1 /*
2  * Copyright 2017 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "GrCCCoverageProcessor.h"
9 
10 #include "GrGpuCommandBuffer.h"
11 #include "GrOpFlushState.h"
12 #include "SkMakeUnique.h"
13 #include "ccpr/GrCCConicShader.h"
14 #include "ccpr/GrCCCubicShader.h"
15 #include "ccpr/GrCCQuadraticShader.h"
16 #include "glsl/GrGLSLVertexGeoBuilder.h"
17 #include "glsl/GrGLSLFragmentShaderBuilder.h"
18 #include "glsl/GrGLSLVertexGeoBuilder.h"
19 
20 class GrCCCoverageProcessor::TriangleShader : public GrCCCoverageProcessor::Shader {
onEmitVaryings(GrGLSLVaryingHandler * varyingHandler,GrGLSLVarying::Scope scope,SkString * code,const char * position,const char * coverage,const char * cornerCoverage)21     void onEmitVaryings(GrGLSLVaryingHandler* varyingHandler, GrGLSLVarying::Scope scope,
22                         SkString* code, const char* position, const char* coverage,
23                         const char* cornerCoverage) override {
24         if (!cornerCoverage) {
25             fCoverages.reset(kHalf_GrSLType, scope);
26             varyingHandler->addVarying("coverage", &fCoverages);
27             code->appendf("%s = %s;", OutName(fCoverages), coverage);
28         } else {
29             fCoverages.reset(kHalf3_GrSLType, scope);
30             varyingHandler->addVarying("coverages", &fCoverages);
31             code->appendf("%s = half3(%s, %s);", OutName(fCoverages), coverage, cornerCoverage);
32         }
33     }
34 
onEmitFragmentCode(GrGLSLFPFragmentBuilder * f,const char * outputCoverage) const35     void onEmitFragmentCode(GrGLSLFPFragmentBuilder* f, const char* outputCoverage) const override {
36         if (kHalf_GrSLType == fCoverages.type()) {
37             f->codeAppendf("%s = %s;", outputCoverage, fCoverages.fsIn());
38         } else {
39             f->codeAppendf("%s = %s.z * %s.y + %s.x;",
40                            outputCoverage, fCoverages.fsIn(), fCoverages.fsIn(), fCoverages.fsIn());
41         }
42     }
43 
44     GrGLSLVarying fCoverages;
45 };
46 
CalcWind(const GrCCCoverageProcessor & proc,GrGLSLVertexGeoBuilder * s,const char * pts,const char * outputWind)47 void GrCCCoverageProcessor::Shader::CalcWind(const GrCCCoverageProcessor& proc,
48                                              GrGLSLVertexGeoBuilder* s, const char* pts,
49                                              const char* outputWind) {
50     if (3 == proc.numInputPoints()) {
51         s->codeAppendf("float2 a = %s[0] - %s[1], "
52                               "b = %s[0] - %s[2];", pts, pts, pts, pts);
53     } else {
54         // All inputs are convex, so it's sufficient to just average the middle two input points.
55         SkASSERT(4 == proc.numInputPoints());
56         s->codeAppendf("float2 p12 = (%s[1] + %s[2]) * .5;", pts, pts);
57         s->codeAppendf("float2 a = %s[0] - p12, "
58                               "b = %s[0] - %s[3];", pts, pts, pts);
59     }
60 
61     s->codeAppend ("float area_x2 = determinant(float2x2(a, b));");
62     if (proc.isTriangles()) {
63         // We cull extremely thin triangles by zeroing wind. When a triangle gets too thin it's
64         // possible for FP round-off error to actually give us the wrong winding direction, causing
65         // rendering artifacts. The criteria we choose is "height <~ 1/1024". So we drop a triangle
66         // if the max effect it can have on any single pixel is <~ 1/1024, or 1/4 of a bit in 8888.
