 }
143
CalcCornerAttenuation(GrGLSLVertexGeoBuilder * s,const char * leftDir,const char * rightDir,const char * outputAttenuation)144 void GrCCCoverageProcessor::Shader::CalcCornerAttenuation(GrGLSLVertexGeoBuilder* s,
145 const char* leftDir, const char* rightDir,
146 const char* outputAttenuation) {
147 // obtuseness = cos(corner_angle) if corner_angle > 90 degrees
148 // 0 if corner_angle <= 90 degrees
149 //
150 // NOTE: leftDir and rightDir are normalized and point in the same direction the path was
151 // defined with, i.e., leftDir points into the corner and rightDir points away from the corner.
152 s->codeAppendf("half obtuseness = max(half(dot(%s, %s)), 0);", leftDir, rightDir);
153
154 // axis_alignedness = 1 - tan(angle_to_nearest_axis_from_corner_bisector)
155 // (i.e., 1 when the corner bisector is aligned with the x- or y-axis
156 // 0 when the corner bisector falls on a 45 degree angle
157 // 0..1 when the corner bisector falls somewhere in between
158 s->codeAppendf("half2 abs_bisect_maybe_transpose = abs((0 == obtuseness) ? half2(%s - %s) : "
159 "half2(%s + %s));",
160 leftDir, rightDir, leftDir, rightDir);
161 s->codeAppend ("half axis_alignedness = "
162 "1 - min(abs_bisect_maybe_transpose.y, abs_bisect_maybe_transpose.x) / "
163 "max(abs_bisect_maybe_transpose.x, abs_bisect_maybe_transpose.y);");
164
165 // ninety_degreesness = sin^2(corner_angle)
166 // sin^2 just because... it's always positive and the results looked better than plain sine... ?
167 s->codeAppendf("half ninety_degreesness = determinant(half2x2(%s, %s));", leftDir, rightDir);
168 s->codeAppend ("ninety_degreesness = ninety_degreesness * ninety_degreesness;");
169
170 // The below formula is not smart. It was just arrived at by considering the following
171 // observations:
172 //
173 // 1. 90-degree, axis-aligned corners have full attenuation along the bisector.
174 // (i.e. coverage = 1 - distance_to_corner^2)
175 // (i.e. outputAttenuation = 0)
176 //
177 // 2. 180-degree corners always have zero attenuation.
178 // (i.e. coverage = 1 - distance_to_corner)
179 // (i.e. outputAttenuation = 1)
180 //
181 // 3. 90-degree corners whose bisector falls on a 45 degree angle also do not attenuate.
182 // (i.e. outputAttenuation = 1)
183 s->codeAppendf("%s = max(obtuseness, axis_alignedness * ninety_degreesness);",
184 outputAttenuation);
185 }
186
getGLSLProcessorKey(const GrShaderCaps &,GrProcessorKeyBuilder * b) const187 void GrCCCoverageProcessor::getGLSLProcessorKey(const GrShaderCaps&,
188 GrProcessorKeyBuilder* b) const {
189 int key = (int)fPrimitiveType << 2;
190 if (GSSubpass::kCorners == fGSSubpass) {
191 key |= 2;
192 }
193 if (Impl::kVertexShader == fImpl) {
194 key |= 1;
195 }
196 #ifdef SK_DEBUG
197 uint32_t bloatBits;
198 memcpy(&bloatBits, &fDebugBloat, 4);
199 b->add32(bloatBits);
200 #endif
201 b->add32(key);
202 }
203
createGLSLInstance(const GrShaderCaps &) const204 GrGLSLPrimitiveProcessor* GrCCCoverageProcessor::createGLSLInstance(const GrShaderCaps&) const {
205 std::unique_ptr<Shader> shader;
206 switch (fPrimitiveType) {
207 case PrimitiveType::kTriangles:
208 case PrimitiveType::kWeightedTriangles:
209 shader = skstd::make_unique<TriangleShader>();
210 break;
211 case PrimitiveType::kQuadratics:
212 shader = skstd::make_unique<GrCCQuadraticShader>();
213 break;
214 case PrimitiveType::kCubics:
215 shader = skstd::make_unique<GrCCCubicShader>();
216 break;
217 case PrimitiveType::kConics:
218 shader = skstd::make_unique<GrCCConicShader>();
219 break;
220 }
221 return Impl::kGeometryShader == fImpl ? this->createGSImpl(std::move(shader))
222 : this->createVSImpl(std::move(shader));
223 }
224
emitFragmentCode(const GrCCCoverageProcessor & proc,GrGLSLFPFragmentBuilder * f,const char * skOutputColor,const char * skOutputCoverage) const225 void GrCCCoverageProcessor::Shader::emitFragmentCode(const GrCCCoverageProcessor& proc,
226 GrGLSLFPFragmentBuilder* f,
227 const char* skOutputColor,
228 const char* skOutputCoverage) const {
229 f->codeAppendf("half coverage = 0;");
230 this->onEmitFragmentCode(f, "coverage");
231 f->codeAppendf("%s.a = coverage;", skOutputColor);
232 f->codeAppendf("%s = half4(1);", skOutputCoverage);
233 }
234
draw(GrOpFlushState * flushState,const GrPipeline & pipeline,const SkIRect scissorRects[],const GrMesh meshes[],int meshCount,const SkRect & drawBounds) const235 void GrCCCoverageProcessor::draw(GrOpFlushState* flushState, const GrPipeline& pipeline,
236 const SkIRect scissorRects[], const GrMesh meshes[], int meshCount,
237 const SkRect& drawBounds) const {
238 GrPipeline::DynamicStateArrays dynamicStateArrays;
239 dynamicStateArrays.fScissorRects = scissorRects;
240 GrGpuRTCommandBuffer* cmdBuff = flushState->rtCommandBuffer();
241 cmdBuff->draw(*this, pipeline, nullptr, &dynamicStateArrays, meshes, meshCount, drawBounds);
242
243 // Geometry shader backend draws primitives in two subpasses.
244 if (Impl::kGeometryShader == fImpl) {
245 SkASSERT(GSSubpass::kHulls == fGSSubpass);
246 GrCCCoverageProcessor cornerProc(*this, GSSubpass::kCorners);
247 cmdBuff->draw(cornerProc, pipeline, nullptr, &dynamicStateArrays, meshes, meshCount,
248 drawBounds);
249 }
250 }
251