67         s->codeAppend ("float2 bbox_size = max(abs(a), abs(b));");
68         s->codeAppend ("float basewidth = max(bbox_size.x + bbox_size.y, 1);");
69         s->codeAppendf("%s = (abs(area_x2 * 1024) > basewidth) ? sign(half(area_x2)) : 0;",
70                        outputWind);
71     } else {
72         // We already converted nearly-flat curves to lines on the CPU, so no need to worry about
73         // thin curve hulls at this point.
74         s->codeAppendf("%s = sign(half(area_x2));", outputWind);
75     }
76 }
77 
EmitEdgeDistanceEquation(GrGLSLVertexGeoBuilder * s,const char * leftPt,const char * rightPt,const char * outputDistanceEquation)78 void GrCCCoverageProcessor::Shader::EmitEdgeDistanceEquation(GrGLSLVertexGeoBuilder* s,
79                                                              const char* leftPt,
80                                                              const char* rightPt,
81                                                              const char* outputDistanceEquation) {
82     s->codeAppendf("float2 n = float2(%s.y - %s.y, %s.x - %s.x);",
83                    rightPt, leftPt, leftPt, rightPt);
84     s->codeAppend ("float nwidth = (abs(n.x) + abs(n.y)) * (bloat * 2);");
85     // When nwidth=0, wind must also be 0 (and coverage * wind = 0). So it doesn't matter what we
86     // come up with here as long as it isn't NaN or Inf.
87     s->codeAppend ("n /= (0 != nwidth) ? nwidth : 1;");
88     s->codeAppendf("%s = float3(-n, dot(n, %s) - .5);", outputDistanceEquation, leftPt);
89 }
90 
CalcEdgeCoverageAtBloatVertex(GrGLSLVertexGeoBuilder * s,const char * leftPt,const char * rightPt,const char * rasterVertexDir,const char * outputCoverage)91 void GrCCCoverageProcessor::Shader::CalcEdgeCoverageAtBloatVertex(GrGLSLVertexGeoBuilder* s,
92                                                                   const char* leftPt,
93                                                                   const char* rightPt,
94                                                                   const char* rasterVertexDir,
95                                                                   const char* outputCoverage) {
96     // Here we find an edge's coverage at one corner of a conservative raster bloat box whose center
97     // falls on the edge in question. (A bloat box is axis-aligned and the size of one pixel.) We
98     // always set up coverage so it is -1 at the outermost corner, 0 at the innermost, and -.5 at
99     // the center. Interpolated, these coverage values convert jagged conservative raster edges into
100     // smooth antialiased edges.
101     //
102     // d1 == (P + sign(n) * bloat) dot n                   (Distance at the bloat box vertex whose
103     //    == P dot n + (abs(n.x) + abs(n.y)) * bloatSize    coverage=-1, where the bloat box is
104     //                                                      centered on P.)
105     //
106     // d0 == (P - sign(n) * bloat) dot n                   (Distance at the bloat box vertex whose
107     //    == P dot n - (abs(n.x) + abs(n.y)) * bloatSize    coverage=0, where the bloat box is
108     //                                                      centered on P.)
109     //
110     // d == (P + rasterVertexDir * bloatSize) dot n        (Distance at the bloat box vertex whose
111     //   == P dot n + (rasterVertexDir dot n) * bloatSize   coverage we wish to calculate.)
112     //
113     // coverage == -(d - d0) / (d1 - d0)                   (coverage=-1 at d=d1; coverage=0 at d=d0)
114     //
115     //          == (rasterVertexDir dot n) / (abs(n.x) + abs(n.y)) * -.5 - .5
116     //
117     s->codeAppendf("float2 n = float2(%s.y - %s.y, %s.x - %s.x);",
118                    rightPt, leftPt, leftPt, rightPt);
119     s->codeAppend ("float nwidth = abs(n.x) + abs(n.y);");
120     s->codeAppendf("float t = dot(%s, n);", rasterVertexDir);
121     // The below conditional guarantees we get exactly 1 on the divide when nwidth=t (in case the
122     // GPU divides by multiplying by the reciprocal?) It also guards against NaN when nwidth=0.
123     s->codeAppendf("%s = half(abs(t) != nwidth ? t / nwidth : sign(t)) * -.5 - .5;",
124                    outputCoverage);
125 }
126 
CalcEdgeCoveragesAtBloatVertices(GrGLSLVertexGeoBuilder * s,const char * leftPt,const char * rightPt,const char * bloatDir1,const char * bloatDir2,const char * outputCoverages)127 void GrCCCoverageProcessor::Shader::CalcEdgeCoveragesAtBloatVertices(GrGLSLVertexGeoBuilder* s,
128                                                                      const char* leftPt,
129                                                                      const char* rightPt,
130                                                                      const char* bloatDir1,
131                                                                      const char* bloatDir2,
132                                                                      const char* outputCoverages) {
133     // See comments in CalcEdgeCoverageAtBloatVertex.
134     s->codeAppendf("float2 n = float2(%s.y - %s.y, %s.x - %s.x);",
135                    rightPt, leftPt, leftPt, rightPt);
136     s->codeAppend ("float nwidth = abs(n.x) + abs(n.y);");
137     s->codeAppendf("float2 t = n * float2x2(%s, %s);", bloatDir1, bloatDir2);
138     s->codeAppendf("for (int i = 0; i < 2; ++i) {");
139     s->codeAppendf(    "%s[i] = half(abs(t[i]) != nwidth ? t[i] / nwidth : sign(t[i])) * -.5 - .5;",
140                        outputCoverages);
141     s->codeAppendf("}");
142 }
143 
CalcCornerAttenuation(GrGLSLVertexGeoBuilder * s,const char * leftDir,const char * rightDir,const char * outputAttenuation)144 void GrCCCoverageProcessor::Shader::CalcCornerAttenuation(GrGLSLVertexGeoBuilder* s,
145                                                           const char* leftDir, const char* rightDir,
146                                                           const char* outputAttenuation) {
147     // obtuseness = cos(corner_angle)  if corner_angle > 90 degrees
148     //                              0  if corner_angle <= 90 degrees
149     //
150     // NOTE: leftDir and rightDir are normalized and point in the same direction the path was
151     // defined with, i.e., leftDir points into the corner and rightDir points away from the corner.
152     s->codeAppendf("half obtuseness = max(half(dot(%s, %s)), 0);", leftDir, rightDir);
153 
154     // axis_alignedness = 1 - tan(angle_to_nearest_axis_from_corner_bisector)
155     //                    (i.e.,  1  when the corner bisector is aligned with the x- or y-axis
156     //                            0  when the corner bisector falls on a 45 degree angle
157     //                         0..1  when the corner bisector falls somewhere in between
158     s->codeAppendf("half2 abs_bisect_maybe_transpose = abs((0 == obtuseness) ? half2(%s - %s) : "
159                                                                               "half2(%s + %s));",
160                    leftDir, rightDir, leftDir, rightDir);
161     s->codeAppend ("half axis_alignedness = "
162                            "1 - min(abs_bisect_maybe_transpose.y, abs_bisect_maybe_transpose.x) / "
163                                "max(abs_bisect_maybe_transpose.x, abs_bisect_maybe_transpose.y);");
164 
165     // ninety_degreesness = sin^2(corner_angle)
166     // sin^2 just because... it's always positive and the results looked better than plain sine... ?
167     s->codeAppendf("half ninety_degreesness = determinant(half2x2(%s, %s));", leftDir, rightDir);
168     s->codeAppend ("ninety_degreesness = ninety_degreesness * ninety_degreesness;");
169 
170     // The below formula is not smart. It was just arrived at by considering the following
171     // observations:
172     //
173     // 1. 90-degree, axis-aligned corners have full attenuation along the bisector.
174     //    (i.e. coverage = 1 - distance_to_corner^2)
175     //    (i.e. outputAttenuation = 0)
176     //
177     // 2. 180-degree corners always have zero attenuation.
178     //    (i.e. coverage = 1 - distance_to_corner)
179     //    (i.e. outputAttenuation = 1)
180     //
181     // 3. 90-degree corners whose bisector falls on a 45 degree angle also do not attenuate.
182     //    (i.e. outputAttenuation = 1)
183     s->codeAppendf("%s = max(obtuseness, axis_alignedness * ninety_degreesness);",
184                    outputAttenuation);
185 }
186 
getGLSLProcessorKey(const GrShaderCaps &,GrProcessorKeyBuilder * b) const187 void GrCCCoverageProcessor::getGLSLProcessorKey(const GrShaderCaps&,
188                                                 GrProcessorKeyBuilder* b) const {
189     int key = (int)fPrimitiveType << 2;
190     if (GSSubpass::kCorners == fGSSubpass) {
191         key |= 2;
192     }
193     if (Impl::kVertexShader == fImpl) {
194         key |= 1;
195     }
196 #ifdef SK_DEBUG
197     uint32_t bloatBits;
198     memcpy(&bloatBits, &fDebugBloat, 4);
199     b->add32(bloatBits);
200 #endif
201     b->add32(key);
202 }
203 
createGLSLInstance(const GrShaderCaps &) const204 GrGLSLPrimitiveProcessor* GrCCCoverageProcessor::createGLSLInstance(const GrShaderCaps&) const {
205     std::unique_ptr<Shader> shader;
206     switch (fPrimitiveType) {
207         case PrimitiveType::kTriangles:
208         case PrimitiveType::kWeightedTriangles:
209             shader = skstd::make_unique<TriangleShader>();
210             break;
211         case PrimitiveType::kQuadratics:
212             shader = skstd::make_unique<GrCCQuadraticShader>();
213             break;
214         case PrimitiveType::kCubics:
215             shader = skstd::make_unique<GrCCCubicShader>();
216             break;
217         case PrimitiveType::kConics:
218             shader = skstd::make_unique<GrCCConicShader>();
219             break;
220     }
221     return Impl::kGeometryShader == fImpl ? this->createGSImpl(std::move(shader))
222                                           : this->createVSImpl(std::move(shader));
223 }
224 
emitFragmentCode(const GrCCCoverageProcessor & proc,GrGLSLFPFragmentBuilder * f,const char * skOutputColor,const char * skOutputCoverage) const225 void GrCCCoverageProcessor::Shader::emitFragmentCode(const GrCCCoverageProcessor& proc,
226                                                      GrGLSLFPFragmentBuilder* f,
227                                                      const char* skOutputColor,
228                                                      const char* skOutputCoverage) const {
229     f->codeAppendf("half coverage = 0;");
230     this->onEmitFragmentCode(f, "coverage");
231     f->codeAppendf("%s.a = coverage;", skOutputColor);
232     f->codeAppendf("%s = half4(1);", skOutputCoverage);
233 }
234 
draw(GrOpFlushState * flushState,const GrPipeline & pipeline,const SkIRect scissorRects[],const GrMesh meshes[],int meshCount,const SkRect & drawBounds) const235 void GrCCCoverageProcessor::draw(GrOpFlushState* flushState, const GrPipeline& pipeline,
236                                  const SkIRect scissorRects[], const GrMesh meshes[], int meshCount,
237                                  const SkRect& drawBounds) const {
238     GrPipeline::DynamicStateArrays dynamicStateArrays;
239     dynamicStateArrays.fScissorRects = scissorRects;
240     GrGpuRTCommandBuffer* cmdBuff = flushState->rtCommandBuffer();
241     cmdBuff->draw(*this, pipeline, nullptr, &dynamicStateArrays, meshes, meshCount, drawBounds);
242 
243     // Geometry shader backend draws primitives in two subpasses.
244     if (Impl::kGeometryShader == fImpl) {
245         SkASSERT(GSSubpass::kHulls == fGSSubpass);
246         GrCCCoverageProcessor cornerProc(*this, GSSubpass::kCorners);
247         cmdBuff->draw(cornerProc, pipeline, nullptr, &dynamicStateArrays, meshes, meshCount,
248                       drawBounds);
249     }
250 }
251